Search Results

Search found 2681 results on 108 pages for 'equality operator'.

Page 41/108 | < Previous Page | 37 38 39 40 41 42 43 44 45 46 47 48  | Next Page >

  • Feedback on iterating over type-safe enums

    - by Sumant
    In response to the earlier SO question "Enumerate over an enum in C++", I came up with the following reusable solution that uses type-safe enum idiom. I'm just curious to see the community feedback on my solution. This solution makes use of a static array, which is populated using type-safe enum objects before first use. Iteration over enums is then simply reduced to iteration over the array. I'm aware of the fact that this solution won't work if the enumerators are not strictly increasing. template<typename def, typename inner = typename def::type> class safe_enum : public def { typedef typename def::type type; inner val; static safe_enum array[def::end - def::begin]; static bool init; static void initialize() { if(!init) // use double checked locking in case of multi-threading. { unsigned int size = def::end - def::begin; for(unsigned int i = 0, j = def::begin; i < size; ++i, ++j) array[i] = static_cast<typename def::type>(j); init = true; } } public: safe_enum(type v = def::begin) : val(v) {} inner underlying() const { return val; } static safe_enum * begin() { initialize(); return array; } static safe_enum * end() { initialize(); return array + (def::end - def::begin); } bool operator == (const safe_enum & s) const { return this->val == s.val; } bool operator != (const safe_enum & s) const { return this->val != s.val; } bool operator < (const safe_enum & s) const { return this->val < s.val; } bool operator <= (const safe_enum & s) const { return this->val <= s.val; } bool operator > (const safe_enum & s) const { return this->val > s.val; } bool operator >= (const safe_enum & s) const { return this->val >= s.val; } }; template <typename def, typename inner> safe_enum<def, inner> safe_enum<def, inner>::array[def::end - def::begin]; template <typename def, typename inner> bool safe_enum<def, inner>::init = false; struct color_def { enum type { begin, red = begin, green, blue, end }; }; typedef safe_enum<color_def> color; template <class Enum> void f(Enum e) { std::cout << static_cast<unsigned>(e.underlying()) << std::endl; } int main() { std::for_each(color::begin(), color::end(), &f<color>); color c = color::red; }

    Read the article

  • OWB 11gR2 - Early Arriving Facts

    - by Dawei Sun
    A common challenge when building ETL components for a data warehouse is how to handle early arriving facts. OWB 11gR2 introduced a new feature to address this for dimensional objects entitled Orphan Management. An orphan record is one that does not have a corresponding existing parent record. Orphan management automates the process of handling source rows that do not meet the requirements necessary to form a valid dimension or cube record. In this article, a simple example will be provided to show you how to use Orphan Management in OWB. We first import a sample MDL file that contains all the objects we need. Then we take some time to examine all the objects. After that, we prepare the source data, deploy the target table and dimension/cube loading map. Finally, we run the loading maps, and check the data in target dimension/cube tables. OK, let’s start… 1. Import MDL file and examine sample project First, download zip file from here, which includes a MDL file and three source data files. Then we open OWB design center, import orphan_management.mdl by using the menu File->Import->Warehouse Builder Metadata. Now we have several objects in BI_DEMO project as below: Mapping LOAD_CHANNELS_OM: The mapping for dimension loading. Mapping LOAD_SALES_OM: The mapping for cube loading. Dimension CHANNELS_OM: The dimension that contains channels data. Cube SALES_OM: The cube that contains sales data. Table CHANNELS_OM: The star implementation table of dimension CHANNELS_OM. Table SALES_OM: The star implementation table of cube SALES_OM. Table SRC_CHANNELS: The source table of channels data, that will be loaded into dimension CHANNELS_OM. Table SRC_ORDERS and SRC_ORDER_ITEMS: The source tables of sales data that will be loaded into cube SALES_OM. Sequence CLASS_OM_DIM_SEQ: The sequence used for loading dimension CHANNELS_OM. Dimension CHANNELS_OM This dimension has a hierarchy with three levels: TOTAL, CLASS and CHANNEL. Each level has three attributes: ID (surrogate key), NAME and SOURCE_ID (business key). It has a standard star implementation. The orphan management policy and the default parent setting are shown in the following screenshots: The orphan management policy options that you can set for loading are: Reject Orphan: The record is not inserted. Default Parent: You can specify a default parent record. This default record is used as the parent record for any record that does not have an existing parent record. If the default parent record does not exist, Warehouse Builder creates the default parent record. You specify the attribute values of the default parent record at the time of defining the dimensional object. If any ancestor of the default parent does not exist, Warehouse Builder also creates this record. No Maintenance: This is the default behavior. Warehouse Builder does not actively detect, reject, or fix orphan records. While removing data from a dimension, you can select one of the following orphan management policies: Reject Removal: Warehouse Builder does not allow you to delete the record if it has existing child records. No Maintenance: This is the default behavior. Warehouse Builder does not actively detect, reject, or fix orphan records. (More details are at http://download.oracle.com/docs/cd/E11882_01/owb.112/e10935/dim_objects.htm#insertedID1) Cube SALES_OM This cube is references to dimension CHANNELS_OM. It has three measures: AMOUNT, QUANTITY and COST. The orphan management policy setting are shown as following screenshot: The orphan management policy options that you can set for loading are: No Maintenance: Warehouse Builder does not actively detect, reject, or fix orphan rows. Default Dimension Record: Warehouse Builder assigns a default dimension record for any row that has an invalid or null dimension key value. Use the Settings button to define the default parent row. Reject Orphan: Warehouse Builder does not insert the row if it does not have an existing dimension record. (More details are at http://download.oracle.com/docs/cd/E11882_01/owb.112/e10935/dim_objects.htm#BABEACDG) Mapping LOAD_CHANNELS_OM This mapping loads source data from table SRC_CHANNELS to dimension CHANNELS_OM. The operator CHANNELS_IN is bound to table SRC_CHANNELS; CHANNELS_OUT is bound to dimension CHANNELS_OM. The TOTALS operator is used for generating a constant value for the top level in the dimension. The CLASS_FILTER operator is used to filter out the “invalid” class name, so then we can see what will happen when those channel records with an “invalid” parent are loading into dimension. Some properties of the dimension operator in this mapping are important to orphan management. See the screenshot below: Create Default Level Records: If YES, then default level records will be created. This property must be set to YES for dimensions and cubes if one of their orphan management policies is “Default Parent” or “Default Dimension Record”. This property is set to NO by default, so the user may need to set this to YES manually. LOAD policy for INVALID keys/ LOAD policy for NULL keys: These two properties have the same meaning as in the dimension editor. The values are set to the same as the dimension value when user drops the dimension into the mapping. The user does not need to modify these properties. Record Error Rows: If YES, error rows will be inserted into error table when loading the dimension. REMOVE Orphan Policy: This property is used when removing data from a dimension. Since the dimension loading type is set to LOAD in this example, this property is disabled. Mapping LOAD_SALES_OM This mapping loads source data from table SRC_ORDERS and SRC_ORDER_ITEMS to cube SALES_OM. This mapping seems a little bit complicated, but operators in the red rectangle are used to filter out and generate the records with “invalid” or “null” dimension keys. Some properties of the cube operator in a mapping are important to orphan management. See the screenshot below: Enable Source Aggregation: Should be checked in this example. If the default dimension record orphan policy is set for the cube operator, then it is recommended that source aggregation also be enabled. Otherwise, the orphan management processing may produce multiple fact rows with the same default dimension references, which will cause an “unstable rowset” execution error in the database, since the dimension refs are used as update match attributes for updating the fact table. LOAD policy for INVALID keys/ LOAD policy for NULL keys: These two properties have the same meaning as in the cube editor. The values are set to the same as in the cube editor when the user drops the cube into the mapping. The user does not need to modify these properties. Record Error Rows: If YES, error rows will be inserted into error table when loading the cube. 2. Deploy objects and mappings We now can deploy the objects. First, make sure location SALES_WH_LOCAL has been correctly configured. Then open Control Center Manager by using the menu Tools->Control Center Manager. Expand BI_DEMO->SALES_WH_LOCAL, click SALES_WH node on the project tree. We can see the following objects: Deploy all the objects in the following order: Sequence CLASS_OM_DIM_SEQ Table CHANNELS_OM, SALES_OM, SRC_CHANNELS, SRC_ORDERS, SRC_ORDER_ITEMS Dimension CHANNELS_OM Cube SALES_OM Mapping LOAD_CHANNELS_OM, LOAD_SALES_OM Note that we deployed source tables as well. Normally, we import source table from database instead of deploying them to target schema. However, in this example, we designed the source tables in OWB and deployed them to database for the purpose of this demonstration. 3. Prepare and examine source data Before running the mappings, we need to populate and examine the source data first. Run SRC_CHANNELS.sql, SRC_ORDERS.sql and SRC_ORDER_ITEMS.sql as target user. Then we check the data in these three tables. Table SRC_CHANNELS SQL> select rownum, id, class, name from src_channels; Records 1~5 are correct; they should be loaded into dimension without error. Records 6,7 and 8 have null parents; they should be loaded into dimension with a default parent value, and should be inserted into error table at the same time. Records 9, 10 and 11 have “invalid” parents; they should be rejected by dimension, and inserted into error table. Table SRC_ORDERS and SRC_ORDER_ITEMS SQL> select rownum, a.id, a.channel, b.amount, b.quantity, b.cost from src_orders a, src_order_items b where a.id = b.order_id; Record 178 has null dimension reference; it should be loaded into cube with a default dimension reference, and should be inserted into error table at the same time. Record 179 has “invalid” dimension reference; it should be rejected by cube, and inserted into error table. Other records should be aggregated and loaded into cube correctly. 4. Run the mappings and examine the target data In the Control Center Manager, expand BI_DEMO-> SALES_WH_LOCAL-> SALES_WH-> Mappings, right click on LOAD_CHANNELS_OM node, click Start. Use the same way to run mapping LOAD_SALES_OM. When they successfully finished, we can check the data in target tables. Table CHANNELS_OM SQL> select rownum, total_id, total_name, total_source_id, class_id,class_name, class_source_id, channel_id, channel_name,channel_source_id from channels_om order by abs(dimension_key); Records 1,2 and 3 are the default dimension records for the three levels. Records 8, 10 and 15 are the loaded records that originally have null parents. We see their parents name (class_name) is set to DEF_CLASS_NAME. Those records whose CHANNEL_NAME are Special_4, Special_5 and Special_6 are not loaded to this table because of the invalid parent. Error Table CHANNELS_OM_ERR SQL> select rownum, class_source_id, channel_id, channel_name,channel_source_id, err$$$_error_reason from channels_om_err order by channel_name; We can see all the record with null parent or invalid parent are inserted into this error table. Error reason is “Default parent used for record” for the first three records, and “No parent found for record” for the last three. Table SALES_OM SQL> select a.*, b.channel_name from sales_om a, channels_om b where a.channels=b.channel_id; We can see the order record with null channel_name has been loaded into target table with a default channel_name. The one with “invalid” channel_name are not loaded. Error Table SALES_OM_ERR SQL> select a.amount, a.cost, a.quantity, a.channels, b.channel_name, a.err$$$_error_reason from sales_om_err a, channels_om b where a.channels=b.channel_id(+); We can see the order records with null or invalid channel_name are inserted into error table. If the dimension reference column is null, the error reason is “Default dimension record used for fact”. If it is invalid, the error reason is “Dimension record not found for fact”. Summary In summary, this article illustrated the Orphan Management feature in OWB 11gR2. Automated orphan management policies improve ETL developer and administrator productivity by addressing an important cause of cube and dimension load failures, without requiring developers to explicitly build logic to handle these orphan rows.

