Search Results

Search found 66560 results on 2663 pages for 'value type'.

Page 40/2663 | < Previous Page | 36 37 38 39 40 41 42 43 44 45 46 47  | Next Page >

  • WCF: collection proxy type on client

    - by Unholy
    I have the following type in wsdl (it is generated by third party tool): <xsd:complexType name="IntArray"> <xsd:sequence> <xsd:element maxOccurs="unbounded" minOccurs="0" name="Elements" type="xsd:int" /> </xsd:sequence> </xsd:complexType> Sometimes Visual Studio generates: public class IntArray : System.Collections.Generic.List<int> {} And sometimes it doesn't generate any proxy type for this wsdl and just uses int[]. Collection type in Web Service configuration is System.Array. What could be the reason for such upredictable behavior? Edited: I found the way how I can reproduce this behavior. For examle we have two types: <xsd:complexType name="IntArray"> <xsd:sequence> <xsd:element maxOccurs="unbounded" minOccurs="0" name="Elements" type="xsd:int" /> </xsd:sequence> </xsd:complexType> <xsd:complexType name="StringArray"> <xsd:sequence> <xsd:element maxOccurs="unbounded" minOccurs="0" name="Elements" type="xsd:string" /> </xsd:sequence> </xsd:complexType> VS generates: public class IntArray : System.Collections.Generic.List<int> {} public class StringArray : System.Collections.Generic.List<string> {} Now I change StringArray type: <xsd:complexType name="StringArray"> <xsd:sequence> <xsd:element maxOccurs="unbounded" minOccurs="0" name="Elements" type="xsd:string" /> <xsd:any minOccurs="0" maxOccurs="unbounded" namespace="##any" processContents="lax" /> </xsd:sequence> <xsd:anyAttribute namespace="##any" processContents="lax"/> </xsd:complexType> VS generates proxy type for StringArray only. But not for IntArray.

    Read the article

  • Template specialization to use default type if class member typedef does not exist

    - by Frank
    Hi Everyone, I'm trying to write code that uses a member typedef of a template argument, but want to supply a default type if the template argument does not have that typedef. A simplified example I've tried is this: struct DefaultType { DefaultType() { printf("Default "); } }; struct NonDefaultType { NonDefaultType() { printf("NonDefault "); } }; struct A {}; struct B { typedef NonDefaultType Type; }; template<typename T, typename Enable = void> struct Get_Type { typedef DefaultType Type; }; template<typename T> struct Get_Type< T, typename T::Type > { typedef typename T::Type Type; }; int main() { Get_Type::Type test1; Get_Type::Type test2; } I would expect this to print "Default NonDefault", but instead it prints "Default Default". My expectation is that the second line in main() should match the specialized version of Get_Type, because B::Type exists. However, this does not happen. Can anyone explain what's going on here and how to fix it, or another way to accomplish the same goal? Thank you.

    Read the article

  • Matlab: Print text in input field

    - by Adam Doyle
    Using Matlab, I have this code: value = input('>> Enter a value: '); and basically, I want a "default" value to the right of the colon (sortof like this) >> Enter a value: 12 where "12" is editable such that the user could [backspace] [backspace] and change the value to, say, "20" or something. Is there any (easy) way to do this? Thanks!

    Read the article

  • Class Mapping Error: 'T' must be a non-abstract type with a public parameterless constructor

    - by Amit Ranjan
    Hi, While mapping class i am getting error 'T' must be a non-abstract type with a public parameterless constructor in order to use it as parameter 'T' in the generic type or method. Below is my SqlReaderBase Class public abstract class SqlReaderBase<T> : ConnectionProvider { #region Abstract Methods protected abstract string commandText { get; } protected abstract CommandType commandType { get; } protected abstract Collection<IDataParameter> GetParameters(IDbCommand command); **protected abstract MapperBase<T> GetMapper();** #endregion #region Non Abstract Methods /// <summary> /// Method to Execute Select Queries for Retrieveing List of Result /// </summary> /// <returns></returns> public Collection<T> ExecuteReader() { //Collection of Type on which Template is applied Collection<T> collection = new Collection<T>(); // initializing connection using (IDbConnection connection = GetConnection()) { try { // creates command for sql operations IDbCommand command = connection.CreateCommand(); // assign connection to command command.Connection = connection; // assign query command.CommandText = commandText; //state what type of query is used, text, table or Sp command.CommandType = commandType; // retrieves parameter from IDataParameter Collection and assigns it to command object foreach (IDataParameter param in GetParameters(command)) command.Parameters.Add(param); // Establishes connection with database server connection.Open(); // Since it is designed for executing Select statements that will return a list of results // so we will call command's execute reader method that return a Forward Only reader with // list of results inside. using (IDataReader reader = command.ExecuteReader()) { try { // Call to Mapper Class of the template to map the data to its // respective fields MapperBase<T> mapper = GetMapper(); collection = mapper.MapAll(reader); } catch (Exception ex) // catch exception { throw ex; // log errr } finally { reader.Close(); reader.Dispose(); } } } catch (Exception ex) { throw ex; } finally { connection.Close(); connection.Dispose(); } } return collection; } #endregion } What I am trying to do is , I am executine some command and filling my class dynamically. The class is given below: namespace FooZo.Core { public class Restaurant { #region Private Member Variables private int _restaurantId = 0; private string _email = string.Empty; private string _website = string.Empty; private string _name = string.Empty; private string _address = string.Empty; private string _phone = string.Empty; private bool _hasMenu = false; private string _menuImagePath = string.Empty; private int _cuisine = 0; private bool _hasBar = false; private bool _hasHomeDelivery = false; private bool _hasDineIn = false; private int _type = 0; private string _restaurantImagePath = string.Empty; private string _serviceAvailableTill = string.Empty; private string _serviceAvailableFrom = string.Empty; public string Name { get { return _name; } set { _name = value; } } public string Address { get { return _address; } set { _address = value; } } public int RestaurantId { get { return _restaurantId; } set { _restaurantId = value; } } public string Website { get { return _website; } set { _website = value; } } public string Email { get { return _email; } set { _email = value; } } public string Phone { get { return _phone; } set { _phone = value; } } public bool HasMenu { get { return _hasMenu; } set { _hasMenu = value; } } public string MenuImagePath { get { return _menuImagePath; } set { _menuImagePath = value; } } public string RestaurantImagePath { get { return _restaurantImagePath; } set { _restaurantImagePath = value; } } public int Type { get { return _type; } set { _type = value; } } public int Cuisine { get { return _cuisine; } set { _cuisine = value; } } public bool HasBar { get { return _hasBar; } set { _hasBar = value; } } public bool HasHomeDelivery { get { return _hasHomeDelivery; } set { _hasHomeDelivery = value; } } public bool HasDineIn { get { return _hasDineIn; } set { _hasDineIn = value; } } public string ServiceAvailableFrom { get { return _serviceAvailableFrom; } set { _serviceAvailableFrom = value; } } public string ServiceAvailableTill { get { return _serviceAvailableTill; } set { _serviceAvailableTill = value; } } #endregion public Restaurant() { } } } For filling my class properties dynamically i have another class called MapperBase Class with following methods: public abstract class MapperBase<T> where T : new() { protected T Map(IDataRecord record) { T instance = new T(); string fieldName; PropertyInfo[] properties = typeof(T).GetProperties(); for (int i = 0; i < record.FieldCount; i++) { fieldName = record.GetName(i); foreach (PropertyInfo property in properties) { if (property.Name == fieldName) { property.SetValue(instance, record[i], null); } } } return instance; } public Collection<T> MapAll(IDataReader reader) { Collection<T> collection = new Collection<T>(); while (reader.Read()) { collection.Add(Map(reader)); } return collection; } } There is another class which inherits the SqlreaderBaseClass called DefaultSearch. Code is below public class DefaultSearch: SqlReaderBase<Restaurant> { protected override string commandText { get { return "Select Name from vw_Restaurants"; } } protected override CommandType commandType { get { return CommandType.Text; } } protected override Collection<IDataParameter> GetParameters(IDbCommand command) { Collection<IDataParameter> parameters = new Collection<IDataParameter>(); parameters.Clear(); return parameters; } protected override MapperBase<Restaurant> GetMapper() { MapperBase<Restaurant> mapper = new RMapper(); return mapper; } } But whenever I tried to build , I am getting error 'T' must be a non-abstract type with a public parameterless constructor in order to use it as parameter 'T' in the generic type or method. Even T here is Restaurant has a Parameterless Public constructor.

