Search Results

Search found 63751 results on 2551 pages for 'four part name'.

Page 43/2551 | < Previous Page | 39 40 41 42 43 44 45 46 47 48 49 50  | Next Page >

  • Getting started with Blocks and namespaces - Enterprise Library 5.0 Tutorial Part 2

    This is my second post in this series. In first blog post I explained how to install Enterprise Library 5.0 and provided links to various resources. Enterprise Library is divided into various blocks. Simply we can say, a block is a ready made solution for a particular common problem across various applications. So instead focusing on implementation of common problem across various applications, we can reuse these fully tested and extendable blocks to increase the productivity and also extendibility as these blocks are made with good design principles and patterns. Major blocks of Enterprise Library 5.0 are as follows.   Core infrastructure Functional Application Blocks Caching Data Exception Handling Logging Security Cryptography Validation Wiring Application Blocks Unity Policy Injection/Interception   Each block resides in its own assembly, and also some extra assemblies for common infrastructure. Assemblies are as follows. Microsoft.Practices.EnterpriseLibrary.Caching.Cryptography.dll Microsoft.Practices.EnterpriseLibrary.Caching.Database.dll Microsoft.Practices.EnterpriseLibrary.Caching.dll Microsoft.Practices.EnterpriseLibrary.Common.dll Microsoft.Practices.EnterpriseLibrary.Configuration.Design.HostAdapter.dll Microsoft.Practices.EnterpriseLibrary.Configuration.Design.HostAdapterV5.dll Microsoft.Practices.EnterpriseLibrary.Configuration.DesignTime.dll Microsoft.Practices.EnterpriseLibrary.Configuration.EnvironmentalOverrides.dll Microsoft.Practices.EnterpriseLibrary.Data.dll Microsoft.Practices.EnterpriseLibrary.Data.SqlCe.dll Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.dll Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.Logging.dll Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.WCF.dll Microsoft.Practices.EnterpriseLibrary.Logging.Database.dll Microsoft.Practices.EnterpriseLibrary.Logging.dll Microsoft.Practices.EnterpriseLibrary.PolicyInjection.dll Microsoft.Practices.EnterpriseLibrary.Security.Cache.CachingStore.dll Microsoft.Practices.EnterpriseLibrary.Security.Cryptography.dll Microsoft.Practices.EnterpriseLibrary.Security.dll Microsoft.Practices.EnterpriseLibrary.Validation.dll Microsoft.Practices.EnterpriseLibrary.Validation.Integration.AspNet.dll Microsoft.Practices.EnterpriseLibrary.Validation.Integration.WCF.dll Microsoft.Practices.EnterpriseLibrary.Validation.Integration.WinForms.dll Microsoft.Practices.ServiceLocation.dll Microsoft.Practices.Unity.Configuration.dll Microsoft.Practices.Unity.dll Microsoft.Practices.Unity.Interception.dll Enterprise Library Configuration Tool In addition to these assemblies you would get configuration tool “EntLibConfig-32.exe”. If you are targeting your application to .NET 4.0 framework then you would need to use “EntLibConfig.NET4.exe”. Optionally you can install Visual Studio 2008 and Visual Studio 2010 add-ins whilst installing of Enterprise Library. So that you can invoke the enterprise Library configuration from Visual Studio by right clicking on “app.config” or “web.config” file as shown below. I would suggest you to download the documentation from Codeplex which was released on May 2010. It consists 3MB of information. you can also find issue tracker to know various issues/bugs currently people talking about enterprise library. There is also discussion link takes you to community site where you can post your questions. In my next blog post, I would cover more on each block. span.fullpost {display:none;}

    Read the article

  • WebLogic Server Performance and Tuning: Part I - Tuning JVM

    - by Gokhan Gungor
    Each WebLogic Server instance runs in its own dedicated Java Virtual Machine (JVM) which is their runtime environment. Every Admin Server in any domain executes within a JVM. The same also applies for Managed Servers. WebLogic Server can be used for a wide variety of applications and services which uses the same runtime environment and resources. Oracle WebLogic ships with 2 different JVM, HotSpot and JRocket but you can choose which JVM you want to use. JVM is designed to optimize itself however it also provides some startup options to make small changes. There are default values for its memory and garbage collection. In real world, you will not want to stick with the default values provided by the JVM rather want to customize these values based on your applications which can produce large gains in performance by making small changes with the JVM parameters. We can tell the garbage collector how to delete garbage and we can also tell JVM how much space to allocate for each generation (of java Objects) or for heap. Remember during the garbage collection no other process is executed within the JVM or runtime, which is called STOP THE WORLD which can affect the overall throughput. Each JVM has its own memory segment called Heap Memory which is the storage for java Objects. These objects can be grouped based on their age like young generation (recently created objects) or old generation (surviving objects that have lived to some extent), etc. A java object is considered garbage when it can no longer be reached from anywhere in the running program. Each generation has its own memory segment within the heap. When this segment gets full, garbage collector deletes all the objects that are marked as garbage to create space. When the old generation space gets full, the JVM performs a major collection to remove the unused objects and reclaim their space. A major garbage collect takes a significant amount of time and can affect system performance. When we create a managed server either on the same machine or on remote machine it gets its initial startup parameters from $DOMAIN_HOME/bin/setDomainEnv.sh/cmd file. By default two parameters are set:     Xms: The initial heapsize     Xmx: The max heapsize Try to set equal initial and max heapsize. The startup time can be a little longer but for long running applications it will provide a better performance. When we set -Xms512m -Xmx1024m, the physical heap size will be 512m. This means that there are pages of memory (in the state of the 512m) that the JVM does not explicitly control. It will be controlled by OS which could be reserve for the other tasks. In this case, it is an advantage if the JVM claims the entire memory at once and try not to spend time to extend when more memory is needed. Also you can use -XX:MaxPermSize (Maximum size of the permanent generation) option for Sun JVM. You should adjust the size accordingly if your application dynamically load and unload a lot of classes in order to optimize the performance. You can set the JVM options/heap size from the following places:     Through the Admin console, in the Server start tab     In the startManagedWeblogic script for the managed servers     $DOMAIN_HOME/bin/startManagedWebLogic.sh/cmd     JAVA_OPTIONS="-Xms1024m -Xmx1024m" ${JAVA_OPTIONS}     In the setDomainEnv script for the managed servers and admin server (domain wide)     USER_MEM_ARGS="-Xms1024m -Xmx1024m" When there is free memory available in the heap but it is too fragmented and not contiguously located to store the object or when there is actually insufficient memory we can get java.lang.OutOfMemoryError. We should create Thread Dump and analyze if that is possible in case of such error. The second option we can use to produce higher throughput is to garbage collection. We can roughly divide GC algorithms into 2 categories: parallel and concurrent. Parallel GC stops the execution of all the application and performs the full GC, this generally provides better throughput but also high latency using all the CPU resources during GC. Concurrent GC on the other hand, produces low latency but also low throughput since it performs GC while application executes. The JRockit JVM provides some useful command-line parameters that to control of its GC scheme like -XgcPrio command-line parameter which takes the following options; XgcPrio:pausetime (To minimize latency, parallel GC) XgcPrio:throughput (To minimize throughput, concurrent GC ) XgcPrio:deterministic (To guarantee maximum pause time, for real time systems) Sun JVM has similar parameters (like  -XX:UseParallelGC or -XX:+UseConcMarkSweepGC) to control its GC scheme. We can add -verbosegc -XX:+PrintGCDetails to monitor indications of a problem with garbage collection. Try configuring JVM’s of all managed servers to execute in -server mode to ensure that it is optimized for a server-side production environment.

