Search Results

Search found 2235 results on 90 pages for 'dictionary'.

Page 44/90 | < Previous Page | 40 41 42 43 44 45 46 47 48 49 50 51  | Next Page >

  • Localizing a plist with grouped data

    - by Robert Altman
    Is there a way to localize a plist that contain hierarchical or grouped data? For instance, if the plist contains: Book 1 (dictionary) Key (string) Name (string) Description (localizable string) Book 2 (dictionary) Key (string) Name (string) Description (localizable string) (etcetera...) For the sake of the example, the Key and Name should not be translated (and preferably should not be duplicated in multiple localized property lists). Is there a mechanism for providing localizations for the localizable Description field without localizing the entire property list? The only other strategy that came to my mind is to store a lookup key in the description field and than use that to retrieve the localized text via NSLocalizedString(...) Thanks.

    Read the article

  • HttpSessionState Where, How, Advantages?

    - by blgnklc
    You see the code below, how I did use the session variable; So the three questions are; 1- Where are they stored? (Server or Client side) 2- Are they unique for each web page visitor? 3- Can I remove it using ajax or simple js code when my job is done with it? or it will be removed automatically..? sbyte[][] arrImages = svc.getImagesForFields(new String[] { "CustomerName", "CustomerSurName" }); Dictionary<string, byte[]> smartImageData = new Dictionary<string, byte[]>(); int i = 0; foreach (sbyte[] bytes in arrImages) { smartImageData.Add(fieldNames[i], ConvertToByte(bytes)); i++; } Session.Add("SmartImageData", smartImageData);

    Read the article

  • Getting column info from db with C#

    - by lYriCAlsSH
    In PHP I am able to retrieve information from a db like so: <?php $sql = "SELECT * FROM users"; $result = mysql_query($sql); $data = array(); while($row = mysql_fetch_assoc($result)) { $data[] = $row; } I am trying to acomplish the same thing in C#: OdbcCommand cmd = new OdbcCommand("SELECT * FROM users WHERE id = @id"); cmd.Parameters.Add("@id", id); OdbcDataReader reader = cmd.ExecuteReader(); Dictionary<string, string> data = new Dictionary<string, string>(); while (reader.Read()) { data.Add("id", reader.GetString(0)); data.Add("username", reader.GetString(1)); data.Add("firstName", reader.GetString(2)); } return data; Is it possible to reference the column in the table by name without going through all this trouble?

    Read the article

  • How to generate a specific CPPDEFINE such as -DOEM="FOO BAR" using Scons

    - by Vineet
    My intention is to end up with a compiler command line including -DOEM="FOO BAR" I have the following in my SConstruct file: opts = Options( 'overrides.py', ARGUMENTS ) opts.Add( 'OEM_NAME', 'Any string can be used here', 'UNDEFINED' ) . . . if (env.Dictionary('OEM_NAME') != 'UNDEFINED'): OEM_DEFINE = 'OEM=' + str(env.Dictionary('OEM_NAME')) env.Append( CPPDEFINES=[ OEM_DEFINE ] ) Then I put the following in the "overrides.py" file: OEM_NAME = "FOO BAR" I seem to end up with "-DOEM=FOO BAR" in the command line that gets generated. Can someone point me in the right direction? Thanks.

    Read the article

  • FKs on all tables for status colunm

    - by Jonarch
    I have a colunm "Status" in every table in my DB. The purpose of it is to show if the given row is in use or if it has been deactivated. So values can be (0=deactive and 1= active). Two ways I see this: I can have enums or I am thinking if it is better to keep this colunm as a FK which references the main system data dictionary table which has all the codes used on the system. (website) The benefit is every table, every row can then be centralized through this FK. So if i ever want to check all rows which are deactive on my system i can from this table as all th child tables will have like status = ID 233, where 233 = deactive in the data dictionary table. Any benefit or should i stick with the old way of enums?. Also I am thinking if i need one more status for deleted or is that same as deactivated?

    Read the article

  • Match a word with similar words using Solr?

    - by fayer
    I want to search for threads in my mysql database with Solr. But i want it to not just search the thread words, but for similar words. Eg. if a thread title is "dog for sale" and if the user searches for dogs the title will be in the result. and also if a user searches for "mac os x" the word "snow leopard" will appear. and the ability to link words the application thinks is related eg. house and apartment. how is this kind of logic done? i know that you can with solr look up words in a dictionary file you create/add, so solr will look for dogs and see what related words there are (eg. dog). but where do you find such a dictionary? i have no idea about this kind of implementation. please point me into right direction. thanks

    Read the article

  • Is this a good approach to execute a list of operations on a data structure in Python?

    - by Sridhar Iyer
    I have a dictionary of data, the key is the file name and the value is another dictionary of its attribute values. Now I'd like to pass this data structure to various functions, each of which runs some test on the attribute and returns True/False. One approach would be to call each function one by one explicitly from the main code. However I can do something like this: #MYmodule.py class Mymodule: def MYfunc1(self): ... def MYfunc2(self): ... #main.py import Mymodule ... #fill the data structure ... #Now call all the functions in Mymodule one by one for funcs in dir(Mymodule): if funcs[:2]=='MY': result=Mymodule.__dict__.get(funcs)(dataStructure) The advantage of this approach is that implementation of main class needn't change when I add more logic/tests to MYmodule. Is this a good way to solve the problem at hand? Are there better alternatives to this solution?

    Read the article

  • Suggestions on search in android?

    - by Praveen Chandrasekaran
    i can implement the QSB on my app using onSearchRequested() method.i have 4 column in my table. when i was type in the QSB. it will give some suggestions on the Suggestion window. how to do that? searchable dictionary example shows the dictionary provider class to retrive the suggestions. but on that no data inserted. then how they getting the suggestions. can you explain me what are the steps we have to follow or tutorials, sample codes are most thankful.

    Read the article

  • C++ - Efficient way to iterate over the contents of a vector?

    - by Francisco P.
    Hello, everyone! I am implementing a text-based version of Scrabble for a college project. I have a vector containing around 400K strings (my dictionary), and, at some point in every turn, I'm going to have to check if any word in the dictionary can be formed with the pieces in the player's hand. My only solution to this is iterating through the string, one by one, and using a sub-routine I have to check if the string in question can be formed from the player's pieces. I'll implement a quickfail checking if the user has any vowels, but it'll still be woefully inefficient. Any suggestions? Thanks for your time!

    Read the article

  • Word Counter Implementation

    - by kenny
    Is there a better way than the following brute foce implementation of a c# word counting class? UPDATED CODE: Sorry! /// <summary> /// A word counting class. /// </summary> public class WordCounter { Dictionary<string, int> dictTest = new Dictionary<string, int> (); /// <summary> /// Enters a word and returns the current number of times that word was found. /// </summary> /// <param name="word">The word or string found.</param> /// <returns>Count of times Found() was called with provided word.</returns> public int Found ( string word ) { int count = 1; return dictTest.TryGetValue ( word, out count ) ? ++dictTest[word] : dictTest[word] = 1; } }

    Read the article

  • C# new class with only single property : derive from base or encapsulate into new ?

    - by Gobol
    I've tried to be descriptive :) It's rather programming-style problem than coding problem in itself. Let's suppose we have : A: public class MyDict { public Dictionary<int,string> dict; // do custom-serialization of "dict" public void SaveToFile(...); // customized deserialization of "dict" public void LoadFromFile(...); } B: public class MyDict : Dictionary<int,string> { } Which option would be better in the matter of programming style ? class B: is to be de/serialized externally. Main problem is : is it better to create new class (which would have only one property - like opt A:) or to create a new class derived - like opt B: ? I don't want any other data processing than adding/removing and de/serializing to stream. Thanks in advance!

    Read the article

  • Why is using a Non-Random IV with CBC Mode a vulnerability?

    - by The Rook
    I understand the purpose of an IV. Specifically in CBC mode this insures that the first block of of 2 messages encrypted with the same key will never be identical. But why is it a vulnerability if the IV's are sequential? According to CWE-329 NON-Random IV's allow for the possibility of a dictionary attack. I know that in practice protocols like WEP make no effort to hide the IV. If the attacker has the IV and a cipher text message then this opens the door for a dictionary attack against the key. I don't see how a random iv changes this. (I know the attacks against wep are more complex than this.) What security advantage does a randomized iv have? Is this still a problem with an "Ideal Block Cipher"? (A perfectly secure block cipher with no possible weaknesses.)

    Read the article

  • Why this kind of release doesn't work?

    - by parkyprg
    Hello, I have a newbie question about the following: - (NSString *)tableView:(UITableView *)tableView titleForHeaderInSection:(NSInteger)section { NSArray *anArray; anArray = [dictionary objectForKey: [NSString stringWithFormat:@"%d", section]]; //here dictionary is of type NSDictionary, initialized in another place. AnObject *obj = [[AnObject alloc] init]; obj = [anArray objectAtIndex:0]; [anArray release]; return obj.title; } If I run it as it is I will get an error. If I don't put [anArray release] it works just fine. I don't quite understand why is this happening? Thanks.

    Read the article

  • Fastest method in merging of the two: dicts vs lists

    - by tipu
    I'm doing some indexing and memory is sufficient but CPU isn't. So I have one huge dictionary and then a smaller dictionary I'm merging into the bigger one: big_dict = {"the" : {"1" : 1, "2" : 1, "3" : 1, "4" : 1, "5" : 1}} smaller_dict = {"the" : {"6" : 1, "7" : 1}} #after merging resulting_dict = {"the" : {"1" : 1, "2" : 1, "3" : 1, "4" : 1, "5" : 1, "6" : 1, "7" : 1}} My question is for the values in both dicts, should I use a dict (as displayed above) or list (as displayed below) when my priority is to use as much memory as possible to gain the most out of my CPU? For clarification, using a list would look like: big_dict = {"the" : [1, 2, 3, 4, 5]} smaller_dict = {"the" : [6,7]} #after merging resulting_dict = {"the" : [1, 2, 3, 4, 5, 6, 7]} Side note: The reason I'm using a dict nested into a dict rather than a set nested in a dict is because JSON won't let me do json.dumps because a set isn't key/value pairs, it's (as far as the JSON library is concerned) {"a", "series", "of", "keys"} Also, after choosing between using dict to a list, how would I go about implementing the most efficient, in terms of CPU, method of merging them? I appreciate the help.

    Read the article

  • C++ - How to efficiently find out if any string in a vector can be assembled from a set of letters

    - by Francisco P.
    Hello, everyone! I am implementing a text-based version of Scrabble for a college project. I have a vector containing around 400K strings (my dictionary), and, at some point in every turn, I'm going to have to check if there's still a word in the dictionary which can be formed with the pieces in the player's hand. I'm checking if the player has any move left... If not, it's game over for the player in question... My only solution to this is iterating through the string, one by one, and using a sub-routine I have to check if the string in question can be formed from the player's pieces. I'll implement a quickfail checking if the user has any vowels, but it'll still be woefully inefficient. Any suggestions? Thanks for your time!

    Read the article

  • ASP.NET MVC 3 Hosting :: New Features in ASP.NET MVC 3

    - by mbridge
    Razor View Engine The Razor view engine is a new view engine option for ASP.NET MVC that supports the Razor templating syntax. The Razor syntax is a streamlined approach to HTML templating designed with the goal of being a code driven minimalist templating approach that builds on existing C#, VB.NET and HTML knowledge. The result of this approach is that Razor views are very lean and do not contain unnecessary constructs that get in the way of you and your code. ASP.NET MVC 3 Preview 1 only supports C# Razor views which use the .cshtml file extension. VB.NET support will be enabled in later releases of ASP.NET MVC 3. For more information and examples, see Introducing “Razor” – a new view engine for ASP.NET on Scott Guthrie’s blog. Dynamic View and ViewModel Properties A new dynamic View property is available in views, which provides access to the ViewData object using a simpler syntax. For example, imagine two items are added to the ViewData dictionary in the Index controller action using code like the following: public ActionResult Index() {          ViewData["Title"] = "The Title";          ViewData["Message"] = "Hello World!"; } Those properties can be accessed in the Index view using code like this: <h2>View.Title</h2> <p>View.Message</p> There is also a new dynamic ViewModel property in the Controller class that lets you add items to the ViewData dictionary using a simpler syntax. Using the previous controller example, the two values added to the ViewData dictionary can be rewritten using the following code: public ActionResult Index() {     ViewModel.Title = "The Title";     ViewModel.Message = "Hello World!"; } “Add View” Dialog Box Supports Multiple View Engines The Add View dialog box in Visual Studio includes extensibility hooks that allow it to support multiple view engines, as shown in the following figure: Service Location and Dependency Injection Support ASP.NET MVC 3 introduces improved support for applying Dependency Injection (DI) via Inversion of Control (IoC) containers. ASP.NET MVC 3 Preview 1 provides the following hooks for locating services and injecting dependencies: - Creating controller factories. - Creating controllers and setting dependencies. - Setting dependencies on view pages for both the Web Form view engine and the Razor view engine (for types that derive from ViewPage, ViewUserControl, ViewMasterPage, WebViewPage). - Setting dependencies on action filters. Using a Dependency Injection container is not required in order for ASP.NET MVC 3 to function properly. Global Filters ASP.NET MVC 3 allows you to register filters that apply globally to all controller action methods. Adding a filter to the global filters collection ensures that the filter runs for all controller requests. To register an action filter globally, you can make the following call in the Application_Start method in the Global.asax file: GlobalFilters.Filters.Add(new MyActionFilter()); The source of global action filters is abstracted by the new IFilterProvider interface, which can be registered manually or by using Dependency Injection. This allows you to provide your own source of action filters and choose at run time whether to apply a filter to an action in a particular request. New JsonValueProviderFactory Class The new JsonValueProviderFactory class allows action methods to receive JSON-encoded data and model-bind it to an action-method parameter. This is useful in scenarios such as client templating. Client templates enable you to format and display a single data item or set of data items by using a fragment of HTML. ASP.NET MVC 3 lets you connect client templates easily with an action method that both returns and receives JSON data. Support for .NET Framework 4 Validation Attributes and IvalidatableObject The ValidationAttribute class was improved in the .NET Framework 4 to enable richer support for validation. When you write a custom validation attribute, you can use a new IsValid overload that provides a ValidationContext instance. This instance provides information about the current validation context, such as what object is being validated. This change enables scenarios such as validating the current value based on another property of the model. The following example shows a sample custom attribute that ensures that the value of PropertyOne is always larger than the value of PropertyTwo: public class CompareValidationAttribute : ValidationAttribute {     protected override ValidationResult IsValid(object value,              ValidationContext validationContext) {         var model = validationContext.ObjectInstance as SomeModel;         if (model.PropertyOne > model.PropertyTwo) {            return ValidationResult.Success;         }         return new ValidationResult("PropertyOne must be larger than PropertyTwo");     } } Validation in ASP.NET MVC also supports the .NET Framework 4 IValidatableObject interface. This interface allows your model to perform model-level validation, as in the following example: public class SomeModel : IValidatableObject {     public int PropertyOne { get; set; }     public int PropertyTwo { get; set; }     public IEnumerable<ValidationResult> Validate(ValidationContext validationContext) {         if (PropertyOne <= PropertyTwo) {            yield return new ValidationResult(                "PropertyOne must be larger than PropertyTwo");         }     } } New IClientValidatable Interface The new IClientValidatable interface allows the validation framework to discover at run time whether a validator has support for client validation. This interface is designed to be independent of the underlying implementation; therefore, where you implement the interface depends on the validation framework in use. For example, for the default data annotations-based validator, the interface would be applied on the validation attribute. Support for .NET Framework 4 Metadata Attributes ASP.NET MVC 3 now supports .NET Framework 4 metadata attributes such as DisplayAttribute. New IMetadataAware Interface The new IMetadataAware interface allows you to write attributes that simplify how you can contribute to the ModelMetadata creation process. Before this interface was available, you needed to write a custom metadata provider in order to have an attribute provide extra metadata. This interface is consumed by the AssociatedMetadataProvider class, so support for the IMetadataAware interface is automatically inherited by all classes that derive from that class (notably, the DataAnnotationsModelMetadataProvider class). New Action Result Types In ASP.NET MVC 3, the Controller class includes two new action result types and corresponding helper methods. HttpNotFoundResult Action The new HttpNotFoundResult action result is used to indicate that a resource requested by the current URL was not found. The status code is 404. This class derives from HttpStatusCodeResult. The Controller class includes an HttpNotFound method that returns an instance of this action result type, as shown in the following example: public ActionResult List(int id) {     if (id < 0) {                 return HttpNotFound();     }     return View(); } HttpStatusCodeResult Action The new HttpStatusCodeResult action result is used to set the response status code and description. Permanent Redirect The HttpRedirectResult class has a new Boolean Permanent property that is used to indicate whether a permanent redirect should occur. A permanent redirect uses the HTTP 301 status code. Corresponding to this change, the Controller class now has several methods for performing permanent redirects: - RedirectPermanent - RedirectToRoutePermanent - RedirectToActionPermanent These methods return an instance of HttpRedirectResult with the Permanent property set to true. Breaking Changes The order of execution for exception filters has changed for exception filters that have the same Order value. In ASP.NET MVC 2 and earlier, exception filters on the controller with the same Order as those on an action method were executed before the exception filters on the action method. This would typically be the case when exception filters were applied without a specified order Order value. In MVC 3, this order has been reversed in order to allow the most specific exception handler to execute first. As in earlier versions, if the Order property is explicitly specified, the filters are run in the specified order. Known Issues When you are editing a Razor view (CSHTML file), the Go To Controller menu item in Visual Studio will not be available, and there are no code snippets.

    Read the article

  • MVC 3 AdditionalMetadata Attribute with ViewBag to Render Dynamic UI

    - by Steve Michelotti
    A few months ago I blogged about using Model metadata to render a dynamic UI in MVC 2. The scenario in the post was that we might have a view model where the questions are conditionally displayed and therefore a dynamic UI is needed. To recap the previous post, the solution was to use a custom attribute called [QuestionId] in conjunction with an “ApplicableQuestions” collection to identify whether each question should be displayed. This allowed me to have a view model that looked like this: 1: [UIHint("ScalarQuestion")] 2: [DisplayName("First Name")] 3: [QuestionId("NB0021")] 4: public string FirstName { get; set; } 5: 6: [UIHint("ScalarQuestion")] 7: [DisplayName("Last Name")] 8: [QuestionId("NB0022")] 9: public string LastName { get; set; } 10: 11: [UIHint("ScalarQuestion")] 12: [QuestionId("NB0023")] 13: public int Age { get; set; } 14: 15: public IEnumerable<string> ApplicableQuestions { get; set; } At the same time, I was able to avoid repetitive IF statements for every single question in my view: 1: <%: Html.EditorFor(m => m.FirstName, new { applicableQuestions = Model.ApplicableQuestions })%> 2: <%: Html.EditorFor(m => m.LastName, new { applicableQuestions = Model.ApplicableQuestions })%> 3: <%: Html.EditorFor(m => m.Age, new { applicableQuestions = Model.ApplicableQuestions })%> by creating an Editor Template called “ScalarQuestion” that encapsulated the IF statement: 1: <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %> 2: <%@ Import Namespace="DynamicQuestions.Models" %> 3: <%@ Import Namespace="System.Linq" %> 4: <% 5: var applicableQuestions = this.ViewData["applicableQuestions"] as IEnumerable<string>; 6: var questionAttr = this.ViewData.ModelMetadata.ContainerType.GetProperty(this.ViewData.ModelMetadata.PropertyName).GetCustomAttributes(typeof(QuestionIdAttribute), true) as QuestionIdAttribute[]; 7: string questionId = null; 8: if (questionAttr.Length > 0) 9: { 10: questionId = questionAttr[0].Id; 11: } 12: if (questionId != null && applicableQuestions.Contains(questionId)) { %> 13: <div> 14: <%: Html.Label("") %> 15: <%: Html.TextBox("", this.Model)%> 16: </div> 17: <% } %> You might want to go back and read the full post in order to get the full context. MVC 3 offers a couple of new features that make this scenario more elegant to implement. The first step is to use the new [AdditionalMetadata] attribute which, so far, appears to be an under appreciated new feature of MVC 3. With this attribute, I don’t need my custom [QuestionId] attribute anymore - now I can just write my view model like this: 1: [UIHint("ScalarQuestion")] 2: [DisplayName("First Name")] 3: [AdditionalMetadata("QuestionId", "NB0021")] 4: public string FirstName { get; set; } 5:   6: [UIHint("ScalarQuestion")] 7: [DisplayName("Last Name")] 8: [AdditionalMetadata("QuestionId", "NB0022")] 9: public string LastName { get; set; } 10:   11: [UIHint("ScalarQuestion")] 12: [AdditionalMetadata("QuestionId", "NB0023")] 13: public int Age { get; set; } Thus far, the documentation seems to be pretty sparse on the AdditionalMetadata attribute. It’s buried in the Other New Features section of the MVC 3 home page and, after showing the attribute on a view model property, it just says, “This metadata is made available to any display or editor template when a product view model is rendered. It is up to you to interpret the metadata information.” But what exactly does it look like for me to “interpret the metadata information”? Well, it turns out it makes the view much easier to work with. Here is the re-implemented ScalarQuestion template updated for MVC 3 and Razor: 1: @{ 2: object questionId; 3: ViewData.ModelMetadata.AdditionalValues.TryGetValue("QuestionId", out questionId); 4: if (ViewBag.applicableQuestions.Contains((string)questionId)) { 5: <div> 6: @Html.LabelFor(m => m) 7: @Html.TextBoxFor(m => m) 8: </div> 9: } 10: } So we’ve gone from 17 lines of code (in the MVC 2 version) to about 7-8 lines of code here. The first thing to notice is that in MVC 3 we now have a property called “AdditionalValues” that hangs off of the ModelMetadata property. This is automatically populated by any [AdditionalMetadata] attributes on the property. There is no more need for me to explicitly write Reflection code to GetCustomAttributes() and then check to see if those attributes were present. I can just call TryGetValue() on the dictionary to see if they were present. Secondly, the “applicableQuestions” anonymous type that I passed in from the calling view – in MVC 3 I now have a dynamic ViewBag property where I can just “dot into” the applicableQuestions with a nicer syntax than dictionary square bracket syntax. And there’s no problems calling the Contains() method on this dynamic object because at runtime the DLR has resolved that it is a generic List<string>. At this point you might be saying that, yes the view got much nicer than the MVC 2 version, but my view model got slightly worse.  In the previous version I had a nice [QuestionId] attribute but now, with the [AdditionalMetadata] attribute, I have to type the string “QuestionId” for every single property and hope that I don’t make a typo. Well, the good news is that it’s easy to create your own attributes that can participate in the metadata’s additional values. The key is that the attribute must implement that IMetadataAware interface and populate the AdditionalValues dictionary in the OnMetadataCreated() method: 1: public class QuestionIdAttribute : Attribute, IMetadataAware 2: { 3: public string Id { get; set; } 4:   5: public QuestionIdAttribute(string id) 6: { 7: this.Id = id; 8: } 9:   10: public void OnMetadataCreated(ModelMetadata metadata) 11: { 12: metadata.AdditionalValues["QuestionId"] = this.Id; 13: } 14: } This now allows me to encapuslate my “QuestionId” string in just one place and get back to my original attribute which can be used like this: [QuestionId(“NB0021”)]. The [AdditionalMetadata] attribute is a powerful and under-appreciated new feature of MVC 3. Combined with the dynamic ViewBag property, you can do some really interesting things with your applications with less code and ceremony.

    Read the article

  • Modify Build Failure Work Item in TFS 2010 Build

    - by Jakob Ehn
    The default behaviour in TFS Team Build (all versions) is to create a bug work item when a build fails. This main benefit of this is that you get a work item for something that needs to be done, namely to fix the build!. When the developer responsible for the build failure has fixed the problem, he/she can associated that check-in with the work item that was created from the previous build failure. In TFS 2005/2008 you could modify the information in the created work item by changing some predefined properties in the TFSBuild.proj file:   <!-- WorkItemType The type of the work item created on a build failure. --> <WorkItemType>Bug</WorkItemType> <!-- WorkItemFieldValues Fields and values of the work item created on a build failure. Note: Use reference names for fields if you want the build to be resistant to field name changes. Reference names are language independent while friendly names are changed depending on the installed language. For example, "System.Reason" is the reference name for the "Reason" field. --> <WorkItemFieldValues>System.Reason=Build Failure;System.Description=Start the build using Team Build</WorkItemFieldValues> <!-- WorkItemTitle Title of the work item created on build failure. --> <WorkItemTitle>Build failure in build:</WorkItemTitle> <!-- DescriptionText History comment of the work item created on a build failure. --> <DescriptionText>This work item was created by Team Build on a build failure.</DescriptionText> <!-- BuildLogText Additional comment text for the work item created on a build failure. --> <BuildlogText>The build log file is at:</BuildlogText> <!-- ErrorWarningLogText Additional comment text for the work item created on a build failure. This text will only be added if there were errors or warnings. --> <ErrorWarningLogText>The errors/warnings log file is at:</ErrorWarningLogText>   In TFS 2010, with Windows Workflow, you change this by modifying the properties on the OpenWorkItem activity. The hardest part of this is to actually find where this activity is located in the build process workflow. If you open the build definition in XAML you can just search for OpenWorkItem. If you use the designer you need to click your way down to the Catch section of the Try to Compile the Project sequence: To change the default values of the created work item, select the Created Work Item activity and look at the Properties window: Note the CustomFields property which is a dictionary with key (work item field name) and value. If you add custom fields to your work item you can add a value for it here by adding a new entry in the dictionary.

    Read the article

  • CodePlex Daily Summary for Sunday, April 18, 2010

    CodePlex Daily Summary for Sunday, April 18, 2010New ProjectsBare Bones Email Trace Listener: Bare Bones Email Trace Listener is about the simplest email trace listener you can have. No bells, no whistles, and no good if you need authenticat...Cartellino: Scopo del progetto è la realizzazione di un software in grado di rilevare i dati dai rilevatori 3Tec (www.3tec.it) e stampare i cartellini presenza...Castle Windsor app.config Properties: The Castle Windsor app.config Properties library makes it possible for users of Castle Windsor to reference appSettings values in Windsor's XML pro...DeskD: This is a simple desktop dictionary application(something like WordWeb) created in Java using Netbeans IDE. Since i am new to codeplex all updates ...FunPokerMakerOnline: It is a play of poker online with a game editor. It is done with .net 4 and WPF and SOAP or WCF. KLOCS Team GIN Project: This is a Master's Degree program group project. It may have academic interest, but won't be maintained after June 2010KNN: This is KNN projectProject Santa: Program to organize teams using mysql databases and c# in a clean and robust task and group system. For more information see my blog post at http:/...ProjetoIntegradoJuridico: Sistema Integrado de Acompanhamento JurídicoRSSR for Windows Phone 7: This is a simple RSS reader application, the project aims to show people that it is easy to build application for windows phones. The applicatio...Simple Rcon: Simple Rcon is a simple lightweight rcon client for HL1/HL2 Servers. It is developed in C# and WPFTAB METHOD SQL Create a data dictionary from your Transact SQL code: TABMETHODSQL makes it easier for data/information workers to document their work. Create a data governance solution that maps sql data process, inc...TM BF Tournament: WPF software to manage Trackmania tournament with Battle France RulesviBlog: visinia plugin, this plugin is used to add blogging facility in visinia cmsviNews: visinia plugin, this plugin can be used to create a news portal like cnn.com nytimeVolumeMaster: VolumeMaster is an On Screen Display (OSD) that gets activated whenever the volume changes. It's written in WPF and uses Vista Core Audio API by Ra...WiiCIS.NET: This is a managed port of WiiCIS, which is a Nintendo Wiimote library originally created by TheOboeNerd and posted on Sourceforge.New ReleasesCastle Windsor app.config Properties: Version 1.0: Initial release.Code for Rapid C# Windows Development eBook: Enumerable Debugger Visualizer Version 1.1: Second release of the Enumerable Debugger Visualizer. There are more classes registered and it is more robust. The list of classes I have register...Convection Game Engine (Basic Edition): Convection Basic (40223): Compiled version of Convection Basic change set 40223.CycleMania Starter Kit EAP - ASP.NET 4 Problem - Design - Solution: Cyclemania 0.08.59: See Source Code tab for recent change history.DbEntry.Net (Lephone Framework): DbEntry.Net 3.9: DbEntry.Net is a lightweight Object Relational Mapping (ORM) database access compnent for .Net 3.5. It has clearly and easily programing interface ...Hash Calculator: HashCalculator 2.0: Upgraded to .NET Framework 4.0 Added support to calculate CRC32 hash function Added "Cancel" button in the Windows 7 taskbar thumbnailHKGolden Express: HKGoldenExpress (Build 201004172120): New features: Added jump links at top of page of message. Bug fix: Fixed page count bug. Improvements: HKGolden Express now uses DocumentBuild...HTML Ruby: 6.21.4: Styles added to override those on some sites for better rendering of ruby Fix regression on complex ruby annotation rendering Better spacingHTML Ruby: 6.21.5: Removed debug code in preference handling Status bar indicator now resets for each action Replace ruby in place without using document fragment...IceChat: IceChat 2009 Alpha 12.4 EXE Update: This is simply an update to the main IceChat program files and DLL. Simpply overwrite the ones in the place where IceChat 2009 is installed.IceChat: IceChat 2009 Alpha 12.4 Full Install: Build Alpha 12.4 - April 17 2010 Added IceChatScript.dll , needs to be added in same folder with EXE and IPluginIceChat.dll Added Self Notice in ...PokeIn Comet Ajax Library: PokeIn Library v05 x64: With this version, PokeIn library has become a stable. Numerous tests have completed. This is the first release candidate of PokeIn. Cheers!PokeIn Comet Ajax Library: PokeIn Library v05 x86: PokeIn Library version 0.5 (x86) With this version, PokeIn library has become a stable. Numerous tests have completed. This is the first release c...Project Santa: Project Santa V1.0: The first initial release of my project manager program, for more information see http://coderplex.blogspot.com/2010/04/project-manager-using-mysq...Salient: TestingWithVSDevServer v1: Using code from Salient, I have assembled a few strategies for programmatic contol of the Visual Studio Development Server (WebDev.WebServer.exe). ...SharePoint Navigation Menu: spNavigationMenu 1.1: Changed the CAML query so it will order by Link Order, then Title. Added the ability to override the On Hover event on the parent menu to use On ...Simple Rcon: Simple Rcon Version 1: Version 1TAB METHOD SQL Create a data dictionary from your Transact SQL code: RELEASE 1: TESTING THE RELEASE SYSTEMTribe.Cache: Tribe.Cache Beta 0.1: Beta release of Tribe.Cache - Now with cache expiration serviceviBlog: viBlog_beta: visinia plugin to add blogging facility in visinia cmsviNews: viNews_beta: visinia plugin.visinia: visinia_beta2: visinia beta 2 released with many new feature.Visual Studio DSite: Visual C++ 2008 Login Form: A simple login form made in visual c 2008. Source code only.WiiCIS.NET: WiiCIS.NET v0.11: 0.11 Removed an unnecessary function from the Wiimote class, and improved the demo. You will need the latest version of SlimDX to compile the sourc...WinControls TreeListView: TreeListView 1.5.1: -fixes issue #5837 -Preliminary feature #5874WoW Character Viewer: Viewer Setup: Finally, I've brought out the next setup of WoW Viewer. Most loose ends have been tied up. Loading and Saving of character files has been fixed.Most Popular ProjectsRawrAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseMicrosoft SQL Server Community & Samplespatterns & practices – Enterprise LibraryPHPExcelFacebook Developer ToolkitBlogEngine.NETMvcContrib: a Codeplex Foundation projectIronPythonMost Active ProjectsRawrpatterns & practices – Enterprise LibraryIndustrial DashboardFarseer Physics EnginejQuery Library for SharePoint Web ServicesIonics Isapi Rewrite FilterGMap.NET - Great Maps for Windows Forms & PresentationProxi [Proxy Interface]BlogEngine.NETCaliburn: An Application Framework for WPF and Silverlight

    Read the article

  • Syncing Data with a Server using Silverlight and HTTP Polling Duplex

    - by dwahlin
    Many applications have the need to stay in-sync with data provided by a service. Although web applications typically rely on standard polling techniques to check if data has changed, Silverlight provides several interesting options for keeping an application in-sync that rely on server “push” technologies. A few years back I wrote several blog posts covering different “push” technologies available in Silverlight that rely on sockets or HTTP Polling Duplex. We recently had a project that looked like it could benefit from pushing data from a server to one or more clients so I thought I’d revisit the subject and provide some updates to the original code posted. If you’ve worked with AJAX before in Web applications then you know that until browsers fully support web sockets or other duplex (bi-directional communication) technologies that it’s difficult to keep applications in-sync with a server without relying on polling. The problem with polling is that you have to check for changes on the server on a timed-basis which can often be wasteful and take up unnecessary resources. With server “push” technologies, data can be pushed from the server to the client as it changes. Once the data is received, the client can update the user interface as appropriate. Using “push” technologies allows the client to listen for changes from the data but stay 100% focused on client activities as opposed to worrying about polling and asking the server if anything has changed. Silverlight provides several options for pushing data from a server to a client including sockets, TCP bindings and HTTP Polling Duplex.  Each has its own strengths and weaknesses as far as performance and setup work with HTTP Polling Duplex arguably being the easiest to setup and get going.  In this article I’ll demonstrate how HTTP Polling Duplex can be used in Silverlight 4 applications to push data and show how you can create a WCF server that provides an HTTP Polling Duplex binding that a Silverlight client can consume.   What is HTTP Polling Duplex? Technologies that allow data to be pushed from a server to a client rely on duplex functionality. Duplex (or bi-directional) communication allows data to be passed in both directions.  A client can call a service and the server can call the client. HTTP Polling Duplex (as its name implies) allows a server to communicate with a client without forcing the client to constantly poll the server. It has the benefit of being able to run on port 80 making setup a breeze compared to the other options which require specific ports to be used and cross-domain policy files to be exposed on port 943 (as with sockets and TCP bindings). Having said that, if you’re looking for the best speed possible then sockets and TCP bindings are the way to go. But, they’re not the only game in town when it comes to duplex communication. The first time I heard about HTTP Polling Duplex (initially available in Silverlight 2) I wasn’t exactly sure how it was any better than standard polling used in AJAX applications. I read the Silverlight SDK, looked at various resources and generally found the following definition unhelpful as far as understanding the actual benefits that HTTP Polling Duplex provided: "The Silverlight client periodically polls the service on the network layer, and checks for any new messages that the service wants to send on the callback channel. The service queues all messages sent on the client callback channel and delivers them to the client when the client polls the service." Although the previous definition explained the overall process, it sounded as if standard polling was used. Fortunately, Microsoft’s Scott Guthrie provided me with a more clear definition several years back that explains the benefits provided by HTTP Polling Duplex quite well (used with his permission): "The [HTTP Polling Duplex] duplex support does use polling in the background to implement notifications – although the way it does it is different than manual polling. It initiates a network request, and then the request is effectively “put to sleep” waiting for the server to respond (it doesn’t come back immediately). The server then keeps the connection open but not active until it has something to send back (or the connection times out after 90 seconds – at which point the duplex client will connect again and wait). This way you are avoiding hitting the server repeatedly – but still get an immediate response when there is data to send." After hearing Scott’s definition the light bulb went on and it all made sense. A client makes a request to a server to check for changes, but instead of the request returning immediately, it parks itself on the server and waits for data. It’s kind of like waiting to pick up a pizza at the store. Instead of calling the store over and over to check the status, you sit in the store and wait until the pizza (the request data) is ready. Once it’s ready you take it back home (to the client). This technique provides a lot of efficiency gains over standard polling techniques even though it does use some polling of its own as a request is initially made from a client to a server. So how do you implement HTTP Polling Duplex in your Silverlight applications? Let’s take a look at the process by starting with the server. Creating an HTTP Polling Duplex WCF Service Creating a WCF service that exposes an HTTP Polling Duplex binding is straightforward as far as coding goes. Add some one way operations into an interface, create a client callback interface and you’re ready to go. The most challenging part comes into play when configuring the service to properly support the necessary binding and that’s more of a cut and paste operation once you know the configuration code to use. To create an HTTP Polling Duplex service you’ll need to expose server-side and client-side interfaces and reference the System.ServiceModel.PollingDuplex assembly (located at C:\Program Files (x86)\Microsoft SDKs\Silverlight\v4.0\Libraries\Server on my machine) in the server project. For the demo application I upgraded a basketball simulation service to support the latest polling duplex assemblies. The service simulates a simple basketball game using a Game class and pushes information about the game such as score, fouls, shots and more to the client as the game changes over time. Before jumping too far into the game push service, it’s important to discuss two interfaces used by the service to communicate in a bi-directional manner. The first is called IGameStreamService and defines the methods/operations that the client can call on the server (see Listing 1). The second is IGameStreamClient which defines the callback methods that a server can use to communicate with a client (see Listing 2).   [ServiceContract(Namespace = "Silverlight", CallbackContract = typeof(IGameStreamClient))] public interface IGameStreamService { [OperationContract(IsOneWay = true)] void GetTeamData(); } Listing 1. The IGameStreamService interface defines server operations that can be called on the server.   [ServiceContract] public interface IGameStreamClient { [OperationContract(IsOneWay = true)] void ReceiveTeamData(List<Team> teamData); [OperationContract(IsOneWay = true, AsyncPattern=true)] IAsyncResult BeginReceiveGameData(GameData gameData, AsyncCallback callback, object state); void EndReceiveGameData(IAsyncResult result); } Listing 2. The IGameStreamClient interfaces defines client operations that a server can call.   The IGameStreamService interface is decorated with the standard ServiceContract attribute but also contains a value for the CallbackContract property.  This property is used to define the interface that the client will expose (IGameStreamClient in this example) and use to receive data pushed from the service. Notice that each OperationContract attribute in both interfaces sets the IsOneWay property to true. This means that the operation can be called and passed data as appropriate, however, no data will be passed back. Instead, data will be pushed back to the client as it’s available.  Looking through the IGameStreamService interface you can see that the client can request team data whereas the IGameStreamClient interface allows team and game data to be received by the client. One interesting point about the IGameStreamClient interface is the inclusion of the AsyncPattern property on the BeginReceiveGameData operation. I initially created this operation as a standard one way operation and it worked most of the time. However, as I disconnected clients and reconnected new ones game data wasn’t being passed properly. After researching the problem more I realized that because the service could take up to 7 seconds to return game data, things were getting hung up. By setting the AsyncPattern property to true on the BeginReceivedGameData operation and providing a corresponding EndReceiveGameData operation I was able to get around this problem and get everything running properly. I’ll provide more details on the implementation of these two methods later in this post. Once the interfaces were created I moved on to the game service class. The first order of business was to create a class that implemented the IGameStreamService interface. Since the service can be used by multiple clients wanting game data I added the ServiceBehavior attribute to the class definition so that I could set its InstanceContextMode to InstanceContextMode.Single (in effect creating a Singleton service object). Listing 3 shows the game service class as well as its fields and constructor.   [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple, InstanceContextMode = InstanceContextMode.Single)] public class GameStreamService : IGameStreamService { object _Key = new object(); Game _Game = null; Timer _Timer = null; Random _Random = null; Dictionary<string, IGameStreamClient> _ClientCallbacks = new Dictionary<string, IGameStreamClient>(); static AsyncCallback _ReceiveGameDataCompleted = new AsyncCallback(ReceiveGameDataCompleted); public GameStreamService() { _Game = new Game(); _Timer = new Timer { Enabled = false, Interval = 2000, AutoReset = true }; _Timer.Elapsed += new ElapsedEventHandler(_Timer_Elapsed); _Timer.Start(); _Random = new Random(); }} Listing 3. The GameStreamService implements the IGameStreamService interface which defines a callback contract that allows the service class to push data back to the client. By implementing the IGameStreamService interface, GameStreamService must supply a GetTeamData() method which is responsible for supplying information about the teams that are playing as well as individual players.  GetTeamData() also acts as a client subscription method that tracks clients wanting to receive game data.  Listing 4 shows the GetTeamData() method. public void GetTeamData() { //Get client callback channel var context = OperationContext.Current; var sessionID = context.SessionId; var currClient = context.GetCallbackChannel<IGameStreamClient>(); context.Channel.Faulted += Disconnect; context.Channel.Closed += Disconnect; IGameStreamClient client; if (!_ClientCallbacks.TryGetValue(sessionID, out client)) { lock (_Key) { _ClientCallbacks[sessionID] = currClient; } } currClient.ReceiveTeamData(_Game.GetTeamData()); //Start timer which when fired sends updated score information to client if (!_Timer.Enabled) { _Timer.Enabled = true; } } Listing 4. The GetTeamData() method subscribes a given client to the game service and returns. The key the line of code in the GetTeamData() method is the call to GetCallbackChannel<IGameStreamClient>().  This method is responsible for accessing the calling client’s callback channel. The callback channel is defined by the IGameStreamClient interface shown earlier in Listing 2 and used by the server to communicate with the client. Before passing team data back to the client, GetTeamData() grabs the client’s session ID and checks if it already exists in the _ClientCallbacks dictionary object used to track clients wanting callbacks from the server. If the client doesn’t exist it adds it into the collection. It then pushes team data from the Game class back to the client by calling ReceiveTeamData().  Since the service simulates a basketball game, a timer is then started if it’s not already enabled which is then used to randomly send data to the client. When the timer fires, game data is pushed down to the client. Listing 5 shows the _Timer_Elapsed() method that is called when the timer fires as well as the SendGameData() method used to send data to the client. void _Timer_Elapsed(object sender, ElapsedEventArgs e) { int interval = _Random.Next(3000, 7000); lock (_Key) { _Timer.Interval = interval; _Timer.Enabled = false; } SendGameData(_Game.GetGameData()); } private void SendGameData(GameData gameData) { var cbs = _ClientCallbacks.Where(cb => ((IContextChannel)cb.Value).State == CommunicationState.Opened); for (int i = 0; i < cbs.Count(); i++) { var cb = cbs.ElementAt(i).Value; try { cb.BeginReceiveGameData(gameData, _ReceiveGameDataCompleted, cb); } catch (TimeoutException texp) { //Log timeout error } catch (CommunicationException cexp) { //Log communication error } } lock (_Key) _Timer.Enabled = true; } private static void ReceiveGameDataCompleted(IAsyncResult result) { try { ((IGameStreamClient)(result.AsyncState)).EndReceiveGameData(result); } catch (CommunicationException) { // empty } catch (TimeoutException) { // empty } } LIsting 5. _Timer_Elapsed is used to simulate time in a basketball game. When _Timer_Elapsed() fires the SendGameData() method is called which iterates through the clients wanting to be notified of changes. As each client is identified, their respective BeginReceiveGameData() method is called which ultimately pushes game data down to the client. Recall that this method was defined in the client callback interface named IGameStreamClient shown earlier in Listing 2. Notice that BeginReceiveGameData() accepts _ReceiveGameDataCompleted as its second parameter (an AsyncCallback delegate defined in the service class) and passes the client callback as the third parameter. The initial version of the sample application had a standard ReceiveGameData() method in the client callback interface. However, sometimes the client callbacks would work properly and sometimes they wouldn’t which was a little baffling at first glance. After some investigation I realized that I needed to implement an asynchronous pattern for client callbacks to work properly since 3 – 7 second delays are occurring as a result of the timer. Once I added the BeginReceiveGameData() and ReceiveGameDataCompleted() methods everything worked properly since each call was handled in an asynchronous manner. The final task that had to be completed to get the server working properly with HTTP Polling Duplex was adding configuration code into web.config. In the interest of brevity I won’t post all of the code here since the sample application includes everything you need. However, Listing 6 shows the key configuration code to handle creating a custom binding named pollingDuplexBinding and associate it with the service’s endpoint.   <bindings> <customBinding> <binding name="pollingDuplexBinding"> <binaryMessageEncoding /> <pollingDuplex maxPendingSessions="2147483647" maxPendingMessagesPerSession="2147483647" inactivityTimeout="02:00:00" serverPollTimeout="00:05:00"/> <httpTransport /> </binding> </customBinding> </bindings> <services> <service name="GameService.GameStreamService" behaviorConfiguration="GameStreamServiceBehavior"> <endpoint address="" binding="customBinding" bindingConfiguration="pollingDuplexBinding" contract="GameService.IGameStreamService"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>   Listing 6. Configuring an HTTP Polling Duplex binding in web.config and associating an endpoint with it. Calling the Service and Receiving “Pushed” Data Calling the service and handling data that is pushed from the server is a simple and straightforward process in Silverlight. Since the service is configured with a MEX endpoint and exposes a WSDL file, you can right-click on the Silverlight project and select the standard Add Service Reference item. After the web service proxy is created you may notice that the ServiceReferences.ClientConfig file only contains an empty configuration element instead of the normal configuration elements created when creating a standard WCF proxy. You can certainly update the file if you want to read from it at runtime but for the sample application I fed the service URI directly to the service proxy as shown next: var address = new EndpointAddress("http://localhost.:5661/GameStreamService.svc"); var binding = new PollingDuplexHttpBinding(); _Proxy = new GameStreamServiceClient(binding, address); _Proxy.ReceiveTeamDataReceived += _Proxy_ReceiveTeamDataReceived; _Proxy.ReceiveGameDataReceived += _Proxy_ReceiveGameDataReceived; _Proxy.GetTeamDataAsync(); This code creates the proxy and passes the endpoint address and binding to use to its constructor. It then wires the different receive events to callback methods and calls GetTeamDataAsync().  Calling GetTeamDataAsync() causes the server to store the client in the server-side dictionary collection mentioned earlier so that it can receive data that is pushed.  As the server-side timer fires and game data is pushed to the client, the user interface is updated as shown in Listing 7. Listing 8 shows the _Proxy_ReceiveGameDataReceived() method responsible for handling the data and calling UpdateGameData() to process it.   Listing 7. The Silverlight interface. Game data is pushed from the server to the client using HTTP Polling Duplex. void _Proxy_ReceiveGameDataReceived(object sender, ReceiveGameDataReceivedEventArgs e) { UpdateGameData(e.gameData); } private void UpdateGameData(GameData gameData) { //Update Score this.tbTeam1Score.Text = gameData.Team1Score.ToString(); this.tbTeam2Score.Text = gameData.Team2Score.ToString(); //Update ball visibility if (gameData.Action != ActionsEnum.Foul) { if (tbTeam1.Text == gameData.TeamOnOffense) { AnimateBall(this.BB1, this.BB2); } else //Team 2 { AnimateBall(this.BB2, this.BB1); } } if (this.lbActions.Items.Count > 9) this.lbActions.Items.Clear(); this.lbActions.Items.Add(gameData.LastAction); if (this.lbActions.Visibility == Visibility.Collapsed) this.lbActions.Visibility = Visibility.Visible; } private void AnimateBall(Image onBall, Image offBall) { this.FadeIn.Stop(); Storyboard.SetTarget(this.FadeInAnimation, onBall); Storyboard.SetTarget(this.FadeOutAnimation, offBall); this.FadeIn.Begin(); } Listing 8. As the server pushes game data, the client’s _Proxy_ReceiveGameDataReceived() method is called to process the data. In a real-life application I’d go with a ViewModel class to handle retrieving team data, setup data bindings and handle data that is pushed from the server. However, for the sample application I wanted to focus on HTTP Polling Duplex and keep things as simple as possible.   Summary Silverlight supports three options when duplex communication is required in an application including TCP bindins, sockets and HTTP Polling Duplex. In this post you’ve seen how HTTP Polling Duplex interfaces can be created and implemented on the server as well as how they can be consumed by a Silverlight client. HTTP Polling Duplex provides a nice way to “push” data from a server while still allowing the data to flow over port 80 or another port of your choice.   Sample Application Download

    Read the article

  • SQL Developer Data Modeler: On Notes, Comments, and Comments in RDBMS

    - by thatjeffsmith
    Ah the beautiful data model. They say a picture is worth a 1,000 words. And then we have our diagrams, how many words are they worth? Our friends from the Human Relations sample schema So our models describe how the data ‘works’ – whether that be at a logical-business level, or a technical-physical level. Developers like to say that their code is self-documenting. These would be very lazy or very bad (or both) developers. Models are the same way, you should document your models with comments and notes! I have 3 basic options: Comments Comments in RDBMS Notes So what’s the difference? Comments You’re describing the entity/table or attribute/column. This information will NOT be published in the database. It will only be available to the model, and hence, folks with access to the model. Table Comments (in the design only!) Comments in RDBMS You’re doing the same thing as above, but your words will be stored IN the data dictionary of the database. Oracle allows you to store comments on the table and column definitions. So your awesome documentation is going to be viewable to anyone with access to the database. RDBMS is an acronym for Relational Database Management System – of which Oracle is one of the first commercial examples If the DDL is produced and ran against a database, these comments WILL be stored in the data dictionary. Notes A place for you to add notes, maybe from a design meeting. Or maybe you’re using this as a to-do or requirements list. Basically it’s for anything that doesn’t literally describe the object at hand – that’s what the comments are for. I totally made these up. Now these are free text fields and you can put whatever you want here. Just make sure you put stuff here that’s worth reading. And it will live on…forever.

    Read the article

  • How can I use the voice recognition used by Android on Ubuntu?

    - by aking1012
    If I'm developing an Android app that uses TTS and Voice recognition, which libraries are used for the same voice recognition and speech on Ubuntu? I'm assuming espeak for text to speech, but I'm unsure which voice recognition library and dictionary/learning/calibration system is used for voice recognition. I'ld like to make the app available on Ubuntu Desktop. as well as test it outside an emulator

    Read the article

  • Free eBook with SQL Server performance tips and nuggets

    - by Claire Brooking
    I’ve often found that the kind of tips that turn out to be helpful are the ones that encourage me to make a small step outside of a routine. No dramatic changes – just a quick suggestion that changes an approach. As a languages student at university, one of the best I spotted came from outside the lecture halls and ended up saving me time (and lots of huffing and puffing) – the use of a rainbow of sticky notes for well-used pages and letter categories in my dictionary. Simple, but armed with a heavy dictionary that could double up as a step stool, those markers were surprisingly handy. When the Simple-Talk editors told me about a book they were planning that would give a series of tips for developers on how to improve database performance, we all agreed it needed to contain a good range of pointers for big-hitter performance topics. But we wanted to include some of the smaller, time-saving nuggets too. We hope we’ve struck a good balance. The 45 Database Performance Tips eBook covers different tips to help you avoid code that saps performance, whether that’s the ‘gotchas’ to be aware of when using Object to Relational Mapping (ORM) tools, or what to be aware of for indexes, database design, and T-SQL. The eBook is also available to download with SQL Prompt from Red Gate. We often hear that it’s the productivity-boosting side of SQL Prompt that makes it useful for everyday coding. So when a member of the SQL Prompt team mentioned an idea to make the most of tab history, a new feature in SQL Prompt 6 for SQL Server Management Studio, we were intrigued. Now SQL Prompt can save tabs we have been working on in SSMS as a way to maintain an active template for queries we often recycle. When we need to reuse the same code again, we search for our saved tab (and we can also customize its name to speed up the search) to get started. We hope you find the eBook helpful, and as always on Simple-Talk, we’d love to hear from you too. If you have a performance tip for SQL Server you’d like to share, email Melanie on the Simple-Talk team ([email protected]) and we’ll publish a collection in a follow-up post.

    Read the article

  • const vs. readonly for a singleton

    - by GlenH7
    First off, I understand there are folk who oppose the use of singletons. I think it's an appropriate use in this case as it's constant state information, but I'm open to differing opinions / solutions. (See The singleton pattern and When should the singleton pattern not be used?) Second, for a broader audience: C++/CLI has a similar keyword to readonly with initonly, so this isn't strictly a C# type question. (Literal field versus constant variable in C++/CLI) Sidenote: A discussion of some of the nuances on using const or readonly. My Question: I have a singleton that anchors together some different data structures. Part of what I expose through that singleton are some lists and other objects, which represent the necessary keys or columns in order to connect the linked data structures. I doubt that anyone would try to change these objects through a different module, but I want to explicitly protect them from that risk. So I'm currently using a "readonly" modifier on those objects*. I'm using readonly instead of const with the lists as I read that using const will embed those items in the referencing assemblies and will therefore trigger a rebuild of those referencing assemblies if / when the list(s) is/are modified. This seems like a tighter coupling than I would want between the modules, but I wonder if I'm obsessing over a moot point. (This is question #2 below) The alternative I see to using "readonly" is to make the variables private and then wrap them with a public get. I'm struggling to see the advantage of this approach as it seems like wrapper code that doesn't provide much additional benefit. (This is question #1 below) It's highly unlikely that we'll change the contents or format of the lists - they're a compilation of things to avoid using magic strings all over the place. Unfortunately, not all the code has converted over to using this singleton's presentation of those strings. Likewise, I don't know that we'd change the containers / classes for the lists. So while I normally argue for the encapsulations advantages a get wrapper provides, I'm just not feeling it in this case. A representative sample of my singleton public sealed class mySingl { private static volatile mySingl sngl; private static object lockObject = new Object(); public readonly Dictionary<string, string> myDict = new Dictionary<string, string>() { {"I", "index"}, {"D", "display"}, }; public enum parms { ABC = 10, DEF = 20, FGH = 30 }; public readonly List<parms> specParms = new List<parms>() { parms.ABC, parms.FGH }; public static mySingl Instance { get { if(sngl == null) { lock(lockObject) { if(sngl == null) sngl = new mySingl(); } } return sngl; } } private mySingl() { doSomething(); } } Questions: Am I taking the most reasonable approach in this case? Should I be worrying about const vs. readonly? is there a better way of providing this information?

    Read the article

  • Weaknesses of 3-Strike Security

    - by prelic
    I've been reading some literature on security, specifically password security/encryption, and there's been one thing that I've been wondering: is the 3-strike rule a perfect solution to password security? That is, if the number of password attempts is limited to some small number, after which all authentication requests will not be honored, will that not protect users from intrusion? I realize gaining access or control over something doesn't always mean going through the authentication system, but doesn't this feature make dictionary/brute-force attacks obsolete? Is there something I'm missing?

    Read the article

< Previous Page | 40 41 42 43 44 45 46 47 48 49 50 51  | Next Page >