    Read the article

  • Understanding the value of Customer Experience & Loyalty for the Telecommunications Industry

    - by raul.goycoolea
    Worried by economic woes and market forces, especially in mature markets, communications service providers (CSPs) increasingly focus on improving customer experience. In fact, it seems difficult to find a major message by a C-level executive in the developed world that does not include something on "meeting and exceeding customers' needs". Frequently in customer satisfaction studies by prominent firms, CSPs fall short of the leadership demonstrated by other industries that take customer-centric approaches to their bottom-line strategies. Consider the following:Despite the continued impact of global economic crisis, in July 2010, Apple Computer posted record revenue and net quarterly profit. Those who attribute the results primarily to the iPhone 4 launch should note that Apple also shipped around 30% more Macintosh computers than the same period the previous year. Even sales of the iPod line increased by 8% in a highly commoditized, shrinking media player market. Finally, Apple began selling iPads during the quarter, with total sales of more than 3 million units. What does Apple have that the others lack? Well, some great products (and services) to be sure, but it also excels at customer service and support, marketing, and distribution, and has one of the strongest brands globally. Its products are useful, simple to use, easy to acquire and augment, high quality, and considered very cool. They also evoke such an emotional response from many of Apple's customers, which they turn up their noses at competitive products.In other words, Apple appears to have mastered virtually every aspect of customer experience and the resultant loyalty of its customer base - even in difficult financial times. Through that unwavering customer focus, Apple continues to drive its revenues and profits to new heights. Other customer loyalty leaders like Wal-Mart, Google, Toyota and Honda are also doing well by focusing on customer experience as an essential driver of profitability. Service providers should note this performance and ask themselves how they might leverage the same principles to increase their own profitability. After all, that is what customer experience and loyalty are all about: profitability.To successfully manage all the critical touch points of customer experience, CSPs must shun the one-size-fits-all approach. They can no longer afford to view customer service fundamentally as an act of altruism - which mentality dates back to the industry's civil service days, when CSPs were typically government organizations that were critical to economic development and public safety.As regulators and public officials have pushed, and continue to push, service providers to new heights of reliability - using incentives and punishments - most CSPs already have some of the fundamental building blocks of customer service in place. Yet despite that history and experience, service providers still lag other industries in providing what is seen as good customer service.As we observed in the TMF's 2009 Insights Research report, Customer Experience Management: Driving Loyalty & Profitability there has been resurgence in interest by CSPs. More and more of them have stated ambitions to catch up other industries, and they are realizing that good customer service is a powerful strategy for increasing business performance and profitability, not an act of good will.CSPs are recognizing the connection between customer experience and profitability, as demonstrated in many studies. For example, according to research by Bain & Company, a 5 percent improvement in customer retention rates can yield as much as a 75 percent increase in profits for companies across a range of industries.After decades of customer experience strategy formulation, Bain partner and business author, Frederick Reichheld, considers "would you recommend us to a friend?" as the ultimate question for a customer. How many times have you or your friends recommended an iPod, iPhone or a Mac? What do your children recommend to their peers? Their peers to them?There are certain steps service providers have to take to create more personalized relationships with their customers, as well as reduce churn and increase profitability, all while becoming leaner and more agile. First, they have to define customer experience, we define it as the result of the sum of observations, perceptions, thoughts and feelings arising from interactions and relationships between customers and their service provider(s). Virtually every customer touch point - whether directly or indirectly linked to service providers and their partners - contributes to customer perception, satisfaction, loyalty, and ultimately profitability. Gaining leadership in customer experience and satisfaction will not be a simple task, as it is affected by virtually every customer-facing aspect of the service provider, and in turn impacts the service provider deeply - especially on the all-important bottom line. The scope of issues affecting customer experience is complex and dynamic.With new services, devices and applications extending the basis of customer experience to domains beyond the direct control of the service provider, it is likely to increase in complexity and dynamism.Customer loyalty = increased profitsAs stated earlier, customer experience programs are not fundamentally altruistic exercises, but a strategic means of improving competitiveness and profitability in the short and long term. Loyalty is essential to deriving long term profits from customers.Some of the earliest loyalty programs date back to the 1930s, when packaged goods companies offered embedded coupons for rewards to buyers, and eventually retail chains began offering reward programs to frequent shoppers. These programs continued for decades but were leapfrogged in the 1980s by more aggressive programs from the airlines.This movement was led by American Airlines, which launched the first full-scale loyalty marketing program of the modern era with the AAdvantage frequent flyer scheme. It was the first to reward frequent fliers with notional air miles that could be accumulated and later redeemed for free travel. Figure 1: Opportunities example of Customer loyalty driven profitOther airlines and travel providers were quick to grasp the incredible value of providing customers with an incentive to use their company exclusively. Within a few years, dozens of travel industry companies launched similar initiatives and now loyalty programs are achieving near-ubiquity in many service industries, especially those in which it is difficult to differentiate offerings by product attributes.The belief is that increased profitability will result from customer retention efforts because:•    The cost of acquisition occurs only at the beginning of a relationship: the longer the relationship, the lower the amortized cost;•    Account maintenance costs decline as a percentage of total costs, or as a percentage of revenue, over the lifetime of the relationship;•    Long term customers tend to be less inclined to switch and less price sensitive which can result in stable unit sales volume and increases in dollar-sales volume;•    Long term customers may initiate word-of-mouth promotions and referrals, which cost the company nothing and arguably are the most effective form of advertising;•    Long-term customers are more likely to buy ancillary products and higher margin supplemental products;•    Long term customers tend to be satisfied with their relationship with the company and are less likely to switch to competitors, making market entry or competitors gaining market share difficult;•    Regular customers tend to be less expensive to service, as they are familiar with the processes involved, require less 'education', and are consistent in their order placement;•    Increased customer retention and loyalty makes the employees' jobs easier and more satisfying. In turn, happy employees feed back into higher customer satisfaction in a virtuous circle. Figure 2: The virtuous circle of customer loyaltyFigure 2 represents a high-level example of a virtuous cycle driven by customer satisfaction and loyalty, depicting how superiority in product and service offerings, as well as strong customer support by competent employees, lead to higher sales and ultimately profitability. As stated above, this is not a new concept, but succeeding with it is difficult. It has eluded many a company driven to achieve profitability goals. Of course, for this circle to be virtuous, the customer relationship(s) must be profitable.Trying to maintain the loyalty of unprofitable customers is not a viable business strategy. It is, therefore, important that marketers can assess the profitability of each customer (or customer segment), and either improve or terminate relationships that are not profitable. This means each customer's 'relationship costs' must be understood and compared to their 'relationship revenue'. Customer lifetime value (CLV) is the most commonly used metric here, as it is generally accepted as a representation of exactly how much each customer is worth in monetary terms, and therefore a determinant of exactly how much a service provider should be willing to spend to acquire or retain that customer.CLV models make several simplifying assumptions and often involve the following inputs:•    Churn rate represents the percentage of customers who end their relationship with a company in a given period;•    Retention rate is calculated by subtracting the churn rate percentage from 100;•    Period/horizon equates to the units of time into which a customer relationship can be divided for analysis. A year is the most commonly used period for this purpose. Customer lifetime value is a multi-period calculation, often projecting three to seven years into the future. In practice, analysis beyond this point is viewed as too speculative to be reliable. The model horizon is the number of periods used in the calculation;•    Periodic revenue is the amount of revenue collected from a customer in a given period (though this is often extended across multiple periods into the future to understand lifetime value), such as usage revenue, revenues anticipated from cross and upselling, and often some weighting for referrals by a loyal customer to others; •    Retention cost describes the amount of money the service provider must spend, in a given period, to retain an existing customer. Again, this is often forecast across multiple periods. Retention costs include customer support, billing, promotional incentives and so on;•    Discount rate means the cost of capital used to discount future revenue from a customer. Discounting is an advanced method used in more sophisticated CLV calculations;•    Profit margin is the projected profit as a percentage of revenue for the period. This may be reflected as a percentage of gross or net profit. Again, this is generally projected across the model horizon to understand lifetime value.A strong focus on managing these inputs can help service providers realize stronger customer relationships and profits, but there are some obstacles to overcome in achieving accurate calculations of CLV, such as the complexity of allocating costs across the customer base. There are many costs that serve all customers which must be properly allocated across the base, and often a simple proportional allocation across the whole base or a segment may not accurately reflect the true cost of serving that customer;  This is made worse by the fragmentation of customer information, which is likely to be across a variety of product or operations groups, and may be difficult to aggregate due to different representations.In addition, there is the complexity of account relationships and structures to take into consideration. Complex account structures may not be understood or properly represented. For example, a profitable customer may have a separate account for a second home or another family member, which may appear to be unprofitable. If the service provider cannot relate the two accounts, CLV is not properly represented and any resultant cancellation of the apparently unprofitable account may result in the customer churning from the profitable one.In summary, if service providers are to realize strong customer relationships and their attendant profits, there must be a very strong focus on data management. This needs to be coupled with analytics that help business managers and those who work in customer-facing functions offer highly personalized solutions to customers, while maintaining profitability for the service provider. It's clear that acquiring new customers is expensive. Advertising costs, campaign management expenses, promotional service pricing and discounting, and equipment subsidies make a serious dent in a new customer's profitability. That is especially true given the rising subsidies for Smartphone users, which service providers hope will result in greater profits from profits from data services profitability in future.  The situation is made worse by falling prices and greater competition in mature markets.Customer acquisition through industry consolidation isn't cheap either. A North American service provider spent about $2,000 per subscriber in its acquisition of a smaller company earlier this year. While this has allowed it to leapfrog to become the largest mobile service provider in the country, it required a total investment of more than $28 billion (including assumption of the acquiree's debt).While many operating cost synergies clearly made this deal more attractive to the acquiring company, this is certainly an expensive way to acquire customers: the cost per subscriber in this case is not out of line with the prices others have paid for acquisitions.While growth by acquisition certainly increases overall revenues, it often creates tremendous challenges for profitability. Organic growth through increased customer loyalty and retention is a more effective driver of profit, as well as a stronger predictor of future profitability. Service providers, especially those in mature markets, are increasingly recognizing this and taking steps toward a creating a more personalized, flexible and satisfying experience for their customers.In summary, the clearest path to profitability for companies in virtually all industries is through customer retention and maximization of lifetime value. Service providers would do well to recognize this and focus attention on profitable customer relationships.

