Search Results

Search found 3758 results on 151 pages for 'efficient'.

Page 42/151 | < Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >

  • Small Business Setup SSO LDAP VPN [closed]

    - by outsmartin
    We are not sure how to setup an efficient network. Things we got so far: Linux Server ( probably Debian ) 3 Desktops + some Laptops ( Win / linux ) NAS ~10 people working 50/50 devs/normal people :) Things we want to achieve: Working from home should be easy, VPN and firewall single username/password for everybody windows/linux desktops should have automatic synched home folders / preferably from the NAS automated hostnames for apps so others can access them like http//john.dev_app from everywhere in the VPN Need starting point and documentation on setting up with Open source tools like OpenVPN and OpenLDAP Any recommendations or links to further literature are welcome.

    Read the article

  • C++0x rvalue references - lvalues-rvalue binding

    - by Doug
    This is a follow-on question to http://stackoverflow.com/questions/2748866/c0x-rvalue-references-and-temporaries In the previous question, I asked how this code should work: void f(const std::string &); //less efficient void f(std::string &&); //more efficient void g(const char * arg) { f(arg); } It seems that the move overload should probably be called because of the implicit temporary, and this happens in GCC but not MSVC (or the EDG front-end used in MSVC's Intellisense). What about this code? void f(std::string &&); //NB: No const string & overload supplied void g1(const char * arg) { f(arg); } void g2(const std::string & arg) { f(arg); } It seems that, based on the answers to my previous question that function g1 is legal (and is accepted by GCC 4.3-4.5, but not by MSVC). However, GCC and MSVC both reject g2 because of clause 13.3.3.1.4/3, which prohibits lvalues from binding to rvalue ref arguments. I understand the rationale behind this - it is explained in N2831 "Fixing a safety problem with rvalue references". I also think that GCC is probably implementing this clause as intended by the authors of that paper, because the original patch to GCC was written by one of the authors (Doug Gregor). However, I don't this is quite intuitive. To me, (a) a const string & is conceptually closer to a string && than a const char *, and (b) the compiler could create a temporary string in g2, as if it were written like this: void g2(const std::string & arg) { f(std::string(arg)); } Indeed, sometimes the copy constructor is considered to be an implicit conversion operator. Syntactically, this is suggested by the form of a copy constructor, and the standard even mentions this specifically in clause 13.3.3.1.2/4, where the copy constructor for derived-base conversions is given a higher conversion rank than other implicit conversions: A conversion of an expression of class type to the same class type is given Exact Match rank, and a conversion of an expression of class type to a base class of that type is given Conversion rank, in spite of the fact that a copy/move constructor (i.e., a user-defined conversion function) is called for those cases. (I assume this is used when passing a derived class to a function like void h(Base), which takes a base class by value.) Motivation My motivation for asking this is something like the question asked in http://stackoverflow.com/questions/2696156/how-to-reduce-redundant-code-when-adding-new-c0x-rvalue-reference-operator-over ("How to reduce redundant code when adding new c++0x rvalue reference operator overloads"). If you have a function that accepts a number of potentially-moveable arguments, and would move them if it can (e.g. a factory function/constructor: Object create_object(string, vector<string>, string) or the like), and want to move or copy each argument as appropriate, you quickly start writing a lot of code. If the argument types are movable, then one could just write one version that accepts the arguments by value, as above. But if the arguments are (legacy) non-movable-but-swappable classes a la C++03, and you can't change them, then writing rvalue reference overloads is more efficient. So if lvalues did bind to rvalues via an implicit copy, then you could write just one overload like create_object(legacy_string &&, legacy_vector<legacy_string> &&, legacy_string &&) and it would more or less work like providing all the combinations of rvalue/lvalue reference overloads - actual arguments that were lvalues would get copied and then bound to the arguments, actual arguments that were rvalues would get directly bound. Questions My questions are then: Is this a valid interpretation of the standard? It seems that it's not the conventional or intended one, at any rate. Does it make intuitive sense? Is there a problem with this idea that I"m not seeing? It seems like you could get copies being quietly created when that's not exactly expected, but that's the status quo in places in C++03 anyway. Also, it would make some overloads viable when they're currently not, but I don't see it being a problem in practice. Is this a significant enough improvement that it would be worth making e.g. an experimental patch for GCC?

    Read the article

  • Bye Bye Year of the Dragon, Hello BPM

    - by Michelle Kimihira
    As CNN asks you to vote for most intriguing person of the year, what technologies do you think were most intriguing in 2012? Was it Social, Mobile, BPM or were you most captivated by Customer Experience? Well, we too observed these technology trends on the upswing and foresee that these will remain in limelight for 2013. What if we told you that there is a solution that brings these technologies together and helps not only to create efficient business processes but also an engaging customer experience. As we transition into 2013 let’s take a look at some of the top trending topics in BPM.  Ajay Khanna discusses these trends in OracleBPM blog, Bye Bye Year of the Dragon, Hello BPM.  Additional Information Product Information on Oracle.com: Oracle Fusion Middleware Follow us on Twitter and Facebook and YouTube Subscribe to our regular Fusion Middleware Newsletter