    Read the article

  • How should I design a correct OO design in case of a Business-logic wide operation

    - by Mithir
    EDIT: Maybe I should ask the question in a different way. in light of ammoQ's comment, I realize that I've done something like suggested which is kind of a fix and it is fine by me. But I still want to learn for the future, so that if I develop new code for operations similar to this, I can design it correctly from the start. So, if I got the following characteristics: The relevant input is composed from data which is connected to several different business objects All the input data is validated and cross-checked Attempts are made in order to insert the data to the DB All this is just a single operation from Business side prospective, meaning all of the cross checking and validations are just side effects. I can't think of any other way but some sort of Operator/Coordinator kind of Object which activates the entire procedure, but then I fall into a Functional-Decomposition kind of code. so is there a better way in doing this? Original Question In our system we have many complex operations which involve many validations and DB activities. One of the main Business functionality could have been designed better. In short, there were no separation of layers, and the code would only work from the scenario in which it was first designed at, and now there were more scenarios (like requests from an API or from other devices) So I had to redesign. I found myself moving all the DB code to objects which acts like Business to DB objects, and I've put all the business logic in an Operator kind of a class, which I've implemented like this: First, I created an object which will hold all the information needed for the operation let's call it InformationObject. Then I created an OperatorObject which will take the InformationObject as a parameter and act on it. The OperatorObject should activate different objects and validate or check for existence or any scenario in which the business logic is compromised and then make the operation according to the information on the InformationObject. So my question is - Is this kind of implementation correct? PS, this Operator only works on a single Business-wise Operation.

    Read the article

  • Did you forget me?

    - by Ratman21
    I know it has been a long time since I last blogged. Still at it, looking for work in the “IT” field. Had another phone interview (only found out during the interview that it was for one year contract job, but I still would take it) for a Help Desk job. Didn’t get it, they thought I was not a application support person and more of a hardware support. Gee..I started out in “IT” as a programmer. Then a programmer/computer operator, then a Tandem/Lan operator and finally a Network operator. I had to deal with so many different operating systems, software and applications.   And they thought I was too hardware. Well I am working a temp day job with the U.S. Census. It gets me out of the house and out in the country. If find getting paid to check for living quarters not bad job, except for the many houses I find that are up for sale and looks like it was not the owners (former owners it seems) idea, with the kids toys still in the yards. Not good for some one with a over active imagine or for my truck. So far I have backed in to ditch (and had to be pulled out), in to power pole (no damage to pole and very little to truck) and a mail box (no damage to truck but mail box was leaning a little) in the last two weeks.   Oh an I have started reading/using “The Love Dare” book from the movie “Fireproof”. I restarted (yes I have had to go back to day one from day five) the dare this Sunday. Dare one dare/day one “Love Is Patient” and the first dare is (reading from the book is): “The first part of this dare is fairly simple. Although Love is communicated in a number of ways. Our words often reflect the condition of our heart. For the next day, resolve to demonstrate patience and to sys nothing negative to your spouse at all. If the temptation arises, choose not to say anything. It’s better to hold your tongue that to say something you’ll regret. “. This was almost too easy as I can hold back from saying anything bad to any one but, this can also be a problem in life (you hold back for so long and!!!!!!!!!!!!!! Boom). Check back for dare/day two “Love Is Kind”.

    Read the article

  • How does the ? make a quantifier lazy in regex

    - by Uriel Katz
    I've been looking into regex lately and figured that the ? operator makes the *,+, or ? lazy. My question is how does it do that? Is it that *? for example is a special operator, or does the ? have an effect on the *? In other words, does regex recognize *? as one operator in itself, or does regex recognize *? as the two separate operators * and ?? If it is the case that *? is being recognized as two separate operators, how does the ? affect the * to make it lazy. If ? means that the * is optional, shouldn't this mean that the * doesn't have to exists at all. If so, then in a statement .*? wouldn't regex just match separate letters and the whole string instead of the shorter string? Please explain, I'm desperate to understand.

    Read the article

  • Any language where every class instance is a class too?

    - by Dokkat
    Taking inspiration from Javascript prototypes, I had the idea of a language where every instance can be used as a class. Before I potentially reinvent the wheel, I would like to ask if there is a language already using this concept: //To declare a Class, extend the base class (in this case, Type) Type(Weapon,{price:0}); //Same syntax to inherit; simply extend the parent: Weapon(Sword,{price:3}); Weapon(Axe,{price:4}); Sword(Katana,{price:7}); Sword(Dagger,{price:3}); //And the same to create an instance: Katana(myKatana,{nickname:"Leon"}); myKatana.price; // 7 myKatana.nickname; // Leon // An operator to return children of a class; Sword_; // [Katana, Dagger] // An operator to return array of descendants; Sword__; // [Katana, Dagger, myKatana] // An operator to return array of parents; Sword^; // Weapon // Arrays can be used as elements Sword__.price += 1; //increases price of Sword's descendants by 1 mySword.price; //8 // And to access specific element (using its name instead of index) var name = "mySword" Katana_[name]; // [mySword] Katana_[name].nickname; // Leon Has this kind of approach been already studied/implemented?

