Search Results

Search found 54077 results on 2164 pages for 'asp net webmethod'.

Page 42/2164 | < Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >

  • How to incorporate jquery menu with asp.net membership

    - by wonde
    Hi guys, I am using Asp.net menu control for the web site that I am currently building and I am thinking to change to work with jQuery menu. So the current menu (Asp.net menu control) works with asp.net membership as many of knew.And the menu changed based on the role of the user who logged in. Is it possible to change the menu control to jQuery menu,with out affecting the membership functionality ?

    Read the article

  • Server.Execute - render .ASP from MVC controller action

    - by David Lively
    I need to render an ASP page to a string from an MVC controller action. I can use Server.Execute() to render a .aspx page, but not a .asp page. Here's what I'm using: public ActionResult Index() { Server.Execute("/default.asp"); return new EmptyResult(); } which returns `No http handler was found for request type 'GET'` Any suggestions? I can do something similar with with a web request, but I'd rather avoid the overhead of a loopback request.

    Read the article

  • Export the datagrid data to text in asp.net+c#.net

    - by SRIRAM
    Problem:It will asks there is no assembly reference/namespace for Database Database db = DatabaseFactory.CreateDatabase(); DBCommandWrapper selectCommandWrapper = db.GetStoredProcCommandWrapper("sp_GetLatestArticles"); DataSet ds = db.ExecuteDataSet(selectCommandWrapper); StringBuilder str = new StringBuilder(); for(int i=0;i<=ds.Tables[0].Rows.Count - 1; i++) { for(int j=0;j<=ds.Tables[0].Columns.Count - 1; j++) { str.Append(ds.Tables[0].Rows[i][j].ToString()); } str.Append("<BR>"); } Response.Clear(); Response.AddHeader("content-disposition", "attachment;filename=FileName.txt"); Response.Charset = ""; Response.Cache.SetCacheability(HttpCacheability.NoCache); Response.ContentType = "application/vnd.text"; System.IO.StringWriter stringWrite = new System.IO.StringWriter(); System.Web.UI.HtmlTextWriter htmlWrite = new HtmlTextWriter(stringWrite); Response.Write(str.ToString()); Response.End();

    Read the article

  • Passing a outside variable into a <asp:sqldatasource> tag. ASP.NET 2.0

    - by MadMAxJr
    I'm designing some VB based ASP.NET 2.0, and I am trying to make more use of the various ASP tags that visual studio provides, rather than hand writing everything in the code-behind. I want to pass in an outside variable from the Session to identify who the user is for the query. <asp:sqldatasource id="DataStores" runat="server" connectionstring="<%$ ConnectionStrings:MY_CONNECTION %>" providername="<%$ ConnectionStrings:MY_CONNECTION.ProviderName %>" selectcommand="SELECT THING1, THING2 FROM DATA_TABLE WHERE (THING2 IN (SELECT THING2 FROM RELATED_DATA_TABLE WHERE (USERNAME = @user)))" onselecting="Data_Stores_Selecting"> <SelectParameters> <asp:parameter name="user" defaultvalue ="" /> </SelectParameters> </asp:sqldatasource> And on my code behind I have: Protected Sub Data_Stores_Selecting(ByVal sender As Object, ByVal e As System.Web.UI.WebControls.SqlDataSourceSelectingEventArgs) Handles Data_Stores.Selecting e.Command.Parameters("user").Value = Session("userid") End Sub Oracle squaks at me with ORA-01036, illegal variable name. Am I declaring the variable wrong in the query? I thought external variables share the same name with a @ prefixed. from what I understand, this should be placing the value I want into the query when it executes the select. EDIT: Okay, thanks for the advice so far, first error was corrected, I need to use : and not @ for the variable declaration in the query. Now it generates an ORA-01745 invalid host/bind variable name. EDIT AGAIN: Okay, looks like user was a reserved word. It works now! Thanks for other points of view on this one. I hadn't thought of that approach.

    Read the article

  • ASP Guidance - Development on laptop with limited internet access (nonhosted)

    - by Joshua Enfield
    I am fairly experienced with the .NET family of languages, as well as web development (from a PHP perspective.) I am home for winter break and have limited internet access but would like to learn ASP using C#. Am I able to do development for ASP (and see the results) for free on my laptop (with no internet access), and if so what tools do I need? Ideally I'd like to do development in Visual Studio and see the results in my browser via localhost. Extra tools I might need would be helpful as well.

    Read the article

  • Suggestions/pointers for Post/Get to an .ASP (or .ASPX) page from a desktop app

    - by Clay Nichols
    I'm planning to have a desktop app interact with some .ASP or .ASPX pages on a server. I've only done a little bit with .asp pages and I'm thinking I'd just Post or Get a URL with some variables: MySite.com/Functions.asp?FunctionName=?Paramater1=somevalue?Parameter2=... I'm wondering if there is any better way to go about this? Am I missing something? Is there perhaps a better way to go about this?