    Read the article

  • Silverlight 5 Hosting :: Features in Silverlight 5 and Release Date

    - by mbridge
    Silverlight 5 is finally announced in the Silverlight FireStarter Event on the 2nd December, 2010. This new version of Silverlight which was earlier labeled as 'Future of Microsoft Silverlight' has now come much closer to go live as the first Silverlight 5 Beta version is expected to be shipped during the early months of 2011. However for the full fledged and the final release of Silverlight 5, we have to wait many more months as the same is likely to be made available within the Q3 2011. As would have been usually expected, this latest edition would feature many new capabilities thereby extending the developer productivity to a whole new dimension of premium media experience and feature-rich business applications. It comes along with many new feature updates as well as the inclusion of new technologies to improve the standard of the Silverlight applications which are now fine-tuned to produce next generation business and media solutions that is capable to meet the requirements of the advanced web-based app development. The Silverlight 5 is all set to replace the previous fourth version which now includes more than forty new features while also dropping various deprecated elements that was prevalent earlier. It has brought around some major performance enhancements and also included better support for various other tools and technologies. Following are some of the changes that are registered to be available under the Silverlight 5 Beta edition which is scheduled to be launched during the Q1 2011. Silverlight 5 : Premium Media Experiences The media features of Silverlight 5 has seen some major enhancements with a lot of optimizations being made to deliver richer solutions. It's capability has now been extended to make things easier, faster and capable of performing the desired tasks in the most efficient manner. The Silverlight media solutions has already been a part of many companies in the recent days where various on-demand Silverlight services were featured but with the arrival of the next generation premium media solution of Silverlight 5, it is expected to register new heights of success and global user acclamation for using it with many esteemed web-based projects and media solutions. - The most happening element in the new Silverlight 5 will be its support for utilizing the GPU based hardware acceleration which is intended to lower down the CPU load to a significant extent and thereby allowing faster rendering of media contents without consuming much resources. This feature is believed to be particularly helpful for low configured machines to run full HD media content without any lagging caused due to processor load. It will hence be one great feature to revolutionize the new generation high quality media contents to be available within the web in a more efficient manner with its hardware decoded video playback capabilities. - With the inclusion of hardware video decoding to minimize the processor load, the Silverlight 5 also comes with another optimization enhancement to also reduce the power consumption level by making new methods to deal with the power-saver settings. With this optimization in effect, the computer would be automatically allowed to switch to sleep mode while no video playback is in progress and also to prevent any screensavers to popup and cause annoyances during any video playback. There would also be other power saver options which will be made available to best suit the users requirements and purpose. - The Silverlight trickplay feature is another great way to tweak any silverlight powered media content as is used for many video tutorial sites or for dealing with any sort of presentations. This feature enables the user to modify the playback speed to either slowdown or speedup during the playback durations based on the requirements without compromising on the quality of output. Normally such manipulations always makes the content's audio to go off-pitch, but the same will not be the case with TrickPlay and the audio would seamlessly progress with the video without skipping any of its part. - In addition to all of the above, the new Silverlight 5 will be featuring wireless control of all the media contents by making use of remote controllers. With the use of such remote devices, it will be easier to handle the various media playback controls thereby providing more freedom while experiencing the premium media services. Silverlight 5 : Business Application Development The application development standard has been extended with more possibilities by bringing forth new and useful technologies and also reviving the existing methods to work better than what it was used to. From the UI improvements to advanced technical aspects, the Silverlight 5 scores high on all grounds to produce great next generation business delivered applications by putting in more creativity and resourceful touch to all the apps being produced with it. - The WPF feature of Silverlight is made more effective by introducing new standards of Databinding which is intended to improve the productivity standards of the Silverlight application developer. It brings in a lot of convenience in debugging the databinding components or expressions and hence making things work in a flawless manner. Some additional features related to databinding includes that of Ancestor RelativeSource, Implicit DataTemplates and Model View ViewModel (MVVM) support with DataContextChanged event and many other new features relating it. - It now comes with a refined text and printing service which facilitates better clarity of the text rendering and also many positive changes which are being applied to the layout pattern. New supports has been added to include OpenType font, multi-column text, linked-text containers and character leading support to name a few among the available features.This also includes some important printing aspects like that of Postscript Vector Printing API which allows to program our printing tasks in a user defined way and Pivot functionality for visualization concerns of informations. - The Graphics support is the key improvements being incorporated which now enables to utilize three dimensional graphics pattern using GPU acceleration. It can manage to provide some really cool visualizations being curved to provide media contents within the business apps with also the support for full HD contents at 1080p quality. - Silverlight 5 includes the support for 64-bit operating systems and relevant browsers and is also optimized to provide better performance. It can support the background thread for the networking which can reduce the latency of the network to a considerable extent. The Out-of-Browser functionality adds the support for utilizing various libraries and also the Win32 API. It also comes with testing support with VS 2010 which is mostly an automated procedure and has also enabled increased security aspects of all the Silverlight 5 developed applications by using the improved version of group policy support.