    Read the article

  • JMX Based Monitoring - Part Three - Web App Server Monitoring

    - by Anthony Shorten
    In the last blog entry I showed a technique for integrating a JMX console with Oracle WebLogic which is a standard feature of Oracle WebLogic 11g. Customers on other Web Application servers and other versions of Oracle WebLogic can refer to the documentation provided with the server to do a similar thing. In this blog entry I am going to discuss a new feature that is only present in Oracle Utilities Application Framework 4 and above that allows JMX to be used for management and monitoring the Oracle Utilities Web Applications. In this case JMX can be used to perform monitoring as well as provide the management of the cache. In Oracle Utilities Application Framework you can enable Web Application Server JMX monitoring that is unique to the framework by specifying a JMX port number in RMI Port number for JMX Web setting and initial credentials in the JMX Enablement System User ID and JMX Enablement System Password configuration options. These options are available using the configureEnv[.sh] -a utility. Once this is information is supplied a number of configuration files are built (by the initialSetup[.sh] utility) to configure the facility: spl.properties - contains the JMX URL, the security configuration and the mbeans that are enabled. For example, on my demonstration machine: spl.runtime.management.rmi.port=6740 spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi://localhost:6740/oracle/ouaf/webAppConnector jmx.remote.x.password.file=scripts/ouaf.jmx.password.file jmx.remote.x.access.file=scripts/ouaf.jmx.access.file ouaf.jmx.com.splwg.base.support.management.mbean.JVMInfo=enabled ouaf.jmx.com.splwg.base.web.mbeans.FlushBean=enabled ouaf.jmx.* files - contain the userid and password. The default setup uses the JMX default security configuration. You can use additional security features by altering the spl.properties file manually or using a custom template. For more security options see the JMX Site. Once it has been configured and the changes reflected in the product using the initialSetup[.sh] utility the JMX facility can be used. For illustrative purposes, I will use jconsole but any JSR160 complaint browser or client can be used (with the appropriate configuration). Once you start jconsole (ensure that splenviron[.sh] is executed prior to execution to set the environment variables or for remote connection, ensure java is in your path and jconsole.jar in your classpath) you specify the URL in the spl.management.connnector.url.default entry and the credentials you specified in the jmx.remote.x.* files. Remember these are encrypted by default so if you try and view the file you may be able to decipher it visually. For example: There are three Mbeans available to you: flushBean - This is a JMX replacement for the jsp versions of the flush utilities provided in previous releases of the Oracle Utilities Application Framework. You can manage the cache using the provided operations from JMX. The jsp versions of the flush utilities are still provided, for backward compatibility, but now are authorization controlled. JVMInfo - This is a JMX replacement for the jsp version of the JVMInfo screen used by support to get a handle on JVM information. This information is environmental not operational and is used for support purposes. The jsp versions of the JVMInfo utilities are still provided, for backward compatibility, but now is also authorization controlled. JVMSystem - This is an implementation of the Java system MXBeans for use in monitoring. We provide our own implementation of the base Mbeans to save on creating another JMX configuration for internal monitoring and to provide a consistent interface across platforms for the MXBeans. This Mbean is disabled by default and can be enabled using the enableJVMSystemBeans operation. This Mbean allows for the monitoring of the ClassLoading, Memory, OperatingSystem, Runtime and the Thread MX beans. Refer to the Server Administration Guides provided with your product and the Technical Best Practices Whitepaper for information about individual statistics. The Web Application Server JMX monitoring allows greater visibility for monitoring and management of the Oracle Utilities Application Framework application from jconsole or any JSR160 compliant JMX browser or JMX console.

    Read the article

  • Sorting a ListView in WPF – Part II

    - by marianor
    Some time ago I wrote a post about how to sort a ListView by clicking on the header of the column. The problem with that solution was that you needed to implement it each time and you have to define an explicit header for each column. As a more general solution I use attached properties to extend the ListView and GridViewColumn . The first attached property is tied to the ListView itself, and it indicates that the control supports sorting. This property attach or detach to the Click event of the...(read more)