    Read the article

  • SharePoint Apps and Windows Azure

    - by ScottGu
    Last Monday I had an opportunity to present as part of the keynote of this year’s SharePoint Conference.  My segment of the keynote covered the new SharePoint Cloud App Model we are introducing as part of the upcoming SharePoint 2013 and Office 365 releases.  This new app model for SharePoint is additive to the full trust solutions developers write today, and is built around three core tenants: Simplifying the development model and making it consistent between the on-premises version of SharePoint and SharePoint Online provided with Office 365. Making the execution model loosely coupled – and enabling developers to build apps and write code that can run outside of the core SharePoint service. This makes it easy to deploy SharePoint apps using Windows Azure, and avoid having to worry about breaking SharePoint and the apps within it when something is upgraded.  This new loosely coupled model also enables developers to write SharePoint applications that can leverage the full capabilities of the .NET Framework – including ASP.NET Web Forms 4.5, ASP.NET MVC 4, ASP.NET Web API, EF 5, Async, and more. Implementing this loosely coupled model using standard web protocols – like OAuth, JSON, and REST APIs – that enable developers to re-use skills and tools, and easily integrate SharePoint with Web and Mobile application architectures. A video of my talk + demos is now available to watch online: In the talk I walked through building an app from scratch – it showed off how easy it is to build solutions using new SharePoint application, and highlighted a web + workflow + mobile scenario that integrates SharePoint with code hosted on Windows Azure (all built using Visual Studio 2012 and ASP.NET 4.5 – including MVC and Web API). The new SharePoint Cloud App Model is something that I think is pretty exciting, and it is going to make it a lot easier to build SharePoint apps using the full power of both Windows Azure and the .NET Framework.  Using Windows Azure to easily extend SaaS based solutions like Office 365 is also a really natural fit and one that is going to offer a bunch of great developer opportunities.  Hope this helps, Scott  P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Aplicações do SharePoint e Windows Azure

    - by Leniel Macaferi
    Segunda-feira passada eu tive a oportunidade de me apresentar dando uma palestra na SharePoint Conference (em Inglês). Meu segmento na palestra cobriu o novo modelo de Aplicações para Nuvem do SharePoint (SharePoint Cloud App Model) que estamos introduzindo como parte dos próximos lançamentos do SharePoint 2013 e Office 365. Este novo modelo de aplicações para o SharePoint é aditivo para as soluções de total confiança que os desenvolvedores escrevem atualmente, e é construído em torno de três pilares principais: Simplificar o modelo de desenvolvimento tornando-o consistente entre a versão local do SharePoint e a versão online do SharePoint fornecida com o Office 365. Tornar o modelo de execução flexível - permitindo que os desenvolvedores criem aplicações e escrevam código que pode ser executado fora do núcleo do serviço do SharePoint. Isto torna mais fácil implantar aplicações SharePoint usando a Windows Azure, evitando a preocupação com a quebra do SharePoint e das aplicações que rodam dentro dele quando algo é atualizado. Este novo modelo flexível também permite que os desenvolvedores escrevam aplicações do SharePoint que podem alavancar as capacidades do .NET Framework - incluindo ASP.NET Web Forms 4.5, ASP.NET MVC 4, ASP.NET Web API, Entity Framework 5, Async, e mais. Implementar este modelo flexível utilizando protocolos padrão da web - como OAuth, JSON e APIs REST - que permitem aos desenvolvedores reutilizar habilidades e ferramentas, facilmente integrando o SharePoint com arquiteturas Web e arquiteturas para aplicações móveis. Um vídeo da minha palestra + demos está disponível para assistir on-line (em Inglês): Na palestra eu mostrei como construir uma aplicação a partir do zero - ela mostrou como é fácil construir soluções usando a nova aplicação SharePoint, e destacou um cenário web + workflow + móvel que integra o SharePoint com código hospedado na Windows Azure (totalmente construído usando o Visual Studio 2012 e ASP.NET 4.5 - incluindo MVC e Web API). O novo Modelo de Aplicações para Nuvem do SharePoint é algo que eu acho extremamente emocionante, e que vai tornar muito mais fácil criar aplicações SharePoint usando todo o poder da Windows Azure e do .NET Framework. Usar a Windows Azure para estender facilmente soluções baseadas em SaaS como o Office 365 é também algo muito natural e que vai oferecer um monte de ótimas oportunidades para os desenvolvedores.  Espero que ajude, - Scott P.S. Além do blog, eu também estou utilizando o Twitter para atualizações rápidas e para compartilhar links. Siga-me em: twitter.com/ScottGu Texto traduzido do post original por Leniel Macaferi.

    Read the article

  • Tweaking a few URL validation settings on ASP.NET v4.0

    - by Carlyle Dacosta
    ASP.NET has a few default settings for URLs out of the box. These can be configured quite easily in the web.config file within the  <system.web>/<httpRuntime> configuration section. Some of these are: <httpRuntime maxUrlLength=”<number here>”. This number should be an integer value (defaults to 260 characters). The value must be greater than or equal to zero, though obviously small values will lead to an un-useable website. This attribute gates the length of the Url without query string. <httpRuntime maxQueryStringLength=”<number here>”. This number should be an integer value (defaults to 2048 characters). The value must be greater than or equal to zero, though obviously small values will lead to an un-useable website. <httpRuntime requestPathInvalidCharacters=”List of characters you need included in ASP.NETs validation checks”. By default the characters are “<,>,*,%,&,:,\,?”. However once can easily change this by setting by modifying web.config. Remember, these characters can be specified in a variety of formats. For example, I want the character ‘!’ to be included in ASP.NETs URL validation logic. So I set the following: <httpRuntime requestPathInvalidCharacters=”<,>,*,%,&,:,\,?,!”. A character could also be specified in its xml encoded form. ‘&lt;;’ would mean the ‘<’ sign). I could specify the ‘!’ in its xml encoded unicode format such as requestPathInvalidCharacters=”<,>,*,%,&,:,\,?,$#x0021;” or I could specify it in its unicode encoded form or in the “<,>,*,%,&,:,\,?,%u0021” format. The following settings can be applied at Root Web.Config level, App Web.config level, Folder level or within a location tag: <location path="some path here"> <system.web> <httpRuntime maxUrlLength="" maxQueryStringLength="" requestPathInvalidChars="" .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If any of the above settings fail request validation, an Http 400 “Bad Request” HttpException is thrown. These can be easily handled on the Application_Error handler on Global.asax.   Also, a new attribute in <httpRuntime /> called “relaxedUrlToFileSystemMapping” has been added with a default of false. <httpRuntime … relaxedUrlToFileSystemMapping="true|false" /> When the relaxedUrlToFileSystemMapping attribute is set to false inbound Urls still need to be valid NTFS file paths. For example Urls (sans query string) need to be less than 260 characters; no path segment within a Url can use old-style DOS device names (LPT1, COM1, etc…); Urls must be valid Windows file paths. A url like “http://digg.com/http://cnn.com” should work with this attribute set to true (of course a few characters will need to be unblocked by removing them from requestPathInvalidCharacters="" above). Managed configuration for non-NTFS-compliant Urls is determined from the first valid configuration path found when walking up the path segments of the Url. For example, if the request Url is "/foo/bar/baz/<blah>data</blah>", and there is a web.config in the "/foo/bar" directory, then the managed configuration for the request comes from merging the configuration hierarchy to include the web.config from "/foo/bar". The value of the public property HttpRequest.PhysicalPath is set to [physical file path of the application root] + "REQUEST_URL_IS_NOT_A_VALID_FILESYSTEM_PATH". For example, given a request Url like "/foo/bar/baz/<blah>data</blah>", where the application root is "/foo/bar" and the physical file path for that root is "c:\inetpub\wwwroot\foo\bar", then PhysicalPath would be "c:\inetpub\wwwroot\foo\bar\ REQUEST_URL_IS_NOT_A_VALID_FILESYSTEM_PATH". Carl Dacosta ASP.NET QA Team