    Read the article

  • CodePlex Daily Summary for Sunday, March 07, 2010

    CodePlex Daily Summary for Sunday, March 07, 2010New ProjectsAlgorithminator: Universal .NET algorithm visualizer, which helps you to illustrate any algorithm, written in any .NET language. Still in development.ALToolkit: Contains a set of handy .NET components/classes. Currently it contains: * A Numeric Text Box (an Extended NumericUpDown) * A Splash Screen base fo...Automaton Home: Automaton is a home automation software built with a n-Tier, MVVM pattern utilzing WCF, EF, WPF, Silverlight and XBAP.Developer Controls: Developer Controls contains various controls to help build applications that can script/write code.Dynamic Reference Manager: Dynamic Reference Manager is a set (more like a small group) of classes and attributes written in C# that allows any .NET program to reference othe...indiologic: Utilities of an IndioNeural Cryptography in F#: This project is my magistracy resulting work. It is intended to be an example of using neural networks in cryptography. Hashing functions are chose...Particle Filter Visualization: Particle Filter Visualization Program for the Intel Science and Engineering FairPólya: Efficient, immutable, polymorphic collections. .Net lacks them, we provide them*. * By we, we mean I; and by efficient, I mean hopefully so.project euler solutions from mhinze: mhinze project euler solutionsSilverlight 4 and WCF multi layer: Silverlight 4 and WCF multi layersqwarea: Project for a browser-based, minimalistic, massively multiplayer strategy game. Part of the "Génie logiciel et Cloud Computing" course of the ENS (...SuperSocket: SuperSocket, a socket application framework can build FTP/SMTP/POP server easilyToast (for ASP.NET MVC): Dynamic, developer & designer friendly content injection, compression and optimization for ASP.NET MVCNew ReleasesALToolkit: ALToolkit 1.0: Binary release of the libraries containing: NumericTextBox SplashScreen Based on the VB.NET code, but that doesn't really matter.Blacklist of Providers: 1.0-Milestone 1: Blacklist of Providers.Milestone 1In this development release implemented - Main interface (Work Item #5453) - Database (Work Item #5523)C# Linear Hash Table: Linear Hash Table b2: Now includes a default constructor, and will throw an exception if capacity is not set to a power of 2 or loadToMaintain is below 1.Composure: CassiniDev-Trunk-40745-VS2010.rc1.NET4: A simple port of the CassiniDev portable web server project for Visual Studio 2010 RC1 built against .NET 4.0. The WCF tests currently fail unless...Developer Controls: DevControls: These are the version 1.0 releases of these controls. Download the individually or all together (in a .zip file). More releases coming soon!Dynamic Reference Manager: DRM Alpha1: This is the first release. I'm calling it Alpha because I intend implementing other functions, but I do not intend changing the way current functio...ESB Toolkit Extensions: Tellago SOA ESB Extenstions v0.3: Windows Installer file that installs Library on a BizTalk ESB 2.0 system. This Install automatically configures the esb.config to use the new compo...GKO Libraries: GKO Libraries 0.1 Alpha: 0.1 AlphaHome Access Plus+: v3.0.3.0: Version 3.0.3.0 Release Change Log: Added Announcement Box Removed script files that aren't needed Fixed & issue in directory path Stylesheet...Icarus Scene Engine: Icarus Scene Engine 1.10.306.840: Icarus Professional, Icarus Player, the supporting software for Icarus Scene Engine, with some included samples, and the start of a tutorial (with ...mavjuz WndLpt: wndlpt-0.2.5: New: Response to 5 LPT inputs "test i 1" New: Reaction to 12 LPT outputs "test q 8" New: Reaction to all LPT pins "test pin 15" New: Syntax: ...Neural Cryptography in F#: Neural Cryptography 0.0.1: The most simple version of this project. It has a neural network that works just like logical AND and a possibility to recreate neural network from...Password Provider: 1.0.3: This release fixes a bug which caused the program to crash when double clicking on a generic item.RoTwee: RoTwee 6.2.0.0: New feature is as next. 16649 Add hashtag for tweet of tune.Now you can tweet your playing tune with hashtag.Visual Studio DSite: Picture Viewer (Visual C++ 2008): This example source code allows you to view any picture you want in the click of a button. All you got to do is click the button and browser via th...WatchersNET CKEditor™ Provider for DotNetNuke: CKEditor Provider 1.8.00: Whats New File Browser: Folders & Files View reworked File Browser: Folders & Files View reworked File Browser: Folders are displayed as TreeVi...WSDLGenerator: WSDLGenerator 0.0.0.4: - replaced CommonLibrary.dll by CommandLineParser.dll - added better support for custom complex typesMost Popular ProjectsMetaSharpSilverlight ToolkitASP.NET Ajax LibraryAll-In-One Code FrameworkWindows 7 USB/DVD Download Toolニコ生アラートWindows Double ExplorerVirtual Router - Wifi Hot Spot for Windows 7 / 2008 R2Caliburn: An Application Framework for WPF and SilverlightArkSwitchMost Active ProjectsUmbraco CMSRawrSDS: Scientific DataSet library and toolsBlogEngine.NETjQuery Library for SharePoint Web Servicespatterns & practices – Enterprise LibraryIonics Isapi Rewrite FilterFarseer Physics EngineFasterflect - A Fast and Simple Reflection APIFluent Assertions

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

  • Permanently redirect your asp.net pages in ASP.Net 4.0

    - by nikolaosk
    Hello all, In this post, I would like to talk about a new method of the Response object that comes with ASP.Net 4.0. The name of the method is RedirectPermanent . Let's talk a bit about 301 redirection and permanent redirection.301 redirect is the most efficient and Search Engine Friendly method for webpage redirection. Let's imagine that we have this scenario. This is a very common scenario. We have redesigned and move folders to some pages that have high search engine rankings. We do not want to...(read more)

    Read the article

  • Windows Workflow Foundation in .NET4

    Windows Workflow Foundation (WF4) in .NET 4 is designed to make it easier for new developers to learn, addresses a wider range of customer scenarios, and is more efficient.  WF is a programming model for composing application logic and coordinating execution, allowing developers to abstract complicated code while leveraging a set of runtime services.  Activities are the building blocks that are composed together to build workflows.  The runtime provides the ability to save the state...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Performance considerations for common SQL queries

    - by Jim Giercyk
    Originally posted on: http://geekswithblogs.net/NibblesAndBits/archive/2013/10/16/performance-considerations-for-common-sql-queries.aspxSQL offers many different methods to produce the same results.  There is a never-ending debate between SQL developers as to the “best way” or the “most efficient way” to render a result set.  Sometimes these disputes even come to blows….well, I am a lover, not a fighter, so I decided to collect some data that will prove which way is the best and most efficient.  For the queries below, I downloaded the test database from SQLSkills:  http://www.sqlskills.com/sql-server-resources/sql-server-demos/.  There isn’t a lot of data, but enough to prove my point: dbo.member has 10,000 records, and dbo.payment has 15,554.  Our result set contains 6,706 records. The following queries produce an identical result set; the result set contains aggregate payment information for each member who has made more than 1 payment from the dbo.payment table and the first and last name of the member from the dbo.member table.   /*************/ /* Sub Query  */ /*************/ SELECT  a.[Member Number] ,         m.lastname ,         m.firstname ,         a.[Number Of Payments] ,         a.[Average Payment] ,         a.[Total Paid] FROM    ( SELECT    member_no 'Member Number' ,                     AVG(payment_amt) 'Average Payment' ,                     SUM(payment_amt) 'Total Paid' ,                     COUNT(Payment_No) 'Number Of Payments'           FROM      dbo.payment           GROUP BY  member_no           HAVING    COUNT(Payment_No) > 1         ) a         JOIN dbo.member m ON a.[Member Number] = m.member_no         /***************/ /* Cross Apply  */ /***************/ SELECT  ca.[Member Number] ,         m.lastname ,         m.firstname ,         ca.[Number Of Payments] ,         ca.[Average Payment] ,         ca.[Total Paid] FROM    dbo.member m         CROSS APPLY ( SELECT    member_no 'Member Number' ,                                 AVG(payment_amt) 'Average Payment' ,                                 SUM(payment_amt) 'Total Paid' ,                                 COUNT(Payment_No) 'Number Of Payments'                       FROM      dbo.payment                       WHERE     member_no = m.member_no                       GROUP BY  member_no                       HAVING    COUNT(Payment_No) > 1                     ) ca /********/                    /* CTEs  */ /********/ ; WITH    Payments           AS ( SELECT   member_no 'Member Number' ,                         AVG(payment_amt) 'Average Payment' ,                         SUM(payment_amt) 'Total Paid' ,                         COUNT(Payment_No) 'Number Of Payments'                FROM     dbo.payment                GROUP BY member_no                HAVING   COUNT(Payment_No) > 1              ),         MemberInfo           AS ( SELECT   p.[Member Number] ,                         m.lastname ,                         m.firstname ,                         p.[Number Of Payments] ,                         p.[Average Payment] ,                         p.[Total Paid]                FROM     dbo.member m                         JOIN Payments p ON m.member_no = p.[Member Number]              )     SELECT  *     FROM    MemberInfo /************************/ /* SELECT with Grouping   */ /************************/ SELECT  p.member_no 'Member Number' ,         m.lastname ,         m.firstname ,         COUNT(Payment_No) 'Number Of Payments' ,         AVG(payment_amt) 'Average Payment' ,         SUM(payment_amt) 'Total Paid' FROM    dbo.payment p         JOIN dbo.member m ON m.member_no = p.member_no GROUP BY p.member_no ,         m.lastname ,         m.firstname HAVING  COUNT(Payment_No) > 1   We can see what is going on in SQL’s brain by looking at the execution plan.  The Execution Plan will demonstrate which steps and in what order SQL executes those steps, and what percentage of batch time each query takes.  SO….if I execute all 4 of these queries in a single batch, I will get an idea of the relative time SQL takes to execute them, and how it renders the Execution Plan.  We can settle this once and for all.  Here is what SQL did with these queries:   Not only did the queries take the same amount of time to execute, SQL generated the same Execution Plan for each of them.  Everybody is right…..I guess we can all finally go to lunch together!  But wait a second, I may not be a fighter, but I AM an instigator.     Let’s see how a table variable stacks up.  Here is the code I executed: /********************/ /*  Table Variable  */ /********************/ DECLARE @AggregateTable TABLE     (       member_no INT ,       AveragePayment MONEY ,       TotalPaid MONEY ,       NumberOfPayments MONEY     ) INSERT  @AggregateTable         SELECT  member_no 'Member Number' ,                 AVG(payment_amt) 'Average Payment' ,                 SUM(payment_amt) 'Total Paid' ,                 COUNT(Payment_No) 'Number Of Payments'         FROM    dbo.payment         GROUP BY member_no         HAVING  COUNT(Payment_No) > 1   SELECT  at.member_no 'Member Number' ,         m.lastname ,         m.firstname ,         at.NumberOfPayments 'Number Of Payments' ,         at.AveragePayment 'Average Payment' ,         at.TotalPaid 'Total Paid' FROM    @AggregateTable at         JOIN dbo.member m ON m.member_no = at.member_no In the interest of keeping things in groupings of 4, I removed the last query from the previous batch and added the table variable query.  Here’s what I got:     Since we first insert into the table variable, then we read from it, the Execution Plan renders 2 steps.  BUT, the combination of the 2 steps is only 22% of the batch.  It is actually faster than the other methods even though it is treated as 2 separate queries in the Execution Plan.  The argument I often hear against Table Variables is that SQL only estimates 1 row for the table size in the Execution Plan.  While this is true, the estimate does not come in to play until you read from the table variable.  In this case, the table variable had 6,706 rows, but it still outperformed the other queries.  People argue that table variables should only be used for hash or lookup tables.  The fact is, you have control of what you put IN to the variable, so as long as you keep it within reason, these results suggest that a table variable is a viable alternative to sub-queries. If anyone does volume testing on this theory, I would be interested in the results.  My suspicion is that there is a breaking point where efficiency goes down the tubes immediately, and it would be interesting to see where the threshold is. Coding SQL is a matter of style.  If you’ve been around since they introduced DB2, you were probably taught a little differently than a recent computer science graduate.  If you have a company standard, I strongly recommend you follow it.    If you do not have a standard, generally speaking, there is no right or wrong answer when talking about the efficiency of these types of queries, and certainly no hard-and-fast rule.  Volume and infrastructure will dictate a lot when it comes to performance, so your results may vary in your environment.  Download the database and try it!

    Read the article

  • How can Swift be so much faster than Objective-C in these comparisons?

    - by Yellow
    Apple launched its new programming language Swift at WWDC14. In the presentation, they made some performance comparisons between Objective-C and Python. The following is a picture of one of their slides, of a comparison of those three languages performing some complex object sort: There was an even more incredible graph about a performance comparison using the RC4 encryption algorithm. Obviously this is a marketing talk, and they didn't go into detail on how this was implemented in each. I leaves me wondering though: How can a new programming language be so much faster? Are the Objective-C results caused by a bad compiler or is there something less efficient in Objective-C than Swift? How would you explain a 40% performance increase? I understand that garbage collection/automated reference control might produce some additional overhead, but this much?

    Read the article

  • Algorithmia Source Code released on CodePlex

    - by FransBouma
    Following the release of our BCL Extensions Library on CodePlex, we have now released the source-code of Algorithmia on CodePlex! Algorithmia is an algorithm and data-structures library for .NET 3.5 or higher and is one of the pillars LLBLGen Pro v3's designer is built on. The library contains many data-structures and algorithms, and the source-code is well documented and commented, often with links to official descriptions and papers of the algorithms and data-structures implemented. The source-code is shared using Mercurial on CodePlex and is licensed under the friendly BSD2 license. User documentation is not available at the moment but will be added soon. One of the main design goals of Algorithmia was to create a library which contains implementations of well-known algorithms which weren't already implemented in .NET itself. This way, more developers out there can enjoy the results of many years of what the field of Computer Science research has delivered. Some algorithms and datastructures are known in .NET but are re-implemented because the implementation in .NET isn't efficient for many situations or lacks features. An example is the linked list in .NET: it doesn't have an O(1) concat operation, as every node refers to the containing LinkedList object it's stored in. This is bad for algorithms which rely on O(1) concat operations, like the Fibonacci heap implementation in Algorithmia. Algorithmia therefore contains a linked list with an O(1) concat feature. The following functionality is available in Algorithmia: Command, Command management. This system is usable to build a fully undo/redo aware system by building your object graph using command-aware classes. The Command pattern is implemented using a system which allows transparent undo-redo and command grouping so you can use it to make a class undo/redo aware and set properties, use its contents without using commands at all. The Commands namespace is the namespace to start. Classes you'd want to look at are CommandifiedMember, CommandifiedList and KeyedCommandifiedList. See the CommandQueueTests in the test project for examples. Graphs, Graph algorithms. Algorithmia contains a sophisticated graph class hierarchy and algorithms implemented onto them: non-directed and directed graphs, as well as a subgraph view class, which can be used to create a view onto an existing graph class which can be self-maintaining. Algorithms include transitive closure, topological sorting and others. A feature rich depth-first search (DFS) crawler is available so DFS based algorithms can be implemented quickly. All graph classes are undo/redo aware, as they can be set to be 'commandified'. When a graph is 'commandified' it will do its housekeeping through commands, which makes it fully undo-redo aware, so you can remove, add and manipulate the graph and undo/redo the activity automatically without any extra code. If you define the properties of the class you set as the vertex type using CommandifiedMember, you can manipulate the properties of vertices and the graph contents with full undo/redo functionality without any extra code. Heaps. Heaps are data-structures which have the largest or smallest item stored in them always as the 'root'. Extracting the root from the heap makes the heap determine the next in line to be the 'maximum' or 'minimum' (max-heap vs. min-heap, all heaps in Algorithmia can do both). Algorithmia contains various heaps, among them an implementation of the Fibonacci heap, one of the most efficient heap datastructures known today, especially when you want to merge different instances into one. Priority queues. Priority queues are specializations of heaps. Algorithmia contains a couple of them. Sorting. What's an algorithm library without sort algorithms? Algorithmia implements a couple of sort algorithms which sort the data in-place. This aspect is important in situations where you want to sort the elements in a buffer/list/ICollection in-place, so all data stays in the data-structure it already is stored in. PropertyBag. It re-implements Tony Allowatt's original idea in .NET 3.5 specific syntax, which is to have a generic property bag and to be able to build an object in code at runtime which can be bound to a property grid for editing. This is handy for when you have data / settings stored in XML or other format, and want to create an editable form of it without creating many editors. IEditableObject/IDataErrorInfo implementations. It contains default implementations for IEditableObject and IDataErrorInfo (EditableObjectDataContainer for IEditableObject and ErrorContainer for IDataErrorInfo), which make it very easy to implement these interfaces (just a few lines of code) without having to worry about bookkeeping during databinding. They work seamlessly with CommandifiedMember as well, so your undo/redo aware code can use them out of the box. EventThrottler. It contains an event throttler, which can be used to filter out duplicate events in an event stream coming into an observer from an event. This can greatly enhance performance in your UI without needing to do anything other than hooking it up so it's placed between the event source and your real handler. If your UI is flooded with events from data-structures observed by your UI or a middle tier, you can use this class to filter out duplicates to avoid redundant updates to UI elements or to avoid having observers choke on many redundant events. Small, handy stuff. A MultiValueDictionary, which can store multiple unique values per key, instead of one with the default Dictionary, and is also merge-aware so you can merge two into one. A Pair class, to quickly group two elements together. Multiple interfaces for helping with building a de-coupled, observer based system, and some utility extension methods for the defined data-structures. We regularly update the library with new code. If you have ideas for new algorithms or want to share your contribution, feel free to discuss it on the project's Discussions page or send us a pull request. Enjoy!

    Read the article

  • Off The Beaten Path—Three Things Growing Midsize Companies are Thankful For

    - by Christine Randle
    By: Jim Lein, Senior Director, Oracle Accelerate Last Sunday I went on a walkabout.  That’s when I just step out the door of my Colorado home and hike through the mountains for hours with no predetermined destination. I favor “social trails”, the unmapped routes pioneered by both animal and human explorers.  These tracks  are usually more challenging than established, marked routes and you can’t be 100% sure of where you’re going to end up. But I’ve found the rewards to be much greater. For awhile, I pondered on how—depending upon your perspective—the current economic situation worldwide could be viewed as either a classic “the glass is half empty” or a “the glass is half full” scenario. Midsize companies buy Oracle to grow and so I’m continually amazed and fascinated by the success stories our customers relate to me.  Oracle’s successful midsize companies are growing via innovation, agility, and opportunity. For them, the glass isn’t half full—it’s overflowing. Growing Midsize Companies are Thankful for: Innovation The sun angling through the pine trees reminded me of a conversation with a European customer a year ago May.  You might not recognize the name but, chances are, your local evening weather report relies on this company’s weather observation, monitoring and measurement products.  For decades, the company was recognized in its industry for product innovation, but its recent rapid growth comes from tailoring end to end product and service solutions based on the needs of distinctly different customer groups across industrial, public sector, and defense sectors.  Hours after that phone call I was walking my dog in a local park and came upon a small white plastic box sprouting short antennas and dangling by a nylon cord from a tree branch.  I cut it down. The name of that customer’s company was stamped on the housing. “It’s a radiosonde from a high altitude weather balloon,” he told me the next day. “Keep it as a souvenir.”  It sits on my fireplace mantle and elicits many questions from guests. Growing Midsize Companies are Thankful for: Agility In July, I had another interesting discussion with the CFO of an Asia-Pacific company which owns and operates a large portfolio of leisure assets. They are best known for their epic outdoor theme parks. However, their primary growth today is coming from a chain of indoor amusement centers in the USA where billiards, bowling, and laser tag take the place of roller coasters, kiddy rides, and wave pools. With mountains and rivers right out my front door, I’m not much for theme parks, but I’ll take a spirited game of laser tag any day.  This company has grown dramatically since first implementing Oracle ERP more than a decade ago. Their profitable expansion into a completely foreign market is derived from the ability to replicate proven and efficient best business practices across diverse operating environments.  They recently went live on Oracle’s Fusion HCM and Taleo. Their CFO explained to me how, with thousands of employees in three countries, Fusion HCM and Taleo would enable them to remain incredibly agile by acting on trends linking individual employee performance to their management, establishing and maintaining those best practices. Growing Midsize Companies are Thankful for: Opportunity I have three GPS apps on my iPhone. I use them mainly to keep track of my stats—distance, time, and vertical gain. However, every once in awhile I need to find the most efficient route back home before dark from my current location (notice I didn’t use the word “lost”). In August I listened in on an interview with the CFO of another European company that designs and delivers telematics solutions—the integrated use of telecommunications and informatics—for managing the mobile workforce. These solutions enable customers to achieve evolutionary step-changes in their performance and service delivery. Forgive the overused metaphor, but this is route optimization on steroids.  The company’s executive team saw an opportunity in this emerging market and went “all in”. Consequently, they are being rewarded with tremendous growth results and market domination by providing the ability for their clients to collect and analyze performance information related to fuel consumption, service workforce safety, and asset productivity. This Thanksgiving, I’m thankful for health, family, friends, and a career with an innovative company that helps companies leverage top tier software to drive and manage growth. And I’m thankful to have learned the lesson that good things happen when you get off the beaten path—both when hiking and when forging new routes through a complex world economy. Halfway through my walkabout on Sunday, after scrambling up a long stretch of scree-covered hill, I crested a ridge with an obstructed view of 14,265 ft Mt Evans just a few miles to the west.  There, nowhere near a house or a trail, someone had placed a wooden lounge chair. Its wood was worn and faded but it was sturdy. I had lunch and a cold drink in my pack. Opportunity knocked and I seized it. Happy Thanksgiving.  

    Read the article

  • OpenGL's matrix stack vs Hand multiplying

    - by deft_code
    Which is more efficient using OpenGL's transformation stack or applying the transformations by hand. I've often heard that you should minimize the number of state transitions in your graphics pipeline. Pushing and popping translation matrices seem like a big change. However, I wonder if the graphics card might be able to more than make up for pipeline hiccup by using its parallel execution hardware to bulk multiply the vertices. My specific case. I have font rendered to a sprite sheet. The coordinates of each character or a string are calculated and added to a vertex buffer. Now I need to move that string. Would it be better to iterate through the vertex buffer and adjust each of the vertices by hand or temporarily push a new translation matrix?

    Read the article

  • Find Nearest Object

    - by ultifinitus
    I have a fairly sizable game engine created, and I'm adding some needed features, such as this, how do I find the nearest object from a list of points? In this case, I could simply use the Pythagorean theorem to find the distance, and check the results. I know I can't simply add x and y, because that's the distance to the object, if you only took right angle turns. However I'm wondering if there's something else I could do? I also have a collision system, where essentially I turn objects into smaller objects on a smaller grid, kind of like a minimap, and only if objects exist in the same gridspace do I check for collisions, I could do the same thing, only make the gridspace larger to check for closeness. (rather than checking every. single. object) however that would take additional setup in my base class and clutter up the already cluttered object. TL;DR Question: Is there something efficient and accurate that I can use to detect which object is closest, based on a list of points and sizes?

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • Is OpenGL after C++ job oriented?

    - by Ani
    First, my regards to all programmers out there who have put their endless efforts in learning and becoming expert, wise, efficient and best. Let me describe my situation. I have just graduated from Electronics and Communication Stream. Though I have more interest in software development and hence I have opted to become a software developer rather than Electronics engg. I have learned C++ and wish to wish to go more deep. I have started to learn OpenGL. Guide me in the following: Is OpenGL good to learn and is it job oriented? Should I learn some other language rather then OpenGL after C++?

    Read the article

  • Guidance for a C# developer to become better UI developer

    - by Pankaj Upadhyay
    I am a C# developer and had developed simple websites in regular asp.net(with asp.net controls) and a wpf application. Nowadays, I am trying myself in Asp.net MVC3 and been exposed to the HTML with Razor view Engine. To be honest, I am not too good or I should awful at my knowledge of HTML and CSS. Therefore, I keep posting questions now and then on SO for very simple tasks. This has made me very tired of the this Q&A development process. So, now i am thinking of learning the basics of HTML, CSS and maybe some Javascript. Therefore i would request you to guide me to become an efficient enough developer for these technologies. Something that won't take much time and get me up and running fast.

    Read the article

  • See the Geeky Work Done Behind the Scenes to Add Sounds to Movies [Video]

    - by Asian Angel
    Ever wondered about all the work that goes into adding awesome sound effects large and small to your favorite movies? Then here is your chance! Watch as award-winning Foley artist Gary Hecker shows how it is done using the props in his studio. SoundWorks Collection: Gary Hecker – Veteran Foley Artist [via kottke.org & Michal Csanaky] Latest Features How-To Geek ETC What Can Super Mario Teach Us About Graphics Technology? Windows 7 Service Pack 1 is Released: But Should You Install It? How To Make Hundreds of Complex Photo Edits in Seconds With Photoshop Actions How to Enable User-Specific Wireless Networks in Windows 7 How to Use Google Chrome as Your Default PDF Reader (the Easy Way) How To Remove People and Objects From Photographs In Photoshop Make Efficient Use of Tab Bar Space by Customizing Tab Width in Firefox See the Geeky Work Done Behind the Scenes to Add Sounds to Movies [Video] Use a Crayon to Enhance Engraved Lettering on Electronics Adult Swim Brings Their Programming Lineup to iOS Devices Feel the Chill of the South Atlantic with the Antarctica Theme for Windows 7 Seas0nPass Now Offers Untethered Apple TV Jailbreaking

    Read the article

  • Oracle Announces New Oracle VM Template for MySQL Enterprise Edition

    - by Zeynep Koch
     Oracle announces new Oracle VM template for MySQL Enterprise Edition enabling more efficient and lower cost deployments of virtualized MySQL environments. Here are some of the details and benefits: The new Oracle VM Template for MySQL helps eliminate manual configuration efforts and risks by providing a pre-installed, pre-configured and certified software stack that includes Oracle VM Server for x86, Oracle Linux with the Unbreakable Enterprise Kernel and MySQL Enterprise Edition. By pre-integrating the world’s most popular open source database with Oracle Linux and Oracle Virtualization technologies, enterprise users and ISVs can quickly and easily deploy and manage a virtualized MySQL database server for Web and cloud-based applications. Backed by Oracle’s world-class support organization and the result of extensive integration and quality assurance testing, the Oracle VM Template for MySQL Enterprise Edition further demonstrates Oracle’s investment in MySQL and allows users to benefit from a single point of contact for 24/7 technical support for all pre-configured components. Read more in this white paper. 

    Read the article

  • OpenGL 3.0+ framebuffer to texture/images

    - by user827992
    I need a way to capture what is rendered on screen, i have read about glReadPixels but it looks really slow. Can you suggest a more efficient or just an alternative way for just copying what is rendered by OpenGL 3.0+ to the local RAM and in general to output this in a image or in a data stream? How i can achieve the same goal with OpenGL ES 2.0 ? EDIT: i just forgot: with this OpenGL functions how i can be sure that I'm actually reading a complete frame, meaning that there is no overlapping between 2 frames or any nasty side effect I'm actually reading the frame that comes right next to the previous one so i do not lose frames

    Read the article

  • HDFC Bank's Journey to Oracle Private Database Cloud

    - by Nilesh Agrawal
    One of the key takeaways from a recent post by Sushil Kumar is the importance of business initiative that drives the transformational journey from legacy IT to enterprise private cloud. The journey that leads to a agile, self-service and efficient infrastructure with reduced complexity and enables IT to deliver services more closely aligned with business requirements. Nilanjay Bhattacharjee, AVP, IT of HDFC Bank presented a real-world case study based on one such initiative in his Oracle OpenWorld session titled "HDFC BANK Journey into Oracle Database Cloud with EM 12c DBaaS". The case study highlighted in this session is from HDFC Bank’s Lending Business Segment, which comprises roughly 50% of Bank’s top line. Bank’s Lending Business is always under pressure to launch “New Schemes” to compete and stay ahead in this segment and IT has to keep up with this challenging business requirement. Lending related applications are highly dynamic and go through constant changes and every single and minor change in each related application is required to be thoroughly UAT tested certified before they are certified for production rollout. This leads to a constant pressure in IT for rapid provisioning of UAT databases on an ongoing basis to enable faster time to market. Nilanjay joined Sushil Kumar, VP, Product Strategy, Oracle, during the Enterprise Manager general session at Oracle OpenWorld 2012. Let's watch what Nilanjay had to say about their recent Database cloud deployment. “Agility” in launching new business schemes became the key business driver for private database cloud adoption in the Bank. Nilanjay spent an hour discussing it during his session. Let's look at why Database-as-a-Service(DBaaS) model was need of the hour in this case  - Average 3 days to provision UAT Database for Loan Management Application Silo’ed UAT environment with Average 30% utilization Compliance requirement consume UAT testing resources DBA activities leads to $$ paid to SI for provisioning databases manually Overhead in managing configuration drift between production and test environments Rollout impact/delay on new business initiatives The private database cloud implementation progressed through 4 fundamental phases - Standardization, Consolidation, Automation, Optimization of UAT infrastructure. Project scoping was carried out and end users and stakeholders were engaged early on right from planning phase and including all phases of implementation. Standardization and Consolidation phase involved multiple iterations of planning to first standardize on infrastructure, db versions, patch levels, configuration, IT processes etc and with database level consolidation project onto Exadata platform. It was also decided to have existing AIX UAT DB landscape covered and EM 12c DBaaS solution being platform agnostic supported this model well. Automation and Optimization phase provided the necessary Agility, Self-Service and efficiency and this was made possible via EM 12c DBaaS. EM 12c DBaaS Self-Service/SSA Portal was setup with required zones, quotas, service templates, charge plan defined. There were 2 zones implemented - Exadata zone  primarily for UAT and benchmark testing for databases running on Exadata platform and second zone was for AIX setup to cover other databases those running on AIX. Metering and Chargeback/Showback capabilities provided business and IT the framework for cloud optimization and also visibility into cloud usage. More details on UAT cloud implementation, related building blocks and EM 12c DBaaS solution are covered in Nilanjay's OpenWorld session here. Some of the key Benefits achieved from UAT cloud initiative are - New business initiatives can be easily launched due to rapid provisioning of UAT Databases [ ~3 hours ] Drastically cut down $$ on SI for DBA Activities due to Self-Service Effective usage of infrastructure leading to  better ROI Empowering  consumers to provision database using Self-Service Control on project schedule with DB end date aligned to project plan submitted during provisioning Databases provisioned through Self-Service are monitored in EM and auto configured for Alerts and KPI Regulatory requirement of database does not impact existing project in queue This table below shows typical list of activities and tasks involved when a end user requests for a UAT database. EM 12c DBaaS solution helped reduce UAT database provisioning time from roughly 3 days down to 3 hours and this timing also includes provisioning time for database with production scale data (ranging from 250 G to 2 TB of data) - And it's not just about time to provision,  this initiative has enabled an agile, efficient and transparent UAT environment where end users are empowered with real control of cloud resources and IT's role is shifted as enabler of strategic services instead of being administrator of all user requests. The strong collaboration between IT and business community right from planning to implementation to go-live has played the key role in achieving this common goal of enterprise private cloud. Finally, real cloud is here and this cloud is accompanied with rain (business benefits) as well ! For more information, please go to Oracle Enterprise Manager  web page or  follow us at :  Twitter | Facebook | YouTube | Linkedin | Newsletter

    Read the article

  • How do you decide site availability requirements?

    - by Nathan Long
    I work on a web application to file a specific kind of county taxes. Our company wants our state to mandate that counties must accept electronic filings (as opposed to paper) from any system that meets some sensible requirements for uptime, security, data validation, etc. (Yes, this would help us as a business, but it would also force county governments to be more efficient.) We're creating a draft of those requirements to be reviewed and tweaked with the state. One of the sections is "availability." We want to specify something reasonably high, but not so high that any unexpected problem will get us (or a competitor) penalized. How do we decide what's reasonable for availability requirements?

    Read the article

  • Mark Hurd on Oracle's Strategy to Be the Best

    - by Tuula Fai
    Mark Hurd, President of Oracle, energized a packed audience this Monday morning at OpenWorld with his keynote outlining Oracle’s four-pillar strategy: Be the leader at every level of the technology stack—applications, middleware, database, operating system, virtual machine, servers, and storage Vertically integrate these levels into differentiated solutions Offer Fusion, the next generation of applications, which are modular and can run in the cloud, on-premise, or both (hybrid) Deliver this technology portfolio through industry lenses to help Oracle customers solve their problems while innovating and becoming more efficient. Hurd’s message resonated throughout Monday’s Customer Experience (CX) sessions as we learned about Oracle’s investment in integrating its best-of-breed CX solutions to deliver an end-to-end suite that addresses every part of the customer lifecycle. For example, in the area of customer service, Oracle is developing enhancements to help contact center agents: Better understand customer needs through social listening tools that are integrated with knowledge management Empower themselves with internal collaboration and mobility tools Adapt to customer needs by engaging them through chat during a service or commerce interaction so they can deliver a great customer experience while transforming from a cost- into a profit center.

    Read the article

  • Do dconf use EXI binary XML?

    - by Hibou57
    A question came to my mind reading an answer to the question What are the differences between gconf and dconf?. In an reply to the above question, Oli said: Binary read access is far faster than parsing XML. However, there exist a W3C recommendation for binary XML, since 2010: Efficient XML Interchange (EXI) Format 1.0. Is this what dconf uses? If Yes, where is it confirmed? If No, was there some investigations toward it at some time, and what was the conclusions? Thanks for any tracks, I'm curious to know.

    Read the article

  • Drawing territories border in 2d map

    - by Gabriel A. Zorrilla
    I'm programming a little web strategy game. In the country map I pretend to display each country with a national color. The issue is how to render the borders in a simple and efficient way. Right now I'm planning to set a field to each tile called "border" with values from 0 to 8. The algorithm would check for EVERY tile is its adjacent has a different "owner". If the tile is inside the territory, the border value would be 0, because would not have adjacent any tile with different owner, if not, would vary between 1 (north) clockwise to 9 (north-west) and then draw the border. I find this simple but too processor-intensive. Are there any other "pro" choices to render territories borders?

    Read the article

< Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >