Search Results

Search found 63751 results on 2551 pages for 'four part name'.

Page 41/2551 | < Previous Page | 37 38 39 40 41 42 43 44 45 46 47 48  | Next Page >

  • .NET Security Part 3

    - by Simon Cooper
    You write a security-related application that allows addins to be used. These addins (as dlls) can be downloaded from anywhere, and, if allowed to run full-trust, could open a security hole in your application. So you want to restrict what the addin dlls can do, using a sandboxed appdomain, as explained in my previous posts. But there needs to be an interaction between the code running in the sandbox and the code that created the sandbox, so the sandboxed code can control or react to things that happen in the controlling application. Sandboxed code needs to be able to call code outside the sandbox. Now, there are various methods of allowing cross-appdomain calls, the two main ones being .NET Remoting with MarshalByRefObject, and WCF named pipes. I’m not going to cover the details of setting up such mechanisms here, or which you should choose for your specific situation; there are plenty of blogs and tutorials covering such issues elsewhere. What I’m going to concentrate on here is the more general problem of running fully-trusted code within a sandbox, which is required in most methods of app-domain communication and control. Defining assemblies as fully-trusted In my last post, I mentioned that when you create a sandboxed appdomain, you can pass in a list of assembly strongnames that run as full-trust within the appdomain: // get the Assembly object for the assembly Assembly assemblyWithApi = ... // get the StrongName from the assembly's collection of evidence StrongName apiStrongName = assemblyWithApi.Evidence.GetHostEvidence<StrongName>(); // create the sandbox AppDomain sandbox = AppDomain.CreateDomain( "Sandbox", null, appDomainSetup, restrictedPerms, apiStrongName); Any assembly that is loaded into the sandbox with a strong name the same as one in the list of full-trust strong names is unconditionally given full-trust permissions within the sandbox, irregardless of permissions and sandbox setup. This is very powerful! You should only use this for assemblies that you trust as much as the code creating the sandbox. So now you have a class that you want the sandboxed code to call: // within assemblyWithApi public class MyApi { public static void MethodToDoThings() { ... } } // within the sandboxed dll public class UntrustedSandboxedClass { public void DodgyMethod() { ... MyApi.MethodToDoThings(); ... } } However, if you try to do this, you get quite an ugly exception: MethodAccessException: Attempt by security transparent method ‘UntrustedSandboxedClass.DodgyMethod()’ to access security critical method ‘MyApi.MethodToDoThings()’ failed. Security transparency, which I covered in my first post in the series, has entered the picture. Partially-trusted code runs at the Transparent security level, fully-trusted code runs at the Critical security level, and Transparent code cannot under any circumstances call Critical code. Security transparency and AllowPartiallyTrustedCallersAttribute So the solution is easy, right? Make MethodToDoThings SafeCritical, then the transparent code running in the sandbox can call the api: [SecuritySafeCritical] public static void MethodToDoThings() { ... } However, this doesn’t solve the problem. When you try again, exactly the same exception is thrown; MethodToDoThings is still running as Critical code. What’s going on? By default, a fully-trusted assembly always runs Critical code, irregardless of any security attributes on its types and methods. This is because it may not have been designed in a secure way when called from transparent code – as we’ll see in the next post, it is easy to open a security hole despite all the security protections .NET 4 offers. When exposing an assembly to be called from partially-trusted code, the entire assembly needs a security audit to decide what should be transparent, safe critical, or critical, and close any potential security holes. This is where AllowPartiallyTrustedCallersAttribute (APTCA) comes in. Without this attribute, fully-trusted assemblies run Critical code, and partially-trusted assemblies run Transparent code. When this attribute is applied to an assembly, it confirms that the assembly has had a full security audit, and it is safe to be called from untrusted code. All code in that assembly runs as Transparent, but SecurityCriticalAttribute and SecuritySafeCriticalAttribute can be applied to individual types and methods to make those run at the Critical or SafeCritical levels, with all the restrictions that entails. So, to allow the sandboxed assembly to call the full-trust API assembly, simply add APCTA to the API assembly: [assembly: AllowPartiallyTrustedCallers] and everything works as you expect. The sandboxed dll can call your API dll, and from there communicate with the rest of the application. Conclusion That’s the basics of running a full-trust assembly in a sandboxed appdomain, and allowing a sandboxed assembly to access it. The key is AllowPartiallyTrustedCallersAttribute, which is what lets partially-trusted code call a fully-trusted assembly. However, an assembly with APTCA applied to it means that you have run a full security audit of every type and member in the assembly. If you don’t, then you could inadvertently open a security hole. I’ll be looking at ways this can happen in my next post.

    Read the article

  • Customizing UPK outputs (Part 2 - Player)

    - by [email protected]
    There are a few things that can be done to give the Player output a personalized look to match your corporate branding. In my previous post, I talked about changing the logo. In addition to the logo, you can change the graphic in the heading, button colors, border colors and many other items. Prior to making any customizations, I strongly recommend making a copy of the existing Player style. This will give you a backup in case things go wrong. I'd also recommend that you create your own brand. This way, when you install the newest updates from us, your brand will remain intact. Creating your own brand is pretty easy. Make sure you have modify permissions on the publishing styles directory, if you are using a multi-user installation. Under the Publishing/Styles folder, create a new folder with your company name. Copy all the publishing styles from the UPK folder to your newly created folder. Now, when you go through the Publishing wizard, you will have two categories to choose from: the UPK category or your custom category. Now, for updating the Player output. First, the graphic that appears on the right hand side of the Player. If you're using a multi-user installation, check out the player style from your custom brand. Open the player style. Open the img folder. The file named "banner_image.png" represents the graphic that appears on the right hand side of the player. It is currently sized at 425 x 54. Try to keep your graphic about the same size. Rename your graphic file to be "banner_image.png", and drag it into the img folder. Save the package. Check in the package if you are in a multi-user installation. You've just updated the banner heading! Next, let's work on updating some of the other colors in the player. All the customizable areas are located in the skin.css file which is in the root of the Player style. Many of our customers update the colors to match their own theme. You don't have to be a programmer to make these changes, honest. :) To change the colors in the player: Make a copy of the original skin.css file. (This is to make sure you have a working version to revert to, in case something goes wrong.) Open the skin.css file from the Player package. You can edit it using Notepad. Make the desired changes. Save the file. Save the package. Publish to view your new changes. When you open the skin.css, you will see groupings like this: .headerDivbar { height: 21px; background-color: #CDE2FD; } Change the value of the background-color to the color of your choice. Note that you cannot use "red" as a color, but rather you should enter the hexadecimal color code. If you don't know the color code, search the web for "hexadecimal colors" and you'll find many sites to provide the information. Here are a few of the variables that you can update. Heading: .headerDivbar -this changes the color of the banner that appears under the graphic Button colors: .navCellOn - changes the color of the mode buttons when your mouse is hovering on them. .navCellOff - changes the color of the mode buttons when the mouse is not over them Lines: .thorizontal - this is the color of the horizontal lines surrounding the outline .tvertical - this is the color of the vertical lines on the left and right margin in the outline. .tsep - this is the color of the line that separates the outline from the content area Search frame: .tocSearchColor - this is the color of the search area .tocFrameText - this is the background color of the TOC tree. Hint: If you want to try out the changes prior to updating the style, you can update the skin.css in some content you've already published for the player (it's located in the css folder of the player package). This way, you can immediately see the changes without going through publishing. Once you're happy with the changes, update the skin.css in player style. Want to customize more? Refer to the "Customizing the Player" section of the Content Development manual for more details on all the options in the skin.css that can be changed, and pictures of what each variable controls. I'd love to see how you've customized the player for your corporate needs. Also, if there are other areas of the player you'd like to modify but have not been able to, let us know. Feel free to share your thoughts in the comments. --Maria Cozzolino, Manager of Requirements & UI Design for UPK

    Read the article

  • WIF, ADFS 2 and WCF&ndash;Part 5: Service Client (more Flexibility with WSTrustChannelFactory)

    - by Your DisplayName here!
    See the previous posts first. WIF includes an API to manually request tokens from a token service. This gives you more control over the request and more flexibility since you can use your own token caching scheme instead of being bound to the channel object lifetime. The API is straightforward. You first request a token from the STS and then use that token to create a channel to the relying party service. I’d recommend using the WS-Trust bindings that ship with WIF to talk to ADFS 2 – they are pre-configured to match the binding configuration of the ADFS 2 endpoints. The following code requests a token for a WCF service from ADFS 2: private static SecurityToken GetToken() {     // Windows authentication over transport security     var factory = new WSTrustChannelFactory(         new WindowsWSTrustBinding(SecurityMode.Transport),         stsEndpoint);     factory.TrustVersion = TrustVersion.WSTrust13;       var rst = new RequestSecurityToken     {         RequestType = RequestTypes.Issue,         AppliesTo = new EndpointAddress(svcEndpoint),         KeyType = KeyTypes.Symmetric     };       var channel = factory.CreateChannel();     return channel.Issue(rst); } Afterwards, the returned token can be used to create a channel to the service. Again WIF has some helper methods here that make this very easy: private static void CallService(SecurityToken token) {     // create binding and turn off sessions     var binding = new WS2007FederationHttpBinding(         WSFederationHttpSecurityMode.TransportWithMessageCredential);     binding.Security.Message.EstablishSecurityContext = false;       // create factory and enable WIF plumbing     var factory = new ChannelFactory<IService>(binding, new EndpointAddress(svcEndpoint));     factory.ConfigureChannelFactory<IService>();       // turn off CardSpace - we already have the token     factory.Credentials.SupportInteractive = false;       var channel = factory.CreateChannelWithIssuedToken<IService>(token);       channel.GetClaims().ForEach(c =>         Console.WriteLine("{0}\n {1}\n  {2} ({3})\n",             c.ClaimType,             c.Value,             c.Issuer,             c.OriginalIssuer)); } Why is this approach more flexible? Well – some don’t like the configuration voodoo. That’s a valid reason for using the manual approach. You also get more control over the token request itself since you have full control over the RST message that gets send to the STS. One common parameter that you may want to set yourself is the appliesTo value. When you use the automatic token support in the WCF federation binding, the appliesTo is always the physical service address. This means in turn that this address will be used as the audience URI value in the SAML token. Well – this in turn means that when you have an application that consists of multiple services, you always have to configure all physical endpoint URLs in ADFS 2 and in the WIF configuration of the service(s). Having control over the appliesTo allows you to use more symbolic realm names, e.g. the base address or a completely logical name. Since the URL is never de-referenced you have some degree of freedom here. In the next post we will look at the necessary code to request multiple tokens in a call chain. This is a common scenario when you first have to acquire a token from an identity provider and have to send that on to a federation gateway or Resource STS. Stay tuned.

