Search Results

Search found 14850 results on 594 pages for 'full decent'.

Page 415/594 | < Previous Page | 411 412 413 414 415 416 417 418 419 420 421 422  | Next Page >

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Older SAS1 hardware Vs. newer SAS2 hardware

    - by user12620172
    I got a question today from someone asking about the older SAS1 hardware from over a year ago that we had on the older 7x10 series. They didn't leave an email so I couldn't respond directly, but I said this blog would be blunt, frank, and open so I have no problem addressing it publicly. A quick history lesson here: When Sun first put out the 7x10 family hardware, the 7410 and 7310 used a SAS1 backend connection to a JBOD that had SATA drives in it. This JBOD was not manufactured by Sun nor did Sun own the IP for it. Now, when Oracle took over, they had a problem with that, and I really can’t blame them. The decision was made to cut off that JBOD and it’s manufacturer completely and use our own where Oracle controlled both the IP and the manufacturing. So in the summer of 2010, the cut was made, and the 7410 and 7310 had a hardware refresh and now had a SAS2 backend going to a SAS2 JBOD with SAS2 drives instead of SATA. This new hardware had two big advantages. First, there was a nice performance increase, mostly due to the faster backend. Even better, the SAS2 interface on the drives allowed for a MUCH faster failover between cluster heads, as the SATA drives were the bottleneck on the older hardware. In September of 2010 there was a major refresh of the rest of the 7000 hardware, the controllers and the other family members, and that’s where we got today’s current line-up of the 7x20 series. So the 7x20 has always used the new trays, and the 7410 and 7310 have used the new SAS2 trays since last July of 2010. Now for the bad news. People who have the 7410 and 7310 from BEFORE the July 2010 cutoff have the models with SAS1 HBAs in them to connect to the older SAS1 trays. Remember, that manufacturer cut all ties with us and stopped making the JBOD, so there’s just no way to get more of them, as they don’t exist. There are some options, however. Oracle support does support taking out the SAS1 HBAs in the old 7410 and 7310 and put in newer SAS2 HBAs which can talk to the new trays. Hey, I didn’t say it was a great option, I just said it’s an option. I fully realize that you would then have a SAS1 JBOD full of SATA drives that you could no longer connect. I do know a client that did this, and took the SAS1 JBOD and connected it to another server and formatted the drives and is using it as a plain, non-7000 JBOD. This is not supported by Oracle support. The other option is to just keep it as-is, as it works just fine, but you just can’t expand it. Then you can get a newer 7x20 series, and use the built-in ZFSSA replication feature to move the data over. Now you can use the newer one for your production data and use the older one for DR, snaps and clones.

    Read the article

  • ARM TechCon 2013: Oracle, ARM expand collaboration on servers, Internet of Things

    - by Henrik Stahl
    If you have been following Java news, you are already aware of the fact that there has been a lot of investment in Java for ARM-based devices and servers over the last couple of years (news, more news, even more, and lots more). We have released Java ME Embedded binaries for ARM Cortex-M micro controllers, Java SE Embedded for ARM application processors, and a port of the Oracle JDK for ARM-based servers. We have been making Java available to the Beagleboard, Raspberry Pi and Lego Mindstorms/LeJOS communities and worked with them and the Java User Groups to evangelize Java as a great development environment for IoT devices. We have announced commercial relationships with Freescale, Qualcomm, Gemalto M2M, SIMCom to name a few. ARM and Freescale on their side have joined the JCP, recently been voted in as members of the Executive Committee, and have worked with Oracle to evangelize Java in their ecosystem. It is with this background, Nandini Ramani, Vice President, Java Platform at Oracle, announced a expanded collaboration with ARM in a TechCon 2013 keynote titled "Enabling Compelling Services for IoT". To summarize the announcement: ARM and Oracle will work together on interoperability between the ARM Sensinode communications stack (based on CoAP, DTLS and 6LoWPAN) and Oracle's Java ME, Java SE and middleware products. ARM will donate the Sensinode CoAP protocol engine to OpenJDK to stimulate broad adoption of the CoAP protocol, and work with Oracle to extend the relevant Java specifications with CoAP support. CoAP (Constrained Application Protocol) is an IETF specification that provides a low-bandwidth request/response protocol suitable for IoT applications. ARM will work with Oracle and Freescale to enable the mbed Hardware Abstraction Layer (HAL) to act as a portability layer for Java ME Embedded. Oracle will enable mbed as a tier one platform for Java ME Embedded. Over time, this effort will allow any mbed-enabled platforms (mostly based on Cortex-M microcontrollers) to work with off the shelf Java ME Embedded binaries, extending the reach of Java ME into IoT edge nodes. In Nandini's keynote, Oracle showed a roadmap to port the Oracle JDK for Linux on 64-bit ARMv8 servers in the 2015 time frame, preceded by an extended early access program. We expect this binary to have full feature parity with Oracle JDK on other platforms, and be available under the same royalty-free license. This effort has been going on for some time, but is now accelerated due to availability of hardware from Applied Micro. Oracle will be working with Applied Micro on the ARMv8 port, and on optimizing Java for their X-Gene products. Oracle and ARM will work closely on IoT architecture, and on evangelizing Java on ARM for both servers and IoT devices. These announcements reinforce Java's position as a first-class citizen in the ARM ecosystem, and signal a commitment from us to collaborate on driving standards and open ecosystem for the Internet of Things. If you are active in this area and not already in touch with us, or interested in learning more - please reach out to us!

    Read the article

  • WPF vs. WinForms - a Delphi programmer's perspective?

    - by Robert Oschler
    I have read most of the major threads on WPF vs. WinForms and I find myself stuck in the unfortunate ambivalence you can fall into when deciding between the tried and true previous tech (Winforms), and it's successor (WPF). I am a veteran Delphi programmer of many years that is finally making the jump to C#. My fellow Delphi programmers out there will understand that I am excited to know that Anders Hejlsberg, of Delphi fame, was the architect behind C#. I have a strong addiction to Delphi's VCL custom components, especially those involved in making multi-step Wizards and components that act as a container for child components. With that background, I am hoping that those of you that switched from Delphi to C# can help me with my WinForms vs. WPF decision for writing my initial applications. Note, I am very impatient when coding and things like full fledged auto-complete and proper debugger support can make or break a project for me, including being able to find readily available information on API features and calls and even more so, workarounds for bugs. The SO threads and comments in the early 2009 date range give me great concern over WPF when it comes to potential frustrations that could mar my C# UI development coding. On the other hand, spending an inordinate amount of time learning an API tech that is, even if it is not abandoned, soon to be replaced (WinForms), is equally troubling and I do find the GPU support in WPF tantalizing. Hence my ambivalence. Since I haven't learned either tech yet I have a rare opportunity to get a fresh start and not have to face the big "unlearning" curve I've seen people mention in various threads when a WinForms programmer makes the move to WPF. On the other hand, if using WPF will just be too frustrating or have other major negative consequences for an impatient RAD developer like myself, then I'll just stick with WinForms until WPF reaches the same level of support and ease of use. To give you a concrete example into my psychology as a programmer, I used VB and subsequently Delphi to completely avoid altogether the very real pain of coding with MFC, a Windows UI library that many developers suffered through while developing early Windows apps. I have never regretted my luck in avoiding MFC. It would also be comforting to know if Anders Hejlsberg had a hand in the architecture of WPF and/or WinForms, and if there are any disparities in the creative vision and ease of use embodied in either code base. Finally, for the Delphi programmers again, let me know how much "IDE schock" I'm in for when using WPF as opposed to WinForms, especially when it comes to debugger support. Any job market comments updated for 2011 would be appreciated too. -- roschler

    Read the article

  • Oracle WebCenter Portal: Pagelet Producer – What’s New in 11.1.1.6.0 Release

    - by kellsey.ruppel
    Igor Plyakov, Sr. Principal Product Marketing Manager is back to share what's new in Oracle WebCenter Portal: Pagelet Producer. In February 2012 Oracle released 11g Release 1 (11.1.1.6.0) for WebCenter Portal. Pagelet Producer (aka Ensemble) that came out with this release added support for several new capabilities that are described in this post. As of 11.1.1.5.0 release the Pagelet Producer can expose WSRP and JPDK portlets as pagelets that can then be consumed in any portal or any third-party application that does not have a WSRP consumer. Now Pagelet Producer team is working on simplifying use of pagelets in WebCenter Sites. To expose WSRP portlets a new Producer should be registered with Pagelet Producer which can be done using Enterprise Manager, WLST or the Pagelet Producer Administration Console (for details see Section 25.9 of Administrator’s Guide for Oracle WebCenter Portal). If the producer requires authentication, Pagelet Producer allows you to select and use one of standard WSS token profiles.  After registration is finished a new resource is created and automatically populated with pagelets that represent the portlets associated with the WSRP endpoint.  For 11.1.1.6.0 release we completed extensive testing of consuming all WebCenter Services that are exposed as WSRP portlets by E2.0 Producer and delivery them as pagelets to WebCenter Interaction portal. In Pagelet Producer 11.1.1.6.0 release we added OpenSocial container that allows consuming gadgets from other OpenSocial containers, e.g. iGoogle, and expose them as pagelets. You can also use Pagelet Producer to host OpenSocial gadgets that could leverage OpenSocial APIs that it supports – People, Activities, Appdata and Pub-Sub features. Note that People and Activities expose the People Connections and Activity Stream from WebCenter Portal, i.e. to use these features Pagelet Producer requires connection to WebCenter Portal schema. Pub-Sub allows leveraging OpenAJAX Hub API for inter-gadget communication. In addition to these major new additions in Pagelet Producer 11.1.1.6.0 release we also extended several functional modules: The Clipping module was extended to support clipping of multiple regions on web resource page and then re-assembly of these separately clipped regions into a single pagelet. The auto-login feature can now be applied to web resources protected with Kerberos authentication; you would find this new functionality handy for consuming SharePoint web parts The logging module now supports full HTTP traffic between the Pagelet Producer and proxied web resource. At last, as the rest of WebCenter Portal stack the Pagelet Producer 11.1.1.6.0 can run on IBM WebSphere Application Server.

    Read the article

  • Desktop Fun: Triple Monitor Wallpaper Collection Series 1

    - by Asian Angel
    Triple monitor setups provide spacious amounts of screen real-estate but can be extremely frustrating to find good wallpapers for. Today we present the first in a series of wallpaper collections to help decorate your triple monitor setup with lots of wallpaper goodness. Note: Click on the picture to see the full-size image—these wallpapers vary in size so you may need to crop, stretch, or place them on a colored background in order to best match them to your screen’s resolution. Special Note: The screen resolution sizes available for each of these wallpapers has been included to help you match them up to your individual settings as easily as possible. All images shown here are thumbnail screenshots of the largest size available for download. Available in the following resolutions: 3840*1024, 4096*1024, 4320*900, 4800*1200, 5040*1050, and 5760*1200. Available in the following resolutions: 4800*1200. Available in the following resolutions: 3840*960, 3840*1024, 4096*1024, 4320*900, and 4800*1200. Available in the following resolutions: 3840*960, 3840*1024, 4096*1024, 4320*900, and 4800*1200. Available in the following resolutions: 3840*960, 3840*1024, 4096*1024, 4320*900, 4800*1200, 5040*1050, and 5760*1200. Available in the following resolutions: 3840*960, 3840*1024, 4096*1024, 4320*900, and 4800*1200. Available in the following resolutions: 3840*960, 3840*1024, 4096*1024, 4320*900, 4800*1200, and 5040*1050. Available in the following resolutions: 3840*960, 3840*1024, 4096*1024, 4320*900, 4800*1200, and 5040*1050. Available in the following resolutions: 3840*960, 3840*1024, 4096*1024, 4320*900, and 4800*1200. Available in the following resolutions: 3840*960, 3840*1024, 4096*1024, 4320*900, 4800*1200, and 5040*1050. Available in the following resolutions: 3840*960, 3840*1024, 4096*1024, 4800*1200, and 5040*1050. Available in the following resolutions: 3840*960, 3840*1024, 4096*1024, 4320*900, 4800*1200, 5040*1050, 5760*1200, and 7680*1600. Available in the following resolutions: 3840*960, 3840*1024, 4096*1024, 4320*900, 4800*1200, 5040*1050, and 5760*1200. Available in the following resolutions: 5760*1200. Available in the following resolutions: 5760*1200. More Triple Monitor Goodness Beautiful 3 Screen Multi-Monitor Space Wallpaper Span the same wallpaper across multiple monitors or use a different wallpaper for each. Dual Monitors: Use a Different Wallpaper on Each Desktop in Windows 7, Vista or XP For more wallpapers be certain to see our great collections in the Desktop Fun section. Latest Features How-To Geek ETC How to Upgrade Windows 7 Easily (And Understand Whether You Should) The How-To Geek Guide to Audio Editing: Basic Noise Removal Install a Wii Game Loader for Easy Backups and Fast Load Times The Best of CES (Consumer Electronics Show) in 2011 The Worst of CES (Consumer Electronics Show) in 2011 HTG Projects: How to Create Your Own Custom Papercraft Toy Firefox 4.0 Beta 9 Available for Download – Get Your Copy Now The Frustrations of a Computer Literate Watching a Newbie Use a Computer [Humorous Video] Season0nPass Jailbreaks Current Gen Apple TVs IBM’s Jeopardy Playing Computer Watson Shows The Pros How It’s Done [Video] Tranquil Juice Drop Abstract Wallpaper Pulse Is a Sleek Newsreader for iOS and Android Devices

    Read the article

  • WPF vs. WinForms - a Delphi programmer's perspective?

    - by Robert Oschler
    Hello all. I have read most of the major threads on WPF vs. WinForms and I find myself stuck in the unfortunate ambivalence you can fall into when deciding between the tried and true previous tech (Winforms), and it's successor (WPF). I am a veteran Delphi programmer of many years that is finally making the jump to C#. My fellow Delphi programmers out there will understand that I am excited to know that Anders Hejlsberg, of Delphi fame, was the architect behind C#. I have a strong addiction to Delphi's VCL custom components, especially those involved in making multi-step Wizards and components that act as a container for child components. With that background, I am hoping that those of you that switched from Delphi to C# can help me with my WinForms vs. WPF decision for writing my initial applications. Note, I am very impatient when coding and things like full fledged auto-complete and proper debugger support can make or break a project for me, including being able to find readily available information on API features and calls and even more so, workarounds for bugs. The SO threads and comments in the early 2009 date range give me great concern over WPF when it comes to potential frustrations that could mar my C# UI development coding. On the other hand, spending an inordinate amount of time learning an API tech that is, even if it is not abandoned, soon to be replaced (WinForms), is equally troubling and I do find the GPU support in WPF tantalizing. Hence my ambivalence. Since I haven't learned either tech yet I have a rare opportunity to get a fresh start and not have to face the big "unlearning" curve I've seen people mention in various threads when a WinForms programmer makes the move to WPF. On the other hand, if using WPF will just be too frustrating or have other major negative consequences for an impatient RAD developer like myself, then I'll just stick with WinForms until WPF reaches the same level of support and ease of use. To give you a concrete example into my psychology as a programmer, I used VB and subsequently Delphi to completely avoid altogether the very real pain of coding with MFC, a Windows UI library that many developers suffered through while developing early Windows apps. I have never regretted my luck in avoiding MFC. It would also be comforting to know if Anders Hejlsberg had a hand in the architecture of WPF and/or WinForms, and if there are any disparities in the creative vision and ease of use embodied in either code base. Finally, for the Delphi programmers again, let me know how much "IDE schock" I'm in for when using WPF as opposed to WinForms, especially when it comes to debugger support. Any job market comments updated for 2011 would be appreciated too. -- roschler

    Read the article

  • Effectively implementing a game view using java

    - by kdavis8
    I am writing a 2d game in java. The game mechanics are similar to the Pokémon game boy advance series e.g. fire red, ruby, diamond and so on. I need a way to draw a huge map maybe 5000 by 5000 pixels and then load individual in game sprites to across the entirety of the map, like rendering a scene. Game sprites would be things like terrain objects, trees, rocks, bushes, also houses, castles, NPC's and so on. But i also need to implement some kind of camera view class that focuses on the player. the camera view class needs to follow the characters movements throughout the game map but it also needs to clip the rest of the map away from the user's field of view, so that the user can only see the arbitrary proximity adjacent to the player's sprite. The proximity's range could be something like 500 pixels in every direction around the player’s sprite. On top of this, i need to implement an independent resolution for the game world so that the game view will be uniform on all screen sizes and screen resolutions. I know that this does sound like a handful and may fall under the category of multiple questions, but the questions are all related and any advice would be very much appreciated. I don’t need a full source code listing but maybe some pointers to effective java API classes that could make doing what i need to do a lot simpler. Also any algorithmic/ design advice would greatly benefit me as well. example of what i am trying to do in source code form below package myPackage; /** * The Purpose of GameView is to: Render a scene using Scene class, Create a * clipping pane using CameraView class, and finally instantiate a coordinate * grid using Path class. * * Once all of these things have been done, GameView class should then be * instantiated and used jointly with its helper classes. CameraView should be * used as the main drawing image. CameraView is the the window to the game * world.Scene passes data constantly to CameraView so that the entire map flows * smoothly. Path uses the x and y coordinates from camera view to construct * cells for path finding algorithms. */ public class GameView { // Scene is a helper class to game view. it renders the entire map to memory // for the camera view. Scene scene; // Camera View is a helper class to game view. It clips the Scene into a // small image that follows the players coordinates. CameraView Camera; // Path is a helper class to game view. It observes and calculates the // coordinates of camera view and divides them into Grids/Cells for Path // finding. Path path; // this represents the player and has a getSprite() method that will return // the current frame column row combination of the passed sprite sheet. Sprite player; }

    Read the article

  • Emperors don’t come cheap

    - by RoyOsherove
    “Sorry” I replied in a polite email. “Maybe next year, when budgets allow for this”. It was addressed to the organizer of TechEd US, which was to be in New Orleans this year. Man, I would have loved to be in new Orleans this year, but, I guess these guys only understand one language – and I won’t be their puppy any more. You see, they wouldn’t pay for my business class flight to TechEd from Israel. Me– the great emperor of unit testing?! travelling coach for 12 hours? No thanks. I have better things to do! And this is after last year, they only invited me to have one talk throughout the conference. one talk. After the year before I was on the top ten speakers list of that conference?! No sir! They did give it a good try, though. They said they can pay up to 4,000$ per flight cost for me, and that they only found a flight at about 5460$. “Unacceptable” I told them when they asked if I would pay the difference. And that was that. Goodbye teched. As I closed up gmail, wondering if I should have told them that I found a similar flight at 4,300$, and came back to the living room, I told my wife, all full of myself “I just canceled teched”. “Oh good” she said. Not even looking at me as she tried to feed our one year old. “did you tell them you need to cancel because you already have another flight that month and your wife won’t let you travel more than once a month anymore?” “Yeah right” I said. Just what I need – for people to realize I’m totally whipped. I still need an ounce of dignity. “I told those bastards that if they want me they have to make an effort. People like me don’t come cheap, you know?” “You’re an idiot for not telling them the real reason.” She handed me the baby.  “What if they found a flight that matches their budget? How would you have gotten away from that engagement?” . She put on “Lost” on the media center and sat next to me. I did not reply.

    Read the article

  • Oracle Linux Training Calendar

    - by Antoinette O'Sullivan
    The Oracle Linux System Administrator Curriculum is designed to provide you with the knowledge and skills necessary to effectively administer an Oracle Linux environment. These classes will help you prepare to install, configure, and manage your enterprise Linux environment as well as prepare you for the Oracle Linux Certification. You can take these courses as a: Live-Virtual event: Following the instructor-led classes from your own desk - no travel required. There is an extensive list of events on the schedule to suit different timezones. See full list on http://oracle.com/education/linux. In-Class event: Travel to an education center to take these classes. Below is a sample of in-class events on the schedule: Unix and Linux Essentials: This 3-day class is for those new to the linux operating system. You learn to manage files & directories from the command line, perform remote connections, file transfers & more.  Location  Date  Delivery Language  Nairobi, Kenya  3 December 2012  English  Riyadh, Saudia Arabia  5 January 2013  English  Cape Town, South Africa  9 January 2013  English  Durban, South Africa  9 January 2013  English  Johannesburg, South Africa  9 January 2013  English  Woodmead, South Africa  15 July 2013  English  Denver, United States  23 January 2013  English  Columbia, United States  2 January 2013  English  East Lansing, United States  9 January 2013  English  Roseville, United States  1 April 2013  English  Morrisville, United States  11 February 2013  English  Jakarta, Indonesia  26 December 2012  English  Kuala Lumpur, Malaysia  29 January 2013  English  Auckland, New Zealand  12 December 2012  English  Makati City, Philippines  14 January 2013  English  Singapore  13 February 2013  English  North Sydney, Australia  4 February 2013  English  Brisbane, Australia  29 April 2013  English  Melbourne, Australia  29 January 2013  English Oracle Linux System Administration: This 5 day course covers a broad range of Oracle Linux system administration tasks, from installing the operating system to preparing the system for Oracle Database. The course also provides an extensive hands-on experience for key system administration tasks. You will gain comprehensive skills in installing, configuring, and managing an Oracle Linux system as well as insight into ULN, Ksplice and UEK.  Location  Date  Delivery Language  Brussels, Belgium  26 November 2012  English  Windhof, Luxembourg  17 December 2012  English  Utrecht, Netherlands  11 February 2013  Dutch  Warsaw, Poland  25 February 2013  Polish  Gabarone, Botswana  22 April 2013  English  Nairobi, Kenya  10 December 2012  English  Johannesburg, South Africa  11 March 2013  English  Belmont, CA, United States  11 February 2013  English  Irvine, CA, United States  25 March 2013  English  Roseville, MN, United States  26 November 2013  English  Irving, TX, United States  14 January 2013  English  Jakarta, Indonesia  3 December 2012  English  Singapore  26 November 2012  English  Canberra, Australia  21 January 2013  English  Sydney, Australia  21 January 2013  English  Melbourne, Australia  11 February 2013  English To test your Oracle Linux System Administration skills, take the Oracle Linux 6 Implementation Essentials Certification Exam. For more information on the Oracle Linux Curriculum or to express interest in additional events, go to http://oracle.com/education/linux.

    Read the article

  • Q&amp;A: Can you develop for the Windows Azure Platform using Windows XP?

    - by Eric Nelson
    This question has come up several times recently as we take several hundred UK developers through 6 Weeks of Windows Azure training (sorry – we are full). Short answer: In the main, yes Longer answer: The question is sparked by the requirements as stated on the Windows Azure SDK download page. Namely: Supported Operating Systems: Windows 7; Windows Vista; Windows Vista 64-bit Editions Service Pack 1; Windows Vista Business; Windows Vista Business 64-bit edition; Windows Vista Enterprise; Windows Vista Enterprise 64-bit edition; Windows Vista Home Premium; Windows Vista Home Premium 64-bit edition; Windows Vista Service Pack 1; Windows Vista Service Pack 2; Windows Vista Ultimate; Windows Vista Ultimate 64-bit edition Notice there is no mention of Windows XP. However things are not quite that simple. The Windows Azure Platform consists of three released technologies Windows Azure SQL Azure Windows Azure platform AppFabric The Windows Azure SDK is only for one of the three technologies, Windows Azure. What about SQL Azure and AppFabric? Well it turns out that you can develop for both of these technologies just fine with Windows XP: SQL Azure development is really just SQL Server development with a few gotchas – and for local development you can simply use SQL Server 2008 R2 Express (other versions will also work). AppFabric also has no local simulation environment and the SDK will install fine on Windows XP (SDK download) Actually it is also possible to do Windows Azure development on Windows XP if you are willing to always work directly against the real Azure cloud running in Microsoft datacentres. However in practice this would be painful and time consuming, hence why the Windows Azure SDK installs a local simulation environment. Therefore if you want to develop for Windows Azure I would recommend you either upgrade from Windows XP to Windows 7 or… you use a virtual machine running Windows 7. If this is a temporary requirement, then you could consider building a virtual machine using the Windows 7 Enterprise 90 day eval. Or you could download a pre-configured VHD – but I can’t quite find the link for a Windows 7 VHD. Pointers welcomed. Thanks.

    Read the article

  • June Oracle Technology Network NEW Member Benefits - books books and more books!!!

    - by Cassandra Clark
    As we mentioned a few posts ago we are working to bring Oracle Technology Network members NEW benefits each month. Listed below are several discounts on technology books brought to you by Apress, Pearson, CRC Press and Packt Publishing. Happy reading!!! Apress Offers - Get 50% off the eBook below using promo code ORACLEJUNEJCCF. Pro ODP.NET for Oracle Database 11g By Edmund T. Zehoo This book is a comprehensive and easy-to-understand guide for using the Oracle Data Provider (ODP) version 11g on the .NET Framework. It also outlines the core GoF (Gang of Four) design patterns and coding techniques employed to build and deploy high-impact mission-critical applications using advanced Oracle database features through the ODP.NET provider. Pearson Offers - Get 35% off all titles listed below using code OTNMEMBER. SOA Design Patterns | Thomas Earl | ISBN: 0136135161 In cooperation with experts and practitioners throughout the SOA community, best-selling author Thomas Erl brings together the de facto catalog of design patterns for SOA and service-orientation. Oracle Performance Survival Guide | Guy Harrison | ISBN: 9780137011957 The fast, complete, start-to-finish guide to optimizing Oracle performance. Core JavaServer Faces, Third Edition | David Geary and Cay S. Horstmann | ISBN: 9780137012893 Provides everything you need to master the powerful and time-saving features of JSF 2.0? Solaris Security Essentials | ISBN: 9780137012336 A superb guide to deploying and managing secure computer environments.? Effective C#, Second Edition | Bill Wagner | ISBN: 9780321658708 Respected .NET expert Bill Wagner identifies fifty ways you can leverage the full power of the C# 4.0 language to express your designs concisely and clearly. CRC Press Offers - Use 813DA to get 20% off this the title below. Secure and Resilient Software Development This book illustrates all phases of the secure software development life cycle. It details quality software development strategies that stress resilience requirements with precise, actionable, and ground-level inputs. Packt Publishing Offers - Use the promo code "Java35June", to save 35% off of each eBook mentioned below. JSF 2.0 Cookbook By Anghel Leonard ISBN: 978-1-847199-52-2 Packed with fast, practical solutions and techniques for JavaServer Faces developers who want to push past the JSF basics. JavaFX 1.2 Application Development Cookbook By Vladimir Vivien ISBN: 978-1-847198-94-5 Fast, practical solutions and techniques for building powerful, responsive Rich Internet Applications in JavaFX.

    Read the article

  • Windows Phone 7 Design using Expression Blend - Resources

    - by Nikita Polyakov
    I’ve been doing a series of talks across Florida regarding Windows Phone 7 Design using Microsoft Expression Blend 4. I discuss the WP7 phone and application experience; show how to use Expression Blend toolset to effectively design such apps. Next presentation is on 5/4/2010 at 6:30PM EST will be a webcast format over LiveMeeting at Ft. Lauderdale Online group. Registration and the LiveMeeting link are both here: http://www.fladotnet.com/Reg.aspx?EventID=459 [I will post a link if it’s recorded]   Here are the resources from my presentations: The Biggest source is the Windows Phone UI and Design Language video from MIX10 Windows Phone 7 Design Guide as it’s found on the WP7 Dev Home Page Study The Silverlight Mobile Tutorials on official Silverlight website I will be blogging a separate entry for a new demo app that will showcase the elements I presented. I suggest you actually watch all of the MIX videos about SL and Design as great primer to get you thinking the WP7 way.   A lot happening with WP7Dev and it’s just the beginning! So watch these Twitter accounts and blogs: @Ckindel - Charlie Kindel - WP7 Dev Head http://blogs.msdn.com/ckindel @WP7Dev - Official Dev Twitter @WP7 - Official WP7 Twitter Peter Torr - http://blogs.msdn.com/ptorr Mike Harsh - http://blogs.msdn.com/mharsh Shawn Oster - http://www.shawnoster.com   Other worthwhile mention my local friends speaking and blogging about Windows Phone 7: Bill Reiss is doing great presentations on Building games with XNA for Windows Phone 7. Be on the lookout for those around Florida. Bill is a Silverlight MVP and has a legacy of XNA and Silverlight games, see his site. Kevin Wolf aka ByteMaster he is a Device Application Developer MVP with tremendous experience building mobile applications. He has developed WinMo-GF a multi-platform gaming framework. Get these tools and get creating! You will need the following components installed in this order: Expression Blend 4 Beta Windows Phone Developer Tools Microsoft Expression Blend Add-in Preview for Windows Phone Microsoft Expression Blend SDK Preview for Windows Phone Want more training? Don’t forget that Channel 9 has complete walkthroughs of their WP7 Training Kit posted online. PS: To continue with all this design talk check out Microsoft .toolbox “Learn to create Silverlight applications using Expression Studio and to apply fundamental design principles.” A great website with a lot of design tutorials set up as a wonderful full course on design all for free, including a great forum community and neat little avatars you can build yourself.

    Read the article

  • Print SSRS Report / PDF automatically from SQL Server agent or Windows Service

    - by Jeremy Ramos
    Originally posted on: http://geekswithblogs.net/JeremyRamos/archive/2013/10/22/print-ssrs-report--pdf-from-sql-server-agent-or.aspxI have turned the Web upside-down to find a solution to this considering the least components and least maintenance as possible to achieve automated printing of an SSRS report. This is for the reason that we do not have a full software development team to maintain an app and we have to minimize the support overhead for the support team.Here is my setup:SQL Server 2008 R2 in Windows Server 2008 R2PDF format reports generated by SSRS Reports subscriptions to a Windows File ShareNetwork printerColoured reports with logo and brandingI have found and tested the following solutions to no avail:ProsConsCalling Adobe Acrobat Reader exe: "C:\Program Files (x86)\Adobe\Reader 11.0\Reader\acroRd32.exe" /n /s /o /h /t "C:\temp\print.pdf" \\printserver\printername"Very simple optionAdobe Acrobat reader requires to launch the GUI to send a job to a printer. Hence, this option cannot be used when printing from a service.Calling Adobe Acrobat Reader exe as a process from a .NET console appA bit harder than above, but still a simple solutionSame as cons abovePowershell script(Start-Process -FilePath "C:\temp\print.pdf" -Verb Print)Very simple optionUses default PDF client in quiet mode to Print, but also requires an active session.    Foxit ReaderVery simple optionRequires GUI same as Adobe Acrobat Reader Using the Reporting Services Web service to run and stream the report to an image object and then passed to the printerQuite complexThis is what we're trying to avoid  After pulling my hair out for two days, testing and evaluating the above solutions, I ended up learning more about printers (more than ever in my entire life) and how printer drivers work with PostScripts. I then bumped on to a PostScript interpreter called GhostScript (http://www.ghostscript.com/) and then the solution starts to get clearer and clearer.I managed to achieve a solution (maybe not be the simplest but efficient enough to achieve the least-maintenance-least-components goal) in 3-simple steps:Install GhostScript (http://www.ghostscript.com/download/) - this is an open-source PostScript and PDF interpreter. Printing directly using GhostScript only produces grayscale prints using the laserjet generic driver unless you save as BMP image and then interpret the colours using the imageInstall GSView (http://pages.cs.wisc.edu/~ghost/gsview/)- this is a GhostScript add-on to make it easier to directly print to a Windows printer. GSPrint automates the above  PDF -> BMP -> Printer Driver.Run the GSPrint command from SQL Server agent or Windows Service:"C:\Program Files\Ghostgum\gsview\gsprint.exe" -color -landscape -all -printer "printername" "C:\temp\print.pdf"Command line options are here: http://pages.cs.wisc.edu/~ghost/gsview/gsprint.htmAnother lesson learned is, since you are calling the script from the Service Account, it will not necessarily have the Printer mapped in its Windows profile (if it even has one). The workaround to this is by adding a local printer as you normally would and then map this printer to the network printer. Note that you may need to install the Printer Driver locally in the server.So, that's it! There are many ways to achieve a solution. The key thing is how you provide the smartest solution!

    Read the article

  • Slides and Code from my Silverlight MVVM Talk at DevConnections

    - by dwahlin
    I had a great time at the DevConnections conference in Las Vegas this year where Visual Studio 2010 and Silverlight 4 were launched. While at the conference I had the opportunity to give a full-day Silverlight workshop as well as 4 different talks and met a lot of people developing applications in Silverlight. I also had a chance to appear on a live broadcast of Channel 9 with John Papa, Ward Bell and Shawn Wildermuth, record a video with Rick Strahl covering jQuery versus Silverlight and record a few podcasts on Silverlight and ASP.NET MVC 2.  It was a really busy 4 days but I had a lot of fun chatting with people and hearing about different business problems they were solving with ASP.NET and/or Silverlight. Thanks to everyone who attended my sessions and took the time to ask questions and stop by to talk one-on-one. One of the talks I gave covered the Model-View-ViewModel pattern and how it can be used to build architecturally sound applications. Topics covered in the talk included: Understanding the MVVM pattern Benefits of the MVVM pattern Creating a ViewModel class Implementing INotifyPropertyChanged in a ViewModelBase class Binding a ViewModel declaratively in XAML Binding a ViewModel with code ICommand and ButtonBase commanding support in Silverlight 4 Using InvokeCommandBehavior to handle additional commanding needs Working with ViewModels and Sample Data in Blend Messaging support with EventBus classes, EventAggregator and Messenger My personal take on code in a code-beside file (I’m all in favor of it when used appropriately for message boxes, child windows, animations, etc.) One of the samples I showed in the talk was intended to teach all of the concepts mentioned above while keeping things as simple as possible.  The sample demonstrates quite a few things you can do with Silverlight and the MVVM pattern so check it out and feel free to leave feedback about things you like, things you’d do differently or anything else. MVVM is simply a pattern, not a way of life so there are many different ways to implement it. If you’re new to the subject of MVVM check out the following resources. I wish this talk would’ve been recorded (especially since my live and canned demos all worked :-)) but these resources will help get you going quickly. Getting Started with the MVVM Pattern in Silverlight Applications Model-View-ViewModel (MVVM) Explained Laurent Bugnion’s Excellent Talk at MIX10     Download sample code and slides from my DevConnections talk     For more information about onsite, online and video training, mentoring and consulting solutions for .NET, SharePoint or Silverlight please visit http://www.thewahlingroup.com.

    Read the article

  • Setting up a local AI server - easy with Solaris 11

    - by Stefan Hinker
    Many things are new in Solaris 11, Autoinstall is one of them.  If, like me, you've known Jumpstart for the last 2 centuries or so, you'll have to start from scratch.  Well, almost, as the concepts are similar, and it's not all that difficult.  Just new. I wanted to have an AI server that I could use for demo purposes, on the train if need be.  That answers the question of hardware requirements: portable.  But let's start at the beginning. First, you need an OS image, of course.  In the new world of Solaris 11, it is now called a repository.  The original can be downloaded from the Solaris 11 page at Oracle.   What you want is the "Oracle Solaris 11 11/11 Repository Image", which comes in two parts that can be combined using cat.  MD5 checksums for these (and all other downloads from that page) are available closer to the top of the page. With that, building the repository is quick and simple: # zfs create -o mountpoint=/export/repo rpool/ai/repo # zfs create rpool/ai/repo/s11 # mount -o ro -F hsfs /tmp/sol-11-1111-repo-full.iso /mnt # rsync -aP /mnt/repo /export/repo/s11 # umount /mnt # pkgrepo rebuild -s /export/repo/sol11/repo # zfs snapshot rpool/ai/repo/sol11@fcs # pkgrepo info -s /export/repo/sol11/repo PUBLISHER PACKAGES STATUS UPDATED solaris 4292 online 2012-03-12T20:47:15.378639Z That's all there's to it.  Let's make a snapshot, just to be on the safe side.  You never know when one will come in handy.  To use this repository, you could just add it as a file-based publisher: # pkg set-publisher -g file:///export/repo/sol11/repo solaris In case I'd want to access this repository through a (virtual) network, i'll now quickly activate the repository-service: # svccfg -s application/pkg/server \ setprop pkg/inst_root=/export/repo/sol11/repo # svccfg -s application/pkg/server setprop pkg/readonly=true # svcadm refresh application/pkg/server # svcadm enable application/pkg/server That's all you need - now point your browser to http://localhost/ to view your beautiful repository-server. Step 1 is done.  All of this, by the way, is nicely documented in the README file that's contained in the repository image. Of course, we already have updates to the original release.  You can find them in MOS in the Oracle Solaris 11 Support Repository Updates (SRU) Index.  You can simply add these to your existing repository or create separate repositories for each SRU.  The individual SRUs are self-sufficient and incremental - SRU4 includes all updates from SRU2 and SRU3.  With ZFS, you can also get both: A full repository with all updates and at the same time incremental ones up to each of the updates: # mount -o ro -F hsfs /tmp/sol-11-1111-sru4-05-incr-repo.iso /mnt # pkgrecv -s /mnt/repo -d /export/repo/sol11/repo '*' # umount /mnt # pkgrepo rebuild -s /export/repo/sol11/repo # zfs snapshot rpool/ai/repo/sol11@sru4 # zfs set snapdir=visible rpool/ai/repo/sol11 # svcadm restart svc:/application/pkg/server:default The normal repository is now updated to SRU4.  Thanks to the ZFS snapshots, there is also a valid repository of Solaris 11 11/11 without the update located at /export/repo/sol11/.zfs/snapshot/fcs . If you like, you can also create another repository service for each update, running on a separate port. But now lets continue with the AI server.  Just a little bit of reading in the dokumentation makes it clear that we will need to run a DHCP server for this.  Since I already have one active (for my SunRay installation) and since it's a good idea to have these kinds of services separate anyway, I decided to create this in a Zone.  So, let's create one first: # zfs create -o mountpoint=/export/install rpool/ai/install # zfs create -o mountpoint=/zones rpool/zones # zonecfg -z ai-server zonecfg:ai-server> create create: Using system default template 'SYSdefault' zonecfg:ai-server> set zonepath=/zones/ai-server zonecfg:ai-server> add dataset zonecfg:ai-server:dataset> set name=rpool/ai/install zonecfg:ai-server:dataset> set alias=install zonecfg:ai-server:dataset> end zonecfg:ai-server> commit zonecfg:ai-server> exit # zoneadm -z ai-server install # zoneadm -z ai-server boot ; zlogin -C ai-server Give it a hostname and IP address at first boot, and there's the Zone.  For a publisher for Solaris packages, it will be bound to the "System Publisher" from the Global Zone.  The /export/install filesystem, of course, is intended to be used by the AI server.  Let's configure it now: #zlogin ai-server root@ai-server:~# pkg install install/installadm root@ai-server:~# installadm create-service -n x86-fcs -a i386 \ -s pkg://solaris/install-image/[email protected],5.11-0.175.0.0.0.2.1482 \ -d /export/install/fcs -i 192.168.2.20 -c 3 With that, the core AI server is already done.  What happened here?  First, I installed the AI server software.  IPS makes that nice and easy.  If necessary, it'll also pull in the required DHCP-Server and anything else that might be missing.  Watch out for that DHCP server software.  In Solaris 11, there are two different versions.  There's the one you might know from Solaris 10 and earlier, and then there's a new one from ISC.  The latter is the one we need for AI.  The SMF service names of both are very similar.  The "old" one is "svc:/network/dhcp-server:default". The ISC-server comes with several SMF-services. We at least need "svc:/network/dhcp/server:ipv4".  The command "installadm create-service" creates the installation-service. It's called "x86-fcs", serves the "i386" architecture and gets its boot image from the repository of the system publisher, using version 5.11,5.11-0.175.0.0.0.2.1482, which is Solaris 11 11/11.  (The option "-a i386" in this example is optional, since the installserver itself runs on a x86 machine.) The boot-environment for clients is created in /export/install/fcs and the DHCP-server is configured for 3 IP-addresses starting at 192.168.2.20.  This configuration is stored in a very human readable form in /etc/inet/dhcpd4.conf.  An AI-service for SPARC systems could be created in the very same way, using "-a sparc" as the architecture option. Now we would be ready to register and install the first client.  It would be installed with the default "solaris-large-server" using the publisher "http://pkg.oracle.com/solaris/release" and would query it's configuration interactively at first boot.  This makes it very clear that an AI-server is really only a boot-server.  The true source of packets to install can be different.  Since I don't like these defaults for my demo setup, I did some extra config work for my clients. The configuration of a client is controlled by manifests and profiles.  The manifest controls which packets are installed and how the filesystems are layed out.  In that, it's very much like the old "rules.ok" file in Jumpstart.  Profiles contain additional configuration like root passwords, primary user account, IP addresses, keyboard layout etc.  Hence, profiles are very similar to the old sysid.cfg file. The easiest way to get your hands on a manifest is to ask the AI server we just created to give us it's default one.  Then modify that to our liking and give it back to the installserver to use: root@ai-server:~# mkdir -p /export/install/configs/manifests root@ai-server:~# cd /export/install/configs/manifests root@ai-server:~# installadm export -n x86-fcs -m orig_default \ -o orig_default.xml root@ai-server:~# cp orig_default.xml s11-fcs.small.local.xml root@ai-server:~# vi s11-fcs.small.local.xml root@ai-server:~# more s11-fcs.small.local.xml <!DOCTYPE auto_install SYSTEM "file:///usr/share/install/ai.dtd.1"> <auto_install> <ai_instance name="S11 Small fcs local"> <target> <logical> <zpool name="rpool" is_root="true"> <filesystem name="export" mountpoint="/export"/> <filesystem name="export/home"/> <be name="solaris"/> </zpool> </logical> </target> <software type="IPS"> <destination> <image> <!-- Specify locales to install --> <facet set="false">facet.locale.*</facet> <facet set="true">facet.locale.de</facet> <facet set="true">facet.locale.de_DE</facet> <facet set="true">facet.locale.en</facet> <facet set="true">facet.locale.en_US</facet> </image> </destination> <source> <publisher name="solaris"> <origin name="http://192.168.2.12/"/> </publisher> </source> <!-- By default the latest build available, in the specified IPS repository, is installed. If another build is required, the build number has to be appended to the 'entire' package in the following form: <name>pkg:/[email protected]#</name> --> <software_data action="install"> <name>pkg:/[email protected],5.11-0.175.0.0.0.2.0</name> <name>pkg:/group/system/solaris-small-server</name> </software_data> </software> </ai_instance> </auto_install> root@ai-server:~# installadm create-manifest -n x86-fcs -d \ -f ./s11-fcs.small.local.xml root@ai-server:~# installadm list -m -n x86-fcs Manifest Status Criteria -------- ------ -------- S11 Small fcs local Default None orig_default Inactive None The major points in this new manifest are: Install "solaris-small-server" Install a few locales less than the default.  I'm not that fluid in French or Japanese... Use my own package service as publisher, running on IP address 192.168.2.12 Install the initial release of Solaris 11:  pkg:/[email protected],5.11-0.175.0.0.0.2.0 Using a similar approach, I'll create a default profile interactively and use it as a template for a few customized building blocks, each defining a part of the overall system configuration.  The modular approach makes it easy to configure numerous clients later on: root@ai-server:~# mkdir -p /export/install/configs/profiles root@ai-server:~# cd /export/install/configs/profiles root@ai-server:~# sysconfig create-profile -o default.xml root@ai-server:~# cp default.xml general.xml; cp default.xml mars.xml root@ai-server:~# cp default.xml user.xml root@ai-server:~# vi general.xml mars.xml user.xml root@ai-server:~# more general.xml mars.xml user.xml :::::::::::::: general.xml :::::::::::::: <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <service_bundle type="profile" name="sysconfig"> <service version="1" type="service" name="system/timezone"> <instance enabled="true" name="default"> <property_group type="application" name="timezone"> <propval type="astring" name="localtime" value="Europe/Berlin"/> </property_group> </instance> </service> <service version="1" type="service" name="system/environment"> <instance enabled="true" name="init"> <property_group type="application" name="environment"> <propval type="astring" name="LANG" value="C"/> </property_group> </instance> </service> <service version="1" type="service" name="system/keymap"> <instance enabled="true" name="default"> <property_group type="system" name="keymap"> <propval type="astring" name="layout" value="US-English"/> </property_group> </instance> </service> <service version="1" type="service" name="system/console-login"> <instance enabled="true" name="default"> <property_group type="application" name="ttymon"> <propval type="astring" name="terminal_type" value="vt100"/> </property_group> </instance> </service> <service version="1" type="service" name="network/physical"> <instance enabled="true" name="default"> <property_group type="application" name="netcfg"> <propval type="astring" name="active_ncp" value="DefaultFixed"/> </property_group> </instance> </service> <service version="1" type="service" name="system/name-service/switch"> <property_group type="application" name="config"> <propval type="astring" name="default" value="files"/> <propval type="astring" name="host" value="files dns"/> <propval type="astring" name="printer" value="user files"/> </property_group> <instance enabled="true" name="default"/> </service> <service version="1" type="service" name="system/name-service/cache"> <instance enabled="true" name="default"/> </service> <service version="1" type="service" name="network/dns/client"> <property_group type="application" name="config"> <property type="net_address" name="nameserver"> <net_address_list> <value_node value="192.168.2.1"/> </net_address_list> </property> </property_group> <instance enabled="true" name="default"/> </service> </service_bundle> :::::::::::::: mars.xml :::::::::::::: <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <service_bundle type="profile" name="sysconfig"> <service version="1" type="service" name="network/install"> <instance enabled="true" name="default"> <property_group type="application" name="install_ipv4_interface"> <propval type="astring" name="address_type" value="static"/> <propval type="net_address_v4" name="static_address" value="192.168.2.100/24"/> <propval type="astring" name="name" value="net0/v4"/> <propval type="net_address_v4" name="default_route" value="192.168.2.1"/> </property_group> <property_group type="application" name="install_ipv6_interface"> <propval type="astring" name="stateful" value="yes"/> <propval type="astring" name="stateless" value="yes"/> <propval type="astring" name="address_type" value="addrconf"/> <propval type="astring" name="name" value="net0/v6"/> </property_group> </instance> </service> <service version="1" type="service" name="system/identity"> <instance enabled="true" name="node"> <property_group type="application" name="config"> <propval type="astring" name="nodename" value="mars"/> </property_group> </instance> </service> </service_bundle> :::::::::::::: user.xml :::::::::::::: <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <service_bundle type="profile" name="sysconfig"> <service version="1" type="service" name="system/config-user"> <instance enabled="true" name="default"> <property_group type="application" name="root_account"> <propval type="astring" name="login" value="root"/> <propval type="astring" name="password" value="noIWillNotTellYouMyPasswordNotEvenEncrypted"/> <propval type="astring" name="type" value="role"/> </property_group> <property_group type="application" name="user_account"> <propval type="astring" name="login" value="stefan"/> <propval type="astring" name="password" value="noIWillNotTellYouMyPasswordNotEvenEncrypted"/> <propval type="astring" name="type" value="normal"/> <propval type="astring" name="description" value="Stefan Hinker"/> <propval type="count" name="uid" value="12345"/> <propval type="count" name="gid" value="10"/> <propval type="astring" name="shell" value="/usr/bin/bash"/> <propval type="astring" name="roles" value="root"/> <propval type="astring" name="profiles" value="System Administrator"/> <propval type="astring" name="sudoers" value="ALL=(ALL) ALL"/> </property_group> </instance> </service> </service_bundle> root@ai-server:~# installadm create-profile -n x86-fcs -f general.xml root@ai-server:~# installadm create-profile -n x86-fcs -f user.xml root@ai-server:~# installadm create-profile -n x86-fcs -f mars.xml \ -c ipv4=192.168.2.100 root@ai-server:~# installadm list -p Service Name Profile ------------ ------- x86-fcs general.xml mars.xml user.xml root@ai-server:~# installadm list -n x86-fcs -p Profile Criteria ------- -------- general.xml None mars.xml ipv4 = 192.168.2.100 user.xml None Here's the idea behind these files: "general.xml" contains settings valid for all my clients.  Stuff like DNS servers, for example, which in my case will always be the same. "user.xml" only contains user definitions.  That is, a root password and a primary user.Both of these profiles will be valid for all clients (for now). "mars.xml" defines network settings for an individual client.  This profile is associated with an IP-Address.  For this to work, I'll have to tweak the DHCP-settings in the next step: root@ai-server:~# installadm create-client -e 08:00:27:AA:3D:B1 -n x86-fcs root@ai-server:~# vi /etc/inet/dhcpd4.conf root@ai-server:~# tail -5 /etc/inet/dhcpd4.conf host 080027AA3DB1 { hardware ethernet 08:00:27:AA:3D:B1; fixed-address 192.168.2.100; filename "01080027AA3DB1"; } This completes the client preparations.  I manually added the IP-Address for mars to /etc/inet/dhcpd4.conf.  This is needed for the "mars.xml" profile.  Disabling arbitrary DHCP-replies will shut up this DHCP server, making my life in a shared environment a lot more peaceful ;-)Now, I of course want this installation to be completely hands-off.  For this to work, I'll need to modify the grub boot menu for this client slightly.  You can find it in /etc/netboot.  "installadm create-client" will create a new boot menu for every client, identified by the client's MAC address.  The template for this can be found in a subdirectory with the name of the install service, /etc/netboot/x86-fcs in our case.  If you don't want to change this manually for every client, modify that template to your liking instead. root@ai-server:~# cd /etc/netboot root@ai-server:~# cp menu.lst.01080027AA3DB1 menu.lst.01080027AA3DB1.org root@ai-server:~# vi menu.lst.01080027AA3DB1 root@ai-server:~# diff menu.lst.01080027AA3DB1 menu.lst.01080027AA3DB1.org 1,2c1,2 < default=1 < timeout=10 --- > default=0 > timeout=30 root@ai-server:~# more menu.lst.01080027AA3DB1 default=1 timeout=10 min_mem64=0 title Oracle Solaris 11 11/11 Text Installer and command line kernel$ /x86-fcs/platform/i86pc/kernel/$ISADIR/unix -B install_media=htt p://$serverIP:5555//export/install/fcs,install_service=x86-fcs,install_svc_addre ss=$serverIP:5555 module$ /x86-fcs/platform/i86pc/$ISADIR/boot_archive title Oracle Solaris 11 11/11 Automated Install kernel$ /x86-fcs/platform/i86pc/kernel/$ISADIR/unix -B install=true,inst all_media=http://$serverIP:5555//export/install/fcs,install_service=x86-fcs,inst all_svc_address=$serverIP:5555,livemode=text module$ /x86-fcs/platform/i86pc/$ISADIR/boot_archive Now just boot the client off the network using PXE-boot.  For my demo purposes, that's a client from VirtualBox, of course.  That's all there's to it.  And despite the fact that this blog entry is a little longer - that wasn't that hard now, was it?

    Read the article

  • Unable to ssh out anywhere - ssh_exchange_identification

    - by Chowlett
    I have a setup where I'm running Ubuntu 11.10 as a VirtualBox guest under a Windows 7 host, behind a restrictive corporate firewall. I have set up NAT from the host port 22 to Ubuntu's port 22; IT inform me that they have opened port 22 outbound for the host machine's IP address. I have run ssh-keygen -t rsa, and am trying to test the setup by connecting to github and another known ssh server. In both cases the connect is refused with ssh_exchange_identification: Connection closed by remote host. Full -vvv log is below. Is this possibly still due to the corporate firewall? If so, what else might I need to request from them? Any other ideas what might be wrong and how to fix it? ~$ ssh -Tvvv [email protected] OpenSSH_5.8p1 Debian-7ubuntu1, OpenSSL 1.0.0e 6 Sep 2011 debug1: Reading configuration data /etc/ssh/ssh_config debug1: Applying options for * debug2: ssh_connect: needpriv 0 debug1: Connecting to github.com [207.97.227.239] port 22. debug1: Connection established. debug3: Incorrect RSA1 identifier debug3: Could not load "/home/chris/.ssh/id_rsa" as a RSA1 public key debug2: key_type_from_name: unknown key type '-----BEGIN' debug3: key_read: missing keytype debug2: key_type_from_name: unknown key type 'Proc-Type:' debug3: key_read: missing keytype debug2: key_type_from_name: unknown key type 'DEK-Info:' debug3: key_read: missing keytype debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug2: key_type_from_name: unknown key type '-----END' debug3: key_read: missing keytype debug1: identity file /home/chris/.ssh/id_rsa type 1 debug1: Checking blacklist file /usr/share/ssh/blacklist.RSA-2048 debug1: Checking blacklist file /etc/ssh/blacklist.RSA-2048 debug1: identity file /home/chris/.ssh/id_rsa-cert type -1 debug1: identity file /home/chris/.ssh/id_dsa type -1 debug1: identity file /home/chris/.ssh/id_dsa-cert type -1 debug1: identity file /home/chris/.ssh/id_ecdsa type -1 debug1: identity file /home/chris/.ssh/id_ecdsa-cert type -1 ssh_exchange_identification: Connection closed by remote host Edit: Requested diagnostics: ~$ ls -la ~/.ssh total 16 drwx------ 2 chris chris 4096 2012-03-30 13:12 . drwxr-xr-x 29 chris chris 4096 2012-03-30 13:25 .. -rw------- 1 chris chris 1766 2012-03-30 13:12 id_rsa -rw-r--r-- 1 chris chris 409 2012-03-30 13:12 id_rsa.pub

    Read the article

  • Silverlight Cream for March 22, 2010 -- #817

    - by Dave Campbell
    In this Issue: Bart Czernicki, Tim Greenfield, Andrea Boschin(-2-), AfricanGeek, Fredrik Normén, Ian Griffiths, Christian Schormann, Pete Brown, Jeff Handley, Brad Abrams, and Tim Heuer. Shoutout: At the beginning of MIX10, Brad Abrams reported Silverlight 4 and RIA Services Release Candidate Available NOW From SilverlightCream.com: Using the Bing Maps Silverlight control on the Windows Phone 7 Bart Czernicki has a very cool BingMaps and WP7 tutorial up... you're going to want to bookmark this one for sure! Code included and external links... thanks Bart! Silverlight Rx DataClient within MVVM Tim Greenfield has a great post up about Rx and MVVM with Silverlight 3. Lots of good insight into Rx and interesting code bits. SilverVNC - a VNC Viewer with Silverlight 4.0 RC Andrea Boschin digs into Silverlight 4 RC and it's full-trust on sockets and builds an implementation of RFB protocol... give it a try and give Andrea some feedback. Chromeless Window for OOB applications in Silverlight 4.0 RC Andrea Boschin also has a post up on investigating the OOB no-chrome features in SL4RC. Windows Phone 7 and WCF AfricanGeek has his latest video tutorial up and it's on WCF and WP7... I've got a feeling we're all going to have to get our arms around this. Some steps for moving WCF RIA Services Preveiw to the RC version Fredrik Normén details his steps in transitioning to the RC version of RIA Services. Silverlight Business Apps: Module 8.5 - The Value of MEF with Silverlight Ian Griffiths has a video tutorial up at Channel 9 on MEF and Silverlight, posted by John Papa Introducing Blend 4 – For Silverlight, WPF and Windows Phone Christian Schormann has an early MIX10 post up about te new features in Expression Blend with regard to Silverlight, WPF, and WP7. Building your first Silverlight for Windows Phone Application Pete Brown has his first post up on building a WP7 app with the MIX10 bits. Lookups in DataGrid and DataForm with RIA Services Jeff Handley elaborates on a post by someone else about using lookup data in the DataGrid and DataForm with RIA Services Silverlight 4 + RIA Services - Ready for Business: Starting a New Project with the Business Application Template Brad Abrams is starting a series highlighting the key features of Silverlight 4 and RIA with the new releases. He has a post up Silverlight 4 + RIA Services - Ready for Business: Index, including links and source. Then in this first post of the series, he introduces the Business Application Template. Custom Window Chrome and Events Watch a tutorial video by Tim Heuer on creating custom chrome for OOB apps. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • What Every Developer Should Know About MSI Components

    - by Alois Kraus
    Hopefully nothing. But if you have to do more than simple XCopy deployment and you need to support updates, upgrades and perhaps side by side scenarios there is no way around MSI. You can create Msi files with a Visual Studio Setup project which is severely limited or you can use the Windows Installer Toolset. I cannot talk about WIX with my German colleagues because WIX has a very special meaning. It is funny to always use the long name when I talk about deployment possibilities. Alternatively you can buy commercial tools which help you to author Msi files but I am not sure how good they are. Given enough pain with existing solutions you can also learn the MSI Apis and create your own packaging solution. If I were you I would use either a commercial visual tool when you do easy deployments or use the free Windows Installer Toolset. Once you know the WIX schema you can create well formed wix xml files easily with any editor. Then you can “compile” from the wxs files your Msi package. Recently I had the “pleasure” to get my hands dirty with C++ (again) and the MSI technology. Installation is a complex topic but after several month of digging into arcane MSI issues I can safely say that there should exist an easier way to install and update files as today. I am not alone with this statement as John Robbins (creator of the cool tool Paraffin) states: “.. It's a brittle and scary API in Windows …”. To help other people struggling with installation issues I present you the advice I (and others) found useful and what will happen if you ignore this advice. What is a MSI file? A MSI file is basically a database with tables which reference each other to control how your un/installation should work. The basic idea is that you declare via these tables what you want to install and MSI controls the how to get your stuff onto or off your machine. Your “stuff” consists usually of files, registry keys, shortcuts and environment variables. Therefore the most important tables are File, Registry, Environment and Shortcut table which define what will be un/installed. The key to master MSI is that every resource (file, registry key ,…) is associated with a MSI component. The actual payload consists of compressed files in the CAB format which can either be embedded into the MSI file or reside beside the MSI file or in a subdirectory below it. To examine MSI files you need Orca a free MSI editor provided by MS. There is also another free editor called Super Orca which does support diffs between MSI and it does not lock the MSI files. But since Orca comes with a shell extension I tend to use only Orca because it is so easy to right click on a MSI file and open it with this tool. How Do I Install It? Double click it. This does work for fresh installations as well as major upgrades. Updates need to be installed via the command line via msiexec /i <msi> REINSTALL=ALL REINSTALLMODE=vomus   This tells the installer to reinstall all already installed features (new features will NOT be installed). The reinstallmode letters do force an overwrite of the old cached package in the %WINDIR%\Installer folder. All files, shortcuts and registry keys are redeployed if they are missing or need to be replaced with a newer version. When things did go really wrong and you want to overwrite everything unconditionally use REINSTALLMODE=vamus. How To Enable MSI Logs? You can download a MSI from Microsoft which installs some registry keys to enable full MSI logging. The log files can be found in your %TEMP% folder and are called MSIxxxx.log. Alternatively you can add to your msiexec command line the option msiexec …. /l*vx <LogFileName> Personally I find it rather strange that * does not mean full logging. To really get all logs I need to add v and x which is documented in the msiexec help but I still find this behavior unintuitive. What are MSI components? The whole MSI logic is bound to the concept of MSI components. Nearly every msi table has a Component column which binds an installable resource to a component. Below are the screenshots of the FeatureComponents and Component table of an example MSI. The Feature table defines basically the feature hierarchy.  To find out what belongs to a feature you need to look at the FeatureComponents table where for each feature the components are listed which will be installed when a feature is installed. The MSI components are defined in the  Component table. This table has as first column the component name and as second column the component id which is a GUID. All resources you want to install belong to a MSI component. Therefore nearly all MSI tables have a Component_ column which contains the component name. If you look e.g. a the File table you see that every file belongs to a component which is true for all other tables which install resources. The component table is the glue between all other tables which contain the resources you want to install. So far so easy. Why is MSI then so complex? Most MSI problems arise from the fact that you did violate a MSI component rule in one or the other way. When you install a feature the reference count for all components belonging to this feature will increase by one. If your component is installed by more than one feature it will get a higher refcount. When you uninstall a feature its refcount will drop by one. Interesting things happen if the component reference count reaches zero: Then all associated resources will be deleted. That looks like a reasonable thing and it is. What it makes complex are the strange component rules you have to follow. Below are some important component rules from the Tao of the Windows Installer … Rule 16: Follow Component Rules Components are a very important part of the Installer technology. They are the means whereby the Installer manages the resources that make up your application. The SDK provides the following guidelines for creating components in your package: Never create two components that install a resource under the same name and target location. If a resource must be duplicated in multiple components, change its name or target location in each component. This rule should be applied across applications, products, product versions, and companies. Two components must not have the same key path file. This is a consequence of the previous rule. The key path value points to a particular file or folder belonging to the component that the installer uses to detect the component. If two components had the same key path file, the installer would be unable to distinguish which component is installed. Two components however may share a key path folder. Do not create a version of a component that is incompatible with all previous versions of the component. This rule should be applied across applications, products, product versions, and companies. Do not create components containing resources that will need to be installed into more than one directory on the user’s system. The installer installs all of the resources in a component into the same directory. It is not possible to install some resources into subdirectories. Do not include more than one COM server per component. If a component contains a COM server, this must be the key path for the component. Do not specify more than one file per component as a target for the Start menu or a Desktop shortcut. … And these rules do not even talk about component ids, update packages and upgrades which you need to understand as well. Lets suppose you install two MSIs (MSI1 and MSI2) which have the same ComponentId but different component names. Both do install the same file. What will happen when you uninstall MSI2?   Hm the file should stay there. But the component names are different. Yes and yes. But MSI uses not use the component name as key for the refcount. Instead the ComponentId column of the Component table which contains a GUID is used as identifier under which the refcount is stored. The components Comp1 and Comp2 are identical from the MSI perspective. After the installation of both MSIs the Component with the Id {100000….} has a refcount of two. After uninstallation of one MSI there is still a refcount of one which drops to zero just as expected when we uninstall the last msi. Then the file which was the same for both MSIs is deleted. You should remember that MSI keeps a refcount across MSIs for components with the same component id. MSI does manage components not the resources you did install. The resources associated with a component are then and only then deleted when the refcount of the component reaches zero.   The dependencies between features, components and resources can be described as relations. m,k are numbers >= 1, n can be 0. Inside a MSI the following relations are valid Feature    1  –> n Components Component    1 –> m Features Component      1  –>  k Resources These relations express that one feature can install several components and features can share components between them. Every (meaningful) component will install at least one resource which means that its name (primary key to stay in database speak) does occur in some other table in the Component column as value which installs some resource. Lets make it clear with an example. We want to install with the feature MainFeature some files a registry key and a shortcut. We can then create components Comp1..3 which are referenced by the resources defined in the corresponding tables.   Feature Component Registry File Shortcuts MainFeature Comp1 RegistryKey1     MainFeature Comp2   File.txt   MainFeature Comp3   File2.txt Shortcut to File2.txt   It is illegal that the same resource is part of more than one component since this would break the refcount mechanism. Lets illustrate this:            Feature ComponentId Resource Reference Count Feature1 {1000-…} File1.txt 1 Feature2 {2000-….} File1.txt 1 The installation part works well but what happens when you uninstall Feature2? Component {20000…} gets a refcount of zero where MSI deletes all resources belonging to this component. In this case File1.txt will be deleted. But Feature1 still has another component {10000…} with a refcount of one which means that the file was deleted too early. You just have ruined your installation. To fix it you then need to click on the Repair button under Add/Remove Programs to let MSI reinstall any missing registry keys, files or shortcuts. The vigilant reader might has noticed that there is more in the Component table. Beside its name and GUID it has also an installation directory, attributes and a KeyPath. The KeyPath is a reference to a file or registry key which is used to detect if the component is already installed. This becomes important when you repair or uninstall a component. To find out if the component is already installed MSI checks if the registry key or file referenced by the KeyPath property does exist. When it does not exist it assumes that it was either already uninstalled (can lead to problems during uninstall) or that it is already installed and all is fine. Why is this detail so important? Lets put all files into one component. The KeyPath should be then one of the files of your component to check if it was installed or not. When your installation becomes corrupt because a file was deleted you cannot repair it with the Repair button under Add/Remove Programs because MSI checks the component integrity via the Resource referenced by its KeyPath. As long as you did not delete the KeyPath file MSI thinks all resources with your component are installed and never executes any repair action. You get even more trouble when you try to remove files during an upgrade (you cannot remove files during an update) from your super component which contains all files. The only way out and therefore best practice is to assign for every resource you want to install an extra component. This ensures painless updatability and repairs and you have much less effort to remove specific files during an upgrade. In effect you get this best practice relation Feature 1  –> n Components Component   1  –>  1 Resources MSI Component Rules Rule 1 – One component per resource Every resource you want to install (file, registry key, value, environment value, shortcut, directory, …) must get its own component which does never change between versions as long as the install location is the same. Penalty If you add more than one resources to a component you will break the repair capability of MSI because the KeyPath is used to check if the component needs repair. MSI ComponentId Files MSI 1.0 {1000} File1-5 MSI 2.0 {2000} File2-5 You want to remove File1 in version 2.0 of your MSI. Since you want to keep the other files you create a new component and add them there. MSI will delete all files if the component refcount of {1000} drops to zero. The files you want to keep are added to the new component {2000}. Ok that does work if your upgrade does uninstall the old MSI first. This will cause the refcount of all previously installed components to reach zero which means that all files present in version 1.0 are deleted. But there is a faster way to perform your upgrade by first installing your new MSI and then remove the old one.  If you choose this upgrade path then you will loose File1-5 after your upgrade and not only File1 as intended by your new component design.   Rule 2 – Only add, never remove resources from a component If you did follow rule 1 you will not need Rule 2. You can add in a patch more resources to one component. That is ok. But you can never remove anything from it. There are tricky ways around that but I do not want to encourage bad component design. Penalty Lets assume you have 2 MSI files which install under the same component one file   MSI1 MSI2 {1000} - ComponentId {1000} – ComponentId File1.txt File2.txt   When you install and uninstall both MSIs you will end up with an installation where either File1 or File2 will be left. Why? It seems that MSI does not store the resources associated with each component in its internal database. Instead Windows will simply query the MSI that is currently uninstalled for all resources belonging to this component. Since it will find only one file and not two it will only uninstall one file. That is the main reason why you never can remove resources from a component!   Rule 3 Never Remove A Component From an Update MSI. This is the same as if you change the GUID of a component by accident for your new update package. The resulting update package will not contain all components from the previously installed package. Penalty When you remove a component from a feature MSI will set the feature state during update to Advertised and log a warning message into its log file when you did enable MSI logging. SELMGR: ComponentId '{2DCEA1BA-3E27-E222-484C-D0D66AEA4F62}' is registered to feature 'xxxxxxx, but is not present in the Component table.  Removal of components from a feature is not supported! MSI (c) (24:44) [07:53:13:436]: SELMGR: Removal of a component from a feature is not supported Advertised means that MSI treats all components of this feature as not installed. As a consequence during uninstall nothing will be removed since it is not installed! This is not only bad because uninstall does no longer work but this feature will also not get the required patches. All other features which have followed component versioning rules for update packages will be updated but the one faulty feature will not. This results in very hard to find bugs why an update was only partially successful. Things got better with Windows Installer 4.5 but you cannot rely on that nobody will use an older installer. It is a good idea to add to your update msiexec call MSIENFORCEUPGRADECOMPONENTRULES=1 which will abort the installation if you did violate this rule.

    Read the article

  • [SQLServer JDBC Driver][SQLServer]Could not find stored procedure 'master..xp_jdbc_open2'.

    - by Vijaya Moderator -Oracle
    When connecting to MS SQL Server Database via Weblogic Datasource and using XA jdbc driver, the following error is thrown. <Jun 3, 2014 5:16:49 AM PDT> <Error> <Console> <BEA-240003> <Console encountered the following error java.sql.SQLException: [FMWGEN][SQLServer JDBC Driver][SQLServer]Could not find stored procedure 'master..xp_jdbc_open2'. at weblogic.jdbc.sqlserverbase.ddb_.b(Unknown Source)at weblogic.jdbc.sqlserverbase.ddb_.a(Unknown Source)at weblogic.jdbc.sqlserverbase.ddb9.b(Unknown Source)at weblogic.jdbc.sqlserverbase.ddb9.a(Unknown Source)at weblogic.jdbc.sqlserver.tds.ddr.v(Unknown Source)at weblogic.jdbc.sqlserver.tds.ddr.a(Unknown Source)at weblogic.jdbc.sqlserver.tds.ddq.a(Unknown Source)at weblogic.jdbc.sqlserver.tds.ddr.a(Unknown Source)at weblogic.jdbc.sqlserver.ddj.m(Unknown Source)at weblogic.jdbc.sqlserverbase.ddel.e(Unknown Source)at weblogic.jdbc.sqlserverbase.ddel.a(Unknown Source)  The cause behind the issue is that  the MS SQL Server was not installed with the Stored procedures to enable JTA/XA Solution To connect to SQL Server via XA Driver from WLS Datasource you need to install Stored Procedures for JTATo use JDBC distributed transactions through JTA, your system administrator should use the following procedure to install Microsoft SQL Server JDBC XA procedures. This procedure must be repeated for each MS SQL Server installation that will be involved in a distributed transaction.To install stored procedures for JTA:1. Copy the appropriate sqljdbc.dll and instjdbc.sql files from the WL_HOME\server\lib directory to the SQL_Server_Root/bin directory of the MS SQL Server database server, where WL_HOME is the directory in which WebLogic server is installed, typically c:\Oracle\Middleware\wlserver_10.x.  Note:  If you are installing stored procedures on a database server with multiple Microsoft SQL Server instances, each running SQL Server instance must be able to locate the sqljdbc.dll file.Therefore the sqljdbc.dll file needs to be anywhere on the global PATH or on the application-specific path. For the application-specific path, place the sqljdbc.dll file into the :\Program Files\Microsoft SQL Server\MSSQL$\Binn directory for each instance. 2. From the database server, use the ISQL utility to run the instjdbc.sql script. As a precaution, have your system administrator back up the master database before running instjdbc.sql. At a command prompt, use the following syntax to run instjdbc.sql:  ISQL -Usa -Psa_password -Sserver_name -ilocation\instjdbc.sql  where:  sa_password is the password of the system administrator.  server_name is the name of the server on which SQL Server resides.  location is the full path to instjdbc.sql. (You copied this script to the SQL_Server_Root/bin directory in step 1.)  The instjdbc.sql script generates many messages. In general, these messages can be ignored; however, the system administrator should scan the output for any messages that may indicate an execution error. The last message should indicate that instjdbc.sql ran successfully. The script fails when there is insufficient space available in the master database to store the JDBC XA procedures or to log changes to existing procedures.

    Read the article

  • Don&rsquo;t Forget! In-Memory Databases are Hot

    - by andrewbrust
    If you’re left scratching your head over SAP’s intention to acquire Sybase for almost $6 million, you’re not alone.  Despite Sybase’s 1990s reign as the supreme database standard in certain sectors (including Wall Street), the company’s flagship product has certainly fallen from grace.  Why would SAP pay a greater than 50% premium over Sybase’s closing price on the day of the announcement just to acquire a relational database which is firmly stuck in maintenance mode? Well there’s more to Sybase than the relational database product.  Take, for example, its mobile application platform.  It hit Gartner’s “Leaders’ Quadrant” in January of last year, and SAP needs a good mobile play.  Beyond the platform itself, Sybase has a slew of mobile services; click this link to look them over. There’s a second major asset that Sybase has though, and I wonder if it figured prominently into SAP’s bid: Sybase IQ.  Sybase IQ is a columnar database.  Columnar databases place values from a given database column contiguously, unlike conventional relational databases, which store all of a row’s data in close proximity.  Storing column values together works well in aggregation reporting scenarios, because the figures to be aggregated can be scanned in one efficient step.  It also makes for high rates of compression because values from a single column tend to be close to each other in magnitude and may contain long sequences of repeating values.  Highly compressible databases use much less disk storage and can be largely or wholly loaded into memory, resulting in lighting fast query performance.  For an ERP company like SAP, with its own legacy BI platform (SAP BW) and the entire range of Business Objects and Crystal Reports BI products (which it acquired in 2007) query performance is extremely important. And it’s a competitive necessity too.  QlikTech has built an entire company on a columnar, in-memory BI product (QlikView).  So too has startup company Vertica.  IBM’s TM1 product has been doing in-memory OLAP for years.  And guess who else has the in-memory religion?  Microsoft does, in the form of its new PowerPivot product.  I expect the technology in PowerPivot to become strategic to the full-blown SQL Server Analysis Services product and the entire Microsoft BI stack.  I sure don’t blame SAP for jumping on the in-memory bandwagon, if indeed the Sybase acquisition is, at least in part, motivated by that. It will be interesting to watch and see what SAP does with Sybase’s product line-up (assuming the acquisition closes), including the core database, the mobile platform, IQ, and even tools like PowerBuilder.  It is also fascinating to watch columnar’s encroachment on relational.  Perhaps this acquisition will be columnar’s tipping point and people will no longer see it as a fad.  Are you listening Larry Ellison?

    Read the article

  • Sun Ray 3 Plus Appliance Announced

    - by [email protected]
    There were many of you out there wondering if Oracle was going to keep and add to the Sun Ray and Sun virtualized desktop product suite, there have been a number of affirmative statements over the last many months. However, none of them resound like this; the introduction of a new product pretty much proves the point. A couple minutes before 3:00, local time yesterday, Oracle announced the release of a new Sun Ray, appliance, the Sun Ray 3 Plus. This is the unit that will replace the SR 2 FS (which has been for sale now since the middle of last decade).  Physically it is about the same size as the 2 FS but there are some significant differences... As you can see there is no smart card reader in the front - that has moved to the top to ensure only one hand is required to insert the card.  There is also a larger surround on the card reader that lights up to show the user the card is being read (properly).  A new power on/off switch is on the front which essentially brings power consumption to ~0 watts, but there is also a new 'sleep' timer looking for 30 minutes of inactivity and then will drop the power consumption down to ~ 1watt. There are also 2 USB 2.0 ports are accessible on the front instead of one.  The standard mic in and headphone out ports are there as well.  There is even more interesting stuff on the back. From the top down there are two more USB 2.0 ports for a total of four, but then the Oracle "Peripheral Kit" keyboard includes a 3-port USB Hub, too.  There's a 10/100/1000 Ethernet port as well as a 1000 Mb SFP port.  Standard DB-9 Serial port and then two DVI ports.  Then there is the really big news.  Two DVI ports driving 2560 x 1600 resolution, each. Most PCs can't do that without adding an adapter card.Now the images I have here are ones taken on a prototype a couple months back.  They are essentially the same as the Production unit, but if you would like to see an image of the Production Sun Ray 3 Plus unit you can see one here. There is a full data sheet available here. So this is the first Oracle Sun Ray desktop appliance.  Proof that the product line lives on.  A very good start!

    Read the article

  • Silverlight Cream for May 02, 2010 -- #854

    - by Dave Campbell
    In this Issue: Michael Washington, Jason Young(-2-, -3-), Phil Middlemiss, Jeremy Likness, Victor Gaudioso, Kunal Chowdhury, Antoni Dol, and Jacek Ciereszko(-2-). Shoutout: Victor Gaudioso has aggregated All of My Silverlight Video Tutorials in One Place (revised again 05.02.10) From SilverlightCream.com: Unit Testing A Silverlight 'Simplified MVVM' Modal Popup Michael Washington's latest 'Simplified MVVM' post is published at The Code Project and is on Unit Testing with MVVM. Input Localization in Silverlight without IValueConverter Jason Young sent me some links to posts I've not seen... this first one is on localization by using the Language property of the Root Visual. MVVM – The Model - Part 1 – INotifyPropertyChanged Jason Young's next archive post is the first of a series on MVVM and Silverlight 4 ... implementing a simple ViewModel base class. Silverlight, WCF, and ASP.Net Configuration Gotchas Jason Young worked at tracking down the answers to some forum questions and in the process has produced a post of 'gotchas' with using WCF in Silverlight. A Chrome and Glass Theme - Part 5 Phil Middlemiss has part 5 of his Chrome and Glass Theme tutorial up ... in this one, he's looking at the Progress Bar and Slider. Download the files and play along. Silverlight Out of Browser (OOB) Versions, Images, and Isolated Storage Jeremy Likness has a post up responding to his 3 major questions about OOB apps, and he has to code up for the sample too. New Silverlight Video Tutorial: How to Make a Slide In/Out Navigation Bar – All in Blend Victor Gaudioso's latest video tutorial is on building a Behavior for a Slide in/out Navigation bar... kinda like the menu sliders on my GlyphMap Utility... only easier! Command Binding in Silverlight 4 (Step-by-Step) Kunal Chowdhury has another post up at DotNetFunda, and this time he's talking about Command Binding in Silverlight 4 with an eye toward MVVM usage. The Silverlight PageCurl implementation Antoni Dol has a post up about doing a Page Curl effect in Silverlight. He has a manual up on the effect and full application code. How to center and scale Silverlight applications using ViewBox control Jacek Ciereszko has a couple posts up about centering and scaling your app with the ViewBox control. This first one is a code solution. Source is available, as is a Polish version. Silverlight Center And Scale Behavior Jacek Ciereszko's 2nd post, he provides a Behavior that handles the scaling and centering of the previous post. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • How to Quickly Cut a Clip From a Video File with Avidemux

    - by Trevor Bekolay
    Whether you’re cutting out the boring parts of your vacation video or getting a hilarious scene for an animated GIF, Avidemux provides a quick and easy way to cut clips from any video file. It’s overkill to use a full-featured video editing program if you just want to cut a few clips from a video file. Even programs that are designed to be small can have confusing interfaces when dealing with video. We’ve found that a great free program, Avidemux, makes the job of cutting clips extremely simple. Note: While the screenshots in this guide are taken from the Windows version, Avidemux runs on all of the major platforms – Windows, Mac OS X and Linux (GTK). Image by Keith Williamson. Cutting Clips from a Video File Open up Avidemux, and load the video file that you want to work with. If you get a prompt like this one: we recommend clicking Yes to use the safer mode. Find the portion of the video that you’d like to isolate. Get as close as you can to the start of the clip you want to cut. Once you find the start of your clip, look at the “Frame Type” of the current frame. You want it to read I; if it isn’t frame type I, then use the single left and right arrow buttons to go forward or backward one frame until you find an appropriate I frame. Once you’ve found the right starting frame, click the button with the A over a red bar. This will set the start of the clip. Advance to where you want your clip to end. Click on the button with a B when you’ve found the appropriate frame. This frame can be of any type. You can now save the clip, either by going to File –> Save –> Save Video… or by pressing Ctrl+S. Give the file a name, and Avidemux will prepare your clip. And that’s it! You should now have a movie file that contains only the portion of the original file that you want. Download Avidemux free for all platforms Latest Features How-To Geek ETC How To Colorize Black and White Vintage Photographs in Photoshop How To Get SSH Command-Line Access to Windows 7 Using Cygwin The How-To Geek Video Guide to Using Windows 7 Speech Recognition How To Create Your Own Custom ASCII Art from Any Image How To Process Camera Raw Without Paying for Adobe Photoshop How Do You Block Annoying Text Message (SMS) Spam? Battlestar Galactica – Caprica Map of the 12 Colonies (Wallpaper Also Available) View Enlarged Versions of Thumbnail Images with Thumbnail Zoom for Firefox IntoNow Identifies Any TV Show by Sound Walk Score Calculates a Neighborhood’s Pedestrian Friendliness Factor Fantasy World at Twilight Wallpaper Hack a Wireless Doorbell into a Snail Mail Indicator

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

< Previous Page | 411 412 413 414 415 416 417 418 419 420 421 422  | Next Page >