    Read the article

  • Editing Routes in ASP.NET MVC

    - by imran_ku07
    Introduction :        Phil Haack's had written two great articles about Editable Routes, Editable Routes or Editable Routes Using App_Code.These Article are great. But if you not need to unit test your Routes and don't care about restart Application Domian during editing your Routes then global.asax file is the fastest and easiest to achieve the same. In this Article I will use Global.asax file instead of Global.asax.cs file for defining Routes and you will also see how this whole process will works.   Description :          You just need to Cut (or Copy) the code inside Global.asax.cs and paste it in Global.asax inside runat server tag.          You can simply do this by cutting the code of Global.asax.cs,          and paste it inside Global.asax,               Easy and quick ,Now you can change Global.asax without compiling the application. How this works :        I think it is worth here to see what is happening here.        Actually, ASP.NET will use Global.asax file to create a class named global_asax within ASP namespace and place all the code in Global.asax inside the class global_asax class which is created at runtime,                namespace ASP               {                    public class global_asax: NerdDinner.MvcApplication                    {                         //Any definitions defined in Global.asax like Application_Start method                                     }               }         Which inherits from class defined in Application tag,      <%@ Application Codebehind="Global.asax.cs" Inherits="NerdDinner.MvcApplication" Language="C#" %>          Actually ASP.NET creates a pool of application objects of this class, which varies from 1 to 100. Every request take one of these application objects to a serve incoming requests. After receiving an application object then it will call application specific events, like Application_Start(for only firstRequest), Application_BeginRequest(for every request), and so on. Therefore if these methods are defined in global_asax class then ASP.NET will call these method from global_asax, if not then it will use base class methods may be defined in Global.asax.cs(the concept known as shadowing or hiding). Summary :        In this article, I showed how easily and quickly you can make your Routes Editable. But also note that any change in global.asax results in Application Domain restart and this technique also makes your Route Unit Test difficult.

    Read the article

  • Interesting links week #10

    - by erwin21
    Below a list of interesting links that I found this week: Interaction: The Ultimate 20 Usability Tips for Your Website Frontend: Adobe Releases Flash-to-HTML5 Converter, Codenamed Wallaby Development: 10 Tips for Decreasing Web Page Load Times Ten Things Every WordPress Plugin Developer Should Know Progressive enhancement tutorial with ASP.NET MVC 3 and jQuery Marketing: 5 Tips for SEO & User-Friendly Copy Other: Interested in more interesting links follow me at twitter http://twitter.com/erwingriekspoor

    Read the article

  • Asp.Net 1 -> Asp.Net 2 upgrade - Machine.Config - unrecognized parameter

    - by Chris
    Hi All, I am working on upgrading a web app to asp.net 2 from 1. VS 2008 did its conversion things, and everything is building successfully and has been converted to a web application via the appropriate menu item in VS 2008. On launching the site using the Asp.net development server I am receiving a configuration error on the appsettings line in the machine config of Unrecognized attribute 'restartOnExternalChanges'. The app targets asp.net 2 in the projects properties in VS, and the error page indicates similar : Version Information: Microsoft .NET Framework Version:2.0.50727.3053; ASP.NET Version:2.0.50727.3053 The error message seems to indicate I am trying to run this in an asp.net 1 environment, but surely that isnt the case, and if so how do I rectify this. Any help would be appreciated Thanks,

    Read the article

  • Interesting links week #51 and #52

    - by erwin21
    Below a list of interesting links that I found this week: Frontend: How to Create a Mobile Version of Your Website 10 tricks that will make your jQuery enabled site go faster Tools and Resources to Test Cross Browser Compatibility of Your Websites 9 Websites to Learn the Basics About html 5 Development: Online web.config security analyzer tool Using 51Degrees.Mobi Foundation for accurate mobile browser detection on ASP.NET MVC 3 Interested in more interesting links follow me at twitter http://twitter.com/erwingriekspoor

    Read the article

  • The QueryExtender web server control

    - by nikolaosk
    In this post I am going to present a hands on example on how to use the QueryExtender web server control. It is built into ASP.Net 4.0 and it is available from the Toolbox in VS 2010.Before we move on with our example let me explain what this control does and why we need it. Its goal is to extend the functionality of the LINQ to Entities and LINQ to SQL datasources.Most of the times when we have data coming out from a datasource we want some sort of filtering. We do achieve that by using a Where...(read more)

    Read the article

  • Installing AJAX Control Toolkit 4 in Visual Studio 2010

    - by Yousef_Jadallah
      In this tutorial I’ll show you how to install AJAX Control toolkit step by step: You can download AJAX Toolkit .NET 4 “Apr 12 2010” released before 4 days, from http://ajaxcontroltoolkit.codeplex.com/releases/view/43475#DownloadId=116534, Once downloaded, extract AjaxControlToolkit.Binary.NET4  on your computer, then extract AjaxControlToolkitSampleSite. after that you need to open Visual Studio 2010, So we will add the toolkit to the toolbox. To do that press right-click in an empty space on your toolbox, then choose Add Tab.     You can rename the new tab to be “Ajax Toolkit” for example : Then when it is added, right-click under the tab and select Choose Items: When the dialog box appears Choose .NET Framework Components tab then click Browse button and find  AjaxControlToolkit folder that you installed the  AJAX Control Toolkit. In that directory you will find a sub-directory called AjaxControlToolkitSampleSite, and under that folder you will find bin Folder, in this folder choose AjaxControlToolkit.DLL which 5.59 MB.   The result of these steps, Visual Studio will load all the controls from the DLL file and by default it will be checked in this list:   To submit your steps press OK button.   Ultimately,you can find the components in your Toolbox and you can use it.     Happy programming!

    Read the article

  • Html5 Input Validation Presentation

    - by srkirkland
    Last week I gave a presentations to the 2011 UC Davis IT Security Symposium that covered input validation features in HTML5.  I mostly discussed the following three topics: New Html5 Input Types (like <input type=”email” />) Html5 Constraints (like <input type=”text” required maxlength=”8” />) Polyfills The slides only cover part of the story since there are a few “live demos.”  You can find all of the demo code on my github repository https://github.com/srkirkland/ITSecuritySymposium.  You’ll need ASP.NET Mvc 3 installed to run them. The slides are also available in my GitHub repository, but I’ve also added them to slideshare as well because that’s what the cool kids do: http://www.slideshare.net/srkirkland/data-validation-in-web-applications. I believe the presentation was well received and most people learned something, so I just wanted to share.  When loading up the Html5 demo just click on the Html5 tab and go through each example. Enjoy!   [Examples from the Slides and Demos]  

    Read the article

  • Spring.NET and ADO.NET Entity Data Model

    - by Jason
    Having defined an ADO.NET Entity Data Model, I can then instantiate it in a Repository class to query against the database. using (ApplicationEntities ctx = new ApplicationEntities()) { // query, CRUD, etc } However, that particular line of code becomes boilerplate in most of the methods in the repository class. Is it possible to just use Spring.NET to inject the Entity Data Model, either in the class or, even better, in an abstract parent class that all the repositories inherit from?

    Read the article

  • RESTful .NET and protobuf-net

    - by rxm0203
    Is it possible to use protobuf-net in RESTful webservices using WCF RESTful starter kit or OpenRasta? If it possible, are there any examples or code snippets available? I am creating a .NET Web Service which will be consumed by Java client.

    Read the article

  • Default.aspx with IIS 6.0 and .Net 4?

    - by Amitabh
    We have deployed a .net 4 asp.net site on IIS 6.0. Default.aspx is configured as one of the default document. When we access the site using the following url http://testsite We expect it to render http://testsite/Default.aspx But instead we get 404 Not found error. We did not had this issue when it was deployed on .Net 2.0. Only thing that has changed on the server is that we use .Net 4 instead of .Net 2.