    Read the article

  • Java generic return type

    - by Colby77
    Hi, I'd like to write a method that can accept a type param (or whatever the method can figure out the type from) and return a value of this type so I don't have to cast the return type. Here is a method: public Object doIt(Object param){ if(param instanceof String){ return "string"; }else if(param instanceof Integer){ return 1; }else{ return null; } } When I call this method, and pass in it a String, even if I know the return type will be a String I have to cast the return Object. This is similar to the int param. How shall I write this method to accept a type param, and return this type?

    Read the article

  • Generic type parameters using out

    - by Mikael
    Im trying to make a universal parser using generic type parameters, but i can't grasp the concept 100% private bool TryParse<T>(XElement element, string attributeName, out T value) where T : struct { if (element.Attribute(attributeName) != null && !string.IsNullOrEmpty(element.Attribute(attributeName).Value)) { string valueString = element.Attribute(attributeName).Value; if (typeof(T) == typeof(int)) { int valueInt; if (int.TryParse(valueString, out valueInt)) { value = valueInt; return true; } } else if (typeof(T) == typeof(bool)) { bool valueBool; if (bool.TryParse(valueString, out valueBool)) { value = valueBool; return true; } } else { value = valueString; return true; } } return false; } As you might guess, the code doesn't compile, since i can't convert int|bool|string to T (eg. value = valueInt). Thankful for feedback, it might not even be possible to way i'm doing it. Using .NET 3.5

    Read the article

  • ActionScript: Type coercion problem with BlazeDS/AMF and class interfaces

    - by mike
    Hi, I've got a problem with type coercion in a Java/Hibernate/BlazeDS/Flex-Setup. First of all, my classes look like this: --- JAVA --- Interface I (Abstract) Class A implements I Class B extends A --- ActionScript --- Interface I Class A implements I Class B extends A I got RemoteClass-Meta-Tags in all ActionScript-Classes/Interfaces I, A and B. Package structure and Class/Interface names are exactly the same. Now here's the problem: My Java Service successfully retrieves objects of class B from my database via Hibernate. I got another class C which has a member property of interface type I, so it should be possible to assign an object of type B. But for some reason i get the following error message: TypeError: Error #1034: cannot convert Object@28b44a89 to package.name.I I checked the Java object type in the service and it is of type B and seems to be totally fine. Why can't the object of type B be assigned to a member variable of type I? This is driving me nuts. Thanks in advance.

    Read the article

  • Self-type mismatch in Scala

    - by Alexey Romanov
    Given this: abstract class ViewPresenterPair { type V <: View type P <: Presenter trait View {self: V => val presenter: P } trait Presenter {self: P => var view: V } } I am trying to define an implementation in this way: case class SensorViewPresenter[T] extends ViewPresenterPair { type V = SensorView[T] type P = SensorPresenter[T] trait SensorView[T] extends View { } class SensorViewImpl[T](val presenter: P) extends SensorView[T] { presenter.view = this } class SensorPresenter[T] extends Presenter { var view: V } } Which gives me the following errors: error: illegal inheritance; self-type SensorViewPresenter.this.SensorView[T] does not conform to SensorViewPresenter.this.View's selftype SensorViewPresenter.this.V trait SensorView[T] extends View { ^ <console>:13: error: type mismatch; found : SensorViewPresenter.this.SensorViewImpl[T] required: SensorViewPresenter.this.V presenter.view = this ^ <console>:16: error: illegal inheritance; self-type SensorViewPresenter.this.SensorPresenter[T] does not conform to SensorViewPresenter.this.Presenter's selftype SensorViewPresenter.this.P class SensorPresenter[T] extends Presenter { ^ I don't understand why. After all, V is just an alias for SensorView[T], and the paths are the same, so how can it not conform?

    Read the article

  • Undetermined type conversion in VB.NET 2008

    - by user337501
    I figured this would be a quick google, but extensive searching hasnt yielded any results. Everything about type conversion seems to dance around this concept. I want to get the type of variable "a", and make a new variable named "b" of that type. Otherwise I could have "a" as a type already declared and "b" simply as an Object, then try to cast "b" to the type of "a". Dim a As Integer Dim b As Whatever a Is OR TryCast(b, Whatever a Is) I would also like to make the conversion using a variable representation of the type, but cant find info on how to do that either. Sorta like: Dim a As Integer Dim b As Object Dim t As Type t = a.GetType() TryCast(b, t) Realizing I'm completely misusing TryCast here, I'm mostly trying to get my goal across. I figured it would be an easy quick thing to do but I cant really find any specific info on it. Any ideas?

    Read the article

  • How to get <select> options either (value or text) using jQuery

    - by Muhammad Sajid
    Hello, i have a code for <select id='list'> <option value='1'>Option A</option> <option value='2'>Option B</option> <option value='3'>Option C</option> </select> and i want that how ever i select any option, it will show in an alert message. i have try <script type='text/javascript'> //var value = $("#list option[value=2]").text(); //var value = $("#list option:selected").text(); //var value = $('#list').val(); var value = $(this).val(); alert(value); </script> but fail.

    Read the article

  • Select list value undefined in $(document).ready

    - by C. Ross
    I have the following code, which I want to load values on a selection change, and also do the selection load initially (since FF 'saves' the last value of the drop down under certain circumstances). The select part of the function works correctly, but for some reason when calling load2 directly the value of $('#select1').value is undefined, even though when I check the DOM in Firebug right after load select1.value has a value. How can I run the load2 function when select1.value is ready? $(document).ready(function() { //Setup change hook $('#select1').change(function(event) { //Remove the old options right away $('#select2').find('option').remove(); //Load the new options load2(this.value); }); //Do load for current value load2($('#select1').value); });

    Read the article

  • Make interchangeable class types via pointer casting only, without having to allocate any new objects?

    - by HostileFork
    UPDATE: I do appreciate "don't want that, want this instead" suggestions. They are useful, especially when provided in context of the motivating scenario. Still...regardless of goodness/badness, I've become curious to find a hard-and-fast "yes that can be done legally in C++11" vs "no it is not possible to do something like that". I want to "alias" an object pointer as another type, for the sole purpose of adding some helper methods. The alias cannot add data members to the underlying class (in fact, the more I can prevent that from happening the better!) All aliases are equally applicable to any object of this type...it's just helpful if the type system can hint which alias is likely the most appropriate. There should be no information about any specific alias that is ever encoded in the underlying object. Hence, I feel like you should be able to "cheat" the type system and just let it be an annotation...checked at compile time, but ultimately irrelevant to the runtime casting. Something along these lines: Node<AccessorFoo>* fooPtr = Node<AccessorFoo>::createViaFactory(); Node<AccessorBar>* barPtr = reinterpret_cast< Node<AccessorBar>* >(fooPtr); Under the hood, the factory method is actually making a NodeBase class, and then using a similar reinterpret_cast to return it as a Node<AccessorFoo>*. The easy way to avoid this is to make these lightweight classes that wrap nodes and are passed around by value. Thus you don't need casting, just Accessor classes that take the node handle to wrap in their constructor: AccessorFoo foo (NodeBase::createViaFactory()); AccessorBar bar (foo.getNode()); But if I don't have to pay for all that, I don't want to. That would involve--for instance--making a special accessor type for each sort of wrapped pointer (AccessorFooShared, AccessorFooUnique, AccessorFooWeak, etc.) Having these typed pointers being aliased for one single pointer-based object identity is preferable, and provides a nice orthogonality. So back to that original question: Node<AccessorFoo>* fooPtr = Node<AccessorFoo>::createViaFactory(); Node<AccessorBar>* barPtr = reinterpret_cast< Node<AccessorBar>* >(fooPtr); Seems like there would be some way to do this that might be ugly but not "break the rules". According to ISO14882:2011(e) 5.2.10-7: An object pointer can be explicitly converted to an object pointer of a different type.70 When a prvalue v of type "pointer to T1" is converted to the type "pointer to cv T2", the result is static_cast(static_cast(v)) if both T1 and T2 are standard-layout types (3.9) and the alignment requirements of T2 are no stricter than those of T1, or if either type is void. Converting a prvalue of type "pointer to T1" to the type "pointer to T2" (where T1 and T2 are object types and where the alignment requirements of T2 are no stricter than those of T1) and back to its original type yields the original pointer value. The result of any other such pointer conversion is unspecified. Drilling into the definition of a "standard-layout class", we find: has no non-static data members of type non-standard-layout-class (or array of such types) or reference, and has no virtual functions (10.3) and no virtual base classes (10.1), and has the same access control (clause 11) for all non-static data members, and has no non-standard-layout base classes, and either has no non-static data member in the most-derived class and at most one base class with non-static data members, or has no base classes with non-static data members, and has no base classes of the same type as the first non-static data member. Sounds like working with something like this would tie my hands a bit with no virtual methods in the accessors or the node. Yet C++11 apparently has std::is_standard_layout to keep things checked. Can this be done safely? Appears to work in gcc-4.7, but I'd like to be sure I'm not invoking undefined behavior.

    Read the article

  • Does this code describe an Existential Type in C#?

    - by noblethrasher
    Currently watching Bart De Smet's explanation of IQueryable and he mentioned Existential Types (which I've been curious about for some time). After reading the answers to this question I'm just wondering if this is a way to construct it in C#: public abstract class ExistentialType { private ExistentialType() { } public abstract int Foo(); public ExistentialType Create() { return new ConcreateType1(); } private class ConcreateType1 : ExistentialType { public override int Foo() { throw new NotImplementedException(); } } private class ConcreateType2 : ExistentialType { public override int Foo() { throw new NotImplementedException(); } } private class ConcreateType3 : ExistentialType { public override int Foo() { throw new NotImplementedException(); } } }

    Read the article

  • How does c# type safety affect the garbage collection?

    - by Indeera
    I'm dealing with code that handles large buffers ( 100MB) and manipulation of these is done in unsafe blocks. I'd like to refactor these to avoid unsafe code. I'm wondering about the likely memory performance gains (positive/negative/neutral) before I embark on that. I assert that if the compiler can verify types, it could possibly generate better code and that could also mean good GC performance. Is this a valid assertion? What is your experience? Thanks.

    Read the article

  • Java: Typecasting to Generics

    - by bguiz
    This method that uses method-level generics, that parses the values from a custom POJO, JXlistOfKeyValuePairs (which is exactly that). The only thing is that both the keys and values in JXlistOfKeyValuePairs are Strings. This method wants to taken in, in addition to the JXlistOfKeyValuePairs instance, a Class<T> that defines which data type to convert the values to (assume that only Boolean, Integer and Float are possible). It then outputs a HashMap with the specified type for the values in its entries. This is the code that I have got, and it is obviously broken. private <T extends Object> Map<String, T> fromListOfKeyValuePairs(JXlistOfKeyValuePairs jxval, Class<T> clasz) { Map<String, T> val = new HashMap<String, T>(); List<Entry> jxents = jxval.getEntry(); T value; String str; for (Entry jxent : jxents) { str = jxent.getValue(); value = null; if (clasz.isAssignableFrom(Boolean.class)) { value = (T)(Boolean.parseBoolean(str)); } else if (clasz.isAssignableFrom(Integer.class)) { value = (T)(Integer.parseInt(str)); } else if (clasz.isAssignableFrom(Float.class)) { value = (T)(Float.parseFloat(str)); } else { logger.warn("Unsupported value type encountered in key-value pairs, continuing anyway: " + clasz.getName()); } val.put(jxent.getKey(), value); } return val; } This is the bit that I want to solve: if (clasz.isAssignableFrom(Boolean.class)) { value = (T)(Boolean.parseBoolean(str)); } else if (clasz.isAssignableFrom(Integer.class)) { value = (T)(Integer.parseInt(str)); } I get: Inconvertible types required: T found: Boolean Also, if possible, I would like to be able to do this with more elegant code, avoiding Class#isAssignableFrom. Any suggestions? Sample method invocation: Map<String, Boolean> foo = fromListOfKeyValuePairs(bar, Boolean.class);

    Read the article

  • Setting a form field's value during validation

    - by LaundroMat
    I read about this issue already, but I'm having trouble understanding why I can't change the value of a form's field during validation. I have a form where a user can enter a decimal value. This value has to be higher than the initial value of the item the user is changing. During clean(), the value that was entered is checked against the item's previous value. I would like to be able to re-set the form field's value to the item's initial value when a user enters a lower value. Is this possible from within the clean() method, or am I forced to do this in the view? Somehow, it doesn't feel right to do this in the view... (To make matters more complicated, the form's fields are built up dynamically, meaning I have to override the form's clean() method instead of using the clean_() method).

    Read the article

  • c# 4.0 - best way to refactor a block of "If (something is Type) {}" statements?

    - by Andrew Johns
    I've got some code that looks like this, public void ResetControls(Control controlOnPage) { if (controlOnPage is TextBox) { ResetTextBoxControl(controlOnPage); } if (controlOnPage is MediaPicker) { ((MediaPicker)controlOnPage).Media = null; } if (controlOnPage is RelatedContentPicker) { ((RelatedContentPicker)controlOnPage).RelatedContentCollection = null; } ... ... foreach (Control child in controlOnPage.Controls) { ResetControls(child); } } The idea behind it is that I can pass a page to the method and it'll recursively reset all the controls on it to their default states - in the case of MediaPicker and RelatedContentPicker, these are user controls that I've created. FXCop warns me "Do Not Cast Unnecessarily" for this code - but I'm unsure how to rewrite it to make it better. Any ideas?

    Read the article

  • Type signature "Maybe a" doesn't like "Just [Event]"

    - by sisif
    I'm still learning Haskell and need help with the type inference please! Using packages SDL and Yampa I get the following type signature from FRP.Yampa.reactimate: (Bool -> IO (DTime, Maybe a)) and I want to use it for: myInput :: Bool -> IO (DTime, Maybe [SDL.Event]) myInput isBlocking = do event <- SDL.pollEvent return (1, Just [event]) ... reactimate myInit myInput myOutput mySF but it says Couldn't match expected type `()' against inferred type `[SDL.Event]' Expected type: IO (DTime, Maybe ()) Inferred type: IO (DTime, Maybe [SDL.Event]) In the second argument of `reactimate', namely `input' In the expression: reactimate initialize input output process I thought Maybe a allows me to use anything, even a SDL.Event list? Why is it expecting Maybe () when the type signature is actually Maybe a? Why does it want an empty tuple, or a function taking no arguments, or what is () supposed to be?

    Read the article

  • (newbie) type signature "Maybe a" doesn't like "Just [Event]"

    - by sisif
    i'm still learning Haskell and need help with the type inference please! using packages SDL and Yampa i get the following type signature from FRP.Yampa.reactimate: (Bool -> IO (DTime, Maybe a)) and i want to use it for: myInput :: Bool -> IO (DTime, Maybe [SDL.Event]) myInput isBlocking = do event <- SDL.pollEvent return (1, Just [event]) ... reactimate myInit myInput myOutput mySF but it says Couldn't match expected type `()' against inferred type `[SDL.Event]' Expected type: IO (DTime, Maybe ()) Inferred type: IO (DTime, Maybe [SDL.Event]) In the second argument of `reactimate', namely `input' In the expression: reactimate initialize input output process i thought "Maybe a" allows me to use anything, even a SDL.Event list? why is it expecting "Maybe ()" when the type signature is actually "Maybe a"? why does it want an empty tuple, or a function taking no arguments, or what is () supposed to be?

