Search Results

Search found 6189 results on 248 pages for 'garbage collection'.

Page 41/248 | < Previous Page | 37 38 39 40 41 42 43 44 45 46 47 48  | Next Page >

  • Is it possible to get collection of some ejb`s instances from container?

    - by kislo_metal
    Hi! Scenario: I have some @Statefull bean for user session (not an http session, it is web services session). And I need to manage user`s session per user. Goal: I need to have possibility to get collection of @Statefull UserSession`s instances and control maximum number of session`s per user, and session`s life time. Q: Is it possible to get Collection of ejb`s instances from ejb container, instead of storing them in some collection, map etc. ? I am using glassfish v3 , ejb 3.1, jax-ws. Thank You!

    Read the article

  • What are the requirements of a collection type when model binding?

    - by Richard Ev
    I have been reviewing model binding with collections, specifically going through this article http://weblogs.asp.net/nmarun/archive/2010/03/13/asp-net-mvc-2-model-binding-for-a-collection.aspx However, the model I would like to use in my code does not implement collections using generic lists. Instead it uses its own collection classes, which inherit from a custom generic collection base class, the declaration of which is public abstract class CollectionBase<T> : IEnumerable<T> The collections in my POSTed action method are all non-null, but contain no elements. Can anyone advise?

    Read the article

  • Why are some strings displayed as garbage when I scroll my read-only multiline Win32 edit control ve

    - by sharptooth
    In my native C+ Win32 GUI application I have a property sheet with two property pages. One of the property pages contains an edit box: EDITTEXT IDC_EDIT_ID,x,y,width,height,ES_MULTILINE | ES_READONLY | NOT WS_BORDER | WS_VSCROLL | WS_HSCROLL | NOT WS_TABSTOP,WS_EX_STATICEDGE I set a multiline text to this edit box. The text has more lines than the edit can fit, so some of the text is clipped and a vertical scroll bar appears. When I scroll up with the mouse the lines that come "from under clip area" are drawn as garbage - it looks like first one line is drawn, then some other line is drawn on the same place without first painting the background. The lines that just move up - ones that were visible before scrolling and remain visible after scrolling are displayed allright. What's the reason and workaround for this behavior?

    Read the article

  • C++ corrupt my thinking, how to trust auto garbage collector?

    - by SnirD
    I use to program mainly with C/C++, that's make me dealing with pointers and memory management daily. This days I'm trying to develop using other tools, such as Java, Python and Ruby. The problem is that I keep thinking C++ style, I'm writing code as C++ usually written in almost every programming language, and the biggest problem is the memory management, I keep writing bad code using references in Java and just get as close as I can to the C++ style. So I need 2 thinks here, one is to trust the garbage collector, let's say by seeing benchmarks and proofs that it's realy working in Java, and know what I should never do in order to get my code the best way it can be. And the second think is knowing how to write other languages code. I mean I know what to do, I'm just never write the code as most Java or Python programmers usually do, are there any books for C++ programmers just to introduce me to the writing conventions? (by the way, forgive me for my English mistakes)

    Read the article

  • Pointers and collection of pointers in C++. How to properly delete.

    - by Julen
    Hello, This is a newbe question but I have alwasy doubts with pointers in C++. This is the situation. I have a class A which as a collection (a vector actually) of pointers of class B. This same class A has another collection of pointers to class C. Finally the objects of class B have also a collection to pointers to class C which point to the same instances the class A points to. My question is, if I delete a member of class-C-type pointer in class B, what happens to the pointer in class A that points to the deleted instance of class C? How this situation has to be treated? Thanks a lot in advance! Julen.

    Read the article

  • Class Mapping Error: 'T' must be a non-abstract type with a public parameterless constructor

    - by Amit Ranjan
    Hi, While mapping class i am getting error 'T' must be a non-abstract type with a public parameterless constructor in order to use it as parameter 'T' in the generic type or method. Below is my SqlReaderBase Class public abstract class SqlReaderBase<T> : ConnectionProvider { #region Abstract Methods protected abstract string commandText { get; } protected abstract CommandType commandType { get; } protected abstract Collection<IDataParameter> GetParameters(IDbCommand command); **protected abstract MapperBase<T> GetMapper();** #endregion #region Non Abstract Methods /// <summary> /// Method to Execute Select Queries for Retrieveing List of Result /// </summary> /// <returns></returns> public Collection<T> ExecuteReader() { //Collection of Type on which Template is applied Collection<T> collection = new Collection<T>(); // initializing connection using (IDbConnection connection = GetConnection()) { try { // creates command for sql operations IDbCommand command = connection.CreateCommand(); // assign connection to command command.Connection = connection; // assign query command.CommandText = commandText; //state what type of query is used, text, table or Sp command.CommandType = commandType; // retrieves parameter from IDataParameter Collection and assigns it to command object foreach (IDataParameter param in GetParameters(command)) command.Parameters.Add(param); // Establishes connection with database server connection.Open(); // Since it is designed for executing Select statements that will return a list of results // so we will call command's execute reader method that return a Forward Only reader with // list of results inside. using (IDataReader reader = command.ExecuteReader()) { try { // Call to Mapper Class of the template to map the data to its // respective fields MapperBase<T> mapper = GetMapper(); collection = mapper.MapAll(reader); } catch (Exception ex) // catch exception { throw ex; // log errr } finally { reader.Close(); reader.Dispose(); } } } catch (Exception ex) { throw ex; } finally { connection.Close(); connection.Dispose(); } } return collection; } #endregion } What I am trying to do is , I am executine some command and filling my class dynamically. The class is given below: namespace FooZo.Core { public class Restaurant { #region Private Member Variables private int _restaurantId = 0; private string _email = string.Empty; private string _website = string.Empty; private string _name = string.Empty; private string _address = string.Empty; private string _phone = string.Empty; private bool _hasMenu = false; private string _menuImagePath = string.Empty; private int _cuisine = 0; private bool _hasBar = false; private bool _hasHomeDelivery = false; private bool _hasDineIn = false; private int _type = 0; private string _restaurantImagePath = string.Empty; private string _serviceAvailableTill = string.Empty; private string _serviceAvailableFrom = string.Empty; public string Name { get { return _name; } set { _name = value; } } public string Address { get { return _address; } set { _address = value; } } public int RestaurantId { get { return _restaurantId; } set { _restaurantId = value; } } public string Website { get { return _website; } set { _website = value; } } public string Email { get { return _email; } set { _email = value; } } public string Phone { get { return _phone; } set { _phone = value; } } public bool HasMenu { get { return _hasMenu; } set { _hasMenu = value; } } public string MenuImagePath { get { return _menuImagePath; } set { _menuImagePath = value; } } public string RestaurantImagePath { get { return _restaurantImagePath; } set { _restaurantImagePath = value; } } public int Type { get { return _type; } set { _type = value; } } public int Cuisine { get { return _cuisine; } set { _cuisine = value; } } public bool HasBar { get { return _hasBar; } set { _hasBar = value; } } public bool HasHomeDelivery { get { return _hasHomeDelivery; } set { _hasHomeDelivery = value; } } public bool HasDineIn { get { return _hasDineIn; } set { _hasDineIn = value; } } public string ServiceAvailableFrom { get { return _serviceAvailableFrom; } set { _serviceAvailableFrom = value; } } public string ServiceAvailableTill { get { return _serviceAvailableTill; } set { _serviceAvailableTill = value; } } #endregion public Restaurant() { } } } For filling my class properties dynamically i have another class called MapperBase Class with following methods: public abstract class MapperBase<T> where T : new() { protected T Map(IDataRecord record) { T instance = new T(); string fieldName; PropertyInfo[] properties = typeof(T).GetProperties(); for (int i = 0; i < record.FieldCount; i++) { fieldName = record.GetName(i); foreach (PropertyInfo property in properties) { if (property.Name == fieldName) { property.SetValue(instance, record[i], null); } } } return instance; } public Collection<T> MapAll(IDataReader reader) { Collection<T> collection = new Collection<T>(); while (reader.Read()) { collection.Add(Map(reader)); } return collection; } } There is another class which inherits the SqlreaderBaseClass called DefaultSearch. Code is below public class DefaultSearch: SqlReaderBase<Restaurant> { protected override string commandText { get { return "Select Name from vw_Restaurants"; } } protected override CommandType commandType { get { return CommandType.Text; } } protected override Collection<IDataParameter> GetParameters(IDbCommand command) { Collection<IDataParameter> parameters = new Collection<IDataParameter>(); parameters.Clear(); return parameters; } protected override MapperBase<Restaurant> GetMapper() { MapperBase<Restaurant> mapper = new RMapper(); return mapper; } } But whenever I tried to build , I am getting error 'T' must be a non-abstract type with a public parameterless constructor in order to use it as parameter 'T' in the generic type or method. Even T here is Restaurant has a Parameterless Public constructor.

    Read the article

  • NSArray containObjects method

    - by Anthony Chan
    Hi, I have a simple question regarding xcode coding but don't know why things are not performing as I think. I have an array of objects (custom objects). I just want to check if this one is within the array. I used the following code: NSArray *collection = [[NSArray alloc] initWithObjects:A, B, C, nil]; //custom "Item" objects Item *tempItem = [[Fruit alloc] initWithLength:1 width:2 height:3]; //3 instance variables in "Item" objects if([collection containsObject:tempItem]) { NSLog(@"collection contains this item"); } I suppose the above checking will give me a positive result but it's not. Further, I checked whether the objects created are the same. NSLog(@"L:%i W:%i H:%i", itemToCheck.length, itemToCheck.width, itemToCheck.height); for (int i = 0, i < [collection count], i++) { Item *itemInArray = [collection objectAtIndex:i]; NSLog(@"collection contains L:%i W:%i H:%i", itemInArray.length, itemInArray.width, itemInArrayheight); } In the console, this is what I got: L:1 W:2 H:3 collection contains L:0 W:0 H:0 collection contains L:1 W:2 H:3 collection contains L:6 W:8 H:2 Obviously the tempItem is inside the collection array but nothing shows up when I use containsObject: to check it. Could anyone give me some direction which part I am wrong? Thanks a lot!

    Read the article

  • Reference problem when returning an object from array in PHP

    - by avastreg
    I've a reference problem; the example should be more descriptive than me :P I have a class that has an array of objects and retrieve them through a key (string), like an associative array: class Collection { public $elements; function __construct() { $this->elements = array(); } public function get_element($key) { foreach($this->elements as $element) { if ($element->key == $key) { return $element; break; } } return null; } public function add_element ($element) { $this->elements[] = $element; } } Then i have an object (generic), with a key and some variables: class Element { public $key; public $another_var; public function __construct($key) { $this->key = $key; $this->another_var = "default"; } } Now, i create my collection: $collection = new Collection(); $collection->add_element(new Element("test1")); $collection->add_element(new Element("test2")); And then i try to change variable of an element contained in my "array": $element = $collection->get_element("test1"); $element->another_var = "random_string"; echo $collection->get_element("test1")->another_var; Ok, the output is random_string so i know that my object is passed to $element in reference mode. But if i do, instead: $element = $collection-get_element("test1"); $element = null; //or $element = new GenericObject(); $element-another_var = "bla"; echo $collection-get_element("test1")-another_var; the output is default like if it lost the reference. So, what's wrong? I have got the references to the variables of the element and not to the element itself? Any ideas?

    Read the article

  • object consisting of jQuery element

    - by Adam Kiss
    hello, current code I've built function to do something over collection of jQuery elements: var collection = $([]); //empty collection I add them with: collection = collection.add(e); and remove with: collection = collection.not(e); It's pretty straightforward solution, works nicely. problem Now, I would like to have an object consisting of various settings set to any jQuery element, i.e.: function addObject(e){ var o = { alpha: .6 //float base: {r: 255, g: 255, b: 255} //color object } e.data('settings', o); } But when I pass jQuery object/element to function (i.e. as e), calling e.data doesn't work, although it would be simplest and really nice solution. question If I have an "collection" of jQuery elements, what is the simplest way of storing some data for each element of set?

    Read the article

  • PowerShell Code Snippets for SharePoint2010 Developers

    - by ybbest
    Install solution to SharePoint Farm and activate Feature to a site collection #Please specify the solution package path. $SolutionPackagePath = “C:\ybbest\myForm.xsn” Add-SPSolution -LiteralPath $SolutionPackagePath #Please specify the site collection url. $SiteCollectionUrl=”http:// ybbest /” # Install the solution package to the SharePoint Farm Install-SPSolution -Identity ybbest.wsp -GACDeployment #Activate features in the solution package to a Site Collection Enable-SPFeature -Identity 8ed800a2-3494-4cba-adf1-ed8714cb062d -Url $SiteCollectionUrl Retract solution from SharePoint Farm and deactivate Feature to a site collection #Deactivate features from a Site Collection Disable-SPFeature -Identity 8ed800a2-3494-4cba-adf1-ed8714cb062d -Url http:// ybbest / # Uninstall the solution package to the SharePoint Farm Uninstall-SPSolution -Identity ybbest.wsp # Remove the solution package to the SharePoint Farm Remove-SPSolution -Identity ybbest.wsp Install Admin Approved InfoPath form #Please specify the template path. $InfopathFormTemplatePath = “C:\ybbest\myForm.xsn” #Please specify the site collection url. $SiteCollectionUrl=”http:// ybbest /” #Install InfoPath to the SharePoint Farm $formTemplate=Install-SPInfoPathFormTemplate -Path $InfopathFormTemplatePath #Activate InfoPath form to Site Collection Enable-SPInfoPathFormTemplate -Identity $formTemplate -Site $SiteCollectionUrl References http://technet.microsoft.com/en-us/library/ee806878.aspx http://www.wssdemo.com/Lists/PowerShell/Commands.aspx

    Read the article

  • Models, collections...and then what? Processes?

    - by Dan
    I'm a LAMP-stack dev who's been more on the JavaScript side the last few years and really enjoying the Model + Collection approach to data entities that BackboneJS, etc. uses. It's helped me organize my code in such a way that it is extremely portable, keeping all my properties and methods in the scope (model, collection, etc.) in which they apply. One thing that keeps bugging me though is how to organize the next level up, the 'process layer' as you might call it, that can potentially operate on instances of either models or collections or whatever else. Where should methods like find() (which returns a collection) and create() (which returns a model) reside? I know some people would put a create() in the Collection prototype, but while a collection operates on models I don't think it's exactly right to create them. And while a find() would return a collection I don't think it correct to have that action within the collection prototype itself (it should be a layer up). Can anyone offer some examples of any patterns that employ some kind of OOP-friendly 'process' layer? I'm sorry if this is a fairly well-known discussion but I'm afraid I can't seem to find the terminology to search for.

    Read the article

  • WSS 3.0 to SharePoint 2010: Tips for delaying the Visual Upgrade

    - by Kelly Jones
    My most recent project has been to migrate a bunch of sites from WSS 3.0 (SharePoint 2007) to SharePoint Server 2010.  The users are currently working with WSS 3.0 and Office 2003, so the new ribbon based UI in 2010 will be completely new.  My client wants to avoid the new SharePoint 2010 look and feel until they’ve had time to train their users, so we’ve been testing the upgrades by keeping them with the 2007 user interface. Permission to perform the Visual Upgrade One of the first things we noticed was the default permissions for who was allowed to switch the UI from 2007 to 2010.  By default, site collection administrators and site owners can do this.  Since we wanted to more tightly control the timing of the new UI, I added a few lines to the PowerShell script that we are using to perform the migration.  This script creates the web application, sets the User Policy, and then does a Mount-SPDatabase to attach the old 2007 content database to the 2010 farm.  I added the following steps after the Mount-SPDatabase step: #Remove the visual upgrade option for site owners # it remains for Site Collection administrators foreach ($sc in $WebApp.Sites){ foreach ($web in $sc.AllWebs){ #Visual Upgrade permissions for the site/subsite (web) $web.UIversionConfigurationEnabled = $false; $web.Update(); } } These script steps loop through each Site Collection in a particular web application ($WebApp) and then it loops through each subsite ($web) in the Site Collection ($sc) and disables the Site Owner’s permission to perform the Visual Upgrade. This is equivalent to going to the Site Collection administrator settings page –> Visual Upgrade and selecting “Hide Visual Upgrade”. Since only IT people have Site Collection administrator privileges, this will allow IT to control the timing of the new 2010 UI rollout. Newly created subsites Our next issue was brought to our attention by SharePoint Joel’s blog post last week (http://www.sharepointjoel.com/Lists/Posts/Post.aspx?ID=524 ).  In it, he lists some updates about the 2010 upgrade, and his fourth point was one that I hadn’t seen yet: 4. If a 2007 upgraded site has not been visually upgraded, the sites created underneath it will look like 2010 sites – While this is something I’ve been aware of, I think many don’t realize how this impacts common look and feel for master pages, and how it impacts good navigation and UI. As well depending on your patch level you may see hanging behavior in the list picker. The site and list creation Silverlight control in Internet Explorer is looking for resources that don’t exist in the galleries in the 2007 site, and hence it continues to spin and spin and eventually time out. The work around is to upgrade to SP1, or use Chrome or Firefox which won’t attempt to render the Silverlight control. When the root site collection is a 2007 site and has it’s set of galleries and the children are 2010 sites there is some strange behavior linked to the way that the galleries work and pull from the parent. Our production SharePoint 2010 Farm has SP1 installed, as well as the December 2011 Cumulative Update, so I think the “hanging behavior” he mentions won’t affect us. However, since we want to control the roll out of the UI, we are concerned that new subsites will have the 2010 look and feel, no matter what the parent site has. Ok, time to dust off my developer skills. I first looked into using feature stapling, but I couldn’t get that to work (although I’m pretty sure I had everything wired up correctly).  Then I stumbled upon SharePoint 2010’s web events – a great way to handle this. Using Visual Studio 2010, I created a new SharePoint project and added a Web Event Receiver: In the Event Receiver class, I used the WebProvisioned method to check if the parent site is a 2007 site (UIVersion = 3), and if so, then set the newly created site to 2007:   /// <summary> /// A site was provisioned. /// </summary> public override void WebProvisioned(SPWebEventProperties properties) { base.WebProvisioned(properties);   try { SPWeb curweb = properties.Web;   if (curweb.ParentWeb != null) {   //check if the parent website has the 2007 look and feel if (curweb.ParentWeb.UIVersion == 3) { //since parent site has 2007 look and feel // we'll apply that look and feel to the current web curweb.UIVersion = 3; curweb.Update(); } } } catch (Exception) { //TODO: Add logging for errors } }   This event is part of a Feature that is scoped to the Site Level (Site Collection).  I added a couple of lines to my migration PowerShell script to activate the Feature for any site collections that we migrate. Plan Going Forward The plan going forward is to perform the visual upgrade after the users for a particular site collection have gone through 2010 training. If we need to do several site collections at once, we’ll use a PowerShell script to loop through each site collection to update the sites to 2010.  If it’s just one or two, we’ll be using the “Update All Sites” button on the Visual Upgrade page for Site Collection Administrators. The custom code for newly created sites won’t need to be changed, since it relies on the UI version of the parent site.  If the parent is 2010, then the new site will look 2010.

    Read the article

  • Ubuntu's garbage collection cron job for PHP sessions takes 25 minutes to run, why?

    - by Lamah
    Ubuntu has a cron job set up which looks for and deletes old PHP sessions: # Look for and purge old sessions every 30 minutes 09,39 * * * * root [ -x /usr/lib/php5/maxlifetime ] \ && [ -d /var/lib/php5 ] && find /var/lib/php5/ -depth -mindepth 1 \ -maxdepth 1 -type f -cmin +$(/usr/lib/php5/maxlifetime) ! -execdir \ fuser -s {} 2> /dev/null \; -delete My problem is that this process is taking a very long time to run, with lots of disk IO. Here's my CPU usage graph: The cleanup running is represented by the teal spikes. At the beginning of the period, PHP's cleanup jobs were scheduled at the default 09 and 39 minutes times. At 15:00 I removed the 39 minute time from cron, so a cleanup job twice the size runs half as often (you can see the peaks get twice as wide and half as frequent). Here are the corresponding graphs for IO time: And disk operations: At the peak where there were about 14,000 sessions active, the cleanup can be seen to run for a full 25 minutes, apparently using 100% of one core of the CPU and what seems to be 100% of the disk IO for the entire period. Why is it so resource intensive? An ls of the session directory /var/lib/php5 takes just a fraction of a second. So why does it take a full 25 minutes to trim old sessions? Is there anything I can do to speed this up? The filesystem for this device is currently ext4, running on Ubuntu Precise 12.04 64-bit. EDIT: I suspect that the load is due to the unusual process "fuser" (since I expect a simple rm to be a damn sight faster than the performance I'm seeing). I'm going to remove the use of fuser and see what happens.

    Read the article

  • How can I manipulate a VB6 Collection in .NET?

    - by jhominal
    Hello all, I am currently in the process of designing an interface for .NET software that would be consumed by COM objects - specifically, VB6. While I have found a number of pages by Microsoft detailing how to make an COM-interoperable interface, I am currently tripping over the use of Collections in design time: I would like to be able to use a standard VB6 "Collection object" in the .NET program - for example, specify an argument as being a VB6 collection - and thus minimize the time necessary for clients to consume the interface. Thank you in advance.

    Read the article

  • Is there a way to organize a icon collection to allow for easy searching?

    - by John M
    Is there any way of organizing a icon collection so that it easier to find needed icons? For example: the program needs a save icon there are 5 icons collections on your HD that have a save icon and there are 5 more collections that don't have a save icon (but you don't know that) do you browse through each icon collection? run a search (assumes files are named consistently)? Would it be ideal to have some sort of organized directory (printable?)?

    Read the article

  • Garbage Collector not doing its job. Memory Consumption = 1.5GB & OutOFMemory Exception.

    - by imageWorker
    I'm working with images (each of size = 5MB). The following code extract some information from each image that is present in the given directory. I'm getting out of memory exception. The size of the process is around (1.5GB). I don't know why garbage collector is not freeing memory. I even tried adding GC.Collect() as last line of foreach loop. Still I'm getting 'OutOFMemory' using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading; using System.IO; using System.Drawing; using System.Drawing.Imaging; namespace TrainSVM { class Program { static void Main(string[] args) { FileStream fs = new FileStream("dg.train",FileMode.OpenOrCreate,FileAccess.Write); StreamWriter sw = new StreamWriter(fs); String[] filePathArr = Directory.GetFiles("E:\\images\\"); foreach (string filePath in filePathArr) { if (filePath.Contains("lmn")) { sw.Write("1 "); Console.Write("1 "); } else { sw.Write("1 "); Console.Write("1 "); } Bitmap originalBMP = new Bitmap(filePath); /***********************/ Bitmap imageBody; ImageBody.ImageBody im = new ImageBody.ImageBody(originalBMP); imageBody = im.GetImageBody(-1); /* white coat */ Bitmap whiteCoatBitmap = Rgb2Hsi.Rgb2Hsi.GetHuePlane(imageBody); float WhiteCoatPixelPercentage = Rgb2Hsi.Rgb2Hsi.GetWhiteCoatPixelPercentage(whiteCoatBitmap); //Console.Write("whiteDone\t"); sw.Write("1:" + WhiteCoatPixelPercentage + " "); Console.Write("1:" + WhiteCoatPixelPercentage + " "); /******************/ Quaternion.Quaternion qtr = new Quaternion.Quaternion(-15); Bitmap yellowCoatBMP = qtr.processImage(imageBody); //yellowCoatBMP.Save("yellowCoat.bmp"); float yellowCoatPixelPercentage = qtr.GetYellowCoatPixelPercentage(yellowCoatBMP); //Console.Write("yellowCoatDone\t"); sw.Write("2:" + yellowCoatPixelPercentage + " "); Console.Write("2:" + yellowCoatPixelPercentage + " "); /**********************/ Bitmap balckPatchBitmap = BlackPatchDetection.BlackPatchDetector.MarkBlackPatches(imageBody); float BlackPatchPixelPercentage = BlackPatchDetection.BlackPatchDetector.BlackPatchPercentage; //Console.Write("balckPatchDone\n"); sw.Write("3:" + BlackPatchPixelPercentage + "\n"); Console.Write("3:" + BlackPatchPixelPercentage + "\n"); balckPatchBitmap.Dispose(); yellowCoatBMP.Dispose(); whiteCoatBitmap.Dispose(); originalBMP.Dispose(); sw.Flush(); } sw.Dispose(); fs.Dispose(); } } }

    Read the article

  • Integrate SharePoint 2010 with Team Foundation Server 2010

    - by Martin Hinshelwood
    Our client is using a brand new shiny installation of SharePoint 2010, so we need to integrate our upgraded Team Foundation Server 2010 instance into it. In order to do that you need to run the Team Foundation Server 2010 install on the SharePoint 2010 server and choose to install only the “Extensions for SharePoint Products and Technologies”. We want out upgraded Team Project Collection to create any new portal in this SharePoint 2010 server farm. There a number of goodies above and beyond a solution file that requires the install, with the main one being the TFS2010 client API. These goodies allow proper integration with the creation and viewing of Work Items from SharePoint a new feature with TFS 2010. This works in both SharePoint 2007 and SharePoint 2010 with the level of integration dependant on the version of SharePoint that you are running. There are three levels of integration with “SharePoint Services 3.0” or “SharePoint Foundation 2010” being the lowest. This level only offers reporting services framed integration for reporting along with Work Item Integration and document management. The highest is Microsoft Office SharePoint Services (MOSS) Enterprise with Excel Services integration providing some lovely dashboards. Figure: Dashboards take the guessing out of Project Planning and estimation. Plus writing these reports would be boring!   The Extensions that you need are on the same installation media as the main TFS install and the only difference is the options you pick during the install. Figure: Installing the TFS 2010 Extensions for SharePoint Products and Technologies onto SharePoint 2010   Annoyingly you may need to reboot a couple of times, but on this server the process was MUCH smother than on our internal server. I think this was mostly to do with this being a clean install. Once it is installed you need to run the configuration. This will add all of the Solution and Templates that are needed for SharePoint to work properly with TFS. Figure: This is where all the TFS 2010 goodies are added to your SharePoint 2010 server and the TFS 2010 object model is installed.   Figure: All done, you have everything installed, but you still need to configure it Now that we have the TFS 2010 SharePoint Extensions installed on our SharePoint 2010 server we need to configure them both so that they will talk happily to each other. Configuring the SharePoint 2010 Managed path for Team Foundation Server 2010 In order for TFS to automatically create your project portals you need a wildcard managed path setup. This is where TFS will create the portal during the creation of a new Team project. To find the managed paths page for any application you need to first select the “Managed web applications”  link from the SharePoint 2010 Central Administration screen. Figure: Find the “Manage web applications” link under the “Application Management” section. On you are there you will see that the “Managed Paths” are there, they are just greyed out and selecting one of the applications will enable it to be clicked. Figure: You need to select an application for the SharePoint 2010 ribbon to activate.   Figure: You need to select an application before you can get to the Managed Paths for that application. Now we need to add a managed path for TFS 2010 to create its portals under. I have gone for the obvious option of just calling the managed path “TFS02” as the TFS 2010 server is the second TFS server that the client has installed, TFS 2008 being the first. This links the location to the server name, and as you can’t have two projects of the same name in two separate project collections there is unlikely to be any conflicts. Figure: Add a “tfs02” wildcard inclusion path to your SharePoint site. Configure the Team Foundation Server 2010 connection to SharePoint 2010 In order to have you new TFS 2010 Server talk to and create sites in SharePoint 2010 you need to tell the TFS server where to put them. As this TFS 2010 server was installed in out-of-the-box mode it has a SharePoint Services 3.0 (the free one) server running on the same box. But we want to change that so we can use the external SharePoint 2010 instance. Just open the “Team Foundation Server Administration Console” and navigate to the “SharePoint Web Applications” section. Here you click “Add” and enter the details for the Managed path we just created. Figure: If you have special permissions on your SharePoint you may need to add accounts to the “Service Accounts” section.    Before we can se this new SharePoint 2010 instance to be the default for our upgraded Team Project Collection we need to configure SharePoint to take instructions from our TFS server. Configure SharePoint 2010 to connect to Team Foundation Server 2010 On your SharePoint 2010 server open the Team Foundation Server Administration Console and select the “Extensions for SharePoint Products and Technologies” node. Here we need to “grant access” for our TFS 2010 server to create sites. Click the “Grant access” link and  fill out the full URL to the  TFS server, for example http://servername.domain.com:8080/tfs, and if need be restrict the path that TFS sites can be created on. Remember that when the users create a new team project they can change the default and point it anywhere they like as long as it is an authorised SharePoint location. Figure: Grant access for your TFS 2010 server to create sites in SharePoint 2010 Now that we have an authorised location for our team project portals to be created we need to tell our Team Project Collection that this is where it should stick sites by default for any new Team Projects created. Configure the Team Foundation Server 2010 Team Project Collection to create new sites in SharePoint 2010 Back on out TFS 2010 server we need to setup the defaults for our upgraded Team Project Collection to the new SharePoint 2010 integration we have just set up. On the TFS 2010 server open up the “Team Foundation Server Administration Console” again and navigate to the “Team Project Collections” node. Once you are there you will see a list of all of your TPC’s and in our case we have a DefaultCollection as well as out named and Upgraded collection for TFS 2008. If you select the “SharePoint Site” tab we can see that it is not currently configured. Figure: Our new Upgrade TFS2008 Team Project Collection does not have SharePoint configured Select to “Edit Default Site Location” and select the new integration point that we just set up for SharePoint 2010. Once you have selected the “SharePoint Web Application” (the thing we just configured) then it will give you an example based on that configuration point and the name of the Team Project Collection that we are configuring. Figure: Set the default location for new Team Project Portals to be created for this Team Project Collection This is where the reason for configuring the Extensions on the SharePoint 2010 server before doing this last bit becomes apparent. TFS 2010 is going to create a site at our http://sharepointserver/tfs02/ location called http://sharepointserver/tfs02/[TeamProjectCollection], or whatever we had specified, and it would have had difficulty doing this if we had not given it permission first. Figure: If there is no Team Project Collection site at this location the TFS 2010 server is going to create one This will create a nice Team Project Collection parent site to contain the Portals for any new Team Projects that are created. It is with noting that it will not create portals for existing Team Projects as this process is run during the Team Project Creation wizard. Figure: Just a basic parent site to host all of your new Team Project Portals as sub sites   You will need to add all of the users that will be creating Team Projects to be Administrators of this site so that they will not get an error during the Project Creation Wizard. You may also want to customise this as a proper portal to your projects if you are going to be having lots of them, but it is really just a default placeholder so you have a top level site that you can backup and point at. You have now integrated SharePoint 2010 and team Foundation Server 2010! You can now go forth and multiple your Team Projects for this Team Project Collection or you can continue to add portals to your other Collections.   Technorati Tags: TFS 2010,Sharepoint 2010,VS ALM

    Read the article

  • AutoMapper MappingFunction from Source Type of NameValueCollection

    - by REA_ANDREW
    I have had a situation arise today where I need to construct a complex type from a source of a NameValueCollection.  A little while back I submitted a patch for the Agatha Project to include REST (JSON and XML) support for the service contract.  I realized today that as useful as it is, it did not actually support true REST conformance, as REST should support GET so that you can use JSONP from JavaScript directly meaning you can query cross domain services.  My original implementation for POX and JSON used the POST method and this immediately rules out JSONP as from reading, JSONP only works with GET Requests. This then raised another issue.  The current operation contract of Agatha and one of its main benefits is that you can supply an array of Request objects in a single request, limiting the about of server requests you need to make.  Now, at the present time I am thinking that this will not be the case for the REST imlementation but will yield the benefits of the fact that : The same Request objects can be used for SOAP and RST (POX, JSON) The construct of the JavaScript functions will be simpler and more readable It will enable the use of JSONP for cross domain REST Services The current contract for the Agatha WcfRequestProcessor is at time of writing the following: [ServiceContract] public interface IWcfRequestProcessor { [OperationContract(Name = "ProcessRequests")] [ServiceKnownType("GetKnownTypes", typeof(KnownTypeProvider))] [TransactionFlow(TransactionFlowOption.Allowed)] Response[] Process(params Request[] requests); [OperationContract(Name = "ProcessOneWayRequests", IsOneWay = true)] [ServiceKnownType("GetKnownTypes", typeof(KnownTypeProvider))] void ProcessOneWayRequests(params OneWayRequest[] requests); }   My current proposed solution, and at the very early stages of my concept is as follows: [ServiceContract] public interface IWcfRestJsonRequestProcessor { [OperationContract(Name="process")] [ServiceKnownType("GetKnownTypes", typeof(KnownTypeProvider))] [TransactionFlow(TransactionFlowOption.Allowed)] [WebGet(UriTemplate = "process/{name}/{*parameters}", BodyStyle = WebMessageBodyStyle.WrappedResponse, ResponseFormat = WebMessageFormat.Json)] Response[] Process(string name, NameValueCollection parameters); [OperationContract(Name="processoneway",IsOneWay = true)] [ServiceKnownType("GetKnownTypes", typeof(KnownTypeProvider))] [WebGet(UriTemplate = "process-one-way/{name}/{*parameters}", BodyStyle = WebMessageBodyStyle.WrappedResponse, ResponseFormat = WebMessageFormat.Json)] void ProcessOneWayRequests(string name, NameValueCollection parameters); }   Now this part I have not yet implemented, it is the preliminart step which I have developed which will allow me to take the name of the Request Type and the NameValueCollection and construct the complex type which is that of the Request which I can then supply to a nested instance of the original IWcfRequestProcessor  and work as it should normally.  To give an example of some of the urls which you I envisage with this method are: http://www.url.com/service.svc/json/process/getweather/?location=london http://www.url.com/service.svc/json/process/getproductsbycategory/?categoryid=1 http://www.url.om/service.svc/json/process/sayhello/?name=andy Another reason why my direction has gone to a single request for the REST implementation is because of restrictions which are imposed by browsers on the length of the url.  From what I have read this is on average 2000 characters.  I think that this is a very acceptable usage limit in the context of using 1 request, but I do not think this is acceptable for accommodating multiple requests chained together.  I would love to be corrected on that one, I really would but unfortunately from what I have read I have come to the conclusion that this is not the case. The mapping function So, as I say this is just the first pass I have made at this, and I am not overly happy with the try catch for detecting types without default constructors.  I know there is a better way but for the minute, it escapes me.  I would also like to know the correct way for adding mapping functions and not using the anonymous way that I have used.  To achieve this I have used recursion which I am sure is what other mapping function use. As you do have to go as deep as the complex type is. public static object RecurseType(NameValueCollection collection, Type type, string prefix) { try { var returnObject = Activator.CreateInstance(type); foreach (var property in type.GetProperties()) { foreach (var key in collection.AllKeys) { if (String.IsNullOrEmpty(prefix) || key.Length > prefix.Length) { var propertyNameToMatch = String.IsNullOrEmpty(prefix) ? key : key.Substring(property.Name.IndexOf(prefix) + prefix.Length + 1); if (property.Name == propertyNameToMatch) { property.SetValue(returnObject, Convert.ChangeType(collection.Get(key), property.PropertyType), null); } else if(property.GetValue(returnObject,null) == null) { property.SetValue(returnObject, RecurseType(collection, property.PropertyType, String.Concat(prefix, property.PropertyType.Name)), null); } } } } return returnObject; } catch (MissingMethodException) { //Quite a blunt way of dealing with Types without default constructor return null; } }   Another thing is performance, I have not measured this in anyway, it is as I say the first pass, so I hope this can be the start of a more perfected implementation.  I tested this out with a complex type of three levels, there is no intended logical meaning to the properties, they are simply for the purposes of example.  You could call this a spiking session, as from here on in, now I know what I am building I would take a more TDD approach.  OK, purists, why did I not do this from the start, well I didn’t, this was a brain dump and now I know what I am building I can. The console test and how I used with AutoMapper is as follows: static void Main(string[] args) { var collection = new NameValueCollection(); collection.Add("Name", "Andrew Rea"); collection.Add("Number", "1"); collection.Add("AddressLine1", "123 Street"); collection.Add("AddressNumber", "2"); collection.Add("AddressPostCodeCountry", "United Kingdom"); collection.Add("AddressPostCodeNumber", "3"); AutoMapper.Mapper.CreateMap<NameValueCollection, Person>() .ConvertUsing(x => { return(Person) RecurseType(x, typeof(Person), null); }); var person = AutoMapper.Mapper.Map<NameValueCollection, Person>(collection); Console.WriteLine(person.Name); Console.WriteLine(person.Number); Console.WriteLine(person.Address.Line1); Console.WriteLine(person.Address.Number); Console.WriteLine(person.Address.PostCode.Country); Console.WriteLine(person.Address.PostCode.Number); Console.ReadLine(); }   Notice the convention that I am using and that this method requires you do use.  Each property is prefixed with the constructed name of its parents combined.  This is the convention used by AutoMapper and it makes sense. I can also think of other uses for this including using with ASP.NET MVC ModelBinders for creating a complex type from the QueryString which is itself is a NameValueCollection. Hope this is of some help to people and I would welcome any code reviews you could give me. References: Agatha : http://code.google.com/p/agatha-rrsl/ AutoMapper : http://automapper.codeplex.com/   Cheers for now, Andrew   P.S. I will have the proposed solution for a more complete REST implementation for AGATHA very soon. 

    Read the article

  • Imperative Programming v/s Declarative Programming v/s Functional Programming

    - by kaleidoscope
    Imperative Programming :: Imperative programming is a programming paradigm that describes computation in terms of statements that change a program state. In much the same way as the imperative mood in natural languages expresses commands to take action, imperative programs define sequences of commands for the computer to perform. The focus is on what steps the computer should take rather than what the computer will do (ex. C, C++, Java). Declarative Programming :: Declarative programming is a programming paradigm that expresses the logic of a computation without describing its control flow. It attempts to minimize or eliminate side effects by describing what the program should accomplish, rather than describing how to go about accomplishing it. The focus is on what the computer should do rather than how it should do it (ex. SQL). A  C# example of declarative v/s. imperative programming is LINQ. With imperative programming, you tell the compiler what you want to happen, step by step. For example, let's start with this collection, and choose the odd numbers: List<int> collection = new List<int> { 1, 2, 3, 4, 5 }; With imperative programming, we'd step through this, and decide what we want: List<int> results = new List<int>(); foreach(var num in collection) {     if (num % 2 != 0)           results.Add(num); } Here’s what we are doing: *Create a result collection *Step through each number in the collection *Check the number, if it's odd, add it to the results With declarative programming, on the other hand, we write the code that describes what you want, but not necessarily how to get it var results = collection.Where( num => num % 2 != 0); Here, we're saying "Give us everything where it's odd", not "Step through the collection. Check this item, if it's odd, add it to a result collection." Functional Programming :: Functional programming is a programming paradigm that treats computation as the evaluation of mathematical functions and avoids state and mutable data. It emphasizes the application of functions.Functional programming has its roots in the lambda calculus. It is a subset of declarative languages that has heavy focus on recursion. Functional programming can be a mind-bender, which is one reason why Lisp, Scheme, and Haskell have never really surpassed C, C++, Java and COBOL in commercial popularity. But there are benefits to the functional way. For one, if you can get the logic correct, functional programming requires orders of magnitude less code than imperative programming. That means fewer points of failure, less code to test, and a more productive (and, many would say, happier) programming life. As systems get bigger, this has become more and more important. To know more : http://stackoverflow.com/questions/602444/what-is-functional-declarative-and-imperative-programming http://msdn.microsoft.com/en-us/library/bb669144.aspx http://en.wikipedia.org/wiki/Imperative_programming   Technorati Tags: Ranjit,Imperative Programming,Declarative programming,Functional Programming

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

< Previous Page | 37 38 39 40 41 42 43 44 45 46 47 48  | Next Page >