    Read the article

  • Partner Blog Series: PwC Perspectives Part 2 - Jumpstarting your IAM program with R2

    - by Tanu Sood
    Identity and access management (IAM) isn’t a new concept. Over the past decade, companies have begun to address identity management through a variety of solutions that have primarily focused on provisioning. . The new age workforce is converging at a rapid pace with ever increasing demand to use diverse portfolio of applications and systems to interact and interface with their peers in the industry and customers alike. Oracle has taken a significant leap with their release of Identity and Access Management 11gR2 towards enabling this global workforce to conduct their business in a secure, efficient and effective manner. As companies deal with IAM business drivers, it becomes immediately apparent that holistic, rather than piecemeal, approaches better address their needs. When planning an enterprise-wide IAM solution, the first step is to create a common framework that serves as the foundation on which to build the cost, compliance and business process efficiencies. As a leading industry practice, IAM should be established on a foundation of accurate data for identity management, making this data available in a uniform manner to downstream applications and processes. Mature organizations are looking beyond IAM’s basic benefits to harness more advanced capabilities in user lifecycle management. For any organization looking to embark on an IAM initiative, consider the following use cases in managing and administering user access. Expanding the Enterprise Provisioning Footprint Almost all organizations have some helpdesk resources tied up in handling access requests from users, a distraction from their core job of handling problem tickets. This dependency has mushroomed from the traditional acceptance of provisioning solutions integrating and addressing only a portion of applications in the heterogeneous landscape Oracle Identity Manager (OIM) 11gR2 solves this problem by offering integration with third party ticketing systems as “disconnected applications”. It allows for the existing business processes to be seamlessly integrated into the system and tracked throughout its lifecycle. With minimal effort and analysis, an organization can begin integrating OIM with groups or applications that are involved with manually intensive access provisioning and de-provisioning activities. This aspect of OIM allows organizations to on-board applications and associated business processes quickly using out of box templates and frameworks. This is especially important for organizations looking to fold in users and resources from mergers and acquisitions. Simplifying Access Requests Organizations looking to implement access request solutions often find it challenging to get their users to accept and adopt the new processes.. So, how do we improve the user experience, make it intuitive and personalized and yet simplify the user access process? With R2, OIM helps organizations alleviate the challenge by placing the most used functionality front and centre in the new user request interface. Roles, application accounts, and entitlements can all be found in the same interface as catalog items, giving business users a single location to go to whenever they need to initiate, approve or track a request. Furthermore, if a particular item is not relevant to a user’s job function or area inside the organization, it can be hidden so as to not overwhelm or confuse the user with superfluous options. The ability to customize the user interface to suit your needs helps in exercising the business rules effectively and avoiding access proliferation within the organization. Saving Time with Templates A typical use case that is most beneficial to business users is flexibility to place, edit, and withdraw requests based on changing circumstances and business needs. With OIM R2, multiple catalog items can now be added and removed from the shopping cart, an ecommerce paradigm that many users are already familiar with. This feature can be especially useful when setting up a large number of new employees or granting existing department or group access to a newly integrated application. Additionally, users can create their own shopping cart templates in order to complete subsequent requests more quickly. This feature saves the user from having to search for and select items all over again if a request is similar to a previous one. Advanced Delegated Administration A key feature of any provisioning solution should be to empower each business unit in managing their own access requests. By bringing administration closer to the user, you improve user productivity, enable efficiency and alleviate the administration overhead. To do so requires a federated services model so that the business units capable of shouldering the onus of user life cycle management of their business users can be enabled to do so. OIM 11gR2 offers advanced administrative options for creating, managing and controlling business logic and workflows through easy to use administrative interface and tools that can be exposed to delegated business administrators. For example, these business administrators can establish or modify how certain requests and operations should be handled within their business unit based on a number of attributes ranging from the type of request or the risk level of the individual items requested. Closed-Loop Remediation Security continues to be a major concern for most organizations. Identity management solutions bolster security by ensuring only the right users have the right access to the right resources. To prevent unauthorized access and where it already exists, the ability to detect and remediate it, are key requirements of an enterprise-grade proven solution. But the challenge with most solutions today is that some of this information still exists in silos. And when changes are made to systems directly, not all information is captured. With R2, oracle is offering a comprehensive Identity Governance solution that our customer organizations are leveraging for closed loop remediation that allows for an automated way for administrators to revoke unauthorized access. The change is automatically captured and the action noted for continued management. Conclusion While implementing provisioning solutions, it is important to keep the near term and the long term goals in mind. The provisioning solution should always be a part of a larger security and identity management program but with the ability to seamlessly integrate not only with the company’s infrastructure but also have the ability to leverage the information, business models compiled and used by the other identity management solutions. This allows organizations to reduce the cost of ownership, close security gaps and leverage the existing infrastructure. And having done so a multiple clients’ sites, this is the approach we recommend. In our next post, we will take a journey through our experiences of advising clients looking to upgrade to R2 from a previous version or migrating from a different solution. Meet the Writers:   Praveen Krishna is a Manager in the Advisory Security practice within PwC.  Over the last decade Praveen has helped clients plan, architect and implement Oracle identity solutions across diverse industries.  His experience includes delivering security across diverse topics like network, infrastructure, application and data where he brings a holistic point of view to problem solving. Dharma Padala is a Director in the Advisory Security practice within PwC.  He has been implementing medium to large scale Identity Management solutions across multiple industries including utility, health care, entertainment, retail and financial sectors.   Dharma has 14 years of experience in delivering IT solutions out of which he has been implementing Identity Management solutions for the past 8 years. Scott MacDonald is a Director in the Advisory Security practice within PwC.  He has consulted for several clients across multiple industries including financial services, health care, automotive and retail.   Scott has 10 years of experience in delivering Identity Management solutions. John Misczak is a member of the Advisory Security practice within PwC.  He has experience implementing multiple Identity and Access Management solutions, specializing in Oracle Identity Manager and Business Process Engineering Language (BPEL). Jenny (Xiao) Zhang is a member of the Advisory Security practice within PwC.  She has consulted across multiple industries including financial services, entertainment and retail. Jenny has three years of experience in delivering IT solutions out of which she has been implementing Identity Management solutions for the past one and a half years.

    Read the article

  • Myths about Coding Craftsmanship part 2

    - by tom
    Myth 3: The source of all bad code is inept developers and stupid people When you review code is this what you assume?  Shame on you.  You are probably making assumptions in your code if you are assuming so much already.  Bad code can be the result of any number of causes including but not limited to using dated techniques (like boxing when generics are available), not following standards (“look how he does the spacing between arguments!” or “did he really just name that variable ‘bln_Hello_Cats’?”), being redundant, using properties, methods, or objects in a novel way (like switching on button.Text between “Hello World” and “Hello World “ //clever use of space character… sigh), not following the SOLID principals, hacking around assumptions made in earlier iterations / hacking in features that should be worked into the overall design.  The first two issues, while annoying are pretty easy to spot and can be fixed so easily.  If your coding team is made up of experienced professionals who are passionate about staying current then these shouldn’t be happening.  If you work with a variety of skills, backgrounds, and experience then there will be some of this stuff going on.  If you have an opportunity to mentor such a developer who is receptive to constructive criticism don’t be a jerk; help them and the codebase will improve.  A little patience can improve the codebase, your work environment, and even your perspective. The novelty and redundancy I have encountered has often been the use of creativity when language knowledge was perceived as unavailable or too time consuming.  When developers learn on the job you get a lot of this.  Rather than going to MSDN developers will use what they know.  Depending on the constraints of their assignment hacking together what they know may seem quite practical.  This was not stupid though I often wonder how much time is actually “saved” by hacking.  These issues are often harder to untangle if we ever do.  They can also grow out of control as we write hack after hack to make it work and get back to some development that is satisfying. Hacking upon an existing hack is what I call “feeding the monster”.  Code monsters are anti-patterns and hacks gone wild.  The reason code monsters continue to get bigger is that they keep growing in scope, touching more and more of the application.  This is not the result of dumb developers. It is probably the result of avoiding design, not taking the time to understand the problems or anticipate or communicate the vision of the product.  If our developers don’t understand the purpose of a feature or product how do we expect potential customers to do so? Forethought and organization are often what is missing from bad code.  Developers who do not use the SOLID principals should be encouraged to learn these principals and be given guidance on how to apply them.  The time “saved” by giving hackers room to hack will be made up for and then some. Not as technical debt but as shoddy work that if not replaced will be struggled with again and again.  Bad code is not the result of dumb developers (usually) it is the result of trying to do too much without the proper resources and neglecting the right thing that needs doing with the first thoughtless thing that comes into our heads. Object oriented code is all about relationships between objects.  Coders who believe their coworkers are all fools tend to write objects that are difficult to work with, not eager to explain themselves, and perform erratically and irrationally.  If you constantly find you are surrounded by idiots you may want to ask yourself if you are being unreasonable, if you are being closed minded, of if you have chosen the right profession.  Opening your mind up to the idea that you probably work with rational, well-intentioned people will probably make you a better coder and it might even make you less grumpy.  If you are surrounded by jerks who do not engage in the exchange of ideas who do not care about their customers or the durability of the code you are building together then I suggest you find a new place to work.  Myth 4: Customers don’t care about “beautiful” code Craftsmanship is customer focused because it means that the job was done right, the product will withstand the abuse, modifications, and scrutiny of our customers.  Users can appreciate a predictable timeline for a release, a product delivered on time and on budget, a feature set that does not interfere with the task(s) it is supporting, quick turnarounds on exception messages, self healing issues, and less issues.  These are all hindered by skimping on craftsmanship.  When we write data access and when we write reusable code.   What do you think?  Does bad code come primarily from low IQ individuals?  Do customers care about beautiful code?

    Read the article

  • parallel_for_each from amp.h – part 1

    - by Daniel Moth
    This posts assumes that you've read my other C++ AMP posts on index<N> and extent<N>, as well as about the restrict modifier. It also assumes you are familiar with C++ lambdas (if not, follow my links to C++ documentation). Basic structure and parameters Now we are ready for part 1 of the description of the new overload for the concurrency::parallel_for_each function. The basic new parallel_for_each method signature returns void and accepts two parameters: a grid<N> (think of it as an alias to extent) a restrict(direct3d) lambda, whose signature is such that it returns void and accepts an index of the same rank as the grid So it looks something like this (with generous returns for more palatable formatting) assuming we are dealing with a 2-dimensional space: // some_code_A parallel_for_each( g, // g is of type grid<2> [ ](index<2> idx) restrict(direct3d) { // kernel code } ); // some_code_B The parallel_for_each will execute the body of the lambda (which must have the restrict modifier), on the GPU. We also call the lambda body the "kernel". The kernel will be executed multiple times, once per scheduled GPU thread. The only difference in each execution is the value of the index object (aka as the GPU thread ID in this context) that gets passed to your kernel code. The number of GPU threads (and the values of each index) is determined by the grid object you pass, as described next. You know that grid is simply a wrapper on extent. In this context, one way to think about it is that the extent generates a number of index objects. So for the example above, if your grid was setup by some_code_A as follows: extent<2> e(2,3); grid<2> g(e); ...then given that: e.size()==6, e[0]==2, and e[1]=3 ...the six index<2> objects it generates (and hence the values that your lambda would receive) are:    (0,0) (1,0) (0,1) (1,1) (0,2) (1,2) So what the above means is that the lambda body with the algorithm that you wrote will get executed 6 times and the index<2> object you receive each time will have one of the values just listed above (of course, each one will only appear once, the order is indeterminate, and they are likely to call your code at the same exact time). Obviously, in real GPU programming, you'd typically be scheduling thousands if not millions of threads, not just 6. If you've been following along you should be thinking: "that is all fine and makes sense, but what can I do in the kernel since I passed nothing else meaningful to it, and it is not returning any values out to me?" Passing data in and out It is a good question, and in data parallel algorithms indeed you typically want to pass some data in, perform some operation, and then typically return some results out. The way you pass data into the kernel, is by capturing variables in the lambda (again, if you are not familiar with them, follow the links about C++ lambdas), and the way you use data after the kernel is done executing is simply by using those same variables. In the example above, the lambda was written in a fairly useless way with an empty capture list: [ ](index<2> idx) restrict(direct3d), where the empty square brackets means that no variables were captured. If instead I write it like this [&](index<2> idx) restrict(direct3d), then all variables in the some_code_A region are made available to the lambda by reference, but as soon as I try to use any of those variables in the lambda, I will receive a compiler error. This has to do with one of the direct3d restrictions, where only one type can be capture by reference: objects of the new concurrency::array class that I'll introduce in the next post (suffice for now to think of it as a container of data). If I write the lambda line like this [=](index<2> idx) restrict(direct3d), all variables in the some_code_A region are made available to the lambda by value. This works for some types (e.g. an integer), but not for all, as per the restrictions for direct3d. In particular, no useful data classes work except for one new type we introduce with C++ AMP: objects of the new concurrency::array_view class, that I'll introduce in the post after next. Also note that if you capture some variable by value, you could use it as input to your algorithm, but you wouldn’t be able to observe changes to it after the parallel_for_each call (e.g. in some_code_B region since it was passed by value) – the exception to this rule is the array_view since (as we'll see in a future post) it is a wrapper for data, not a container. Finally, for completeness, you can write your lambda, e.g. like this [av, &ar](index<2> idx) restrict(direct3d) where av is a variable of type array_view and ar is a variable of type array - the point being you can be very specific about what variables you capture and how. So it looks like from a large data perspective you can only capture array and array_view objects in the lambda (that is how you pass data to your kernel) and then use the many threads that call your code (each with a unique index) to perform some operation. You can also capture some limited types by value, as input only. When the last thread completes execution of your lambda, the data in the array_view or array are ready to be used in the some_code_B region. We'll talk more about all this in future posts… (a)synchronous Please note that the parallel_for_each executes as if synchronous to the calling code, but in reality, it is asynchronous. I.e. once the parallel_for_each call is made and the kernel has been passed to the runtime, the some_code_B region continues to execute immediately by the CPU thread, while in parallel the kernel is executed by the GPU threads. However, if you try to access the (array or array_view) data that you captured in the lambda in the some_code_B region, your code will block until the results become available. Hence the correct statement: the parallel_for_each is as-if synchronous in terms of visible side-effects, but asynchronous in reality.   That's all for now, we'll revisit the parallel_for_each description, once we introduce properly array and array_view – coming next. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Unable to login following permission changes in device manager (11.10 + Gnome)

    - by Symanuk
    (Running Gnome 3 on Ubuntu 11.10) Everything working well (at least a couple of months), until recently when I changed the permissions through the device manager on the sda1 /2/ 3 drives, thinking it would save all the switching I seem to have to do between users in order to see / use files I previously copied across from an external drive. Now when I boot up the Ubuntu splash screen loads indefinitely, and if I go in through the GRUB / recover option, i'm getting a load of negative permission messages back (regardless of using the fsck or remount options) Either way = unusable machine (Laptop Dell Inspiron n5050), and no way through to login. I'm looking for: (1) a way back in so any help greatfully received (answers need to be pretty basic as i'm a novice), and (2) if i'm to learn anything, a decent thread on setting permissions within Ubuntu / Gnome 3. I'm new to both Ubuntu & Linux, so please be gentle!! Cheers

    Read the article

  • Data Source Security Part 4

    - by Steve Felts
    So far, I have covered Client Identity and Oracle Proxy Session features, with WLS or database credentials.  This article will cover one more feature, Identify-based pooling.  Then, there is one more topic to cover - how these options play with transactions.Identity-based Connection Pooling An identity based pool creates a heterogeneous pool of connections.  This allows applications to use a JDBC connection with a specific DBMS credential by pooling physical connections with different DBMS credentials.  The DBMS credential is based on either the WebLogic user mapped to a database user or the database user directly, based on the “use database credentials” setting as described earlier. Using this feature enabled with “use database credentials” enabled seems to be what is proposed in the JDBC standard, basically a heterogeneous pool with users specified by getConnection(user, password). The allocation of connections is more complex if Enable Identity Based Connection Pooling attribute is enabled on the data source.  When an application requests a database connection, the WebLogic Server instance selects an existing physical connection or creates a new physical connection with requested DBMS identity. The following section provides information on how heterogeneous connections are created:1. At connection pool initialization, the physical JDBC connections based on the configured or default “initial capacity” are created with the configured default DBMS credential of the data source.2. An application tries to get a connection from a data source.3a. If “use database credentials” is not enabled, the user specified in getConnection is mapped to a DBMS credential, as described earlier.  If the credential map doesn’t have a matching user, the default DBMS credential is used from the datasource descriptor.3b. If “use database credentials” is enabled, the user and password specified in getConnection are used directly.4. The connection pool is searched for a connection with a matching DBMS credential.5. If a match is found, the connection is reserved and returned to the application.6. If no match is found, a connection is created or reused based on the maximum capacity of the pool: - If the maximum capacity has not been reached, a new connection is created with the DBMS credential, reserved, and returned to the application.- If the pool has reached maximum capacity, based on the least recently used (LRU) algorithm, a physical connection is selected from the pool and destroyed. A new connection is created with the DBMS credential, reserved, and returned to the application. It should be clear that finding a matching connection is more expensive than a homogeneous pool.  Destroying a connection and getting a new one is very expensive.  If you can use a normal homogeneous pool or one of the light-weight options (client identity or an Oracle proxy connection), those should be used instead of identity based pooling. Regardless of how physical connections are created, each physical connection in the pool has its own DBMS credential information maintained by the pool. Once a physical connection is reserved by the pool, it does not change its DBMS credential even if the current thread changes its WebLogic user credential and continues to use the same connection. To configure this feature, select Enable Identity Based Connection Pooling.  See http://docs.oracle.com/cd/E24329_01/apirefs.1211/e24401/taskhelp/jdbc/jdbc_datasources/EnableIdentityBasedConnectionPooling.html  "Enable identity-based connection pooling for a JDBC data source" in Oracle WebLogic Server Administration Console Help. You must make the following changes to use Logging Last Resource (LLR) transaction optimization with Identity-based Pooling to get around the problem that multiple users will be accessing the associated transaction table.- You must configure a custom schema for LLR using a fully qualified LLR table name. All LLR connections will then use the named schema rather than the default schema when accessing the LLR transaction table.  - Use database specific administration tools to grant permission to access the named LLR table to all users that could access this table via a global transaction. By default, the LLR table is created during boot by the user configured for the connection in the data source. In most cases, the database will only allow access to this user and not allow access to mapped users. Connections within Transactions Now that we have covered the behavior of all of these various options, it’s time to discuss the exception to all of the rules.  When you get a connection within a transaction, it is associated with the transaction context on a particular WLS instance. When getting a connection with a data source configured with non-XA LLR or 1PC (using the JTS driver) with global transactions, the first connection obtained within the transaction is returned on subsequent connection requests regardless of the values of username/password specified and independent of the associated proxy user session, if any. The connection must be shared among all users of the connection when using LLR or 1PC. For XA data sources, the first connection obtained within the global transaction is returned on subsequent connection requests within the application server, regardless of the values of username/password specified and independent of the associated proxy user session, if any.  The connection must be shared among all users of the connection within a global transaction within the application server/JVM.

    Read the article

  • How to access SharePoint web part properties?

    - by shannon.stewart
    I have created a feature for SharePoint 2007 that has a web part. I have added a custom property to the web part like so: [Personalizable(PersonalizationScope.Shared)] [WebBrowsable(true)] [Category("My Custom Properties")] [WebDisplayName("ServiceURL")] [WebDescription("The URL for the Wcf service")] public string ServiceURL { get; set; } Along with this web part, I've added a custom page that the web part will have a link to. I would like to reference the web part property from the custom page, but I don't know where these properties are stored. I've tried to access it using the code below, but both property collections don't have any properties stored. SPFeaturePropertyCollection spProperties = SPContext.Current.Site.Features[this.FeatureGuid].Properties; or SPFeaturePropertyCollection spProperties = SPContext.Current.Site.Features[this.FeatureGuid].Definition.Properties; My question is how can I get a reference to the web part property from other pages?

    Read the article

  • Adding Message Part dynamically in Receive Pipeline

    - by Sean
    Hello, I tried to create a custom pipeline component that takes a message and attaches additional another part dynamically (during Disassemble stage). I haven't set up a send port, so that I can see what BizTalk is trying to process. I can see only the body part, the additional part doesn't show up. This is the code I used: var part = pc.GetMessageFactory().CreateMessagePart(); part.Data = new MemoryStream(new byte[] {1, 2, 3, 4, 5}); inmsg.AddPart("another_part", part, false); Thank you.

    Read the article

  • Oracle BI Server Modeling, Part 1- Designing a Query Factory

    - by bob.ertl(at)oracle.com
      Welcome to Oracle BI Development's BI Foundation blog, focused on helping you get the most value from your Oracle Business Intelligence Enterprise Edition (BI EE) platform deployments.  In my first series of posts, I plan to show developers the concepts and best practices for modeling in the Common Enterprise Information Model (CEIM), the semantic layer of Oracle BI EE.  In this segment, I will lay the groundwork for the modeling concepts.  First, I will cover the big picture of how the BI Server fits into the system, and how the CEIM controls the query processing. Oracle BI EE Query Cycle The purpose of the Oracle BI Server is to bridge the gap between the presentation services and the data sources.  There are typically a variety of data sources in a variety of technologies: relational, normalized transaction systems; relational star-schema data warehouses and marts; multidimensional analytic cubes and financial applications; flat files, Excel files, XML files, and so on. Business datasets can reside in a single type of source, or, most of the time, are spread across various types of sources. Presentation services users are generally business people who need to be able to query that set of sources without any knowledge of technologies, schemas, or how sources are organized in their company. They think of business analysis in terms of measures with specific calculations, hierarchical dimensions for breaking those measures down, and detailed reports of the business transactions themselves.  Most of them create queries without knowing it, by picking a dashboard page and some filters.  Others create their own analysis by selecting metrics and dimensional attributes, and possibly creating additional calculations. The BI Server bridges that gap from simple business terms to technical physical queries by exposing just the business focused measures and dimensional attributes that business people can use in their analyses and dashboards.   After they make their selections and start the analysis, the BI Server plans the best way to query the data sources, writes the optimized sequence of physical queries to those sources, post-processes the results, and presents them to the client as a single result set suitable for tables, pivots and charts. The CEIM is a model that controls the processing of the BI Server.  It provides the subject areas that presentation services exposes for business users to select simplified metrics and dimensional attributes for their analysis.  It models the mappings to the physical data access, the calculations and logical transformations, and the data access security rules.  The CEIM consists of metadata stored in the repository, authored by developers using the Administration Tool client.     Presentation services and other query clients create their queries in BI EE's SQL-92 language, called Logical SQL or LSQL.  The API simply uses ODBC or JDBC to pass the query to the BI Server.  Presentation services writes the LSQL query in terms of the simplified objects presented to the users.  The BI Server creates a query plan, and rewrites the LSQL into fully-detailed SQL or other languages suitable for querying the physical sources.  For example, the LSQL on the left below was rewritten into the physical SQL for an Oracle 11g database on the right. Logical SQL   Physical SQL SELECT "D0 Time"."T02 Per Name Month" saw_0, "D4 Product"."P01  Product" saw_1, "F2 Units"."2-01  Billed Qty  (Sum All)" saw_2 FROM "Sample Sales" ORDER BY saw_0, saw_1       WITH SAWITH0 AS ( select T986.Per_Name_Month as c1, T879.Prod_Dsc as c2,      sum(T835.Units) as c3, T879.Prod_Key as c4 from      Product T879 /* A05 Product */ ,      Time_Mth T986 /* A08 Time Mth */ ,      FactsRev T835 /* A11 Revenue (Billed Time Join) */ where ( T835.Prod_Key = T879.Prod_Key and T835.Bill_Mth = T986.Row_Wid) group by T879.Prod_Dsc, T879.Prod_Key, T986.Per_Name_Month ) select SAWITH0.c1 as c1, SAWITH0.c2 as c2, SAWITH0.c3 as c3 from SAWITH0 order by c1, c2   Probably everybody reading this blog can write SQL or MDX.  However, the trick in designing the CEIM is that you are modeling a query-generation factory.  Rather than hand-crafting individual queries, you model behavior and relationships, thus configuring the BI Server machinery to manufacture millions of different queries in response to random user requests.  This mass production requires a different mindset and approach than when you are designing individual SQL statements in tools such as Oracle SQL Developer, Oracle Hyperion Interactive Reporting (formerly Brio), or Oracle BI Publisher.   The Structure of the Common Enterprise Information Model (CEIM) The CEIM has a unique structure specifically for modeling the relationships and behaviors that fill the gap from logical user requests to physical data source queries and back to the result.  The model divides the functionality into three specialized layers, called Presentation, Business Model and Mapping, and Physical, as shown below. Presentation services clients can generally only see the presentation layer, and the objects in the presentation layer are normally the only ones used in the LSQL request.  When a request comes into the BI Server from presentation services or another client, the relationships and objects in the model allow the BI Server to select the appropriate data sources, create a query plan, and generate the physical queries.  That's the left to right flow in the diagram below.  When the results come back from the data source queries, the right to left relationships in the model show how to transform the results and perform any final calculations and functions that could not be pushed down to the databases.   Business Model Think of the business model as the heart of the CEIM you are designing.  This is where you define the analytic behavior seen by the users, and the superset library of metric and dimension objects available to the user community as a whole.  It also provides the baseline business-friendly names and user-readable dictionary.  For these reasons, it is often called the "logical" model--it is a virtual database schema that persists no data, but can be queried as if it is a database. The business model always has a dimensional shape (more on this in future posts), and its simple shape and terminology hides the complexity of the source data models. Besides hiding complexity and normalizing terminology, this layer adds most of the analytic value, as well.  This is where you define the rich, dimensional behavior of the metrics and complex business calculations, as well as the conformed dimensions and hierarchies.  It contributes to the ease of use for business users, since the dimensional metric definitions apply in any context of filters and drill-downs, and the conformed dimensions enable dashboard-wide filters and guided analysis links that bring context along from one page to the next.  The conformed dimensions also provide a key to hiding the complexity of many sources, including federation of different databases, behind the simple business model. Note that the expression language in this layer is LSQL, so that any expression can be rewritten into any data source's query language at run time.  This is important for federation, where a given logical object can map to several different physical objects in different databases.  It is also important to portability of the CEIM to different database brands, which is a key requirement for Oracle's BI Applications products. Your requirements process with your user community will mostly affect the business model.  This is where you will define most of the things they specifically ask for, such as metric definitions.  For this reason, many of the best-practice methodologies of our consulting partners start with the high-level definition of this layer. Physical Model The physical model connects the business model that meets your users' requirements to the reality of the data sources you have available. In the query factory analogy, think of the physical layer as the bill of materials for generating physical queries.  Every schema, table, column, join, cube, hierarchy, etc., that will appear in any physical query manufactured at run time must be modeled here at design time. Each physical data source will have its own physical model, or "database" object in the CEIM.  The shape of each physical model matches the shape of its physical source.  In other words, if the source is normalized relational, the physical model will mimic that normalized shape.  If it is a hypercube, the physical model will have a hypercube shape.  If it is a flat file, it will have a denormalized tabular shape. To aid in query optimization, the physical layer also tracks the specifics of the database brand and release.  This allows the BI Server to make the most of each physical source's distinct capabilities, writing queries in its syntax, and using its specific functions. This allows the BI Server to push processing work as deep as possible into the physical source, which minimizes data movement and takes full advantage of the database's own optimizer.  For most data sources, native APIs are used to further optimize performance and functionality. The value of having a distinct separation between the logical (business) and physical models is encapsulation of the physical characteristics.  This encapsulation is another enabler of packaged BI applications and federation.  It is also key to hiding the complex shapes and relationships in the physical sources from the end users.  Consider a routine drill-down in the business model: physically, it can require a drill-through where the first query is MDX to a multidimensional cube, followed by the drill-down query in SQL to a normalized relational database.  The only difference from the user's point of view is that the 2nd query added a more detailed dimension level column - everything else was the same. Mappings Within the Business Model and Mapping Layer, the mappings provide the binding from each logical column and join in the dimensional business model, to each of the objects that can provide its data in the physical layer.  When there is more than one option for a physical source, rules in the mappings are applied to the query context to determine which of the data sources should be hit, and how to combine their results if more than one is used.  These rules specify aggregate navigation, vertical partitioning (fragmentation), and horizontal partitioning, any of which can be federated across multiple, heterogeneous sources.  These mappings are usually the most sophisticated part of the CEIM. Presentation You might think of the presentation layer as a set of very simple relational-like views into the business model.  Over ODBC/JDBC, they present a relational catalog consisting of databases, tables and columns.  For business users, presentation services interprets these as subject areas, folders and columns, respectively.  (Note that in 10g, subject areas were called presentation catalogs in the CEIM.  In this blog, I will stick to 11g terminology.)  Generally speaking, presentation services and other clients can query only these objects (there are exceptions for certain clients such as BI Publisher and Essbase Studio). The purpose of the presentation layer is to specialize the business model for different categories of users.  Based on a user's role, they will be restricted to specific subject areas, tables and columns for security.  The breakdown of the model into multiple subject areas organizes the content for users, and subjects superfluous to a particular business role can be hidden from that set of users.  Customized names and descriptions can be used to override the business model names for a specific audience.  Variables in the object names can be used for localization. For these reasons, you are better off thinking of the tables in the presentation layer as folders than as strict relational tables.  The real semantics of tables and how they function is in the business model, and any grouping of columns can be included in any table in the presentation layer.  In 11g, an LSQL query can also span multiple presentation subject areas, as long as they map to the same business model. Other Model Objects There are some objects that apply to multiple layers.  These include security-related objects, such as application roles, users, data filters, and query limits (governors).  There are also variables you can use in parameters and expressions, and initialization blocks for loading their initial values on a static or user session basis.  Finally, there are Multi-User Development (MUD) projects for developers to check out units of work, and objects for the marketing feature used by our packaged customer relationship management (CRM) software.   The Query Factory At this point, you should have a grasp on the query factory concept.  When developing the CEIM model, you are configuring the BI Server to automatically manufacture millions of queries in response to random user requests. You do this by defining the analytic behavior in the business model, mapping that to the physical data sources, and exposing it through the presentation layer's role-based subject areas. While configuring mass production requires a different mindset than when you hand-craft individual SQL or MDX statements, it builds on the modeling and query concepts you already understand. The following posts in this series will walk through the CEIM modeling concepts and best practices in detail.  We will initially review dimensional concepts so you can understand the business model, and then present a pattern-based approach to learning the mappings from a variety of physical schema shapes and deployments to the dimensional model.  Along the way, we will also present the dimensional calculation template, and learn how to configure the many additivity patterns.

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5: Part 2 – Table per Type (TPT)

    - by mortezam
    In the previous blog post you saw that there are three different approaches to representing an inheritance hierarchy and I explained Table per Hierarchy (TPH) as the default mapping strategy in EF Code First. We argued that the disadvantages of TPH may be too serious for our design since it results in denormalized schemas that can become a major burden in the long run. In today’s blog post we are going to learn about Table per Type (TPT) as another inheritance mapping strategy and we'll see that TPT doesn’t expose us to this problem. Table per Type (TPT)Table per Type is about representing inheritance relationships as relational foreign key associations. Every class/subclass that declares persistent properties—including abstract classes—has its own table. The table for subclasses contains columns only for each noninherited property (each property declared by the subclass itself) along with a primary key that is also a foreign key of the base class table. This approach is shown in the following figure: For example, if an instance of the CreditCard subclass is made persistent, the values of properties declared by the BillingDetail base class are persisted to a new row of the BillingDetails table. Only the values of properties declared by the subclass (i.e. CreditCard) are persisted to a new row of the CreditCards table. The two rows are linked together by their shared primary key value. Later, the subclass instance may be retrieved from the database by joining the subclass table with the base class table. TPT Advantages The primary advantage of this strategy is that the SQL schema is normalized. In addition, schema evolution is straightforward (modifying the base class or adding a new subclass is just a matter of modify/add one table). Integrity constraint definition are also straightforward (note how CardType in CreditCards table is now a non-nullable column). Another much more important advantage is the ability to handle polymorphic associations (a polymorphic association is an association to a base class, hence to all classes in the hierarchy with dynamic resolution of the concrete class at runtime). A polymorphic association to a particular subclass may be represented as a foreign key referencing the table of that particular subclass. Implement TPT in EF Code First We can create a TPT mapping simply by placing Table attribute on the subclasses to specify the mapped table name (Table attribute is a new data annotation and has been added to System.ComponentModel.DataAnnotations namespace in CTP5): public abstract class BillingDetail {     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } } [Table("BankAccounts")] public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } } [Table("CreditCards")] public class CreditCard : BillingDetail {     public int CardType { get; set; }     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } } public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; } } If you prefer fluent API, then you can create a TPT mapping by using ToTable() method: protected override void OnModelCreating(ModelBuilder modelBuilder) {     modelBuilder.Entity<BankAccount>().ToTable("BankAccounts");     modelBuilder.Entity<CreditCard>().ToTable("CreditCards"); } Generated SQL For QueriesLet’s take an example of a simple non-polymorphic query that returns a list of all the BankAccounts: var query = from b in context.BillingDetails.OfType<BankAccount>() select b; Executing this query (by invoking ToList() method) results in the following SQL statements being sent to the database (on the bottom, you can also see the result of executing the generated query in SQL Server Management Studio): Now, let’s take an example of a very simple polymorphic query that requests all the BillingDetails which includes both BankAccount and CreditCard types: projects some properties out of the base class BillingDetail, without querying for anything from any of the subclasses: var query = from b in context.BillingDetails             select new { b.BillingDetailId, b.Number, b.Owner }; -- var query = from b in context.BillingDetails select b; This LINQ query seems even more simple than the previous one but the resulting SQL query is not as simple as you might expect: -- As you can see, EF Code First relies on an INNER JOIN to detect the existence (or absence) of rows in the subclass tables CreditCards and BankAccounts so it can determine the concrete subclass for a particular row of the BillingDetails table. Also the SQL CASE statements that you see in the beginning of the query is just to ensure columns that are irrelevant for a particular row have NULL values in the returning flattened table. (e.g. BankName for a row that represents a CreditCard type) TPT ConsiderationsEven though this mapping strategy is deceptively simple, the experience shows that performance can be unacceptable for complex class hierarchies because queries always require a join across many tables. In addition, this mapping strategy is more difficult to implement by hand— even ad-hoc reporting is more complex. This is an important consideration if you plan to use handwritten SQL in your application (For ad hoc reporting, database views provide a way to offset the complexity of the TPT strategy. A view may be used to transform the table-per-type model into the much simpler table-per-hierarchy model.) SummaryIn this post we learned about Table per Type as the second inheritance mapping in our series. So far, the strategies we’ve discussed require extra consideration with regard to the SQL schema (e.g. in TPT, foreign keys are needed). This situation changes with the Table per Concrete Type (TPC) that we will discuss in the next post. References ADO.NET team blog Java Persistence with Hibernate book a { text-decoration: none; } a:visited { color: Blue; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } p.MsoNormal { margin-top: 0in; margin-right: 0in; margin-bottom: 10.0pt; margin-left: 0in; line-height: 115%; font-size: 11.0pt; font-family: "Calibri" , "sans-serif"; }

    Read the article

  • Working with Tile Notifications in Windows 8 Store Apps – Part I

    - by dwahlin
    One of the features that really makes Windows 8 apps stand out from others is the tile functionality on the start screen. While icons allow a user to start an application, tiles provide a more engaging way to engage the user and draw them into an application. Examples of “live” tiles on part of my current start screen are shown next: I’ll admit that if you get enough of these tiles going the start screen can actually be a bit distracting. Fortunately, a user can easily disable a live tile by right-clicking on it or pressing and holding a tile on a touch device and then selecting Turn live tile off from the AppBar: The can also make a wide tile smaller (into a square tile) or make a square tile bigger assuming the application supports both squares and rectangles. In this post I’ll walk through how to add tile notification functionality into an application. Both XAML/C# and HTML/JavaScript apps support live tiles and I’ll show the code for both options.   Understanding Tile Templates The first thing you need to know if you want to add custom tile functionality (live tiles) into your application is that there is a collection of tile templates available out-of-the-box. Each tile template has XML associated with it that you need to load, update with your custom data, and then feed into a tile update manager. By doing that you can control what shows in your app’s tile on the Windows 8 start screen. So how do you learn more about the different tile templates and their respective XML? Fortunately, Microsoft has a nice documentation page in the Windows 8 Store SDK. Visit http://msdn.microsoft.com/en-us/library/windows/apps/hh761491.aspx to see a complete list of square and wide/rectangular tile templates that you can use. Looking through the templates you’ll It has the following XML template associated with it:  <tile> <visual> <binding template="TileSquareBlock"> <text id="1">Text Field 1</text> <text id="2">Text Field 2</text> </binding> </visual> </tile> An example of a wide/rectangular tile template is shown next:    <tile> <visual> <binding template="TileWideImageAndText01"> <image id="1" src="image1.png" alt="alt text"/> <text id="1">Text Field 1</text> </binding> </visual> </tile>   To use these tile templates (or others you find interesting), update their content, and get them to show for your app’s tile on the Windows 8 start screen you’ll need to perform the following steps: Define the tile template to use in your app Load the tile template’s XML into memory Modify the children of the <binding> tag Feed the modified tile XML into a new TileNotification instance Feed the TileNotification instance into the Update() method of the TileUpdateManager In the remainder of the post I’ll walk through each of the steps listed above to provide wide and square tile notifications for an application. The wide tile that’s shown will show an image and text while the square tile will only show text. If you’re going to provide custom tile notifications it’s recommended that you provide wide and square tiles since users can switch between the two of them directly on the start screen. Note: When working with tile notifications it’s possible to manipulate and update a tile’s XML template without having to know XML parsing techniques. This can be accomplished using some C# notification extension classes that are available. In this post I’m going to focus on working with tile notifications using an XML parser so that the focus is on the steps required to add notifications to the Windows 8 start screen rather than on external extension classes. You can access the extension classes in the Windows 8 samples gallery if you’re interested.   Steps to Create Custom App Tile Notifications   Step 1: Define the tile template to use in your app Although you can cut-and-paste a tile template’s XML directly into your C# or HTML/JavaScript Windows store app and then parse it using an XML parser, it’s easier to use the built-in TileTemplateType enumeration from the Windows.UI.Notifications namespace. It provides direct access to the XML for the various templates so once you locate a template you like in the documentation (mentioned above), simplify reference it:HTML/JavaScript var notifications = Windows.UI.Notifications; var template = notifications.TileTemplateType.tileWideImageAndText01; .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   XAML/C# var template = TileTemplateType.TileWideImageAndText01;   Step 2: Load the tile template’s XML into memory Once the target template’s XML is identified, load it into memory using the TileUpdateManager’s GetTemplateContent() method. This method parses the template XML and returns an XmlDocument object:   HTML/JavaScript   var tileXml = notifications.TileUpdateManager.getTemplateContent(template); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   XAML/C#  var tileXml = TileUpdateManager.GetTemplateContent(template);   Step 3: Modify the children of the <binding> tag Once the XML for a given template is loaded into memory you need to locate the appropriate <image> and/or <text> elements in the XML and update them with your app data. This can be done using standard XML DOM manipulation techniques. The example code below locates the image folder and loads the path to an image file located in the project into it’s inner text. The code also creates a square tile that consists of text, updates it’s <text> element, and then imports and appends it into the wide tile’s XML.   HTML/JavaScript var image = tileXml.selectSingleNode('//image[@id="1"]'); image.setAttribute('src', 'ms-appx:///images/' + imageFile); image.setAttribute('alt', 'Live Tile'); var squareTemplate = notifications.TileTemplateType.tileSquareText04; var squareTileXml = notifications.TileUpdateManager.getTemplateContent(squareTemplate); var squareTileTextAttributes = squareTileXml.selectSingleNode('//text[@id="1"]'); squareTileTextAttributes.appendChild(squareTileXml.createTextNode(content)); var node = tileXml.importNode(squareTileXml.selectSingleNode('//binding'), true); tileXml.selectSingleNode('//visual').appendChild(node); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   XAML/C#var tileXml = TileUpdateManager.GetTemplateContent(template); var text = tileXml.SelectSingleNode("//text[@id='1']"); text.AppendChild(tileXml.CreateTextNode(content)); var image = (XmlElement)tileXml.SelectSingleNode("//image[@id='1']"); image.SetAttribute("src", "ms-appx:///Assets/" + imageFile); image.SetAttribute("alt", "Live Tile"); Debug.WriteLine(image.GetXml()); var squareTemplate = TileTemplateType.TileSquareText04; var squareTileXml = TileUpdateManager.GetTemplateContent(squareTemplate); var squareTileTextAttributes = squareTileXml.SelectSingleNode("//text[@id='1']"); squareTileTextAttributes.AppendChild(squareTileXml.CreateTextNode(content)); var node = tileXml.ImportNode(squareTileXml.SelectSingleNode("//binding"), true); tileXml.SelectSingleNode("//visual").AppendChild(node);  Step 4: Feed the modified tile XML into a new TileNotification instance Now that the XML data has been updated with the desired text and images, it’s time to load the XmlDocument object into a new TileNotification instance:   HTML/JavaScript var tileNotification = new notifications.TileNotification(tileXml); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   XAML/C#var tileNotification = new TileNotification(tileXml);  Step 5: Feed the TileNotification instance into the Update() method of the TileUpdateManager Once the TileNotification instance has been created and the XmlDocument has been passed to its constructor, it needs to be passed to the Update() method of a TileUpdator in order to be shown on the Windows 8 start screen:   HTML/JavaScript notifications.TileUpdateManager.createTileUpdaterForApplication().update(tileNotification); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   XAML/C#TileUpdateManager.CreateTileUpdaterForApplication().Update(tileNotification);    Once the tile notification is updated it’ll show up on the start screen. An example of the wide and square tiles created with the included demo code are shown next:     Download the HTML/JavaScript and XAML/C# sample application here. In the next post in this series I’ll walk through how to queue multiple tiles and clear a queue.

    Read the article

  • WIF, ADFS 2 and WCF&ndash;Part 2: The Service

    - by Your DisplayName here!
    OK – so let’s first start with a simple WCF service and connect that to ADFS 2 for authentication. The service itself simply echoes back the user’s claims – just so we can make sure it actually works and to see how the ADFS 2 issuance rules emit claims for the service: [ServiceContract(Namespace = "urn:leastprivilege:samples")] public interface IService {     [OperationContract]     List<ViewClaim> GetClaims(); } public class Service : IService {     public List<ViewClaim> GetClaims()     {         var id = Thread.CurrentPrincipal.Identity as IClaimsIdentity;         return (from c in id.Claims                 select new ViewClaim                 {                     ClaimType = c.ClaimType,                     Value = c.Value,                     Issuer = c.Issuer,                     OriginalIssuer = c.OriginalIssuer                 }).ToList();     } } The ViewClaim data contract is simply a DTO that holds the claim information. Next is the WCF configuration – let’s have a look step by step. First I mapped all my http based services to the federation binding. This is achieved by using .NET 4.0’s protocol mapping feature (this can be also done the 3.x way – but in that scenario all services will be federated): <protocolMapping>   <add scheme="http" binding="ws2007FederationHttpBinding" /> </protocolMapping> Next, I provide a standard configuration for the federation binding: <bindings>   <ws2007FederationHttpBinding>     <binding>       <security mode="TransportWithMessageCredential">         <message establishSecurityContext="false">           <issuerMetadata address="https://server/adfs/services/trust/mex" />         </message>       </security>     </binding>   </ws2007FederationHttpBinding> </bindings> This binding points to our ADFS 2 installation metadata endpoint. This is all that is needed for svcutil (aka “Add Service Reference”) to generate the required client configuration. I also chose mixed mode security (SSL + basic message credential) for best performance. This binding also disables session – you can control that via the establishSecurityContext setting on the binding. This has its pros and cons. Something for a separate blog post, I guess. Next, the behavior section adds support for metadata and WIF: <behaviors>   <serviceBehaviors>     <behavior>       <serviceMetadata httpsGetEnabled="true" />       <federatedServiceHostConfiguration />     </behavior>   </serviceBehaviors> </behaviors> The next step is to add the WIF specific configuration (in <microsoft.identityModel />). First we need to specify the key material that we will use to decrypt the incoming tokens. This is optional for web applications but for web services you need to protect the proof key – so this is mandatory (at least for symmetric proof keys, which is the default): <serviceCertificate>   <certificateReference storeLocation="LocalMachine"                         storeName="My"                         x509FindType="FindBySubjectDistinguishedName"                         findValue="CN=Service" /> </serviceCertificate> You also have to specify which incoming tokens you trust. This is accomplished by registering the thumbprint of the signing keys you want to accept. You get this information from the signing certificate configured in ADFS 2: <issuerNameRegistry type="...ConfigurationBasedIssuerNameRegistry">   <trustedIssuers>     <add thumbprint="d1 … db"           name="ADFS" />   </trustedIssuers> </issuerNameRegistry> The last step (promised) is to add the allowed audience URIs to the configuration – WCF clients use (by default – and we’ll come back to this) the endpoint address of the service: <audienceUris>   <add value="https://machine/soapadfs/service.svc" /> </audienceUris> OK – that’s it – now we have a basic WCF service that uses ADFS 2 for authentication. The next step will be to set-up ADFS to issue tokens for this service. Afterwards we can explore various options on how to use this service from a client. Stay tuned… (if you want to have a look at the full source code or peek at the upcoming parts – you can download the complete solution here)

    Read the article

  • Developing Schema Compare for Oracle (Part 2): Dependencies

    - by Simon Cooper
    In developing Schema Compare for Oracle, one of the issues we came across was the size of the databases. As detailed in my last blog post, we had to allow schema pre-filtering due to the number of objects in a standard Oracle database. Unfortunately, this leads to some quite tricky situations regarding object dependencies. This post explains how we deal with these dependencies. 1. Cross-schema dependencies Say, in the following database, you're populating SchemaA, and synchronizing SchemaA.Table1: SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(Col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100) REFERENCES SchemaB.Table1(Col1)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100) PRIMARY KEY); We need to do a rebuild of SchemaA.Table1 to change Col1 from a VARCHAR2(100) to a NUMBER. This consists of: Creating a table with the new schema Inserting data from the old table to the new table, with appropriate conversion functions (in this case, TO_NUMBER) Dropping the old table Rename new table to same name as old table Unfortunately, in this situation, the rebuild will fail at step 1, as we're trying to create a NUMBER column with a foreign key reference to a VARCHAR2(100) column. As we're only populating SchemaA, the naive implementation of the object population prefiltering (sticking a WHERE owner = 'SCHEMAA' on all the data dictionary queries) will generate an incorrect sync script. What we actually have to do is: Drop foreign key constraint on SchemaA.Table1 Rebuild SchemaB.Table1 Rebuild SchemaA.Table1, adding the foreign key constraint to the new table This means that in order to generate a correct synchronization script for SchemaA.Table1 we have to know what SchemaB.Table1 is, and that it also needs to be rebuilt to successfully rebuild SchemaA.Table1. SchemaB isn't the schema that the user wants to synchronize, but we still have to load the table and column information for SchemaB.Table1 the same way as any table in SchemaA. Fortunately, Oracle provides (mostly) complete dependency information in the dictionary views. Before we actually read the information on all the tables and columns in the database, we can get dependency information on all the objects that are either pointed at by objects in the schemas we’re populating, or point to objects in the schemas we’re populating (think about what would happen if SchemaB was being explicitly populated instead), with a suitable query on all_constraints (for foreign key relationships) and all_dependencies (for most other types of dependencies eg a function using another function). The extra objects found can then be included in the actual object population, and the sync wizard then has enough information to figure out the right thing to do when we get to actually synchronize the objects. Unfortunately, this isn’t enough. 2. Dependency chains The solution above will only get the immediate dependencies of objects in populated schemas. What if there’s a chain of dependencies? A.tbl1 -> B.tbl1 -> C.tbl1 -> D.tbl1 If we’re only populating SchemaA, the implementation above will only include B.tbl1 in the dependent objects list, whereas we might need to know about C.tbl1 and D.tbl1 as well, in order to ensure a modification on A.tbl1 can succeed. What we actually need is a graph traversal on the dependency graph that all_dependencies represents. Fortunately, we don’t have to read all the database dependency information from the server and run the graph traversal on the client computer, as Oracle provides a method of doing this in SQL – CONNECT BY. So, we can put all the dependencies we want to include together in big bag with UNION ALL, then run a SELECT ... CONNECT BY on it, starting with objects in the schema we’re populating. We should end up with all the objects that might be affected by modifications in the initial schema we’re populating. Good solution? Well, no. For one thing, it’s sloooooow. all_dependencies, on my test databases, has got over 110,000 rows in it, and the entire query, for which Oracle was creating a temporary table to hold the big bag of graph edges, was often taking upwards of two minutes. This is too long, and would only get worse for large databases. But it had some more fundamental problems than just performance. 3. Comparison dependencies Consider the following schema: SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100)); What will happen if we used the dependency algorithm above on the source & target database? Well, SchemaA.Table1 has a foreign key reference to SchemaB.Table1, so that will be included in the source database population. On the target, SchemaA.Table1 has no such reference. Therefore SchemaB.Table1 will not be included in the target database population. In the resulting comparison of the two objects models, what you will end up with is: SOURCE  TARGET SchemaA.Table1 -> SchemaA.Table1 SchemaB.Table1 -> (no object exists) When this comparison is synchronized, we will see that SchemaB.Table1 does not exist, so we will try the following sequence of actions: Create SchemaB.Table1 Rebuild SchemaA.Table1, with foreign key to SchemaB.Table1 Oops. Because the dependencies are only followed within a single database, we’ve tried to create an object that already exists. To fix this we can include any objects found as dependencies in the source or target databases in the object population of both databases. SchemaB.Table1 will then be included in the target database population, and we won’t try and create objects that already exist. All good? Well, consider the following schema (again, only explicitly populating SchemaA, and synchronizing SchemaA.Table1): SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100) PRIMARY KEY); CREATE TABLE SchemaC.Table1 ( Col1 NUMBER);   CREATE TABLE SchemaC.Table1 ( Col1 VARCHAR2(100) REFERENCES SchemaB.Table1); Although we’re now including SchemaB.Table1 on both sides of the comparison, there’s a third table (SchemaC.Table1) that we don’t know about that will cause the rebuild of SchemaB.Table1 to fail if we try and synchronize SchemaA.Table1. That’s because we’re only running the dependency query on the schemas we’re explicitly populating; to solve this issue, we would have to run the dependency query again, but this time starting the graph traversal from the objects found in the other database. Furthermore, this dependency chain could be arbitrarily extended.This leads us to the following algorithm for finding all the dependencies of a comparison: Find initial dependencies of schemas the user has selected to compare on the source and target Include these objects in both the source and target object populations Run the dependency query on the source, starting with the objects found as dependents on the target, and vice versa Repeat 2 & 3 until no more objects are found For the schema above, this will result in the following sequence of actions: Find initial dependenciesSchemaA.Table1 -> SchemaB.Table1 found on sourceNo objects found on target Include objects in both source and targetSchemaB.Table1 included in source and target Run dependency query, starting with found objectsNo objects to start with on sourceSchemaB.Table1 -> SchemaC.Table1 found on target Include objects in both source and targetSchemaC.Table1 included in source and target Run dependency query on found objectsNo objects found in sourceNo objects to start with in target Stop This will ensure that we include all the necessary objects to make any synchronization work. However, there is still the issue of query performance; the CONNECT BY on the entire database dependency graph is still too slow. After much sitting down and drawing complicated diagrams, we decided to move the graph traversal algorithm from the server onto the client (which turned out to run much faster on the client than on the server); and to ensure we don’t read the entire dependency graph onto the client we also pull the graph across in bits – we start off with dependency edges involving schemas selected for explicit population, and whenever the graph traversal comes across a dependency reference to a schema we don’t yet know about a thunk is hit that pulls in the dependency information for that schema from the database. We continue passing more dependent objects back and forth between the source and target until no more dependency references are found. This gives us the list of all the extra objects to populate in the source and target, and object population can then proceed. 4. Object blacklists and fast dependencies When we tested this solution, we were puzzled in that in some of our databases most of the system schemas (WMSYS, ORDSYS, EXFSYS, XDB, etc) were being pulled in, and this was increasing the database registration and comparison time quite significantly. After debugging, we discovered that the culprits were database tables that used one of the Oracle PL/SQL types (eg the SDO_GEOMETRY spatial type). These were creating a dependency chain from the database tables we were populating to the system schemas, and hence pulling in most of the system objects in that schema. To solve this we introduced blacklists of objects we wouldn’t follow any dependency chain through. As well as the Oracle-supplied PL/SQL types (MDSYS.SDO_GEOMETRY, ORDSYS.SI_COLOR, among others) we also decided to blacklist the entire PUBLIC and SYS schemas, as any references to those would likely lead to a blow up in the dependency graph that would massively increase the database registration time, and could result in the client running out of memory. Even with these improvements, each dependency query was taking upwards of a minute. We discovered from Oracle execution plans that there were some columns, with dependency information we required, that were querying system tables with no indexes on them! To cut a long story short, running the following query: SELECT * FROM all_tab_cols WHERE data_type_owner = ‘XDB’; results in a full table scan of the SYS.COL$ system table! This single clause was responsible for over half the execution time of the dependency query. Hence, the ‘Ignore slow dependencies’ option was born – not querying this and a couple of similar clauses to drastically speed up the dependency query execution time, at the expense of producing incorrect sync scripts in rare edge cases. Needless to say, along with the sync script action ordering, the dependency code in the database registration is one of the most complicated and most rewritten parts of the Schema Compare for Oracle engine. The beta of Schema Compare for Oracle is out now; if you find a bug in it, please do tell us so we can get it fixed!

    Read the article

  • XML and XSD - use element name as replacement of xsi:type for polymorphism

    - by disown
    Taking the W3C vehicle XSD as an example: <schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://cars.example.com/schema" xmlns:target="http://cars.example.com/schema"> <complexType name="Vehicle" abstract="true"/> <complexType name="Car"> <complexContent> <extension base="target:Vehicle"/> ... </complexContent> </complexType> <complexType name="Plane"> <complexContent> <extension base="target:Vehicle"/> <sequence> <element name="wingspan" type="integer"/> </sequence> </complexContent> </complexType> </schema> , and the following definition of 'meansOfTravel': <complexType name="MeansOfTravel"> <complexContent> <sequence> <element name="transport" type="target:Vehicle"/> </sequence> </complexContent> </complexType> <element name="meansOfTravel" type="target:MeansOfTravel"/> With this definition you need to specify the type of your instance using xsi:type, like this: <meansOfTravel> <transport xsi:type="Plane"> <wingspan>3</wingspan> </transport> </meansOfTravel> I would just like to acheive a 'name of type' - 'name of element' mapping so that this could be replaced with just <meansOfTravel> <plane> <wingspan>3</wingspan> </plane> </meansOfTravel> The only way I could do this until now is by making it explicit: <complexType name="MeansOfTravel"> <sequence> <choice> <element name="plane" type="target:Plane"/> <element name="car" type="target:Car"/> </choice> </sequence> </complexType> <element name="meansOfTravel" type="target:MeansOfTravel"/> But this means that I have to list all possible sub-types in the 'MeansOfTravel' complex type. Is there no way of making the XML parser assume that you mean a 'Plane' if you call the element 'plane'? Or do I have to make the choice explicit? I would just like to keep my design DRY - if you have any other suggestions (like groups or so) - i would love to hear them.

    Read the article

  • How to Load Oracle Tables From Hadoop Tutorial (Part 5 - Leveraging Parallelism in OSCH)

    - by Bob Hanckel
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Using OSCH: Beyond Hello World In the previous post we discussed a “Hello World” example for OSCH focusing on the mechanics of getting a toy end-to-end example working. In this post we are going to talk about how to make it work for big data loads. We will explain how to optimize an OSCH external table for load, paying particular attention to Oracle’s DOP (degree of parallelism), the number of external table location files we use, and the number of HDFS files that make up the payload. We will provide some rules that serve as best practices when using OSCH. The assumption is that you have read the previous post and have some end to end OSCH external tables working and now you want to ramp up the size of the loads. Using OSCH External Tables for Access and Loading OSCH external tables are no different from any other Oracle external tables.  They can be used to access HDFS content using Oracle SQL: SELECT * FROM my_hdfs_external_table; or use the same SQL access to load a table in Oracle. INSERT INTO my_oracle_table SELECT * FROM my_hdfs_external_table; To speed up the load time, you will want to control the degree of parallelism (i.e. DOP) and add two SQL hints. ALTER SESSION FORCE PARALLEL DML PARALLEL  8; ALTER SESSION FORCE PARALLEL QUERY PARALLEL 8; INSERT /*+ append pq_distribute(my_oracle_table, none) */ INTO my_oracle_table SELECT * FROM my_hdfs_external_table; There are various ways of either hinting at what level of DOP you want to use.  The ALTER SESSION statements above force the issue assuming you (the user of the session) are allowed to assert the DOP (more on that in the next section).  Alternatively you could embed additional parallel hints directly into the INSERT and SELECT clause respectively. /*+ parallel(my_oracle_table,8) *//*+ parallel(my_hdfs_external_table,8) */ Note that the "append" hint lets you load a target table by reserving space above a given "high watermark" in storage and uses Direct Path load.  In other doesn't try to fill blocks that are already allocated and partially filled. It uses unallocated blocks.  It is an optimized way of loading a table without incurring the typical resource overhead associated with run-of-the-mill inserts.  The "pq_distribute" hint in this context unifies the INSERT and SELECT operators to make data flow during a load more efficient. Finally your target Oracle table should be defined with "NOLOGGING" and "PARALLEL" attributes.   The combination of the "NOLOGGING" and use of the "append" hint disables REDO logging, and its overhead.  The "PARALLEL" clause tells Oracle to try to use parallel execution when operating on the target table. Determine Your DOP It might feel natural to build your datasets in Hadoop, then afterwards figure out how to tune the OSCH external table definition, but you should start backwards. You should focus on Oracle database, specifically the DOP you want to use when loading (or accessing) HDFS content using external tables. The DOP in Oracle controls how many PQ slaves are launched in parallel when executing an external table. Typically the DOP is something you want to Oracle to control transparently, but for loading content from Hadoop with OSCH, it's something that you will want to control. Oracle computes the maximum DOP that can be used by an Oracle user. The maximum value that can be assigned is an integer value typically equal to the number of CPUs on your Oracle instances, times the number of cores per CPU, times the number of Oracle instances. For example, suppose you have a RAC environment with 2 Oracle instances. And suppose that each system has 2 CPUs with 32 cores. The maximum DOP would be 128 (i.e. 2*2*32). In point of fact if you are running on a production system, the maximum DOP you are allowed to use will be restricted by the Oracle DBA. This is because using a system maximum DOP can subsume all system resources on Oracle and starve anything else that is executing. Obviously on a production system where resources need to be shared 24x7, this can’t be allowed to happen. The use cases for being able to run OSCH with a maximum DOP are when you have exclusive access to all the resources on an Oracle system. This can be in situations when your are first seeding tables in a new Oracle database, or there is a time where normal activity in the production database can be safely taken off-line for a few hours to free up resources for a big incremental load. Using OSCH on high end machines (specifically Oracle Exadata and Oracle BDA cabled with Infiniband), this mode of operation can load up to 15TB per hour. The bottom line is that you should first figure out what DOP you will be allowed to run with by talking to the DBAs who manage the production system. You then use that number to derive the number of location files, and (optionally) the number of HDFS data files that you want to generate, assuming that is flexible. Rule 1: Find out the maximum DOP you will be allowed to use with OSCH on the target Oracle system Determining the Number of Location Files Let’s assume that the DBA told you that your maximum DOP was 8. You want the number of location files in your external table to be big enough to utilize all 8 PQ slaves, and you want them to represent equally balanced workloads. Remember location files in OSCH are metadata lists of HDFS files and are created using OSCH’s External Table tool. They also represent the workload size given to an individual Oracle PQ slave (i.e. a PQ slave is given one location file to process at a time, and only it will process the contents of the location file.) Rule 2: The size of the workload of a single location file (and the PQ slave that processes it) is the sum of the content size of the HDFS files it lists For example, if a location file lists 5 HDFS files which are each 100GB in size, the workload size for that location file is 500GB. The number of location files that you generate is something you control by providing a number as input to OSCH’s External Table tool. Rule 3: The number of location files chosen should be a small multiple of the DOP Each location file represents one workload for one PQ slave. So the goal is to keep all slaves busy and try to give them equivalent workloads. Obviously if you run with a DOP of 8 but have 5 location files, only five PQ slaves will have something to do and the other three will have nothing to do and will quietly exit. If you run with 9 location files, then the PQ slaves will pick up the first 8 location files, and assuming they have equal work loads, will finish up about the same time. But the first PQ slave to finish its job will then be rescheduled to process the ninth location file, potentially doubling the end to end processing time. So for this DOP using 8, 16, or 32 location files would be a good idea. Determining the Number of HDFS Files Let’s start with the next rule and then explain it: Rule 4: The number of HDFS files should try to be a multiple of the number of location files and try to be relatively the same size In our running example, the DOP is 8. This means that the number of location files should be a small multiple of 8. Remember that each location file represents a list of unique HDFS files to load, and that the sum of the files listed in each location file is a workload for one Oracle PQ slave. The OSCH External Table tool will look in an HDFS directory for a set of HDFS files to load.  It will generate N number of location files (where N is the value you gave to the tool). It will then try to divvy up the HDFS files and do its best to make sure the workload across location files is as balanced as possible. (The tool uses a greedy algorithm that grabs the biggest HDFS file and delegates it to a particular location file. It then looks for the next biggest file and puts in some other location file, and so on). The tools ability to balance is reduced if HDFS file sizes are grossly out of balance or are too few. For example suppose my DOP is 8 and the number of location files is 8. Suppose I have only 8 HDFS files, where one file is 900GB and the others are 100GB. When the tool tries to balance the load it will be forced to put the singleton 900GB into one location file, and put each of the 100GB files in the 7 remaining location files. The load balance skew is 9 to 1. One PQ slave will be working overtime, while the slacker PQ slaves are off enjoying happy hour. If however the total payload (1600 GB) were broken up into smaller HDFS files, the OSCH External Table tool would have an easier time generating a list where each workload for each location file is relatively the same.  Applying Rule 4 above to our DOP of 8, we could divide the workload into160 files that were approximately 10 GB in size.  For this scenario the OSCH External Table tool would populate each location file with 20 HDFS file references, and all location files would have similar workloads (approximately 200GB per location file.) As a rule, when the OSCH External Table tool has to deal with more and smaller files it will be able to create more balanced loads. How small should HDFS files get? Not so small that the HDFS open and close file overhead starts having a substantial impact. For our performance test system (Exadata/BDA with Infiniband), I compared three OSCH loads of 1 TiB. One load had 128 HDFS files living in 64 location files where each HDFS file was about 8GB. I then did the same load with 12800 files where each HDFS file was about 80MB size. The end to end load time was virtually the same. However when I got ridiculously small (i.e. 128000 files at about 8MB per file), it started to make an impact and slow down the load time. What happens if you break rules 3 or 4 above? Nothing draconian, everything will still function. You just won’t be taking full advantage of the generous DOP that was allocated to you by your friendly DBA. The key point of the rules articulated above is this: if you know that HDFS content is ultimately going to be loaded into Oracle using OSCH, it makes sense to chop them up into the right number of files roughly the same size, derived from the DOP that you expect to use for loading. Next Steps So far we have talked about OLH and OSCH as alternative models for loading. That’s not quite the whole story. They can be used together in a way that provides for more efficient OSCH loads and allows one to be more flexible about scheduling on a Hadoop cluster and an Oracle Database to perform load operations. The next lesson will talk about Oracle Data Pump files generated by OLH, and loaded using OSCH. It will also outline the pros and cons of using various load methods.  This will be followed up with a final tutorial lesson focusing on how to optimize OLH and OSCH for use on Oracle's engineered systems: specifically Exadata and the BDA. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Building an ASP.Net 4.5 Web forms application - part 4

    - by nikolaosk
    ?his is the fourth post in a series of posts on how to design and implement an ASP.Net 4.5 Web Forms store that sells posters on line.There are 3 more posts in this series of posts.Please make sure you read them first.You can find the first post here. You can find the second post here. You can find the third post here.  In this new post we will build on the previous posts and we will demonstrate how to display the posters per category.We will add a ListView control on the PosterList.aspx and will bind data from the database. We will use the various templates.Then we will write code in the PosterList.aspx.cs to fetch data from the database.1) Launch Visual Studio and open your solution where your project lives2) Open the PosterList.aspx page. We will add some markup in this page. Have a look at the code below  <section class="posters-featured">                    <ul>                         <asp:ListView ID="posterList" runat="server"                            DataKeyNames="PosterID"                            GroupItemCount="3" ItemType="PostersOnLine.DAL.Poster" SelectMethod="GetPosters">                            <EmptyDataTemplate>                                      <table id="Table1" runat="server">                                            <tr>                                                  <td>We have no data.</td>                                            </tr>                                     </table>                              </EmptyDataTemplate>                              <EmptyItemTemplate>                                     <td id="Td1" runat="server" />                              </EmptyItemTemplate>                              <GroupTemplate>                                    <tr ID="itemPlaceholderContainer" runat="server">                                          <td ID="itemPlaceholder" runat="server"></td>                                    </tr>                              </GroupTemplate>                              <ItemTemplate>                                    <td id="Td2" runat="server">                                          <table>                                                <tr>                                                      <td>&nbsp;</td>                                                      <td>                                                <a href="PosterDetails.aspx?posterID=<%#:Item.PosterID%>">                                                    <img src="<%#:Item.PosterImgpath%>"                                                        width="100" height="75" border="1"/></a>                                             </td>                                            <td>                                                <a href="PosterDetails.aspx?posterID=<%#:Item.PosterID%>">                                                    <span class="PosterName">                                                        <%#:Item.PosterName%>                                                    </span>                                                </a>                                                            <br />                                                <span class="PosterPrice">                                                               <b>Price: </b><%#:String.Format("{0:c}", Item.PosterPrice)%>                                                </span>                                                <br />                                                        </td>                                                </tr>                                          </table>                                    </td>                              </ItemTemplate>                              <LayoutTemplate>                                    <table id="Table2" runat="server">                                          <tr id="Tr1" runat="server">                                                <td id="Td3" runat="server">                                                      <table ID="groupPlaceholderContainer" runat="server">                                                            <tr ID="groupPlaceholder" runat="server"></tr>                                                      </table>                                                </td>                                          </tr>                                          <tr id="Tr2" runat="server"><td id="Td4" runat="server"></td></tr>                                    </table>                              </LayoutTemplate>                        </asp:ListView>                    </ul>               </section>  3) We have a ListView control on the page called PosterList. I set the ItemType property to the Poster class and then the SelectMethod to the GetPosters method.  I will create this method later on.   (ItemType="PostersOnLine.DAL.Poster" SelectMethod="GetPosters")Then in the code below  I have the data-binding expression Item  available and the control becomes strongly typed.So when the user clicks on the link of the poster's category the relevant information will be displayed (photo,name and price)                                            <td>                                                <a href="PosterDetails.aspx?posterID=<%#:Item.PosterID%>">                                                    <img src="<%#:Item.PosterImgpath%>"                                                        width="100" height="75" border="1"/></a>                                             </td>4)  Now we need to write the simple method to populate the ListView control.It is called GetPosters method.The code follows   public IQueryable<Poster> GetPosters([QueryString("id")] int? PosterCatID)        {            PosterContext ctx = new PosterContext();            IQueryable<Poster> query = ctx.Posters;            if (PosterCatID.HasValue && PosterCatID > 0)            {                query = query.Where(p=>p.PosterCategoryID==PosterCatID);            }            return query;                    } This is a very simple method that returns information about posters related to the PosterCatID passed to it.I bind the value from the query string to the PosterCatID parameter at run time.This is all possible due to the QueryStringAttribute class that lives inside the System.Web.ModelBinding and gets the value of the query string variable id.5) I run my application and then click on the "Midfilders" link. Have a look at the picture below to see the results.  In the Site.css file I added some new CSS rules to make everything more presentable. .posters-featured {    width:840px;    background-color:#efefef;}.posters-featured   a:link, a:visited,    a:active, a:hover {        color: #000033;    }.posters-featured    a:hover {        background-color: #85c465;    }  6) I run the application again and this time I do not choose any category, I simply navigate to the PosterList.aspx page. I see all the posters since no query string was passed as a parameter.Have a look at the picture below   ?ake sure you place breakpoints in the code so you can see what is really going on.In the next post I will show you how to display poster details.Hope it helps!!!

    Read the article

  • Retrieve enum value based on XmlEnumAttribute name value

    - by CletusLoomis
    I need a Generic function to retrieve the name or value of an enum based on the XmlEnumAttribute "Name" property of the enum. For example I have the following enum defined: Public Enum Currency <XmlEnum("00")> CDN = 1 <XmlEnum("01")> USA= 2 <XmlEnum("02")> EUR= 3 <XmlEnum("03")> JPN= 4 End Enum The first Currency enum value is 1; the enum name is "CDN"; and the XMLEnumAttribute Name property value is "00". If I have the enum value, I can retrieve the XmlEnumAttribute "Name" value using the following generic function: Public Function GetXmlAttrNameFromEnumValue(Of T)(ByVal pEnumVal As T) As String Dim type As Type = pEnumVal.GetType Dim info As FieldInfo = type.GetField([Enum].GetName(GetType(T), pEnumVal)) Dim att As XmlEnumAttribute = CType(info.GetCustomAttributes(GetType(XmlEnumAttribute), False)(0), XmlEnumAttribute) 'If there is an xmlattribute defined, return the name Return att.Name End Function So using the above function, I can specify the Currency enum type, pass a value of 1, and the return value will be "00". What I need is a function to perform if the opposite. If I have the XmlEnumAttribute Name value "00", I need a function to return a Currency enum with a value of 1. Just as useful would be a function that would return the enum name "CDN". I could then simply parse this to get the enum value. Any assistance would be appreciated.

    Read the article

  • What should the name of this class be?

    - by Tim Murphy
    Naming classes is sometimes hard. What do you think name of the class should be? I originally created the class to use as a cache but can see its may have other uses. Example code to use the class. Dim cache = New NamePendingDictionary(Of String, Sample) Dim value = cache("a", Function() New Sample()) And here is the class that needs a name. ''' <summary> ''' Enhancement of <see cref="System.Collections.Generic.Dictionary"/>. See the Item property ''' for more details. ''' </summary> ''' <typeparam name="TKey">The type of the keys in the dictionary.</typeparam> ''' <typeparam name="TValue">The type of the values in the dictionary.</typeparam> Public Class NamePendingDictionary(Of TKey, TValue) Inherits Dictionary(Of TKey, TValue) Delegate Function DefaultValue() As TValue ''' <summary> ''' Gets or sets the value associated with the specified key. If the specified key does not exist ''' then <paramref name="createDefaultValue"/> is invoked and added to the dictionary. The created ''' value is then returned. ''' </summary> ''' <param name="key">The key of the value to get.</param> ''' <param name="createDefaultValue"> ''' The delegate to invoke if <paramref name="key"/> does not exist in the dictionary. ''' </param> ''' <exception cref="T:System.ArgumentNullException"><paramref name="key" /> is null.</exception> Default Public Overloads ReadOnly Property Item(ByVal key As TKey, ByVal createDefaultValue As DefaultValue) As TValue Get Dim value As TValue If createDefaultValue Is Nothing Then Throw New ArgumentNullException("createValue") End If If Not Me.TryGetValue(key, value) Then value = createDefaultValue.Invoke() Me.Add(key, value) End If Return value End Get End Property End Class

    Read the article

  • How to take name in one preg_match

    - by Julianto
    Hello guys, I am trying to extract just the names result from the hypothetical HTML file below. <ul class="cat"> <li>sport</li> <li>movie</li> </ul> <ul class="person-list"> <li>name 1</li> <li>name 2</li> <li>name 3</li> <li>name 4</li> <li>name 5</li> <li>name 6</li> </ul> Ideally, the result should come in an array format like the one below: Array( name 1 , name 2 , name 3 , .......... ) OK I can easily do this with 2 regex matches but I was wondering if I can do it with just one. Thanks in advance!

    Read the article

  • How to pass one float as four unsigned chars to shader by glVertexPointAttrib?

    - by Kog
    For each vertex I use two floats as position and four unsigned bytes as color. I want to store all of them in one table, so I tried casting those four unsigned bytes to one float, but I am unable to do that correctly... All in all, my tests came to one point: GLfloat vertices[] = { 1.0f, 0.5f, 0, 1.0f, 0, 0 }; glEnableVertexAttribArray(0); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(float), vertices); // VER1 - draws red triangle // unsigned char colors[] = { 0xff, 0, 0, 0xff, 0xff, 0, 0, 0xff, 0xff, 0, 0, // 0xff }; // glEnableVertexAttribArray(1); // glVertexAttribPointer(1, 4, GL_UNSIGNED_BYTE, GL_TRUE, 4 * sizeof(GLubyte), // colors); // VER2 - draws greenish triangle (not "pure" green) // float f = 255 << 24 | 255; //Hex:0xff0000ff // float colors2[] = { f, f, f }; // glEnableVertexAttribArray(1); // glVertexAttribPointer(1, 4, GL_UNSIGNED_BYTE, GL_TRUE, 4 * sizeof(GLubyte), // colors2); // VER3 - draws red triangle int i = 255 << 24 | 255; //Hex:0xff0000ff int colors3[] = { i, i, i }; glEnableVertexAttribArray(1); glVertexAttribPointer(1, 4, GL_UNSIGNED_BYTE, GL_TRUE, 4 * sizeof(GLubyte), colors3); glDrawArrays(GL_TRIANGLES, 0, 3); Above code is used to draw one simple red triangle. My question is - why do versions 1 and 3 work correctly, while version 2 draws some greenish triangle? Hex values are one I read by marking variable during debug. They are equal for version 2 and 3 - so what causes the difference?

    Read the article

  • Series of abstract classes and NHibernate

    - by Chris Cowdery-Corvan
    Hello, and first off thanks for your time to look at this. For a research project I'm working on, I have a somewhat complex design (which I've been given) to persist to a database via NHibernate. Here's an example of the class hierarchy: TransitStrategy, TransportationCompany and TransportationLocation are all abstract classes. The XML configuration I have is presently: <?xml version="1.0" encoding="utf-8" ?> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" assembly="Vacationizer" namespace="Vacationizer.Domain.Transit"> <class name="TransitStrategy"> <id name="TransitStrategyId"> <generator class="guid" /> </id> <property name="Restrictions" /> <joined-subclass name="Flight" table="Flight_TransitStrategy"> <key column="TransitStrategyId" /> <property name="DepartingAirport" /> <property name="ArrivingAirport" /> <property name="Airline" /> <property name="FlightNumber" /> <property name="FlightArrivalTime" /> <property name="FlightDepartureTime" /> </joined-subclass> <joined-subclass name="RentalCar" table="RentalCar_TransitStrategy"> <key column="TransitStrategyId" /> <property name="RentalCarBranch" /> <property name="CarMake" /> <property name="CarModel" /> <property name="CarYear" /> <property name="CarColor" /> <property name="RentalBegins" /> <property name="RentalEnds" /> </joined-subclass> </class> <?xml version="1.0" encoding="utf-8" ?> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" assembly="Vacationizer" namespace="Vacationizer.Domain.Transit"> <class name="TransportationCompany"> <id name="TransportationCompanyId"> <generator class="guid" /> </id> <property name="Name" /> <property name="Reviews" /> <property name="Website" /> <property name="Photo" /> <joined-subclass name="Airline" table="Airline_TransportationCompany"> <key column="TransportationLocationId" /> </joined-subclass> <joined-subclass name="RentalCarAgency" table="RentalCarAgency_TransportationCompany"> <key column="TransportationLocationId" /> </joined-subclass> </class> <?xml version="1.0" encoding="utf-8" ?> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" assembly="Vacationizer" namespace="Vacationizer.Domain.Transit"> <class name="TransportationLocation"> <id name="TransportationLocationId"> <generator class="guid" /> </id> <property name="Name" /> <property name="Image" /> <property name="Geolocation" /> <property name="Reviews" /> <!-- <property name="HoursOpen" />--> <property name="PhoneNumber" /> <property name="FaxNumber" /> <joined-subclass name="Airport" table="Airport_TransportationLocation"> <key column="TransportationLocationId" /> <property name="AirportCode" /> <property name="Website" /> </joined-subclass> <joined-subclass name="RentalCarBranch" table="RentalCarBranch_TransportationLocation"> <key column="TransitStrategyId" /> <property name="Agency" /> </joined-subclass> </class> However, whenever I try to use this schema I get this error/stack trace: ------ Test started: Assembly: Vacationizer.Tests.dll ------ TestCase 'M:Vacationizer.Tests.VacationRepository_Fixture.TestFixtureSetUp' failed: Could not compile the mapping document: Vacationizer.Mappings.TransitStrategy.hbm.xml NHibernate.MappingException: Could not compile the mapping document: Vacationizer.Mappings.TransitStrategy.hbm.xml ---> NHibernate.MappingException: Problem trying to set property type by reflection ---> NHibernate.MappingException: class Vacationizer.Domain.Transit.RentalCar, Vacationizer, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null not found while looking for property: RentalCarBranch ---> NHibernate.PropertyNotFoundException: Could not find a getter for property 'RentalCarBranch' in class 'Vacationizer.Domain.Transit.RentalCar' at NHibernate.Properties.BasicPropertyAccessor.GetGetter(Type type, String propertyName) at NHibernate.Util.ReflectHelper.ReflectedPropertyClass(String className, String name, String accessorName) --- End of inner exception stack trace --- at NHibernate.Util.ReflectHelper.ReflectedPropertyClass(String className, String name, String accessorName) at NHibernate.Mapping.SimpleValue.SetTypeUsingReflection(String className, String propertyName, String accesorName) --- End of inner exception stack trace --- at NHibernate.Mapping.SimpleValue.SetTypeUsingReflection(String className, String propertyName, String accesorName) at NHibernate.Cfg.XmlHbmBinding.ClassBinder.CreateProperty(IValue value, String propertyName, String className, XmlNode subnode, IDictionary`2 inheritedMetas) at NHibernate.Cfg.XmlHbmBinding.ClassBinder.PropertiesFromXML(XmlNode node, PersistentClass model, IDictionary`2 inheritedMetas, UniqueKey uniqueKey, Boolean mutable, Boolean nullable, Boolean naturalId) at NHibernate.Cfg.XmlHbmBinding.JoinedSubclassBinder.HandleJoinedSubclass(PersistentClass model, XmlNode subnode, IDictionary`2 inheritedMetas) at NHibernate.Cfg.XmlHbmBinding.ClassBinder.PropertiesFromXML(XmlNode node, PersistentClass model, IDictionary`2 inheritedMetas, UniqueKey uniqueKey, Boolean mutable, Boolean nullable, Boolean naturalId) at NHibernate.Cfg.XmlHbmBinding.RootClassBinder.Bind(XmlNode node, HbmClass classSchema, IDictionary`2 inheritedMetas) at NHibernate.Cfg.XmlHbmBinding.MappingRootBinder.AddRootClasses(XmlNode parentNode, IDictionary`2 inheritedMetas) at NHibernate.Cfg.XmlHbmBinding.MappingRootBinder.Bind(XmlNode node) at NHibernate.Cfg.Configuration.AddValidatedDocument(NamedXmlDocument doc) --- End of inner exception stack trace --- at NHibernate.Cfg.Configuration.LogAndThrow(Exception exception) at NHibernate.Cfg.Configuration.AddValidatedDocument(NamedXmlDocument doc) at NHibernate.Cfg.Configuration.ProcessMappingsQueue() at NHibernate.Cfg.Configuration.AddDocumentThroughQueue(NamedXmlDocument document) at NHibernate.Cfg.Configuration.AddXmlReader(XmlReader hbmReader, String name) at NHibernate.Cfg.Configuration.AddInputStream(Stream xmlInputStream, String name) at NHibernate.Cfg.Configuration.AddResource(String path, Assembly assembly) at NHibernate.Cfg.Configuration.AddAssembly(Assembly assembly) at NHibernate.Cfg.Configuration.AddAssembly(String assemblyName) at NHibernate.Cfg.Configuration.DoConfigure(IHibernateConfiguration hc) at NHibernate.Cfg.Configuration.Configure() VacationRepository_Fixture.cs(24,0): at Vacationizer.Tests.VacationRepository_Fixture.TestFixtureSetUp() 0 passed, 1 failed, 0 skipped, took 8.38 seconds (Ad hoc). Any ideas on how I can implement this differently? Thanks very much!

    Read the article

  • easiest way to convert virtualbox snapshots to tree view

    - by amir beygi
    HI all My virtual box snapshot view is like this Name: Snapshot 2 (UUID: cb45aef4-54d4-4c4e-ad3e-dd7cccb6103a) Name: s131 (UUID: 8ec30c82-7796-4e51-8161-979f1b95fb0f) Name: s131 (UUID: 42066f33-969b-41f3-a779-7f6e2c45ea2c) Name: s131 (UUID: d71b9bc5-b862-46b5-ae4d-f88d3dd9756d) Name: s131 (UUID: 681896a9-7e61-4b5a-90bc-cb1bd785c6fc) Name: s131 (UUID: d7bf8593-d218-442d-b23b-4ee16e74087d) Name: s131 (UUID: e8b16fd2-7add-4294-b908-34c4e6dc79dc) Name: s131 (UUID: 57c3f5d7-d4ed-4a62-a7b8-5594f819e08e) Name: Snapshot 3 (UUID: 4a684149-9dd6-4bb2-baf5-5f590e91a344) Name: Snapshot 4 (UUID: d4cbaa7c-ae78-41e0-9962-46c587a9c667) Name: Snapshot 5 (UUID: 81567b6e-eea9-49a6-b3b8-a07f0be337d8) * and i want to convert this text to a tree like this Name: Snapshot 2 (UUID: cb45aef4-54d4-4c4e-ad3e-dd7cccb6103a) +--Name: s131 (UUID: 8ec30c82-7796-4e51-8161-979f1b95fb0f) +--Name: s131 (UUID: 42066f33-969b-41f3-a779-7f6e2c45ea2c) +--Name: s131 (UUID: d71b9bc5-b862-46b5-ae4d-f88d3dd9756d) +--Name: s131 (UUID: 681896a9-7e61-4b5a-90bc-cb1bd785c6fc) | +--Name: s131 (UUID: d7bf8593-d218-442d-b23b-4ee16e74087d) | +--Name: s131 (UUID: e8b16fd2-7add-4294-b908-34c4e6dc79dc) | +--Name: s131 (UUID: 57c3f5d7-d4ed-4a62-a7b8-5594f819e08e) +--Name: Snapshot 3 (UUID: 4a684149-9dd6-4bb2-baf5-5f590e91a344) +--Name: Snapshot 4 (UUID: d4cbaa7c-ae78-41e0-9962-46c587a9c667) +--Name: Snapshot 5 (UUID: 81567b6e-eea9-49a6-b3b8-a07f0be337d8) * or even an array that contents line number and parent's line number. My environment is linux, programming language is C, and i got this results from this shell command VBoxManage snapshot s2000 showvminfo s|grep Name|grep UUID

    Read the article

< Previous Page | 37 38 39 40 41 42 43 44 45 46 47 48  | Next Page >