    Read the article

  • Couldn't match expected type - Haskell Code

    - by wvyar
    I'm trying to learn Haskell, but the small bit of sample code I tried to write is running into a fairly large amount of "Couldn't match expected type" errors. Can anyone give me some guidance as to what I'm doing wrong/how I should go about this? These are the errors, but I'm not really sure how I should be writing my code. toDoSchedulerSimple.hs:6:14: Couldn't match expected type `[t0]' with actual type `IO String' In the return type of a call of `readFile' In a stmt of a 'do' block: f <- readFile inFile In the expression: do { f <- readFile inFile; lines f } toDoSchedulerSimple.hs:27:9: Couldn't match expected type `[a0]' with actual type `IO ()' In the return type of a call of `putStr' In a stmt of a 'do' block: putStr "Enter task name: " In the expression: do { putStr "Enter task name: "; task <- getLine; return inFileArray : task } toDoSchedulerSimple.hs:34:9: Couldn't match expected type `IO ()' with actual type `[a0]' In a stmt of a 'do' block: putStrLn "Your task is: " ++ (inFileArray !! i) In the expression: do { i <- randomRIO (0, (length inFileArray - 1)); putStrLn "Your task is: " ++ (inFileArray !! i) } In an equation for `getTask': getTask inFileArray = do { i <- randomRIO (0, (length inFileArray - 1)); putStrLn "Your task is: " ++ (inFileArray !! i) } toDoSchedulerSimple.hs:41:9: Couldn't match expected type `[a0]' with actual type `IO ()' In the return type of a call of `putStr' In a stmt of a 'do' block: putStr "Enter the task you would like to end: " In the expression: do { putStr "Enter the task you would like to end: "; task <- getLine; filter (endTaskCheck task) inFileArray } toDoSchedulerSimple.hs:60:53: Couldn't match expected type `IO ()' with actual type `[String] -> IO ()' In a stmt of a 'do' block: schedulerSimpleMain In the expression: do { (getTask inFileArray); schedulerSimpleMain } In a case alternative: "get-task" -> do { (getTask inFileArray); schedulerSimpleMain } This is the code itself. I think it's fairly straightforward, but the idea is to run a loop, take input, and perform actions based off of it by calling other functions. import System.Random (randomRIO) import Data.List (lines) initializeFile :: [char] -> [String] initializeFile inFile = do f <- readFile inFile let parsedFile = lines f return parsedFile displayHelp :: IO() displayHelp = do putStrLn "Welcome to To Do Scheduler Simple, written in Haskell." putStrLn "Here are some commands you might find useful:" putStrLn " 'help' : Display this menu." putStrLn " 'quit' : Exit the program." putStrLn " 'new-task' : Create a new task." putStrLn " 'get-task' : Randomly select a task." putStrLn " 'end-task' : Mark a task as finished." putStrLn " 'view-tasks' : View all of your tasks." quit :: IO() quit = do putStrLn "We're very sad to see you go...:(" putStrLn "Come back soon!" createTask :: [String] -> [String] createTask inFileArray = do putStr "Enter task name: " task <- getLine return inFileArray:task getTask :: [String] -> IO() getTask inFileArray = do i <- randomRIO (0, (length inFileArray - 1)) putStrLn "Your task is: " ++ (inFileArray !! i) endTaskCheck :: String -> String -> Bool endTaskCheck str1 str2 = str1 /= str2 endTask :: [String] -> [String] endTask inFileArray = do putStr "Enter the task you would like to end: " task <- getLine return filter (endTaskCheck task) inFileArray viewTasks :: [String] -> IO() viewTasks inFileArray = case inFileArray of [] -> do putStrLn "\nEnd of tasks." _ -> do putStrLn (head inFileArray) viewTasks (tail inFileArray) schedulerSimpleMain :: [String] -> IO() schedulerSimpleMain inFileArray = do putStr "SchedulerSimple> " input <- getLine case input of "help" -> displayHelp "quit" -> quit "new-task" -> schedulerSimpleMain (createTask inFileArray) "get-task" -> do (getTask inFileArray); schedulerSimpleMain "end-task" -> schedulerSimpleMain (endTask inFileArray) "view-tasks" -> do (viewTasks inFileArray); schedulerSimpleMain _ -> do putStrLn "Invalid input."; schedulerSimpleMain main :: IO() main = do putStr "What is the name of the schedule? " sName <- getLine schedulerSimpleMain (initializeFile sName) Thanks, and apologies if this isn't the correct place to be asking such a question.

    Read the article

  • The Function Works But Reports this.refresh() is not a function

    - by ren1999
    I get this.refresh() is not a function in the error log every time I use this function but it works fine. Also, when I click on this function for the first time, this.value=undefined. When I click the function again in this form and every other form, the value populates just fine with the previous value. What could I be doing wrong? How do I write this function more efficiently? I still don't quite understand how to use this.value to capture and store a value within an array. Please notice that I added ---- where there should be a '----<' to be able to display the code. function askGender(x) {response="----select class=widgetstyle onClick=_setGender(this.value)----option value=FemaleFemale----option value=MaleMale"; characters[x].setGender(response); if(this.gender!=0) {response=this.gender; this.gender=0; characters[x].setGender(response); } } function _setGender(x) {this.gender=x; this.refresh(); }

    Read the article

  • SQL SERVER – 2011 – Wait Type – Day 25 of 28

    - by pinaldave
    Since the beginning of the series, I have been getting the following question again and again: “What are the changes in SQL Server 2011 – Denali with respect to Wait Types?” SQL Server 2011 – Denali is yet to be released, and making statements on the subject will be inappropriate. Denali CTP1 has been released so I suggest that all of you download the same and experiment on it. I quickly compared the wait stats of SQL Server 2008 R2 and Denali (CTP1) and found the following changes: Wait Types Exists in SQL Server 2008 R2 and Not Exists in SQL Server 2011 “Denali” SOS_RESERVEDMEMBLOCKLIST SOS_LOCALALLOCATORLIST QUERY_WAIT_ERRHDL_SERVICE QUERY_ERRHDL_SERVICE_DONE XE_PACKAGE_LOCK_BACKOFF Wait Types Exists in SQL Server 2011 and Not Exists in SQL Server 2008 SLEEP_MASTERMDREADY SOS_MEMORY_TOPLEVELBLOCKALLOCATOR SOS_PHYS_PAGE_CACHE FILESTREAM_WORKITEM_QUEUE FILESTREAM_FILE_OBJECT FILESTREAM_FCB FILESTREAM_CACHE XE_CALLBACK_LIST PWAIT_MD_RELATION_CACHE PWAIT_MD_SERVER_CACHE PWAIT_MD_LOGIN_STATS DISPATCHER_PRIORITY_QUEUE_SEMAPHORE FT_PROPERTYLIST_CACHE SECURITY_KEYRING_RWLOCK BROKER_TRANSMISSION_WORK BROKER_TRANSMISSION_OBJECT BROKER_TRANSMISSION_TABLE BROKER_DISPATCHER BROKER_FORWARDER UCS_MANAGER UCS_TRANSPORT UCS_MEMORY_NOTIFICATION UCS_ENDPOINT_CHANGE UCS_TRANSPORT_STREAM_CHANGE QUERY_TASK_ENQUEUE_MUTEX DBCC_SCALE_OUT_EXPR_CACHE PWAIT_ALL_COMPONENTS_INITIALIZED PREEMPTIVE_SP_SERVER_DIAGNOSTICS SP_SERVER_DIAGNOSTICS_SLEEP SP_SERVER_DIAGNOSTICS_INIT_MUTEX AM_INDBUILD_ALLOCATION QRY_PARALLEL_THREAD_MUTEX FT_MASTER_MERGE_COORDINATOR PWAIT_RESOURCE_SEMAPHORE_FT_PARALLEL_QUERY_SYNC REDO_THREAD_PENDING_WORK REDO_THREAD_SYNC COUNTRECOVERYMGR HADR_DB_COMMAND HADR_TRANSPORT_SESSION HADR_CLUSAPI_CALL PWAIT_HADR_CHANGE_NOTIFIER_TERMINATION_SYNC PWAIT_HADR_ACTION_COMPLETED PWAIT_HADR_OFFLINE_COMPLETED PWAIT_HADR_ONLINE_COMPLETED PWAIT_HADR_FORCEFAILOVER_COMPLETED PWAIT_HADR_WORKITEM_COMPLETED HADR_WORK_POOL HADR_WORK_QUEUE HADR_LOGCAPTURE_SYNC LOGPOOL_CACHESIZE LOGPOOL_FREEPOOLS LOGPOOL_REPLACEMENTSET LOGPOOL_CONSUMERSET LOGPOOL_MGRSET LOGPOOL_CONSUMER LOGPOOLREFCOUNTEDOBJECT_REFDONE HADR_SYNC_COMMIT HADR_AG_MUTEX PWAIT_SECURITY_CACHE_INVALIDATION PWAIT_HADR_SERVER_READY_CONNECTIONS HADR_FILESTREAM_MANAGER HADR_FILESTREAM_BLOCK_FLUSH HADR_FILESTREAM_IOMGR XDES_HISTORY XDES_SNAPSHOT HADR_FILESTREAM_IOMGR_IOCOMPLETION UCS_SESSION_REGISTRATION ENABLE_EMPTY_VERSIONING HADR_DB_OP_START_SYNC HADR_DB_OP_COMPLETION_SYNC HADR_LOGPROGRESS_SYNC HADR_TRANSPORT_DBRLIST HADR_FAILOVER_PARTNER XDESTSVERMGR GHOSTCLEANUPSYNCMGR HADR_AR_UNLOAD_COMPLETED HADR_PARTNER_SYNC HADR_DBSTATECHANGE_SYNC We already know that Wait Types and Wait Stats are going to be the next big thing in the next version of SQL Server. So now I am eagerly waiting to dig deeper in the wait stats. Read all the post in the Wait Types and Queue series. Note: The information presented here is from my experience and there is no way that I claim it to be accurate. I suggest reading Book OnLine for further clarification. All the discussion of Wait Stats in this blog is generic and varies from system to system. It is recommended that you test this on a development server before implementing it to a production server. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • SQL SERVER – Introduction to Wait Stats and Wait Types – Wait Type – Day 1 of 28

    - by pinaldave
    I have been working a lot on Wait Stats and Wait Types recently. Last Year, I requested blog readers to send me their respective server’s wait stats. I appreciate their kind response as I have received  Wait stats from my readers. I took each of the results and carefully analyzed them. I provided necessary feedback to the person who sent me his wait stats and wait types. Based on the feedbacks I got, many of the readers have tuned their server. After a while I got further feedbacks on my recommendations and again, I collected wait stats. I recorded the wait stats and my recommendations and did further research. At some point at time, there were more than 10 different round trips of the recommendations and suggestions. Finally, after six month of working my hands on performance tuning, I have collected some real world wisdom because of this. Now I plan to share my findings with all of you over here. Before anything else, please note that all of these are based on my personal observations and opinions. They may or may not match the theory available at other places. Some of the suggestions may not match your situation. Remember, every server is different and consequently, there is more than one solution to a particular problem. However, this series is written with kept wait stats in mind. While I was working on various performance tuning consultations, I did many more things than just tuning wait stats. Today we will discuss how to capture the wait stats. I use the script diagnostic script created by my friend and SQL Server Expert Glenn Berry to collect wait stats. Here is the script to collect the wait stats: -- Isolate top waits for server instance since last restart or statistics clear WITH Waits AS (SELECT wait_type, wait_time_ms / 1000. AS wait_time_s, 100. * wait_time_ms / SUM(wait_time_ms) OVER() AS pct, ROW_NUMBER() OVER(ORDER BY wait_time_ms DESC) AS rn FROM sys.dm_os_wait_stats WHERE wait_type NOT IN ('CLR_SEMAPHORE','LAZYWRITER_SLEEP','RESOURCE_QUEUE','SLEEP_TASK' ,'SLEEP_SYSTEMTASK','SQLTRACE_BUFFER_FLUSH','WAITFOR', 'LOGMGR_QUEUE','CHECKPOINT_QUEUE' ,'REQUEST_FOR_DEADLOCK_SEARCH','XE_TIMER_EVENT','BROKER_TO_FLUSH','BROKER_TASK_STOP','CLR_MANUAL_EVENT' ,'CLR_AUTO_EVENT','DISPATCHER_QUEUE_SEMAPHORE', 'FT_IFTS_SCHEDULER_IDLE_WAIT' ,'XE_DISPATCHER_WAIT', 'XE_DISPATCHER_JOIN', 'SQLTRACE_INCREMENTAL_FLUSH_SLEEP')) SELECT W1.wait_type, CAST(W1.wait_time_s AS DECIMAL(12, 2)) AS wait_time_s, CAST(W1.pct AS DECIMAL(12, 2)) AS pct, CAST(SUM(W2.pct) AS DECIMAL(12, 2)) AS running_pct FROM Waits AS W1 INNER JOIN Waits AS W2 ON W2.rn <= W1.rn GROUP BY W1.rn, W1.wait_type, W1.wait_time_s, W1.pct HAVING SUM(W2.pct) - W1.pct < 99 OPTION (RECOMPILE); -- percentage threshold GO This script uses Dynamic Management View sys.dm_os_wait_stats to collect the wait stats. It omits the system-related wait stats which are not useful to diagnose performance-related bottleneck. Additionally, not OPTION (RECOMPILE) at the end of the DMV will ensure that every time the query runs, it retrieves new data and not the cached data. This dynamic management view collects all the information since the time when the SQL Server services have been restarted. You can also manually clear the wait stats using the following command: DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR); Once the wait stats are collected, we can start analysis them and try to see what is causing any particular wait stats to achieve higher percentages than the others. Many waits stats are related to one another. When the CPU pressure is high, all the CPU-related wait stats show up on top. But when that is fixed, all the wait stats related to the CPU start showing reasonable percentages. It is difficult to have a sure solution, but there are good indications and good suggestions on how to solve this. I will keep this blog post updated as I will post more details about wait stats and how I reduce them. The reference to Book On Line is over here. Of course, I have selected February to run this Wait Stats series. I am already cheating by having the smallest month to run this series. :) Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: DMV, Pinal Dave, PostADay, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

< Previous Page | 36 37 38 39 40 41 42 43 44 45 46 47  | Next Page >