    Read the article

  • Capturing and Transforming ASP.NET Output with Response.Filter

    - by Rick Strahl
    During one of my Handlers and Modules session at DevConnections this week one of the attendees asked a question that I didn’t have an immediate answer for. Basically he wanted to capture response output completely and then apply some filtering to the output – effectively injecting some additional content into the page AFTER the page had completely rendered. Specifically the output should be captured from anywhere – not just a page and have this code injected into the page. Some time ago I posted some code that allows you to capture ASP.NET Page output by overriding the Render() method, capturing the HtmlTextWriter() and reading its content, modifying the rendered data as text then writing it back out. I’ve actually used this approach on a few occasions and it works fine for ASP.NET pages. But this obviously won’t work outside of the Page class environment and it’s not really generic – you have to create a custom page class in order to handle the output capture. [updated 11/16/2009 – updated ResponseFilterStream implementation and a few additional notes based on comments] Enter Response.Filter However, ASP.NET includes a Response.Filter which can be used – well to filter output. Basically Response.Filter is a stream through which the OutputStream is piped back to the Web Server (indirectly). As content is written into the Response object, the filter stream receives the appropriate Stream commands like Write, Flush and Close as well as read operations although for a Response.Filter that’s uncommon to be hit. The Response.Filter can be programmatically replaced at runtime which allows you to effectively intercept all output generation that runs through ASP.NET. A common Example: Dynamic GZip Encoding A rather common use of Response.Filter hooking up code based, dynamic  GZip compression for requests which is dead simple by applying a GZipStream (or DeflateStream) to Response.Filter. The following generic routines can be used very easily to detect GZip capability of the client and compress response output with a single line of code and a couple of library helper routines: WebUtils.GZipEncodePage(); which is handled with a few lines of reusable code and a couple of static helper methods: /// <summary> ///Sets up the current page or handler to use GZip through a Response.Filter ///IMPORTANT:  ///You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() {     HttpResponse Response = HttpContext.Current.Response;     if(IsGZipSupported())     {         stringAcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"];         if(AcceptEncoding.Contains("deflate"))         {             Response.Filter = newSystem.IO.Compression.DeflateStream(Response.Filter,                                        System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "deflate");         }         else        {             Response.Filter = newSystem.IO.Compression.GZipStream(Response.Filter,                                       System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "gzip");                            }     }     // Allow proxy servers to cache encoded and unencoded versions separately    Response.AppendHeader("Vary", "Content-Encoding"); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } GZipStream and DeflateStream are streams that are assigned to Response.Filter and by doing so apply the appropriate compression on the active Response. Response.Filter content is chunked So to implement a Response.Filter effectively requires only that you implement a custom stream and handle the Write() method to capture Response output as it’s written. At first blush this seems very simple – you capture the output in Write, transform it and write out the transformed content in one pass. And that indeed works for small amounts of content. But you see, the problem is that output is written in small buffer chunks (a little less than 16k it appears) rather than just a single Write() statement into the stream, which makes perfect sense for ASP.NET to stream data back to IIS in smaller chunks to minimize memory usage en route. Unfortunately this also makes it a more difficult to implement any filtering routines since you don’t directly get access to all of the response content which is problematic especially if those filtering routines require you to look at the ENTIRE response in order to transform or capture the output as is needed for the solution the gentleman in my session asked for. So in order to address this a slightly different approach is required that basically captures all the Write() buffers passed into a cached stream and then making the stream available only when it’s complete and ready to be flushed. As I was thinking about the implementation I also started thinking about the few instances when I’ve used Response.Filter implementations. Each time I had to create a new Stream subclass and create my custom functionality but in the end each implementation did the same thing – capturing output and transforming it. I thought there should be an easier way to do this by creating a re-usable Stream class that can handle stream transformations that are common to Response.Filter implementations. Creating a semi-generic Response Filter Stream Class What I ended up with is a ResponseFilterStream class that provides a handful of Events that allow you to capture and/or transform Response content. The class implements a subclass of Stream and then overrides Write() and Flush() to handle capturing and transformation operations. By exposing events it’s easy to hook up capture or transformation operations via single focused methods. ResponseFilterStream exposes the following events: CaptureStream, CaptureString Captures the output only and provides either a MemoryStream or String with the final page output. Capture is hooked to the Flush() operation of the stream. TransformStream, TransformString Allows you to transform the complete response output with events that receive a MemoryStream or String respectively and can you modify the output then return it back as a return value. The transformed output is then written back out in a single chunk to the response output stream. These events capture all output internally first then write the entire buffer into the response. TransformWrite, TransformWriteString Allows you to transform the Response data as it is written in its original chunk size in the Stream’s Write() method. Unlike TransformStream/TransformString which operate on the complete output, these events only see the current chunk of data written. This is more efficient as there’s no caching involved, but can cause problems due to searched content splitting over multiple chunks. Using this implementation, creating a custom Response.Filter transformation becomes as simple as the following code. To hook up the Response.Filter using the MemoryStream version event: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformStream += filter_TransformStream; Response.Filter = filter; and the event handler to do the transformation: MemoryStream filter_TransformStream(MemoryStream ms) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = encoding.GetString(ms.ToArray()); output = FixPaths(output); ms = new MemoryStream(output.Length); byte[] buffer = encoding.GetBytes(output); ms.Write(buffer,0,buffer.Length); return ms; } private string FixPaths(string output) { string path = HttpContext.Current.Request.ApplicationPath; // override root path wonkiness if (path == "/") path = ""; output = output.Replace("\"~/", "\"" + path + "/").Replace("'~/", "'" + path + "/"); return output; } The idea of the event handler is that you can do whatever you want to the stream and return back a stream – either the same one that’s been modified or a brand new one – which is then sent back to as the final response. The above code can be simplified even more by using the string version events which handle the stream to string conversions for you: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; and the event handler to do the transformation calling the same FixPaths method shown above: string filter_TransformString(string output) { return FixPaths(output); } The events for capturing output and capturing and transforming chunks work in a very similar way. By using events to handle the transformations ResponseFilterStream becomes a reusable component and we don’t have to create a new stream class or subclass an existing Stream based classed. By the way, the example used here is kind of a cool trick which transforms “~/” expressions inside of the final generated HTML output – even in plain HTML controls not HTML controls – and transforms them into the appropriate application relative path in the same way that ResolveUrl would do. So you can write plain old HTML like this: <a href=”~/default.aspx”>Home</a>  and have it turned into: <a href=”/myVirtual/default.aspx”>Home</a>  without having to use an ASP.NET control like Hyperlink or Image or having to constantly use: <img src=”<%= ResolveUrl(“~/images/home.gif”) %>” /> in MVC applications (which frankly is one of the most annoying things about MVC especially given the path hell that extension-less and endpoint-less URLs impose). I can’t take credit for this idea. While discussing the Response.Filter issues on Twitter a hint from Dylan Beattie who pointed me at one of his examples which does something similar. I thought the idea was cool enough to use an example for future demos of Response.Filter functionality in ASP.NET next I time I do the Modules and Handlers talk (which was great fun BTW). How practical this is is debatable however since there’s definitely some overhead to using a Response.Filter in general and especially on one that caches the output and the re-writes it later. Make sure to test for performance anytime you use Response.Filter hookup and make sure it' doesn’t end up killing perf on you. You’ve been warned :-}. How does ResponseFilterStream work? The big win of this implementation IMHO is that it’s a reusable  component – so for implementation there’s no new class, no subclassing – you simply attach to an event to implement an event handler method with a straight forward signature to retrieve the stream or string you’re interested in. The implementation is based on a subclass of Stream as is required in order to handle the Response.Filter requirements. What’s different than other implementations I’ve seen in various places is that it supports capturing output as a whole to allow retrieving the full response output for capture or modification. The exception are the TransformWrite and TransformWrite events which operate only active chunk of data written by the Response. For captured output, the Write() method captures output into an internal MemoryStream that is cached until writing is complete. So Write() is called when ASP.NET writes to the Response stream, but the filter doesn’t pass on the Write immediately to the filter’s internal stream. The data is cached and only when the Flush() method is called to finalize the Stream’s output do we actually send the cached stream off for transformation (if the events are hooked up) and THEN finally write out the returned content in one big chunk. Here’s the implementation of ResponseFilterStream: /// <summary> /// A semi-generic Stream implementation for Response.Filter with /// an event interface for handling Content transformations via /// Stream or String. /// <remarks> /// Use with care for large output as this implementation copies /// the output into a memory stream and so increases memory usage. /// </remarks> /// </summary> public class ResponseFilterStream : Stream { /// <summary> /// The original stream /// </summary> Stream _stream; /// <summary> /// Current position in the original stream /// </summary> long _position; /// <summary> /// Stream that original content is read into /// and then passed to TransformStream function /// </summary> MemoryStream _cacheStream = new MemoryStream(5000); /// <summary> /// Internal pointer that that keeps track of the size /// of the cacheStream /// </summary> int _cachePointer = 0; /// <summary> /// /// </summary> /// <param name="responseStream"></param> public ResponseFilterStream(Stream responseStream) { _stream = responseStream; } /// <summary> /// Determines whether the stream is captured /// </summary> private bool IsCaptured { get { if (CaptureStream != null || CaptureString != null || TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Determines whether the Write method is outputting data immediately /// or delaying output until Flush() is fired. /// </summary> private bool IsOutputDelayed { get { if (TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Event that captures Response output and makes it available /// as a MemoryStream instance. Output is captured but won't /// affect Response output. /// </summary> public event Action<MemoryStream> CaptureStream; /// <summary> /// Event that captures Response output and makes it available /// as a string. Output is captured but won't affect Response output. /// </summary> public event Action<string> CaptureString; /// <summary> /// Event that allows you transform the stream as each chunk of /// the output is written in the Write() operation of the stream. /// This means that that it's possible/likely that the input /// buffer will not contain the full response output but only /// one of potentially many chunks. /// /// This event is called as part of the filter stream's Write() /// operation. /// </summary> public event Func<byte[], byte[]> TransformWrite; /// <summary> /// Event that allows you to transform the response stream as /// each chunk of bytep[] output is written during the stream's write /// operation. This means it's possibly/likely that the string /// passed to the handler only contains a portion of the full /// output. Typical buffer chunks are around 16k a piece. /// /// This event is called as part of the stream's Write operation. /// </summary> public event Func<string, string> TransformWriteString; /// <summary> /// This event allows capturing and transformation of the entire /// output stream by caching all write operations and delaying final /// response output until Flush() is called on the stream. /// </summary> public event Func<MemoryStream, MemoryStream> TransformStream; /// <summary> /// Event that can be hooked up to handle Response.Filter /// Transformation. Passed a string that you can modify and /// return back as a return value. The modified content /// will become the final output. /// </summary> public event Func<string, string> TransformString; protected virtual void OnCaptureStream(MemoryStream ms) { if (CaptureStream != null) CaptureStream(ms); } private void OnCaptureStringInternal(MemoryStream ms) { if (CaptureString != null) { string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); OnCaptureString(content); } } protected virtual void OnCaptureString(string output) { if (CaptureString != null) CaptureString(output); } protected virtual byte[] OnTransformWrite(byte[] buffer) { if (TransformWrite != null) return TransformWrite(buffer); return buffer; } private byte[] OnTransformWriteStringInternal(byte[] buffer) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = OnTransformWriteString(encoding.GetString(buffer)); return encoding.GetBytes(output); } private string OnTransformWriteString(string value) { if (TransformWriteString != null) return TransformWriteString(value); return value; } protected virtual MemoryStream OnTransformCompleteStream(MemoryStream ms) { if (TransformStream != null) return TransformStream(ms); return ms; } /// <summary> /// Allows transforming of strings /// /// Note this handler is internal and not meant to be overridden /// as the TransformString Event has to be hooked up in order /// for this handler to even fire to avoid the overhead of string /// conversion on every pass through. /// </summary> /// <param name="responseText"></param> /// <returns></returns> private string OnTransformCompleteString(string responseText) { if (TransformString != null) TransformString(responseText); return responseText; } /// <summary> /// Wrapper method form OnTransformString that handles /// stream to string and vice versa conversions /// </summary> /// <param name="ms"></param> /// <returns></returns> internal MemoryStream OnTransformCompleteStringInternal(MemoryStream ms) { if (TransformString == null) return ms; //string content = ms.GetAsString(); string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); content = TransformString(content); byte[] buffer = HttpContext.Current.Response.ContentEncoding.GetBytes(content); ms = new MemoryStream(); ms.Write(buffer, 0, buffer.Length); //ms.WriteString(content); return ms; } /// <summary> /// /// </summary> public override bool CanRead { get { return true; } } public override bool CanSeek { get { return true; } } /// <summary> /// /// </summary> public override bool CanWrite { get { return true; } } /// <summary> /// /// </summary> public override long Length { get { return 0; } } /// <summary> /// /// </summary> public override long Position { get { return _position; } set { _position = value; } } /// <summary> /// /// </summary> /// <param name="offset"></param> /// <param name="direction"></param> /// <returns></returns> public override long Seek(long offset, System.IO.SeekOrigin direction) { return _stream.Seek(offset, direction); } /// <summary> /// /// </summary> /// <param name="length"></param> public override void SetLength(long length) { _stream.SetLength(length); } /// <summary> /// /// </summary> public override void Close() { _stream.Close(); } /// <summary> /// Override flush by writing out the cached stream data /// </summary> public override void Flush() { if (IsCaptured && _cacheStream.Length > 0) { // Check for transform implementations _cacheStream = OnTransformCompleteStream(_cacheStream); _cacheStream = OnTransformCompleteStringInternal(_cacheStream); OnCaptureStream(_cacheStream); OnCaptureStringInternal(_cacheStream); // write the stream back out if output was delayed if (IsOutputDelayed) _stream.Write(_cacheStream.ToArray(), 0, (int)_cacheStream.Length); // Clear the cache once we've written it out _cacheStream.SetLength(0); } // default flush behavior _stream.Flush(); } /// <summary> /// /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> /// <returns></returns> public override int Read(byte[] buffer, int offset, int count) { return _stream.Read(buffer, offset, count); } /// <summary> /// Overriden to capture output written by ASP.NET and captured /// into a cached stream that is written out later when Flush() /// is called. /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> public override void Write(byte[] buffer, int offset, int count) { if ( IsCaptured ) { // copy to holding buffer only - we'll write out later _cacheStream.Write(buffer, 0, count); _cachePointer += count; } // just transform this buffer if (TransformWrite != null) buffer = OnTransformWrite(buffer); if (TransformWriteString != null) buffer = OnTransformWriteStringInternal(buffer); if (!IsOutputDelayed) _stream.Write(buffer, offset, buffer.Length); } } The key features are the events and corresponding OnXXX methods that handle the event hookups, and the Write() and Flush() methods of the stream implementation. All the rest of the members tend to be plain jane passthrough stream implementation code without much consequence. I do love the way Action<t> and Func<T> make it so easy to create the event signatures for the various events – sweet. A few Things to consider Performance Response.Filter is not great for performance in general as it adds another layer of indirection to the ASP.NET output pipeline, and this implementation in particular adds a memory hit as it basically duplicates the response output into the cached memory stream which is necessary since you may have to look at the entire response. If you have large pages in particular this can cause potentially serious memory pressure in your server application. So be careful of wholesale adoption of this (or other) Response.Filters. Make sure to do some performance testing to ensure it’s not killing your app’s performance. Response.Filter works everywhere A few questions came up in comments and discussion as to capturing ALL output hitting the site and – yes you can definitely do that by assigning a Response.Filter inside of a module. If you do this however you’ll want to be very careful and decide which content you actually want to capture especially in IIS 7 which passes ALL content – including static images/CSS etc. through the ASP.NET pipeline. So it is important to filter only on what you’re looking for – like the page extension or maybe more effectively the Response.ContentType. Response.Filter Chaining Originally I thought that filter chaining doesn’t work at all due to a bug in the stream implementation code. But it’s quite possible to assign multiple filters to the Response.Filter property. So the following actually works to both compress the output and apply the transformed content: WebUtils.GZipEncodePage(); ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; However the following does not work resulting in invalid content encoding errors: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; WebUtils.GZipEncodePage(); In other words multiple Response filters can work together but it depends entirely on the implementation whether they can be chained or in which order they can be chained. In this case running the GZip/Deflate stream filters apparently relies on the original content length of the output and chokes when the content is modified. But if attaching the compression first it works fine as unintuitive as that may seem. Resources Download example code Capture Output from ASP.NET Pages © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • GZip/Deflate Compression in ASP.NET MVC

    - by Rick Strahl
    A long while back I wrote about GZip compression in ASP.NET. In that article I describe two generic helper methods that I've used in all sorts of ASP.NET application from WebForms apps to HttpModules and HttpHandlers that require gzip or deflate compression. The same static methods also work in ASP.NET MVC. Here are the two routines:/// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } /// <summary> /// Sets up the current page or handler to use GZip through a Response.Filter /// IMPORTANT: /// You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() { HttpResponse Response = HttpContext.Current.Response; if (IsGZipSupported()) { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (AcceptEncoding.Contains("gzip")) { Response.Filter = new System.IO.Compression.GZipStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "gzip"); } else { Response.Filter = new System.IO.Compression.DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "deflate"); } } // Allow proxy servers to cache encoded and unencoded versions separately Response.AppendHeader("Vary", "Content-Encoding"); } The first method checks whether the client sending the request includes the accept-encoding for either gzip or deflate, and if if it does it returns true. The second function uses IsGzipSupported() to decide whether it should encode content and uses an Response Filter to do its job. Basically response filters look at the Response output stream as it's written and convert the data flowing through it. Filters are a bit tricky to work with but the two .NET filter streams for GZip and Deflate Compression make this a snap to implement. In my old code and even now in MVC I can always do:public ActionResult List(string keyword=null, int category=0) { WebUtils.GZipEncodePage(); …} to encode my content. And that works just fine. The proper way: Create an ActionFilterAttribute However in MVC this sort of thing is typically better handled by an ActionFilter which can be applied with an attribute. So to be all prim and proper I created an CompressContentAttribute ActionFilter that incorporates those two helper methods and which looks like this:/// <summary> /// Attribute that can be added to controller methods to force content /// to be GZip encoded if the client supports it /// </summary> public class CompressContentAttribute : ActionFilterAttribute { /// <summary> /// Override to compress the content that is generated by /// an action method. /// </summary> /// <param name="filterContext"></param> public override void OnActionExecuting(ActionExecutingContext filterContext) { GZipEncodePage(); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } /// <summary> /// Sets up the current page or handler to use GZip through a Response.Filter /// IMPORTANT: /// You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() { HttpResponse Response = HttpContext.Current.Response; if (IsGZipSupported()) { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (AcceptEncoding.Contains("gzip")) { Response.Filter = new System.IO.Compression.GZipStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "gzip"); } else { Response.Filter = new System.IO.Compression.DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "deflate"); } } // Allow proxy servers to cache encoded and unencoded versions separately Response.AppendHeader("Vary", "Content-Encoding"); } } It's basically the same code wrapped into an ActionFilter attribute, which intercepts requests MVC requests to Controller methods and lets you hook up logic before and after the methods have executed. Here I want to override OnActionExecuting() which fires before the Controller action is fired. With the CompressContentAttribute created, it can now be applied to either the controller as a whole:[CompressContent] public class ClassifiedsController : ClassifiedsBaseController { … } or to one of the Action methods:[CompressContent] public ActionResult List(string keyword=null, int category=0) { … } The former applies compression to every action method, while the latter is selective and only applies it to the individual action method. Is the attribute better than the static utility function? Not really, but it is the standard MVC way to hook up 'filter' content and that's where others are likely to expect to set options like this. In fact,  you have a bit more control with the utility function because you can conditionally apply it in code, but this is actually much less likely in MVC applications than old WebForms apps since controller methods tend to be more focused. Compression Caveats Http compression is very cool and pretty easy to implement in ASP.NET but you have to be careful with it - especially if your content might get transformed or redirected inside of ASP.NET. A good example, is if an error occurs and a compression filter is applied. ASP.NET errors don't clear the filter, but clear the Response headers which results in some nasty garbage because the compressed content now no longer matches the headers. Another issue is Caching, which has to account for all possible ways of compression and non-compression that the content is served. Basically compressed content and caching don't mix well. I wrote about several of these issues in an old blog post and I recommend you take a quick peek before diving into making every bit of output Gzip encoded. None of these are show stoppers, but you have to be aware of the issues. Related Posts GZip Compression with ASP.NET Content ASP.NET GZip Encoding Caveats© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • .NET Reflector Pro Coming…