    Read the article

  • JMX Based Monitoring - Part Two - JVM Monitoring

    - by Anthony Shorten
    This the second article in the series focussing on the JMX based monitoring capabilities possible with the Oracle Utilities Application Framework. In all versions of the Oracle utilities Application Framework, it is possible to use the basic JMX based monitoring available with the Java Virtual Machine to provide basic statistics ablut the JVM. In Java 5 and above, the JVM automatically allowed local monitoring of the JVM statistics from an approporiate console. When I say local I mean the monitoring tool must be executed from the same machine (and in some cases the same user that is running the JVM) to connect to the JVM directly. If you are using jconsole, for example, then you must have access to a GUI (X-Windows or Windows) to display the jconsole output. This is the easist way of monitoring without doing too much configration but is not always practical. Java offers a remote monitorig capability to allow yo to connect to a remotely executing JVM from a console (like jconsole). To use this facility additional JVM options must be added to the command line that started the JVM. Details of the additional options for the version of the Java you are running is located at the JMX information site. Typically to remotely connect to a running JVM that JVM must be configured with the following categories of options: JMX Port - The JVM must allow connections on a listening port specified on the command line Connection security - The connection to the JVM can be secured. This is recommended as JMX is not just a monitoring protocol it is a managemet protocol. It is possible to change values in a running JVM using JMX and there are NO "Are you sure?" safeguards. For a Oracle Utilities Application Framework based application there are a few guidelines when configuring and using this JMX based remote monitoring of the JVM's: Online JVM - The JVM used to run the online system is embedded within the J2EE Web Application Server. To enable JMX monitoring on this JVM you can either change the startup script that starts the Web Application Server or check whether your J2EE Web Application natively supports JVM statistics collection. Child JVM's (COBOL only) - The Child JVM's should not be monitored using this method as they are recycled regularly by the configuration and therefore statistics collected are of little value. Batch Threadpoools - Batch already has a JMX interface (which will be covered in another article). Additional monitoring can be enabled but the base supported monitoring is sufficient for most needs. If you are an Oracle Utilities Application Framework site, then you can specify the additional options for JMX Java monitoring on the OPTS paramaters supported for each component of the architecture. Just ensure the port numbers used are unique for each JVM running on any machine.

    Read the article

  • Parallelism in .NET – Part 19, TaskContinuationOptions

    - by Reed
    My introduction to Task continuations demonstrates continuations on the Task class.  In addition, I’ve shown how continuations allow handling of multiple tasks in a clean, concise manner.  Continuations can also be used to handle exceptional situations using a clean, simple syntax. In addition to standard Task continuations , the Task class provides some options for filtering continuations automatically.  This is handled via the TaskContinationOptions enumeration, which provides hints to the TaskScheduler that it should only continue based on the operation of the antecedent task. This is especially useful when dealing with exceptions.  For example, we can extend the sample from our earlier continuation discussion to include support for handling exceptions thrown by the Factorize method: // Get a copy of the UI-thread task scheduler up front to use later var uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); // Start our task var factorize = Task.Factory.StartNew( () => { int primeFactor1 = 0; int primeFactor2 = 0; bool result = Factorize(10298312, ref primeFactor1, ref primeFactor2); return new { Result = result, Factor1 = primeFactor1, Factor2 = primeFactor2 }; }); // When we succeed, report the results to the UI factorize.ContinueWith(task => textBox1.Text = string.Format("{0}/{1} [Succeeded {2}]", task.Result.Factor1, task.Result.Factor2, task.Result.Result), CancellationToken.None, TaskContinuationOptions.NotOnFaulted, uiScheduler); // When we have an exception, report it factorize.ContinueWith(task => textBox1.Text = string.Format("Error: {0}", task.Exception.Message), CancellationToken.None, TaskContinuationOptions.OnlyOnFaulted, uiScheduler); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The above code works by using a combination of features.  First, we schedule our task, the same way as in the previous example.  However, in this case, we use a different overload of Task.ContinueWith which allows us to specify both a specific TaskScheduler (in order to have your continuation run on the UI’s synchronization context) as well as a TaskContinuationOption.  In the first continuation, we tell the continuation that we only want it to run when there was not an exception by specifying TaskContinuationOptions.NotOnFaulted.  When our factorize task completes successfully, this continuation will automatically run on the UI thread, and provide the appropriate feedback. However, if the factorize task has an exception – for example, if the Factorize method throws an exception due to an improper input value, the second continuation will run.  This occurs due to the specification of TaskContinuationOptions.OnlyOnFaulted in the options.  In this case, we’ll report the error received to the user. We can use TaskContinuationOptions to filter our continuations by whether or not an exception occurred and whether or not a task was cancelled.  This allows us to handle many situations, and is especially useful when trying to maintain a valid application state without ever blocking the user interface.  The same concepts can be extended even further, and allow you to chain together many tasks based on the success of the previous ones.  Continuations can even be used to create a state machine with full error handling, all without blocking the user interface thread.

    Read the article

  • Another Marketing Conference, part two – the afternoon

    - by Roger Hart
    In my previous post, I’ve covered the morning sessions at AMC2012. Here’s the rest of the write-up. I’ve skipped Charles Nixon’s session which was a blend of funky futurism and professional development advice, but you can see his slides here. I’ve also skipped the Google presentation, as it was a little thin on insight. 6 – Brand ambassadors: Getting universal buy in across the organisation, Vanessa Northam Slides are here This was the strongest enforcement of the idea that brand and campaign values need to be delivered throughout the organization if they’re going to work. Vanessa runs internal communications at e-on, and shared her experience of using internal comms to align an organization and thereby get the most out of a campaign. She views the purpose of internal comms as: “…to help leaders, to communicate the purpose and future of an organization, and support change.” This (and culture) primes front line staff, which creates customer experience and spreads brand. You ensure a whole organization knows what’s going on with both internal and external comms. If everybody is aligned and informed, if everybody can clearly articulate your brand and campaign goals, then you can turn everybody into an advocate. Alignment is a powerful tool for delivering a consistent experience and message. The pathological counter example is the one in which a marketing message goes out, which creates inbound customer contacts that front line contact staff haven’t been briefed to handle. The NatWest campaign was again mentioned in this context. The good example was e-on’s cheaper tariff campaign. Building a groundswell of internal excitement, and even running an internal launch meant everyone could contribute to a good customer experience. They found that meter readers were excited – not a group they’d considered as obvious in providing customer experience. But they were a group that has a lot of face-to-face contact with customers, and often were asked questions they may not have been briefed to answer. Being able to communicate a simple new message made it easier for them, and also let them become a sales and marketing asset to the organization. 7 – Goodbye Internet, Hello Outernet: the rise and rise of augmented reality, Matt Mills I wasn’t going to write this up, because it was essentially a sales demo for Aurasma. But the technology does merit some discussion. Basically, it replaces QR codes with visual recognition, and provides a simple-looking back end for attaching content. It’s quite sexy. But here’s my beef with it: QR codes had a clear visual language – when you saw one you knew what it was and what to do with it. They were clunky, but they had the “getting started” problem solved out of the box once you knew what you were looking at. However, they fail because QR code reading isn’t native to the platform. You needed an app, which meant you needed to know to download one. Consequentially, you can’t use QR codes with and ubiquity, or depend on them. This means marketers, content providers, etc, never pushed them, and they remained and awkward oddity, a minority sport. Aurasma half solves problem two, and re-introduces problem one, making it potentially half as useful as a QR code. It’s free, and you can apparently build it into your own apps. Add to that the likelihood of it becoming native to the platform if it takes off, and it may have legs. I guess we’ll see. 8 – We all need to code, Helen Mayor Great title – good point. If there was anybody in the room who didn’t at least know basic HTML, and if Helen’s presentation inspired them to learn, that’s fantastic. However, this was a half hour sales pitch for a basic coding training course. Beyond advocating coding skills it contained no useful content. Marketers may also like to consider some of these resources if they’re looking to learn code: Code Academy – free interactive tutorials Treehouse – learn web design, web dev, or app dev WebPlatform.org – tutorials and documentation for web tech  11 – Understanding our inner creativity, Margaret Boden This session was the most theoretical and probably least actionable of the day. It also held my attention utterly. Margaret spoke fluently, fascinatingly, without slides, on the subject of types of creativity and how they work. It was splendid. Yes, it raised a wry smile whenever she spoke of “the content of advertisements” and gave an example from 1970s TV ads, but even without the attempt to meet the conference’s theme this would have been thoroughly engaging. There are, Margaret suggested, three types of creativity: Combinatorial creativity The most common form, and consisting of synthesising ideas from existing and familiar concepts and tropes. Exploratory creativity Less common, this involves exploring the limits and quirks of a particular constraint or style. Transformational creativity This is uncommon, and arises from finding a way to do something that the existing rules would hold to be impossible. In essence, this involves breaking one of the constraints that exploratory creativity is composed from. Combinatorial creativity, she suggested, is particularly important for attaching favourable ideas to existing things. As such is it probably worth developing for marketing. Exploratory creativity may then come into play in something like developing and optimising an idea or campaign that now has momentum. Transformational creativity exists at the edges of this exploration. She suggested that products may often be transformational, but that marketing seemed unlikely to in her experience. This made me wonder about Listerine. Crucially, transformational creativity is characterised by there being some element of continuity with the strictures of previous thinking. Once it has happened, there may be  move from a revolutionary instance into an explored style. Again, from a marketing perspective, this seems to chime well with the thinking in Youngme Moon’s book: Different Talking about the birth of Modernism is visual art, Margaret pointed out that transformational creativity has historically risked a backlash, demanding what is essentially an education of the market. This is best accomplished by referring back to the continuities with the past in order to make the new familiar. Thoughts The afternoon is harder to sum up than the morning. It felt less concrete, and was troubled by a short run of poor presentations in the middle. Mainly, I found myself wrestling with the internal comms issue. It’s one of those things that seems astonishingly obvious in hindsight, but any campaign – particularly any large one – is doomed if the people involved can’t believe in it. We’ve run things here that haven’t gone so well, of course we have; who hasn’t? I’m not going to air any laundry, but people not being informed (much less aligned) feels like a common factor. It’s tough though. Managing and anticipating information needs across an organization of any size can’t be easy. Even the simple things like ensuring sales and support departments know what’s in a product release, and what messages go with it are easy to botch. The thing I like about framing this as a brand and campaign advocacy problem is that it makes it likely to get addressed. Better is always sexier than less-worse. Any technical communicator who’s ever felt crowded out by a content strategist or marketing copywriter  knows this – increasing revenue gets a seat at the table far more readily than reducing support costs, even if the financial impact is identical. So that’s it from AMC. The big thought-provokers were social buying behaviour and eliciting behaviour change, and the value of internal communications in ensuring successful campaigns and continuity of customer experience. I’ll be chewing over that for a while, and I’d definitely return next year.      

    Read the article

  • Installing Enterprise Library 5.0 - Enterprise Library 5.0 Tutorial Part 1

    Microsoft has released Enterprise Library on April 2010. it’s free you can download and install from “Download Enterprise Library”. you can also find older version of enterprise library 4.1 still if your project needs it for maintenance purpose. but I suggest go for 5.0 as it has great enhancements and improved UI configuration tool. Will it work only with Visual Studio 2008? Yes. Yes, it works with also .NET 3.5 and Visual Studio 2008. you can take advantage of new improved UI configuration tool which comes from enterprise library 5.0 with VS2008. Please find this Enterprise Library resources. I suggest to install it with documentation and hands on labs. you can also find community links. I’ll see you in my next blog serious where I provide introduction to various blocks of Enterprise Library 5.0. span.fullpost {display:none;}

    Read the article

  • Using a "white list" for extracting terms for Text Mining, Part 2

    - by [email protected]
    In my last post, we set the groundwork for extracting specific tokens from a white list using a CTXRULE index. In this post, we will populate a table with the extracted tokens and produce a case table suitable for clustering with Oracle Data Mining. Our corpus of documents will be stored in a database table that is defined as create table documents(id NUMBER, text VARCHAR2(4000)); However, any suitable Oracle Text-accepted data type can be used for the text. We then create a table to contain the extracted tokens. The id column contains the unique identifier (or case id) of the document. The token column contains the extracted token. Note that a given document many have many tokens, so there will be one row per token for a given document. create table extracted_tokens (id NUMBER, token VARCHAR2(4000)); The next step is to iterate over the documents and extract the matching tokens using the index and insert them into our token table. We use the MATCHES function for matching the query_string from my_thesaurus_rules with the text. DECLARE     cursor c2 is       select id, text       from documents; BEGIN     for r_c2 in c2 loop        insert into extracted_tokens          select r_c2.id id, main_term token          from my_thesaurus_rules          where matches(query_string,                        r_c2.text)>0;     end loop; END; Now that we have the tokens, we can compute the term frequency - inverse document frequency (TF-IDF) for each token of each document. create table extracted_tokens_tfidf as   with num_docs as (select count(distinct id) doc_cnt                     from extracted_tokens),        tf       as (select a.id, a.token,                            a.token_cnt/b.num_tokens token_freq                     from                        (select id, token, count(*) token_cnt                        from extracted_tokens                        group by id, token) a,                       (select id, count(*) num_tokens                        from extracted_tokens                        group by id) b                     where a.id=b.id),        doc_freq as (select token, count(*) overall_token_cnt                     from extracted_tokens                     group by token)   select tf.id, tf.token,          token_freq * ln(doc_cnt/df.overall_token_cnt) tf_idf   from num_docs,        tf,        doc_freq df   where df.token=tf.token; From the WITH clause, the num_docs query simply counts the number of documents in the corpus. The tf query computes the term (token) frequency by computing the number of times each token appears in a document and divides that by the number of tokens found in the document. The doc_req query counts the number of times the token appears overall in the corpus. In the SELECT clause, we compute the tf_idf. Next, we create the nested table required to produce one record per case, where a case corresponds to an individual document. Here, we COLLECT all the tokens for a given document into the nested column extracted_tokens_tfidf_1. CREATE TABLE extracted_tokens_tfidf_nt              NESTED TABLE extracted_tokens_tfidf_1                  STORE AS extracted_tokens_tfidf_tab AS              select id,                     cast(collect(DM_NESTED_NUMERICAL(token,tf_idf)) as DM_NESTED_NUMERICALS) extracted_tokens_tfidf_1              from extracted_tokens_tfidf              group by id;   To build the clustering model, we create a settings table and then insert the various settings. Most notable are the number of clusters (20), using cosine distance which is better for text, turning off auto data preparation since the values are ready for mining, the number of iterations (20) to get a better model, and the split criterion of size for clusters that are roughly balanced in number of cases assigned. CREATE TABLE km_settings (setting_name  VARCHAR2(30), setting_value VARCHAR2(30)); BEGIN  INSERT INTO km_settings (setting_name, setting_value) VALUES     VALUES (dbms_data_mining.clus_num_clusters, 20);  INSERT INTO km_settings (setting_name, setting_value)     VALUES (dbms_data_mining.kmns_distance, dbms_data_mining.kmns_cosine);   INSERT INTO km_settings (setting_name, setting_value) VALUES     VALUES (dbms_data_mining.prep_auto,dbms_data_mining.prep_auto_off);   INSERT INTO km_settings (setting_name, setting_value) VALUES     VALUES (dbms_data_mining.kmns_iterations,20);   INSERT INTO km_settings (setting_name, setting_value) VALUES     VALUES (dbms_data_mining.kmns_split_criterion,dbms_data_mining.kmns_size);   COMMIT; END; With this in place, we can now build the clustering model. BEGIN     DBMS_DATA_MINING.CREATE_MODEL(     model_name          => 'TEXT_CLUSTERING_MODEL',     mining_function     => dbms_data_mining.clustering,     data_table_name     => 'extracted_tokens_tfidf_nt',     case_id_column_name => 'id',     settings_table_name => 'km_settings'); END;To generate cluster names from this model, check out my earlier post on that topic.

    Read the article

  • How To Clear An Alert - Part 2

    - by werner.de.gruyter
    There were some interesting comments and remarks on the original posting, so I decided to do a follow-up and address some of the issues that got raised... Handling Metric Errors First of all, there is a significant difference between an 'error' and an 'alert'. An 'alert' is the violation of a condition (a threshold) specified for a given metric. That means that the Agent is collecting and gathering the data for the metric, but there is a situation that requires the attention of an administrator. An 'error' on the other hand however, is a failure to collect metric data: The Agent is throwing the error because it cannot determine the value for the metric Whereas the 'alert' guarantees continuity of the metric data, an 'error' signals a big unknown. And the unknown aspect of all this is what makes an error a lot more serious than a regular alert: If you don't know what the current state of affairs is, there could be some serious issues brewing that nobody is aware of... The life-cycle of a Metric Error Clearing a metric error is pretty much the same workflow as a metric 'alert': The Agent signals the error after it failed to execute the metric The error is uploaded to the OMS/repository, where it becomes visible in the Console The error will remain active until the Agent is able to execute the metric successfully. Even though the metric is still getting scheduled and executed on a regular basis, the error will remain outstanding as long as the Agent is not capable of executing the metric correctly Knowing this, the way to fix the metric error should be obvious: Take the 'problem' away, and as soon as the metric is executed again (based on the frequency of the metric), the error will go away. The same tricks used to clear alerts can be used here too: Wait for the next scheduled execution. For those metrics that are executed regularly (like every 15 minutes or so), it's just a matter of waiting those minutes to see the updates. The 'Reevaluate Alert' button can be used to force a re-execution of the metric. In case a metric is executed once a day, this will be a better way to make sure that the underlying problem has been solved. And if it has been, the metric error will be removed, and the regular data points will be uploaded to the repository. And just in case you have to 'force' the issue a little: If you disable and re-enable a metric, it will get re-scheduled. And that means a new metric execution, and an update of the (hopefully) fixed problem. Database server-generated alerts and problem checkers There are various ways the Agent can collect metric data: Via a script or a SQL statement, reading a log file, getting a value from an SNMP OID or listening for SNMP traps or via the DBMS_SERVER_ALERTS mechanism of an Oracle database. For those alert which are generated by the database (like tablespace metrics for 10g and above databases), the Agent just 'waits' for the database to report any new findings. If the Agent has lost the current state of the server-side metrics (due to an incomplete recovery after a disaster, or after an improper use of the 'emctl clearstate' command), the Agent might be still aware of an alert that the database no longer has (or vice versa). The same goes for 'problem checker' alerts: Those metrics that only report data if there is a problem (like the 'invalid objects' metric) will also have a problem if the Agent state has been tampered with (again, the incomplete recovery, and after improper use of 'emctl clearstate' are the two main causes for this). The best way to deal with these kinds of mismatches, is to simple disable and re-enable the metric again: The disabling will clear the state of the metric, and the re-enabling will force a re-execution of the metric, so the new and updated results can get uploaded to the repository. Starting 10gR5, the Agent performs additional checks and verifications after each restart of the Agent and/or each state change of the database (shutdown/startup or failover in case of DataGuard) to catch these kinds of mismatches.

    Read the article

  • Mapping Your Data with Bing Maps and SQL Server 2008 – Part 1

    Jonas Stawski takes you step by step through a sample project that demonstrates how to create an application that can get GeoSpatial coordinate data for addresses within a SQL Server database, and then use that data to locate those addresses on a Bing Map on a website as pushpins, either grouped or ungrouped: And there is full source-code too, in the speech-bubble.

    Read the article

  • What's up with LDoms: Part 4 - Virtual Networking Explained

    - by Stefan Hinker
    I'm back from my summer break (and some pressing business that kept me away from this), ready to continue with Oracle VM Server for SPARC ;-) In this article, we'll have a closer look at virtual networking.  Basic connectivity as we've seen it in the first, simple example, is easy enough.  But there are numerous options for the virtual switches and virtual network ports, which we will discuss in more detail now.   In this section, we will concentrate on virtual networking - the capabilities of virtual switches and virtual network ports - only.  Other options involving hardware assignment or redundancy will be covered in separate sections later on. There are two basic components involved in virtual networking for LDoms: Virtual switches and virtual network devices.  The virtual switch should be seen just like a real ethernet switch.  It "runs" in the service domain and moves ethernet packets back and forth.  A virtual network device is plumbed in the guest domain.  It corresponds to a physical network device in the real world.  There, you'd be plugging a cable into the network port, and plug the other end of that cable into a switch.  In the virtual world, you do the same:  You create a virtual network device for your guest and connect it to a virtual switch in a service domain.  The result works just like in the physical world, the network device sends and receives ethernet packets, and the switch does all those things ethernet switches tend to do. If you look at the reference manual of Oracle VM Server for SPARC, there are numerous options for virtual switches and network devices.  Don't be confused, it's rather straight forward, really.  Let's start with the simple case, and work our way to some more sophisticated options later on.  In many cases, you'll want to have several guests that communicate with the outside world on the same ethernet segment.  In the real world, you'd connect each of these systems to the same ethernet switch.  So, let's do the same thing in the virtual world: root@sun # ldm add-vsw net-dev=nxge2 admin-vsw primary root@sun # ldm add-vnet admin-net admin-vsw mars root@sun # ldm add-vnet admin-net admin-vsw venus We've just created a virtual switch called "admin-vsw" and connected it to the physical device nxge2.  In the physical world, we'd have powered up our ethernet switch and installed a cable between it and our big enterprise datacenter switch.  We then created a virtual network interface for each one of the two guest systems "mars" and "venus" and connected both to that virtual switch.  They can now communicate with each other and with any system reachable via nxge2.  If primary were running Solaris 10, communication with the guests would not be possible.  This is different with Solaris 11, please see the Admin Guide for details.  Note that I've given both the vswitch and the vnet devices some sensible names, something I always recommend. Unless told otherwise, the LDoms Manager software will automatically assign MAC addresses to all network elements that need one.  It will also make sure that these MAC addresses are unique and reuse MAC addresses to play nice with all those friendly DHCP servers out there.  However, if we want to do this manually, we can also do that.  (One reason might be firewall rules that work on MAC addresses.)  So let's give mars a manually assigned MAC address: root@sun # ldm set-vnet mac-addr=0:14:4f:f9:c4:13 admin-net mars Within the guest, these virtual network devices have their own device driver.  In Solaris 10, they'd appear as "vnet0".  Solaris 11 would apply it's usual vanity naming scheme.  We can configure these interfaces just like any normal interface, give it an IP-address and configure sophisticated routing rules, just like on bare metal.  In many cases, using Jumbo Frames helps increase throughput performance.  By default, these interfaces will run with the standard ethernet MTU of 1500 bytes.  To change this,  it is usually sufficient to set the desired MTU for the virtual switch.  This will automatically set the same MTU for all vnet devices attached to that switch.  Let's change the MTU size of our admin-vsw from the example above: root@sun # ldm set-vsw mtu=9000 admin-vsw primary Note that that you can set the MTU to any value between 1500 and 16000.  Of course, whatever you set needs to be supported by the physical network, too. Another very common area of network configuration is VLAN tagging. This can be a little confusing - my advise here is to be very clear on what you want, and perhaps draw a little diagram the first few times.  As always, keeping a configuration simple will help avoid errors of all kind.  Nevertheless, VLAN tagging is very usefull to consolidate different networks onto one physical cable.  And as such, this concept needs to be carried over into the virtual world.  Enough of the introduction, here's a little diagram to help in explaining how VLANs work in LDoms: Let's remember that any VLANs not explicitly tagged have the default VLAN ID of 1. In this example, we have a vswitch connected to a physical network that carries untagged traffic (VLAN ID 1) as well as VLANs 11, 22, 33 and 44.  There might also be other VLANs on the wire, but the vswitch will ignore all those packets.  We also have two vnet devices, one for mars and one for venus.  Venus will see traffic from VLANs 33 and 44 only.  For VLAN 44, venus will need to configure a tagged interface "vnet44000".  For VLAN 33, the vswitch will untag all incoming traffic for venus, so that venus will see this as "normal" or untagged ethernet traffic.  This is very useful to simplify guest configuration and also allows venus to perform Jumpstart or AI installations over this network even if the Jumpstart or AI server is connected via VLAN 33.  Mars, on the other hand, has full access to untagged traffic from the outside world, and also to VLANs 11,22 and 33, but not 44.  On the command line, we'd do this like this: root@sun # ldm add-vsw net-dev=nxge2 pvid=1 vid=11,22,33,44 admin-vsw primary root@sun # ldm add-vnet admin-net pvid=1 vid=11,22,33 admin-vsw mars root@sun # ldm add-vnet admin-net pvid=33 vid=44 admin-vsw venus Finally, I'd like to point to a neat little option that will make your live easier in all those cases where configurations tend to change over the live of a guest system.  It's the "id=<somenumber>" option available for both vswitches and vnet devices.  Normally, Solaris in the guest would enumerate network devices sequentially.  However, it has ways of remembering this initial numbering.  This is good in the physical world.  In the virtual world, whenever you unbind (aka power off and disassemble) a guest system, remove and/or add network devices and bind the system again, chances are this numbering will change.  Configuration confusion will follow suit.  To avoid this, nail down the initial numbering by assigning each vnet device it's device-id explicitly: root@sun # ldm add-vnet admin-net id=1 admin-vsw venus Please consult the Admin Guide for details on this, and how to decipher these network ids from Solaris running in the guest. Thanks for reading this far.  Links for further reading are essentially only the Admin Guide and Reference Manual and can be found above.  I hope this is useful and, as always, I welcome any comments.

    Read the article

  • Launching a WPF Window in a Separate Thread, Part 1

    - by Reed
    Typically, I strongly recommend keeping the user interface within an application’s main thread, and using multiple threads to move the actual “work” into background threads.  However, there are rare times when creating a separate, dedicated thread for a Window can be beneficial.  This is even acknowledged in the MSDN samples, such as the Multiple Windows, Multiple Threads sample.  However, doing this correctly is difficult.  Even the referenced MSDN sample has major flaws, and will fail horribly in certain scenarios.  To ease this, I wrote a small class that alleviates some of the difficulties involved. The MSDN Multiple Windows, Multiple Threads Sample shows how to launch a new thread with a WPF Window, and will work in most cases.  The sample code (commented and slightly modified) works out to the following: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { // Create and show the Window Window1 tempWindow = new Window1(); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Set the apartment state newWindowThread.SetApartmentState(ApartmentState.STA); // Make the thread a background thread newWindowThread.IsBackground = true; // Start the thread newWindowThread.Start(); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This sample creates a thread, marks it as single threaded apartment state, and starts the Dispatcher on that thread. That is the minimum requirements to get a Window displaying and handling messages correctly, but, unfortunately, has some serious flaws. The first issue – the created thread will run continuously until the application shuts down, given the code in the sample.  The problem is that the ThreadStart delegate used ends with running the Dispatcher.  However, nothing ever stops the Dispatcher processing.  The thread was created as a Background thread, which prevents it from keeping the application alive, but the Dispatcher will continue to pump dispatcher frames until the application shuts down. In order to fix this, we need to call Dispatcher.InvokeShutdown after the Window is closed.  This would require modifying the above sample to subscribe to the Window’s Closed event, and, at that point, shutdown the Dispatcher: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { Window1 tempWindow = new Window1(); // When the window closes, shut down the dispatcher tempWindow.Closed += (s,e) => Dispatcher.CurrentDispatcher.BeginInvokeShutdown(DispatcherPriority.Background); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Setup and start thread as before This eliminates the first issue.  Now, when the Window is closed, the new thread’s Dispatcher will shut itself down, which in turn will cause the thread to complete. The above code will work correctly for most situations.  However, there is still a potential problem which could arise depending on the content of the Window1 class.  This is particularly nasty, as the code could easily work for most windows, but fail on others. The problem is, at the point where the Window is constructed, there is no active SynchronizationContext.  This is unlikely to be a problem in most cases, but is an absolute requirement if there is code within the constructor of Window1 which relies on a context being in place. While this sounds like an edge case, it’s fairly common.  For example, if a BackgroundWorker is started within the constructor, or a TaskScheduler is built using TaskScheduler.FromCurrentSynchronizationContext() with the expectation of synchronizing work to the UI thread, an exception will be raised at some point.  Both of these classes rely on the existence of a proper context being installed to SynchronizationContext.Current, which happens automatically, but not until Dispatcher.Run is called.  In the above case, SynchronizationContext.Current will return null during the Window’s construction, which can cause exceptions to occur or unexpected behavior. Luckily, this is fairly easy to correct.  We need to do three things, in order, prior to creating our Window: Create and initialize the Dispatcher for the new thread manually Create a synchronization context for the thread which uses the Dispatcher Install the synchronization context Creating the Dispatcher is quite simple – The Dispatcher.CurrentDispatcher property gets the current thread’s Dispatcher and “creates a new Dispatcher if one is not already associated with the thread.”  Once we have the correct Dispatcher, we can create a SynchronizationContext which uses the dispatcher by creating a DispatcherSynchronizationContext.  Finally, this synchronization context can be installed as the current thread’s context via SynchronizationContext.SetSynchronizationContext.  These three steps can easily be added to the above via a single line of code: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { // Create our context, and install it: SynchronizationContext.SetSynchronizationContext( new DispatcherSynchronizationContext( Dispatcher.CurrentDispatcher)); Window1 tempWindow = new Window1(); // When the window closes, shut down the dispatcher tempWindow.Closed += (s,e) => Dispatcher.CurrentDispatcher.BeginInvokeShutdown(DispatcherPriority.Background); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Setup and start thread as before This now forces the synchronization context to be in place before the Window is created and correctly shuts down the Dispatcher when the window closes. However, there are quite a few steps.  In my next post, I’ll show how to make this operation more reusable by creating a class with a far simpler API…

    Read the article

  • Is Google Analytics Part Of Google's Search Engine Algorithm

    - by ub3rst4r
    I was wondering if anyone knows if Google uses the data it receives from Google Analytics to help determine a websites SERP (Search Engine Rank Position). For example, if my website is getting 1000 users visiting my website from Canada and only 100 users visiting my website from the USA, does that mean my website will be ranked higher on Google.ca and lower on Google.com? And, if a website is using Google Analytics will it be ranked higher for the organic search engine keywords?

    Read the article

  • The C++ Standard Template Library as a BDB Database (part 1)

    - by Gregory Burd
    If you've used C++ you undoubtedly have used the Standard Template Libraries. Designed for in-memory management of data and collections of data this is a core aspect of all C++ programs. Berkeley DB is a database library with a variety of APIs designed to ease development, one of those APIs extends and makes use of the STL for persistent, transactional data storage. dbstl is an STL standard compatible API for Berkeley DB. You can make use of Berkeley DB via this API as if you are using C++ STL classes, and still make full use of Berkeley DB features. Being an STL library backed by a database, there are some important and useful features that dbstl can provide, while the C++ STL library can't. The following are a few typical use cases to use the dbstl extensions to the C++ STL for data storage. When data exceeds available physical memory.Berkeley DB dbstl can vastly improve performance when managing a dataset which is larger than available memory. Performance suffers when the data can't reside in memory because the OS is forced to use virtual memory and swap pages of memory to disk. Switching to BDB's dbstl improves performance while allowing you to keep using STL containers. When you need concurrent access to C++ STL containers.Few existing C++ STL implementations support concurrent access (create/read/update/delete) within a container, at best you'll find support for accessing different containers of the same type concurrently. With the Berkeley DB dbstl implementation you can concurrently access your data from multiple threads or processes with confidence in the outcome. When your objects are your database.You want to have object persistence in your application, and store objects in a database, and use the objects across different runs of your application without having to translate them to/from SQL. The dbstl is capable of storing complicated objects, even those not located on a continous chunk of memory space, directly to disk without any unnecessary overhead. These are a few reasons why you should consider using Berkeley DB's C++ STL support for your embedded database application. In the next few blog posts I'll show you a few examples of this approach, it's easy to use and easy to learn.

    Read the article

  • Parallelism in .NET – Part 8, PLINQ’s ForAll Method

    - by Reed
    Parallel LINQ extends LINQ to Objects, and is typically very similar.  However, as I previously discussed, there are some differences.  Although the standard way to handle simple Data Parellelism is via Parallel.ForEach, it’s possible to do the same thing via PLINQ. PLINQ adds a new method unavailable in standard LINQ which provides new functionality… LINQ is designed to provide a much simpler way of handling querying, including filtering, ordering, grouping, and many other benefits.  Reading the description in LINQ to Objects on MSDN, it becomes clear that the thinking behind LINQ deals with retrieval of data.  LINQ works by adding a functional programming style on top of .NET, allowing us to express filters in terms of predicate functions, for example. PLINQ is, generally, very similar.  Typically, when using PLINQ, we write declarative statements to filter a dataset or perform an aggregation.  However, PLINQ adds one new method, which provides a very different purpose: ForAll. The ForAll method is defined on ParallelEnumerable, and will work upon any ParallelQuery<T>.  Unlike the sequence operators in LINQ and PLINQ, ForAll is intended to cause side effects.  It does not filter a collection, but rather invokes an action on each element of the collection. At first glance, this seems like a bad idea.  For example, Eric Lippert clearly explained two philosophical objections to providing an IEnumerable<T>.ForEach extension method, one of which still applies when parallelized.  The sole purpose of this method is to cause side effects, and as such, I agree that the ForAll method “violates the functional programming principles that all the other sequence operators are based upon”, in exactly the same manner an IEnumerable<T>.ForEach extension method would violate these principles.  Eric Lippert’s second reason for disliking a ForEach extension method does not necessarily apply to ForAll – replacing ForAll with a call to Parallel.ForEach has the same closure semantics, so there is no loss there. Although ForAll may have philosophical issues, there is a pragmatic reason to include this method.  Without ForAll, we would take a fairly serious performance hit in many situations.  Often, we need to perform some filtering or grouping, then perform an action using the results of our filter.  Using a standard foreach statement to perform our action would avoid this philosophical issue: // Filter our collection var filteredItems = collection.AsParallel().Where( i => i.SomePredicate() ); // Now perform an action foreach (var item in filteredItems) { // These will now run serially item.DoSomething(); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This would cause a loss in performance, since we lose any parallelism in place, and cause all of our actions to be run serially. We could easily use a Parallel.ForEach instead, which adds parallelism to the actions: // Filter our collection var filteredItems = collection.AsParallel().Where( i => i.SomePredicate() ); // Now perform an action once the filter completes Parallel.ForEach(filteredItems, item => { // These will now run in parallel item.DoSomething(); }); This is a noticeable improvement, since both our filtering and our actions run parallelized.  However, there is still a large bottleneck in place here.  The problem lies with my comment “perform an action once the filter completes”.  Here, we’re parallelizing the filter, then collecting all of the results, blocking until the filter completes.  Once the filtering of every element is completed, we then repartition the results of the filter, reschedule into multiple threads, and perform the action on each element.  By moving this into two separate statements, we potentially double our parallelization overhead, since we’re forcing the work to be partitioned and scheduled twice as many times. This is where the pragmatism comes into play.  By violating our functional principles, we gain the ability to avoid the overhead and cost of rescheduling the work: // Perform an action on the results of our filter collection .AsParallel() .Where( i => i.SomePredicate() ) .ForAll( i => i.DoSomething() ); The ability to avoid the scheduling overhead is a compelling reason to use ForAll.  This really goes back to one of the key points I discussed in data parallelism: Partition your problem in a way to place the most work possible into each task.  Here, this means leaving the statement attached to the expression, even though it causes side effects and is not standard usage for LINQ. This leads to my one guideline for using ForAll: The ForAll extension method should only be used to process the results of a parallel query, as returned by a PLINQ expression. Any other usage scenario should use Parallel.ForEach, instead.

    Read the article

  • What&rsquo;s in a name?

    - by Aaron Kowall
    My online presence has become caffeinatedgeek.  As such, I recently had my blog moved from geekswithblogs.net/aaronsblog to geekswithblogs.net/caffeinatedgeek. Same sporadic but hoepfully valuable posting, just new web home. Technorati Tags: caffeinatedgeek

    Read the article

  • Installing device drivers as part of VS2008 setup application (3 replies)

    A colleague in another department has produced device drivers for some USB devices that I need to communicate with in my VS2008 .Net application, and I'm looking to simplify the installation experience for our users. Currently I just put the driver files onto the CD in a folder, and the Windows Add Hardware Wizard will usually take them through the process. What I would like to do though, is to in...

    Read the article

< Previous Page | 39 40 41 42 43 44 45 46 47 48 49 50  | Next Page >