    Read the article

  • Ways to organize interface and implementation in C++

    - by Felix Dombek
    I've seen that there are several different paradigms in C++ concerning what goes into the header file and what to the cpp file. AFAIK, most people, especially those from a C background, do: foo.h class foo { private: int mem; int bar(); public: foo(); foo(const foo&); foo& operator=(foo); ~foo(); } foo.cpp #include foo.h foo::bar() { return mem; } foo::foo() { mem = 42; } foo::foo(const foo& f) { mem = f.mem; } foo::operator=(foo f) { mem = f.mem; } foo::~foo() {} int main(int argc, char *argv[]) { foo f; } However, my lecturers usually teach C++ to beginners like this: foo.h class foo { private: int mem; int bar() { return mem; } public: foo() { mem = 42; } foo(const foo& f) { mem = f.mem; } foo& operator=(foo f) { mem = f.mem; } ~foo() {} } foo.cpp #include foo.h int main(int argc, char* argv[]) { foo f; } // other global helper functions, DLL exports, and whatnot Originally coming from Java, I have also always stuck to this second way for several reasons, such as that I only have to change something in one place if the interface or method names change, and that I like the different indentation of things in classes when I look at their implementation, and that I find names more readable as foo compared to foo::foo. I want to collect pro's and con's for either way. Maybe there are even still other ways? One disadvantage of my way is of course the need for occasional forward declarations.

    Read the article

  • Working with Reporting Services Filters–Part 5: OR Logic

    - by smisner
    When you combine multiple filters, Reporting Services uses AND logic. Once upon a time, there was actually a drop-down list for selecting AND or OR between filters which was very confusing to people because often it was grayed out. Now that selection is gone, but no matter. It wouldn’t help us solve the problem that I want to describe today. As with many problems, Reporting Services gives us more than one way to apply OR logic in a filter. If I want a filter to include this value OR that value for the same field, one approach is to set up the filter is to use the IN operator as I explained in Part 1 of this series. But what if I want to base the filter on two different fields? I  need a different solution. Using the AdventureWorksDW2008R2 database, I have a report that lists product sales: Let’s say that I want to filter this report to show only products that are Bikes (a category) OR products for which sales were greater than $1,000 in a year. If I set up the filter like this: Expression Data Type Operator Value [Category] Text = Bikes [SalesAmount]   > 1000 Then AND logic is used which means that both conditions must be true. That’s not the result I want. Instead, I need to set up the filter like this: Expression Data Type Operator Value =Fields!EnglishProductCategoryName.Value = "Bikes" OR Fields!SalesAmount.Value > 1000 Boolean = =True The OR logic needs to be part of the expression so that it can return a Boolean value that we test against the Value. Notice that I have used =True rather than True for the value. The filtered report appears below. Any non-bike product appears only if the total sales exceed $1,000, whereas Bikes appear regardless of sales. (You can’t see it in this screenshot, but Mountain-400-W Silver, 38 has sales of $923 in 2007 but gets included because it is in the Bikes category.)

    Read the article

  • CodePlex Daily Summary for Monday, October 22, 2012

    CodePlex Daily Summary for Monday, October 22, 2012Popular ReleasesSQLLib: Alpha release 17: Added CLR UDFs: * clr.fn_regex_instr - similar to Oracle REGEX_INSTR * clr.fn_regex_substr - similar to Oracle REGEX_SUBSTR To deploy CLR objects copy ClrAgg.dll and ClrRegEx.dll to a folder of you choice (currently deployment script points to C:\Program Files\Microsoft SQL Server\100\CLR\ClrAgg.dll) and execute deployment scripts InstallCLRAggregates.sql and InstallCLRRegEx.sql Thank you for rating the download and/or your feedback.EPiServer CMS ElencySolutions.MultipleProperty: ElencySolutions.MultipleProperty v1.6.3: The ElencySolutions.MulitpleProperty property controls have been developed by Lee Crowe a technical developer at Fortune Cookie (London). Installation notes The property copy page can be locked down by adding the following location element, the path of this will be different depending on whether you use the embedded or non embedded resource version. When installing the nuget package these will be added automatically, examples below: Embedded: <location path="util/ElencySolutionsMultipleP...Fiskalizacija za developere: FiskalizacijaDev 1.1: Ovo je prva nadogradnja ovog projekta nakon inicijalnog predstavljanja - dodali smo nekoliko feature-a, bilo zato što smo sami primijetili da bi ih bilo dobro dodati, bilo na osnovu vaših sugestija - hvala svima koji su se ukljucili :) Ovo su stvari riješene u v1.1.: 1. Bilo bi dobro da se XML dokument koji se šalje u CIS može snimiti u datoteku (http://fiskalizacija.codeplex.com/workitem/612) 2. Podrška za COM DLL (VB6) (http://fiskalizacija.codeplex.com/workitem/613) 3. Podrška za DOS (unu...MCEBuddy 2.x: MCEBuddy 2.3.4: Changelog for 2.3.4 (32bit and 64bit) 1. Fixed a bug introduced in 2.3.3 that would cause HD recordings and recordings with multiple audio channels to fail. 2. Updated <encoder-unsupported> option to compare with all Audio tracks for videos with multiple audio tracks. 3. Fixed a bug with SRT and EDL files, when input and output directory are the same the files are not preserved.BlogEngine.NET: BlogEngine.NET 2.7 RC: Cheap ASP.NET Hosting - $4.95/Month - Click Here!! Click Here for More Info Cheap ASP.NET Hosting - $4.95/Month - Click Here! dot This is a Release Candidate version for BlogEngine.NET 2.7. The most current, stable version of BlogEngine.NET is version 2.6. Find out more about the BlogEngine.NET 2.7 RC here. To get started, be sure to check out our installation documentation. If you are upgrading from a previous version, please take a look at the Upgrading to BlogEngine.NET 2.7 instructions...Pulse: Pulse 0.6.3.0: Fixed a number of bugs that showed up since my update yesterday. Fixes included are for: - Weird issue where the initial "Nature" wallbase.cc search would duplicate itself - After changing a providers settings it wouldn't take affect until you restarted Pulse (removing or adding a provider entirely did take effect though) - Another small issue with the regex for the wallbase.cc wallpapers that I tweaked yesterday, seems good now though.Liberty: v3.4.0.0 Release 20th October 2012: Change Log -Added -Halo 4 support (invincibility, ammo editing) -Reach A warning dialog now shows up when you first attempt to swap a weapon -Fixed -A few minor bugsDoctor Reg: Doctor Reg V1.0: Doctor Reg V1.0 PT-PTkv: kv 1.0: if it were any more stable it would be a barn.LINQ for C++: cpplinq-20121020: LINQ for C++ is an attempt to bring LINQ-like list manipulation to C++11. This release includes just the source code. What's new in this release: join range operators: Inner Joins two ranges using a key selector reverse range operator distinct range operator union_with range operator intersect_with range operator except range operator concat range operator sequence_equal range aggregator to_lookup range aggregator This is a sample on how to use cpplinq: #include "cpplinq.h...helferlein_Form: 02.03.05: Requirements.Net 4.0 DotNetNuke 05.06.07 or higher, maybe it works with lower versions, but I developed it on this one and tested it on DotNetNuke 06.02.00 as well helferlein_BabelFish version 01.01.03 - please upgrade this first! Issues fixed Fixed issue with all users from all portals are listed as Host users in the sender options (E-Mail Options - Sender - ALL Users Listed) Registered postback-button for Excel-Export on Form submission edit control Changed behaviour Due to some mis...ClosedXML - The easy way to OpenXML: ClosedXML 0.68.1: ClosedXML now resolves formulas! Yes it finally happened. If you call cell.Value and it has a formula the library will try to evaluate the formula and give you the result. For example: var wb = new XLWorkbook(); var ws = wb.AddWorksheet("Sheet1"); ws.Cell("A1").SetValue(1).CellBelow().SetValue(1); ws.Cell("B1").SetValue(1).CellBelow().SetValue(1); ws.Cell("C1").FormulaA1 = "\"The total value is: \" & SUM(A1:B2)"; var...Orchard Project: Orchard 1.6 RC: RELEASE NOTES This is the Release Candidate version of Orchard 1.6. You should use this version to prepare your current developments to the upcoming final release, and report problems. Please read our release notes for Orchard 1.6 RC: http://docs.orchardproject.net/Documentation/Orchard-1-6-Release-Notes Please do not post questions as reviews. Questions should be posted in the Discussions tab, where they will usually get promptly responded to. If you post a question as a review, you wil...Rawr: Rawr 5.0.1: This is the Downloadable WPF version of Rawr!For web-based version see http://elitistjerks.com/rawr.php You can find the version notes at: http://rawr.codeplex.com/wikipage?title=VersionNotes Rawr Addon (NOT UPDATED YET FOR MOP)We now have a Rawr Official Addon for in-game exporting and importing of character data hosted on Curse. The Addon does not perform calculations like Rawr, it simply shows your exported Rawr data in wow tooltips and lets you export your character to Rawr (including ba...Yahoo! UI Library: YUI Compressor for .Net: Version 2.1.1.0 - Sartha (BugFix): - Revered back the embedding of the 2x assemblies.Visual Studio Team Foundation Server Branching and Merging Guide: v2.1 - Visual Studio 2012: Welcome to the Branching and Merging Guide What is new? The Version Control specific discussions have been moved from the Branching and Merging Guide to the new Advanced Version Control Guide. The Branching and Merging Guide and the Advanced Version Control Guide have been ported to the new document style. See http://blogs.msdn.com/b/willy-peter_schaub/archive/2012/10/17/alm-rangers-raising-the-quality-bar-for-documentation-part-2.aspx for more information. Quality-Bar Details Documentatio...D3 Loot Tracker: 1.5.5: Compatible with 1.05.Write Once, Play Everywhere: MonoGame 3.0 (BETA): This is a beta release of the up coming MonoGame 3.0. It contains an Installer which will install a binary release of MonoGame on windows boxes with the following platforms. Windows, Linux, Android and Windows 8. If you need to build for iOS or Mac you will need to get the source code at this time as the installers for those platforms are not available yet. The installer will also install a bunch of Project templates for Visual Studio 2010 , 2012 and MonoDevleop. For those of you wish...CODE Framework: 4.0.21017.0: See change log in the Documentation section for details.Magelia WebStore Open-source Ecommerce software: Magelia WebStore 2.1: Add support for .net 4.0 to Magelia.Webstore.Client and StarterSite version 2.1.254.3 Scheduler Import & Export feature (for Professional and Entreprise Editions) UTC datetime and timezone support .net 4.5 and Visual Studio 2012 migration client magelia global refactoring release of a nugget package to help developers speed up development http://nuget.org/packages/Magelia.Webstore.Client optimization of the data update mechanism (a.k.a. "burst") Performance improvment of the d...New ProjectsAdvanced Systems Generator: A very advanced systems generator in the first phase...planning. Android Phones: Creating Web 2.0 site featuring different types of Android phone where Users and fun of the phones can rate, evaluate and comment on different android phonesAppFabpraisal: AppFabPraisal is a project containing Concept Work around Health Monitoring in AppFabric.ASP.NET Web 2.0 Proje: this is a testAssignment1: This is a simple project allow users to sum two numbersBarryKileyiRobotics: The irobotics websiteBI Loteria: BI de jogos de loteria e lotofacil, para maximizar o numero de acerto em logos desse tipo.BKileyiRoboticsA1: iRobotics BlipiNET: Dostepowa biblioteka .NET do funkcjonalnosci API serwisu Blipi.plCAPRSFinal: Subversion, pruebas unitarias, etc.CityON: l' applicazione fornirà servizi informativi e supporterà l' utente nella pianificazione delle attivitàCryptographer: Cryptographer is a simple encryption/decryption application written in C# WinForms. It allows encryption and decryption using MD5, Rijndael, XOR and Hex.Design Patterns at TUM: Implement and provide the set of design patters in the area of software engineering. DigitalCV: DigitalCV is an API and editor for creating digital curriculum vitaes.Energy Informatics: The idea of this project is to follow a research in the area of energy informatics where we can provide value from the computer science.Ficharts.Net: ??Ficharts?Asp.Net????FlakerNET: Dostepowa biblioteka .NET do funkcjonalnosci API serwisu Flaker.plgillsassignment2: This is my second assignment which has 2 aspx pages.Image Space Occlusion Culling Engine: ISOCE is an Image Space Occlusion Culling Engine optimized to perform occlusion culling in CPU. Developed in C++ using SIMD optimizations.Liubaobao File Manager: A web based file managernetception: netception is an error tracking system aimed at enterprise environments. it aims to build on existing logging projects with business related informationPhoneGap MVC: Demo MVC application using PhoneGapProjetoIntegrador: Projeto Integrador para PUCPR Londrina.Quicklight: The Quicklight project that allows a developer to write anything from Rich Internet Applications to Apps for mobile phones using C# and HTML based Razor viewsRarawel: Crawl website with custom URIs and grab contentSharePoint Online Helper Library: Use .NET code or PowerShell to automate SharePoint Online deployment tasks, such as authenticating without browser, and activate sandbox solutions.SharkCrawler: SharkCrawler is a simple web page crawler written in C# for demonstration of how regular crawler is working.Shin Warrior Players Union: This is a ASP.NET Web 2.0 Project for WSCC coursework.Simple Servers Monitor: Monitor Servers via simple and yet comprehensive interface. Test Hgsubversion: For Testing hgsubversion.Visualizador de escandallos: Visualizador recursivo de estructuras tipo arbol para escandallos de producción.WebscriptingAssignment: sum of two numbersWrapCode - Template: WrapCode.com Custom WordPress template.XMLCatalogueTemplate(C#): MSP????????????????????????????。 ?????????????????。

    Read the article

  • StreamInsight 2.1, meet LINQ

    - by Roman Schindlauer
    Someone recently called LINQ “magic” in my hearing. I leapt to LINQ’s defense immediately. Turns out some people don’t realize “magic” is can be a pejorative term. I thought LINQ needed demystification. Here’s your best demystification resource: http://blogs.msdn.com/b/mattwar/archive/2008/11/18/linq-links.aspx. I won’t repeat much of what Matt Warren says in his excellent series, but will talk about some core ideas and how they affect the 2.1 release of StreamInsight. Let’s tell the story of a LINQ query. Compile time It begins with some code: IQueryable<Product> products = ...; var query = from p in products             where p.Name == "Widget"             select p.ProductID; foreach (int id in query) {     ... When the code is compiled, the C# compiler (among other things) de-sugars the query expression (see C# spec section 7.16): ... var query = products.Where(p => p.Name == "Widget").Select(p => p.ProductID); ... Overload resolution subsequently binds the Queryable.Where<Product> and Queryable.Select<Product, int> extension methods (see C# spec sections 7.5 and 7.6.5). After overload resolution, the compiler knows something interesting about the anonymous functions (lambda syntax) in the de-sugared code: they must be converted to expression trees, i.e.,“an object structure that represents the structure of the anonymous function itself” (see C# spec section 6.5). The conversion is equivalent to the following rewrite: ... var prm1 = Expression.Parameter(typeof(Product), "p"); var prm2 = Expression.Parameter(typeof(Product), "p"); var query = Queryable.Select<Product, int>(     Queryable.Where<Product>(         products,         Expression.Lambda<Func<Product, bool>>(Expression.Property(prm1, "Name"), prm1)),         Expression.Lambda<Func<Product, int>>(Expression.Property(prm2, "ProductID"), prm2)); ... If the “products” expression had type IEnumerable<Product>, the compiler would have chosen the Enumerable.Where and Enumerable.Select extension methods instead, in which case the anonymous functions would have been converted to delegates. At this point, we’ve reduced the LINQ query to familiar code that will compile in C# 2.0. (Note that I’m using C# snippets to illustrate transformations that occur in the compiler, not to suggest a viable compiler design!) Runtime When the above program is executed, the Queryable.Where method is invoked. It takes two arguments. The first is an IQueryable<> instance that exposes an Expression property and a Provider property. The second is an expression tree. The Queryable.Where method implementation looks something like this: public static IQueryable<T> Where<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate) {     return source.Provider.CreateQuery<T>(     Expression.Call(this method, source.Expression, Expression.Quote(predicate))); } Notice that the method is really just composing a new expression tree that calls itself with arguments derived from the source and predicate arguments. Also notice that the query object returned from the method is associated with the same provider as the source query. By invoking operator methods, we’re constructing an expression tree that describes a query. Interestingly, the compiler and operator methods are colluding to construct a query expression tree. The important takeaway is that expression trees are built in one of two ways: (1) by the compiler when it sees an anonymous function that needs to be converted to an expression tree, and; (2) by a query operator method that constructs a new queryable object with an expression tree rooted in a call to the operator method (self-referential). Next we hit the foreach block. At this point, the power of LINQ queries becomes apparent. The provider is able to determine how the query expression tree is evaluated! The code that began our story was intentionally vague about the definition of the “products” collection. Maybe it is a queryable in-memory collection of products: var products = new[]     { new Product { Name = "Widget", ProductID = 1 } }.AsQueryable(); The in-memory LINQ provider works by rewriting Queryable method calls to Enumerable method calls in the query expression tree. It then compiles the expression tree and evaluates it. It should be mentioned that the provider does not blindly rewrite all Queryable calls. It only rewrites a call when its arguments have been rewritten in a way that introduces a type mismatch, e.g. the first argument to Queryable.Where<Product> being rewritten as an expression of type IEnumerable<Product> from IQueryable<Product>. The type mismatch is triggered initially by a “leaf” expression like the one associated with the AsQueryable query: when the provider recognizes one of its own leaf expressions, it replaces the expression with the original IEnumerable<> constant expression. I like to think of this rewrite process as “type irritation” because the rewritten leaf expression is like a foreign body that triggers an immune response (further rewrites) in the tree. The technique ensures that only those portions of the expression tree constructed by a particular provider are rewritten by that provider: no type irritation, no rewrite. Let’s consider the behavior of an alternative LINQ provider. If “products” is a collection created by a LINQ to SQL provider: var products = new NorthwindDataContext().Products; the provider rewrites the expression tree as a SQL query that is then evaluated by your favorite RDBMS. The predicate may ultimately be evaluated using an index! In this example, the expression associated with the Products property is the “leaf” expression. StreamInsight 2.1 For the in-memory LINQ to Objects provider, a leaf is an in-memory collection. For LINQ to SQL, a leaf is a table or view. When defining a “process” in StreamInsight 2.1, what is a leaf? To StreamInsight a leaf is logic: an adapter, a sequence, or even a query targeting an entirely different LINQ provider! How do we represent the logic? Remember that a standing query may outlive the client that provisioned it. A reference to a sequence object in the client application is therefore not terribly useful. But if we instead represent the code constructing the sequence as an expression, we can host the sequence in the server: using (var server = Server.Connect(...)) {     var app = server.Applications["my application"];     var source = app.DefineObservable(() => Observable.Range(0, 10, Scheduler.NewThread));     var query = from i in source where i % 2 == 0 select i; } Example 1: defining a source and composing a query Let’s look in more detail at what’s happening in example 1. We first connect to the remote server and retrieve an existing app. Next, we define a simple Reactive sequence using the Observable.Range method. Notice that the call to the Range method is in the body of an anonymous function. This is important because it means the source sequence definition is in the form of an expression, rather than simply an opaque reference to an IObservable<int> object. The variation in Example 2 fails. Although it looks similar, the sequence is now a reference to an in-memory observable collection: var local = Observable.Range(0, 10, Scheduler.NewThread); var source = app.DefineObservable(() => local); // can’t serialize ‘local’! Example 2: error referencing unserializable local object The Define* methods support definitions of operator tree leaves that target the StreamInsight server. These methods all have the same basic structure. The definition argument is a lambda expression taking between 0 and 16 arguments and returning a source or sink. The method returns a proxy for the source or sink that can then be used for the usual style of LINQ query composition. The “define” methods exploit the compile-time C# feature that converts anonymous functions into translatable expression trees! Query composition exploits the runtime pattern that allows expression trees to be constructed by operators taking queryable and expression (Expression<>) arguments. The practical upshot: once you’ve Defined a source, you can compose LINQ queries in the familiar way using query expressions and operator combinators. Notably, queries can be composed using pull-sequences (LINQ to Objects IQueryable<> inputs), push sequences (Reactive IQbservable<> inputs), and temporal sequences (StreamInsight IQStreamable<> inputs). You can even construct processes that span these three domains using “bridge” method overloads (ToEnumerable, ToObservable and To*Streamable). Finally, the targeted rewrite via type irritation pattern is used to ensure that StreamInsight computations can leverage other LINQ providers as well. Consider the following example (this example depends on Interactive Extensions): var source = app.DefineEnumerable((int id) =>     EnumerableEx.Using(() =>         new NorthwindDataContext(), context =>             from p in context.Products             where p.ProductID == id             select p.ProductName)); Within the definition, StreamInsight has no reason to suspect that it ‘owns’ the Queryable.Where and Queryable.Select calls, and it can therefore defer to LINQ to SQL! Let’s use this source in the context of a StreamInsight process: var sink = app.DefineObserver(() => Observer.Create<string>(Console.WriteLine)); var query = from name in source(1).ToObservable()             where name == "Widget"             select name; using (query.Bind(sink).Run("process")) {     ... } When we run the binding, the source portion which filters on product ID and projects the product name is evaluated by SQL Server. Outside of the definition, responsibility for evaluation shifts to the StreamInsight server where we create a bridge to the Reactive Framework (using ToObservable) and evaluate an additional predicate. It’s incredibly easy to define computations that span multiple domains using these new features in StreamInsight 2.1! Regards, The StreamInsight Team

    Read the article

  • Working with Reporting Services Filters–Part 5: OR Logic

    - by smisner
    When you combine multiple filters, Reporting Services uses AND logic. Once upon a time, there was actually a drop-down list for selecting AND or OR between filters which was very confusing to people because often it was grayed out. Now that selection is gone, but no matter. It wouldn’t help us solve the problem that I want to describe today. As with many problems, Reporting Services gives us more than one way to apply OR logic in a filter. If I want a filter to include this value OR that value for the same field, one approach is to set up the filter is to use the IN operator as I explained in Part 1 of this series. But what if I want to base the filter on two different fields? I  need a different solution. Using the AdventureWorksDW2008R2 database, I have a report that lists product sales: Let’s say that I want to filter this report to show only products that are Bikes (a category) OR products for which sales were greater than $1,000 in a year. If I set up the filter like this: Expression Data Type Operator Value [Category] Text = Bikes [SalesAmount]   > 1000 Then AND logic is used which means that both conditions must be true. That’s not the result I want. Instead, I need to set up the filter like this: Expression Data Type Operator Value =Fields!EnglishProductCategoryName.Value = "Bikes" OR Fields!SalesAmount.Value > 1000 Boolean = =True The OR logic needs to be part of the expression so that it can return a Boolean value that we test against the Value. Notice that I have used =True rather than True for the value. The filtered report appears below. Any non-bike product appears only if the total sales exceed $1,000, whereas Bikes appear regardless of sales. (You can’t see it in this screenshot, but Mountain-400-W Silver, 38 has sales of $923 in 2007 but gets included because it is in the Bikes category.)

    Read the article

  • Ways to organize interface and implementation in C++

    - by Felix Dombek
    I've seen that there are several different paradigms in C++ concerning what goes into the header file and what to the cpp file. AFAIK, most people, especially those from a C background, do: foo.h class foo { private: int mem; int bar(); public: foo(); foo(const foo&); foo& operator=(foo); ~foo(); } foo.cpp #include foo.h foo::bar() { return mem; } foo::foo() { mem = 42; } foo::foo(const foo& f) { mem = f.mem; } foo::operator=(foo f) { mem = f.mem; } foo::~foo() {} int main(int argc, char *argv[]) { foo f; } However, my lecturers usually teach C++ to beginners like this: foo.h class foo { private: int mem; int bar() { return mem; } public: foo() { mem = 42; } foo(const foo& f) { mem = f.mem; } foo& operator=(foo f) { mem = f.mem; } ~foo() {} } foo.cpp #include foo.h int main(int argc, char* argv[]) { foo f; } // other global helper functions, DLL exports, and whatnot Originally coming from Java, I have also always stuck to this second way for several reasons, such as that I only have to change something in one place if the interface or method names change, that I like the different indentation of things in classes when I look at their implementation, and that I find names more readable as foo compared to foo::foo. I want to collect pro's and con's for either way. Maybe there are even still other ways? One disadvantage of my way is of course the need for occasional forward declarations.

    Read the article

  • Using visitor pattern with large object hierarchy

    - by T. Fabre
    Context I've been using with a hierarchy of objects (an expression tree) a "pseudo" visitor pattern (pseudo, as in it does not use double dispatch) : public interface MyInterface { void Accept(SomeClass operationClass); } public class MyImpl : MyInterface { public void Accept(SomeClass operationClass) { operationClass.DoSomething(); operationClass.DoSomethingElse(); // ... and so on ... } } This design was, however questionnable, pretty comfortable since the number of implementations of MyInterface is significant (~50 or more) and I didn't need to add extra operations. Each implementation is unique (it's a different expression or operator), and some are composites (ie, operator nodes that will contain other operator/leaf nodes). Traversal is currently performed by calling the Accept operation on the root node of the tree, which in turns calls Accept on each of its child nodes, which in turn... and so on... But the time has come where I need to add a new operation, such as pretty printing : public class MyImpl : MyInterface { // Property does not come from MyInterface public string SomeProperty { get; set; } public void Accept(SomeClass operationClass) { operationClass.DoSomething(); operationClass.DoSomethingElse(); // ... and so on ... } public void Accept(SomePrettyPrinter printer) { printer.PrettyPrint(this.SomeProperty); } } I basically see two options : Keep the same design, adding a new method for my operation to each derived class, at the expense of maintainibility (not an option, IMHO) Use the "true" Visitor pattern, at the expense of extensibility (not an option, as I expect to have more implementations coming along the way...), with about 50+ overloads of the Visit method, each one matching a specific implementation ? Question Would you recommand using the Visitor pattern ? Is there any other pattern that could help solve this issue ?

    Read the article

  • Distinctly LINQ &ndash; Getting a Distinct List of Objects

    - by David Totzke
    Let’s say that you have a list of objects that contains duplicate items and you want to extract a subset of distinct items.  This is pretty straight forward in the trivial case where the duplicate objects are considered the same such as in the following example: List<int> ages = new List<int> { 21, 46, 46, 55, 17, 21, 55, 55 }; IEnumerable<int> distinctAges = ages.Distinct(); Console.WriteLine("Distinct ages:"); foreach (int age in distinctAges) { Console.WriteLine(age); } /* This code produces the following output: Distinct ages: 21 46 55 17 */ What if you are working with reference types instead?  Imagine a list of search results where items in the results, while unique in and of themselves, also point to a parent.  We’d like to be able to select a bunch of items in the list but then see only a distinct list of parents.  Distinct isn’t going to help us much on its own as all of the items are distinct already.  Perhaps we can create a class with just the information we are interested in like the Id and Name of the parents.  public class SelectedItem { public int ItemID { get; set; } public string DisplayName { get; set; } } We can then use LINQ to populate a list containing objects with just the information we are interested in and then get rid of the duplicates. IEnumerable<SelectedItem> list = (from item in ResultView.SelectedRows.OfType<Contract.ReceiptSelectResults>() select new SelectedItem { ItemID = item.ParentId, DisplayName = item.ParentName }) .Distinct(); Most of you will have guessed that this didn’t work.  Even though some of our objects are now duplicates, because we are working with reference types, it doesn’t matter that their properties are the same, they’re still considered unique.  What we need is a way to define equality for the Distinct() extension method. IEqualityComparer<T> Looking at the Distinct method we see that there is an overload that accepts an IEqualityComparer<T>.  We can simply create a class that implements this interface and that allows us to define equality for our SelectedItem class. public class SelectedItemComparer : IEqualityComparer<SelectedItem> { public new bool Equals(SelectedItem abc, SelectedItem def) { return abc.ItemID == def.ItemID && abc.DisplayName == def.DisplayName; } public int GetHashCode(SelectedItem obj) { string code = obj.DisplayName + obj.ItemID.ToString(); return code.GetHashCode(); } } In the Equals method we simply do whatever comparisons are necessary to determine equality and then return true or false.  Take note of the implementation of the GetHashCode method.  GetHashCode must return the same value for two different objects if our Equals method says they are equal.  Get this wrong and your comparer won’t work .  Even though the Equals method returns true, mismatched hash codes will cause the comparison to fail.  For our example, we simply build a string from the properties of the object and then call GetHashCode() on that. Now all we have to do is pass an instance of our IEqualitlyComarer<T> to Distinct and all will be well: IEnumerable<SelectedItem> list =     (from item in ResultView.SelectedRows.OfType<Contract.ReceiptSelectResults>()         select new SelectedItem { ItemID = item.dahfkp, DisplayName = item.document_code })                         .Distinct(new SelectedItemComparer());   Enjoy. Dave Just because I can… Technorati Tags: LINQ,C#

    Read the article

  • Using ASP.NET MVC, Linq To SQL, and StructureMap causing DataContext to cache data

    - by Dragn1821
    I'll start by telling my project setup: ASP.NET MVC 1.0 StructureMap 2.6.1 VB I've created a bootstrapper class shown here: Imports StructureMap Imports DCS.Data Imports DCS.Services Public Class BootStrapper Public Shared Sub ConfigureStructureMap() ObjectFactory.Initialize(AddressOf StructureMapRegistry) End Sub Private Shared Sub StructureMapRegistry(ByVal x As IInitializationExpression) x.AddRegistry(New MainRegistry()) x.AddRegistry(New DataRegistry()) x.AddRegistry(New ServiceRegistry()) x.Scan(AddressOf StructureMapScanner) End Sub Private Shared Sub StructureMapScanner(ByVal scanner As StructureMap.Graph.IAssemblyScanner) scanner.Assembly("DCS") scanner.Assembly("DCS.Data") scanner.Assembly("DCS.Services") scanner.WithDefaultConventions() End Sub End Class I've created a controller factory shown here: Imports System.Web.Mvc Imports StructureMap Public Class StructureMapControllerFactory Inherits DefaultControllerFactory Protected Overrides Function GetControllerInstance(ByVal controllerType As System.Type) As System.Web.Mvc.IController Return ObjectFactory.GetInstance(controllerType) End Function End Class I've modified the Global.asax.vb as shown here: ... Sub Application_Start() RegisterRoutes(RouteTable.Routes) 'StructureMap BootStrapper.ConfigureStructureMap() ControllerBuilder.Current.SetControllerFactory(New StructureMapControllerFactory()) End Sub ... I've added a Structure Map registry file to each of my three projects: DCS, DCS.Data, and DCS.Services. Here is the DCS.Data registry: Imports StructureMap.Configuration.DSL Public Class DataRegistry Inherits Registry Public Sub New() 'Data Connections. [For](Of DCSDataContext)() _ .HybridHttpOrThreadLocalScoped _ .Use(New DCSDataContext()) 'Repositories. [For](Of IShiftRepository)() _ .Use(Of ShiftRepository)() [For](Of IMachineRepository)() _ .Use(Of MachineRepository)() [For](Of IShiftSummaryRepository)() _ .Use(Of ShiftSummaryRepository)() [For](Of IOperatorRepository)() _ .Use(Of OperatorRepository)() [For](Of IShiftSummaryJobRepository)() _ .Use(Of ShiftSummaryJobRepository)() End Sub End Class Everything works great as far as loading the dependecies, but I'm having problems with the DCSDataContext class that was genereated by Linq2SQL Classes. I have a form that posts to a details page (/Summary/Details), which loads in some data from SQL. I then have a button that opens a dialog box in JQuery, which populates the dialog from a request to (/Operator/Modify). On the dialog box, the form has a combo box and an OK button that lets the user change the operator's name. Upon clicking OK, the form is posted to (/Operator/Modify) and sent through the service and repository layers of my program and updates the record in the database. Then, the RedirectToAction is called to send the user back to the details page (/Summary/Details) where there is a call to pull the data from SQL again, updating the details view. Everything works great, except the details view does not show the new operator that was selected. I can step through the code and see the DCSDataContext class being accessed to update the operator (which does actually change the database record), but when the DCSDataContext is accessed to reload the details objects, it pulls in the old value. I'm guessing that StructureMap is causing not only the DCSDataContext class but also the data to be cached? I have also tried adding the following to the Global.asax, but it just ends up crashing the program telling me the DCSDataContext has been disposed... Private Sub MvcApplication_EndRequest(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.EndRequest StructureMap.ObjectFactory.ReleaseAndDisposeAllHttpScopedObjects() End Sub Can someone please help?

    Read the article

  • Problem with combination boost::exception and boost::variant

    - by Rick
    Hello all, I have strange problem with two-level variant struct when boost::exception is included. I have following code snippet: #include <boost/variant.hpp> #include <boost/exception/all.hpp> typedef boost::variant< int > StoredValue; typedef boost::variant< StoredValue > ExpressionItem; inline std::ostream& operator << ( std::ostream & os, const StoredValue& stvalue ) { return os;} inline std::ostream& operator << ( std::ostream & os, const ExpressionItem& stvalue ) { return os; } When I try to compile it, I have following error: boost/exception/detail/is_output_streamable.hpp(45): error C2593: 'operator <<' is ambiguous test.cpp(11): could be 'std::ostream &operator <<(std::ostream &,const ExpressionItem &)' [found using argument-dependent lookup] test.cpp(8): or 'std::ostream &operator <<(std::ostream &,const StoredValue &)' [found using argument-dependent lookup] 1> while trying to match the argument list '(std::basic_ostream<_Elem,_Traits>, const boost::error_info<Tag,T>)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> and 1> [ 1> Tag=boost::tag_original_exception_type, 1> T=const type_info * 1> ] Code snippet is simplified as much as possible, in the real code are structures much more complicated and each variant has five sub-types. When i remove #include and try following test snippet, program is compiled correctly: void TestVariant() { ExpressionItem test; std::stringstream str; str << test; } Could someone please advise me how to define operators << in order to function even when using boost::Exception ? Thanks and regards Rick

    Read the article

  • Is it ok to dynamic cast "this" as a return value?

    - by Panayiotis Karabassis
    This is more of a design question. I have a template class, and I want to add extra methods to it depending on the template type. To practice the DRY principle, I have come up with this pattern (definitions intentionally omitted): template <class T> class BaseVector: public boost::array<T, 3> { protected: BaseVector<T>(const T x, const T y, const T z); public: bool operator == (const Vector<T> &other) const; Vector<T> operator + (const Vector<T> &other) const; Vector<T> operator - (const Vector<T> &other) const; Vector<T> &operator += (const Vector<T> &other) { (*this)[0] += other[0]; (*this)[1] += other[1]; (*this)[2] += other[2]; return *dynamic_cast<Vector<T> * const>(this); } } template <class T> class Vector : public BaseVector<T> { public: Vector<T>(const T x, const T y, const T z) : BaseVector<T>(x, y, z) { } }; template <> class Vector<double> : public BaseVector<double> { public: Vector<double>(const double x, const double y, const double z); Vector<double>(const Vector<int> &other); double norm() const; }; I intend BaseVector to be nothing more than an implementation detail. This works, but I am concerned about operator+=. My question is: is the dynamic cast of the this pointer a code smell? Is there a better way to achieve what I am trying to do (avoid code duplication, and unnecessary casts in the user code)? Or am I safe since, the BaseVector constructor is private?

    Read the article

  • Are there known problems with >= and <= and the eval function in JS?

    - by Augier
    I am currently writing a JS rules engine which at one point needs to evaluate boolean expressions using the eval() function. Firstly I construct an equation as such: var equation = "relation.relatedTrigger.previousValue" + " " + relation.operator + " " + "relation.value"; relation.relatedTrigger.previousValue is the value I want to compare. relation.operator is the operator (either "==", "!=", <=, "<", "", ="). relation.value is the value I want to compare with. I then simply pass this string to the eval function and it returns true or false as such: return eval(equation); This works absolutely fine (with words and numbers) or all of the operators except for = and <=. E.g. When evaluating the equation: relation.relatedTrigger.previousValue <= 100 It returns true when previousValue = 0,1,10,100 & all negative numbers but false for everything in between. I would greatly appreciate the help of anyone to either answer my question or to help me find an alternative solution. Regards, Augier. P.S. I don't need a speech on the insecurities of the eval() function. Any value given to relation.relatedTrigger.previousValue is predefined. edit: Here is the full function: function evaluateRelation(relation) { console.log("Evaluating relation") var currentValue; //if multiple values if(relation.value.indexOf(";") != -1) { var values = relation.value.split(";"); for (x in values) { var equation = "relation.relatedTrigger.previousValue" + " " + relation.operator + " " + "values[x]"; currentValue = eval(equation); if (currentValue) return true; } return false; } //if single value else { //Evaluate the relation and get boolean var equation = "relation.relatedTrigger.previousValue" + " " + relation.operator + " " + "relation.value"; console.log("relation.relatedTrigger.previousValue " + relation.relatedTrigger.previousValue); console.log(equation); return eval(equation); } } Answer: Provided by KennyTM below. A string comparison doesn't work. Converting to a numerical was needed.

    Read the article

  • How to pass operators as parameters

    - by Rodion Ingles
    I have to load an array of doubles from a file, multiply each element by a value in a table (different values for different elements), do some work on it, invert the multiplication (that is, divide) and then save the data back to file. Currently I implement the multiplication and division process in two separate methods. Now there is some extra work behind the scenes but apart from the specific statements where the multiplication/division occurs, the rest of the code is identical. As you can imagine, with this approach you have to be very careful making any changes. The surrounding code is not trivial, so its either a case of manually editing each method or copying changes from one method to the other and remembering to change the * and / operators. After too many close calls I am fed up of this and would like to make a common function which implements the common logic and two wrapper functions which pass which operator to use as a parameter. My initial approach was to use function pointers: MultiplyData(double data) { TransformData(data, &(operator *)); } DivideData(double data) { TransformData(data, &(operator /)); } TransformData(double data, double (*func)(double op1, double op2)) { /* Do stuff here... */ } However, I can't pass the operators as pointers (is this because it is an operator on a native type?), so I tried to use function objects. Initially I thought that multiplies and divides functors in <functional> would be ideal: MultiplyData(double data) { std::multiplies<double> multFunct; TransformData(data, &multFunct); } DivideData(double data) { std::divides<double> divFunct; TransformData(data, &divFunct); } TransformData(double data, std::binary_function<double, double, double> *funct) { /* Do stuff here... */ } As you can see I was trying to use a base class pointer to pass the functor polymorphically. The problem is that std::binary_function does not declare an operator() member for the child classes to implement. Is there something I am missing, or is the solution to implement my own functor heirarchy (which really seems more trouble than it is worth)?

    Read the article

  • Understanding C++ dynamic allocation

    - by kiokko89
    Consider the following code: class CString { private: char* buff; size_t len; public: CString(const char* p):len(0), buff(nullptr) { cout << "Constructor called!"<<endl; if (p!=nullptr) { len= strlen(p); if (len>0) { buff= new char[len+1]; strcpy_s(buff, len+1, p); } } } CString (const CString& s) { cout << "Copy constructor called!"<<endl; len= s.len; buff= new char[len+1]; strcpy_s(buff, len+1, s.buff); } CString& operator = (const CString& rhs) { cout << "Assignment operator called!"<<endl; if (this != &rhs) { len= rhs.len; delete[] buff; buff= new char[len+1]; strcpy_s(buff, len+1, rhs.buff); } return *this; } CString operator + (const CString& rhs) const { cout << "Addition operator called!"<<endl; size_t lenght= len+rhs.len+1; char* tmp = new char[lenght]; strcpy_s(tmp, lenght, buff); strcat_s(tmp, lenght, rhs.buff); return CString(tmp); } ~CString() { cout << "Destructor called!"<<endl; delete[] buff; } }; int main() { CString s1("Hello"); CString s2("World"); CString s3 = s1+s2; } My problem is that I don't know how to delete the memory allocated in the addition operator function(char* tmp = new char[length]). I couldn't do this in the constructor(I tried delete[] p) because it is also called from the main function with arrays of chars as parameters which are not allocated on the heap...How can I get around this? (Sorry for my bad English...)

    Read the article

  • Implementing default constructors

    - by James
    Implement the default constructor, the constructors with one and two int parameters. The one-parameter constructor should initialize the first member of the pair, the second member of the pair is to be 0. Overload binary operator + to add the pairs as follows: (a, b) + (c, d) = (a + c, b + d); Overload the - analogously. Overload the * on pairs ant int as follows: (a, b) * c = (a * c, b * c). Write a program to test all the member functions and overloaded operators in your class definition. You will also need to write accessor (get) functions for each member. The definition of the class Pairs: class Pairs { public: Pairs(); Pairs(int first, int second); Pairs(int first); // other members and friends friend istream& operator>> (istream&, Pair&); friend ostream& operator<< (ostream&, const Pair&); private: int f; int s; }; Self-Test Exercise #17: istream& operator (istream& ins, Pair& second) { char ch; ins ch; // discard init '(' ins second.f; ins ch; // discard comma ',' ins second.s; ins ch; // discard final '(' return ins; } ostream& operator<< (ostream& outs, const Pair& second) { outs << '('; outs << second.f; outs << ", " ;// I followed the Author's suggestion here. outs << second.s; outs << ")"; return outs; }

    Read the article

  • Copy constructor bug

    - by user168715
    I'm writing a simple nD-vector class, but am encountering a strange bug. I've stripped out the class to the bare minimum that still reproduces the bug: #include <iostream> using namespace std; template<unsigned int size> class nvector { public: nvector() {data_ = new double[size];} ~nvector() {delete[] data_;} template<unsigned int size2> nvector(const nvector<size2> &other) { data_ = new double[size]; int i=0; for(; i<size && i < size2; i++) data_[i] = other[i]; for(; i<size; i++) data_[i] = 0; } double &operator[](int i) {return data_[i];} const double&operator[](int i) const {return data_[i];} private: const nvector<size> &operator=(const nvector<size> &other); //Intentionally unimplemented for now double *data_; }; int main() { nvector<2> vector2d; vector2d[0] = 1; vector2d[1] = 2; nvector<3> vector3d(vector2d); for(int i=0; i<3; i++) cout << vector3d[i] << " "; cout << endl; //Prints 1 2 0 nvector<3> other3d(vector3d); for(int i=0; i<3; i++) cout << other3d[i] << " "; cout << endl; //Prints 1 2 0 } //Segfault??? On the surface this seems to work fine, and both tests print out the correct values. However, at the end of main the program crashes with a segfault, which I've traced to nvector's destructor. At first I thought the (incorrect) default assignment operator was somehow being called, which is why I added the (currently) unimplemented explicit assignment operator to rule this possibility out. So my copy constructor must be buggy, but I'm having one of those days where I'm staring at extremely simple code and just can't see it. Do you guys have any ideas?

    Read the article

  • Can't insert a number into a C++ custom streambuf/ostream

    - by 0xbe5077ed
    I have written a custom std::basic_streambuf and std::basic_ostream because I want an output stream that I can get a JNI string from in a manner similar to how you can call std::ostringstream::str(). These classes are quite simple. namespace myns { class jni_utf16_streambuf : public std::basic_streambuf<char16_t> { JNIEnv * d_env; std::vector<char16_t> d_buf; virtual int_type overflow(int_type); public: jni_utf16_streambuf(JNIEnv *); jstring jstr() const; }; typedef std::basic_ostream<char16_t, std::char_traits<char16_t>> utf16_ostream; class jni_utf16_ostream : public utf16_ostream { jni_utf16_streambuf d_buf; public: jni_utf16_ostream(JNIEnv *); jstring jstr() const; }; // ... } // namespace myns In addition, I have made four overloads of operator<<, all in the same namespace: namespace myns { // ... utf16_ostream& operator<<(utf16_ostream&, jstring) throw(std::bad_cast); utf16_ostream& operator<<(utf16_ostream&, const char *); utf16_ostream& operator<<(utf16_ostream&, const jni_utf16_string_region&); jni_utf16_ostream& operator<<(jni_utf16_ostream&, jstring); // ... } // namespace myns The implementation of jni_utf16_streambuf::overflow(int_type) is trivial. It just doubles the buffer width, puts the requested character, and sets the base, put, and end pointers correctly. It is tested and I am quite sure it works. The jni_utf16_ostream works fine inserting unicode characters. For example, this works fine and results in the stream containing "hello, world": myns::jni_utf16_ostream o(env); o << u"hello, wor" << u'l' << u'd'; My problem is as soon as I try to insert an integer value, the stream's bad bit gets set, for example: myns::jni_utf16_ostream o(env); if (o.badbit()) throw "bad bit before"; // does not throw int32_t x(5); o << x; if (o.badbit()) throw "bad bit after"; // throws :( I don't understand why this is happening! Is there some other method on std::basic_streambuf I need to be implementing????

    Read the article

  • What's the recommended implemenation for hashing OLE Variants?

    - by Barry Kelly
    OLE Variants, as used by older versions of Visual Basic and pervasively in COM Automation, can store lots of different types: basic types like integers and floats, more complicated types like strings and arrays, and all the way up to IDispatch implementations and pointers in the form of ByRef variants. Variants are also weakly typed: they convert the value to another type without warning depending on which operator you apply and what the current types are of the values passed to the operator. For example, comparing two variants, one containing the integer 1 and another containing the string "1", for equality will return True. So assuming that I'm working with variants at the underlying data level (e.g. VARIANT in C++ or TVarData in Delphi - i.e. the big union of different possible values), how should I hash variants consistently so that they obey the right rules? Rules: Variants that hash unequally should compare as unequal, both in sorting and direct equality Variants that compare as equal for both sorting and direct equality should hash as equal It's OK if I have to use different sorting and direct comparison rules in order to make the hashing fit. The way I'm currently working is I'm normalizing the variants to strings (if they fit), and treating them as strings, otherwise I'm working with the variant data as if it was an opaque blob, and hashing and comparing its raw bytes. That has some limitations, of course: numbers 1..10 sort as [1, 10, 2, ... 9] etc. This is mildly annoying, but it is consistent and it is very little work. However, I do wonder if there is an accepted practice for this problem.

    Read the article

  • What's the recommended implementation for hashing OLE Variants?

    - by Barry Kelly
    OLE Variants, as used by older versions of Visual Basic and pervasively in COM Automation, can store lots of different types: basic types like integers and floats, more complicated types like strings and arrays, and all the way up to IDispatch implementations and pointers in the form of ByRef variants. Variants are also weakly typed: they convert the value to another type without warning depending on which operator you apply and what the current types are of the values passed to the operator. For example, comparing two variants, one containing the integer 1 and another containing the string "1", for equality will return True. So assuming that I'm working with variants at the underlying data level (e.g. VARIANT in C++ or TVarData in Delphi - i.e. the big union of different possible values), how should I hash variants consistently so that they obey the right rules? Rules: Variants that hash unequally should compare as unequal, both in sorting and direct equality Variants that compare as equal for both sorting and direct equality should hash as equal It's OK if I have to use different sorting and direct comparison rules in order to make the hashing fit. The way I'm currently working is I'm normalizing the variants to strings (if they fit), and treating them as strings, otherwise I'm working with the variant data as if it was an opaque blob, and hashing and comparing its raw bytes. That has some limitations, of course: numbers 1..10 sort as [1, 10, 2, ... 9] etc. This is mildly annoying, but it is consistent and it is very little work. However, I do wonder if there is an accepted practice for this problem.

    Read the article

< Previous Page | 37 38 39 40 41 42 43 44 45 46 47 48  | Next Page >