    The very best software is almost always originally the creation of a single person. Readers of our 'Geek of the Week' will know of a few of them.  Even behemoths such as MS Word or Excel started out with one programmer.  There comes a time with any software that it starts to grow up, and has to move from this form of close parenting to being developed by a team.  This has happened several times within Red-Gate: SQL Refactor, SQL Compare, and SQL Dependency Tracker, not to mention SQL Backup, were all originally the work of a lone coder, who subsequently handed over the development to a structured team of programmers, test engineers and usability designers. Because we loved .NET Reflector when Lutz Roeder wrote and nurtured it, and, like many other .NET developers, used it as a development tool ourselves, .NET Reflector's progress from being the apple of Lutz's eye to being a Red-Gate team-based development  seemed natural.  Lutz, after all, eventually felt he couldn't afford the time to develop it to the extent it deserved. Why, then, did we want to take on .NET Reflector?  Different people may give you different answers, but for us in the .NET team, it just seemed a natural progression. We're always very surprised when anyone suggests that we want to change the nature of the tool since it seems right just as it is. .NET Reflector will stay very much the tool we all use and appreciate, although the new version will support .NET 4, and will have many improvements in the accuracy of its decompiling. Whilst we've made a lot of improvements to Reflector, the radical addition, which we hope you'll want to try out as well, is '.NET Reflector Pro'. This is an extension to .NET Reflector that allows the debugging of decompiled code using the Visual Studio debugger. It is an add-in, but we'll be charging for it, mainly because we prefer to live indoors with a warm meal, rather than outside in tents, particularly when the winter's been as cold as this one has. We're hoping (we're even pretty confident!) that you'll share our excitement about .NET Reflector Pro. .NET Reflector Pro integrates .NET Reflector into Visual Studio, allowing you to seamlessly debug into third-party code and assemblies, even if you don't have the source code for them. You can now treat decompiled assemblies much like your own code: you can step through them and use all the debugging techniques that you would use on your own code. Try the beta now. span.fullpost {display:none;}

    Read the article

  • .NET Reflector Pro Coming…

    The very best software is almost always originally the creation of a single person. Readers of our 'Geek of the Week' will know of a few of them.  Even behemoths such as MS Word or Excel started out with one programmer.  There comes a time with any software that it starts to grow up, and has to move from this form of close parenting to being developed by a team.  This has happened several times within Red-Gate: SQL Refactor, SQL Compare, and SQL Dependency Tracker, not to mention SQL Backup, were all originally the work of a lone coder, who subsequently handed over the development to a structured team of programmers, test engineers and usability designers. Because we loved .NET Reflector when Lutz Roeder wrote and nurtured it, and, like many other .NET developers, used it as a development tool ourselves, .NET Reflector's progress from being the apple of Lutz's eye to being a Red-Gate team-based development  seemed natural.  Lutz, after all, eventually felt he couldn't afford the time to develop it to the extent it deserved. Why, then, did we want to take on .NET Reflector?  Different people may give you different answers, but for us in the .NET team, it just seemed a natural progression. We're always very surprised when anyone suggests that we want to change the nature of the tool since it seems right just as it is. .NET Reflector will stay very much the tool we all use and appreciate, although the new version will support .NET 4, and will have many improvements in the accuracy of its decompiling. Whilst we've made a lot of improvements to Reflector, the radical addition, which we hope you'll want to try out as well, is '.NET Reflector Pro'. This is an extension to .NET Reflector that allows the debugging of decompiled code using the Visual Studio debugger. It is an add-in, but we'll be charging for it, mainly because we prefer to live indoors with a warm meal, rather than outside in tents, particularly when the winter's been as cold as this one has. We're hoping (we're even pretty confident!) that you'll share our excitement about .NET Reflector Pro. .NET Reflector Pro integrates .NET Reflector into Visual Studio, allowing you to seamlessly debug into third-party code and assemblies, even if you don't have the source code for them. You can now treat decompiled assemblies much like your own code: you can step through them and use all the debugging techniques that you would use on your own code. Try the beta now. span.fullpost {display:none;}

    Read the article

< Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >