Search Results

Search found 48937 results on 1958 pages for 'java log'.

Page 42/1958 | < Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >

  • Java tool to remove warnings from code developed in java 1.4

    - by Nitin Ware
    Hi All, I am working on a soucre code which was developed using java 1.4 but now we want to migrate it to java 6. I was able to compile it but there are tons of warnings related to use of java generics wherever we have made use of collections framework. It is possible to remove them by manually make changes to them, but I wanna know if is there any tool which can run on the source code and remove all the warnings by making necessary changes ot the code. Any help will be highly appreciated. Cheers, Nitin Ware

    Read the article

  • MyClass cannot be cast to java.lang.Comparable: java.lang.ClassCastException

    - by user2234225
    I am doing a java project and I got this problem and don't know how to fix it. The classes in my project (simplified): public class Item { private String itemID; private Integer price; public Integer getPrice() { return this.price; } } public class Store { private String storeID; private String address; } public class Stock { private Item item; private Store store; private Integer itemCount; public Integer getInventoryValue() { return this.item.getPrice() * this.itemCount; } } Then I try to sort an ArrayList of Stock so I create another class called CompareByValue public class CompareByValue implements Comparator<Stock> { @Override public int compare(Stock stock1, Stock stock2) { return (stock1.getInventoryValue() - stock2.getInventoryValue()); } } When I try to run the program, it gives the error: Exception in thread "main" java.lang.ClassCastException: Stock cannot be cast to java.lang.Comparable Anyone know what's wrong?

    Read the article

  • How to run java code using Java code?

    - by Nitz
    Hey Guys i want to do basically two things 1)I want to know is there any way that i can run the java code, using some java code. 2 ) and if it is possible then , and whatever the out put is then it should get that out put [ maybe output or error or exception ] and show on my screen, so i need to get that also. I know this is possible bcz one of my senior had done that..but i don't know how? May be with using the java's inbuilt classes. Note: user will write the code in some text file and then i will store that file content in some variable and then may be run that code.

    Read the article

  • Java and gstreamer-java initialisation error

    - by Mark
    I am building a small app which will play streaming audio from the internet in java (mainly internet radio stations). I have decided to use the gstreamer-java library for the sound, which uses JNA. I would like to include a check in the code, to see whether the gstreamer library has been initialised. When I have left the "Gst.init()" code out (to mimic when the library has not been initialised correctly), the application throws out the following messages: (process:21888): GLib-GObject-CRITICAL **: /build/buildd/glib2.0-2.22.3/gobject/gtype.c:2458: initialization assertion failed, use IA__g_type_init() prior to this function (process:21888): GLib-CRITICAL **: g_once_init_leave: assertion `initialization_value != 0' failed The app calls the gstreamer-java library. The error messages appear but the thread continues to run, hogging the CPU. Is there any way to catch the error or to add a check to prevent it from happening? An alternative would be to put the "Gst.init()" in the main class, but I am not sure if this would always guarantee the gstreamer library is initialised.

    Read the article

  • when to choose ruby on rails over java [closed]

    - by Dany Y
    I have been working with Java EE for 6 years, and I have mostly used it even for simple applications like data-entry to database). I heard Ruby on Rails is superior to Java in this domain. What are the actual advantages of Ruby. and should I switch ? P.S : I know this is a subjective question, and the most probable answer is "depends on what you'll use it for", but this is exactly what I want to know when to use what. Thank you

    Read the article

  • Oracle Sun Java Roadshow

    - by Lajos Sárecz
    Jövo héten, május 20-án Oracle Sun Java Roadshow konferencia lesz Ramada Plaza Budapest Hotel helszínnel. Hogy jön ide a blog-ba egy Java konferencia kedvcsinálója? A tervezett program ismeretében talán már nem olyan meglepo. Ugyanis az egyik eloadás a közelmúltban megjelent Oracle Berkeley újdonságairól fog szólni. Bár az Oracle már 2006 februárjában felvásárolta a Berkeley DB-t, azóta Magyarországon nem volt olyan Oracle rendezvény, ahol érdemben szó esett volna róla, így mindenkit bíztatok, hogy ne hagyja ki ezt a lehetoséget.

    Read the article

  • JavaOne 2012 - Java Generics

    - by Sharon Zakhour
    At JavaOne 2012, Venkat Subramaniam of Agile Developer, Inc, presented a conference session titled "The Good, The Bad, and the Ugly of Java Generics." Dr Subramaniam discussed the use of generics, what to watch out for when using generics, and best practices. To learn more about working with generics, see the Generics trail in the Java Tutorials. The trail was recently expanded and coverage added for the following topics: Generics, Inheritance, and Subtypes Guidelines for Wildcard Use Restrictions on Generics Wildcard Capture and Helper Methods Effects of Type Erasure and Bridge Methods

    Read the article

  • Installed Sun Java 6 - configuration problem when running as sudo

    - by HorusKol
    I have install Sun Java 6 on an Ubuntu server and set an environment variable in the default profile as per the instructions at http://www.edugate.ie/workshop-guides/shibboleth-2-identity-provider-installation-linux-debian-or-ubuntu I then try to run an installer for a Java servlet - but when I run it as myself, it cannot create the required directory in /opt. When I run it as sudo, I am told that JAVA_HOME is not correct and it doesn't even start the installer - shouldn't this be coming from /etc/profile like it is for my normal user?

    Read the article

  • Zombiewood for your Java ME tech-enabled Nokia C3

    - by hinkmond
    Zombies... Zoooombies... Here come the zombies in the new Zombiewood game for your Java ME technology-enabled Nokia C3. Watch the video to check it out. See: Zombiewood on Java ME Nokia C3 If you had two handguns and a couple sticks of dynamite, I'm sure you'd be looking to shoot zombies and collect giant floating gold coins spinning on the sidewalk. 'Cause that's what you do in that situation, right? Hinkmond

    Read the article

  • ubuntu 12.10 can't find java, but it's exists!

    - by William
    I installed ZendStudio 5.5.1 on Ubuntu 12.04 and it runs well , no problem. Today, I download Ubuntu 12.10 and intalled it on my / but keep the /home partition. And now, I can't run the ZendStudio any more, it gives me this error: strings: '/lib/libc.so.6': No such file ./ZDE: 1714: exec: /home/william/Zend/ZendStudio-5.5.1/jre/bin/java: not found But the java file exist! What's wrong? Thanks!

    Read the article

  • Custom Java Web Development vs Spreadsheet

    - by jacktrades
    Need some arguments why a small business should prefer a custom web developed solution using relational database (e.g. Java Servlet + MySQL) over standard Spreadsheet user programs like Excel. Specially now in these days that Office 365 is available in the cloud. As a Java programmer need good arguments to convince clients that this approach is better (if it really is) This is a generic situation, I understand that each case is different. Nevertheless answers so far has pinpointed right answers.

    Read the article

  • How do I show a log analysis in Splunk?

    - by Vinod K
    I have made my ubuntu server a centralized log server...I have splunk installed in the /opt directory of the ubuntu server. I have one of the another machines sending logs to this ubuntu server..In the splunk interface i have added in the network ports as UDP port 514...and also have added in the "file and directory" /var/log. The client has also been configured properly...How do I show analysis of the logs??

    Read the article

  • Super constructor must be a first statement in Java constructor [closed]

    - by Val
    I know the answer: "we need rules to prevent shooting into your own foot". Ok, I make millions of programming mistakes every day. To be prevented, we need one simple rule: prohibit all JLS and do not use Java. If we explain everything by "not shooting your foot", this is reasonable. But there is not much reason is such reason. When I programmed in Delphy, I always wanted the compiler to check me if I read uninitializable. I have discovered myself that is is stupid to read uncertain variable because it leads unpredictable result and is errorenous obviously. By just looking at the code I could see if there is an error. I wished if compiler could do this job. It is also a reliable signal of programming error if function does not return any value. But I never wanted it do enforce me the super constructor first. Why? You say that constructors just initialize fields. Super fields are derived; extra fields are introduced. From the goal point of view, it does not matter in which order you initialize the variables. I have studied parallel architectures and can say that all the fields can even be assigned in parallel... What? Do you want to use the unitialized fields? Stupid people always want to take away our freedoms and break the JLS rules the God gives to us! Please, policeman, take away that person! Where do I say so? I'm just saying only about initializing/assigning, not using the fields. Java compiler already defends me from the mistake of accessing notinitialized. Some cases sneak but this example shows how this stupid rule does not save us from the read-accessing incompletely initialized in construction: public class BadSuper { String field; public String toString() { return "field = " + field; } public BadSuper(String val) { field = val; // yea, superfirst does not protect from accessing // inconstructed subclass fields. Subclass constr // must be called before super()! System.err.println(this); } } public class BadPost extends BadSuper { Object o; public BadPost(Object o) { super("str"); this. o = o; } public String toString() { // superconstructor will boom here, because o is not initialized! return super.toString() + ", obj = " + o.toString(); } public static void main(String[] args) { new BadSuper("test 1"); new BadPost(new Object()); } } It shows that actually, subfields have to be inilialized before the supreclass! Meantime, java requirement "saves" us from writing specializing the class by specializing what the super constructor argument is, public class MyKryo extends Kryo { class MyClassResolver extends DefaultClassResolver { public Registration register(Registration registration) { System.out.println(MyKryo.this.getDepth()); return super.register(registration); } } MyKryo() { // cannot instantiate MyClassResolver in super super(new MyClassResolver(), new MapReferenceResolver()); } } Try to make it compilable. It is always pain. Especially, when you cannot assign the argument later. Initialization order is not important for initialization in general. I could understand that you should not use super methods before initializing super. But, the requirement for super to be the first statement is different. It only saves you from the code that does useful things simply. I do not see how this adds safety. Actually, safety is degraded because we need to use ugly workarounds. Doing post-initialization, outside the constructors also degrades safety (otherwise, why do we need constructors?) and defeats the java final safety reenforcer. To conclude Reading not initialized is a bug. Initialization order is not important from the computer science point of view. Doing initalization or computations in different order is not a bug. Reenforcing read-access to not initialized is good but compilers fail to detect all such bugs Making super the first does not solve the problem as it "Prevents" shooting into right things but not into the foot It requires to invent workarounds, where, because of complexity of analysis, it is easier to shoot into the foot doing post-initialization outside the constructors degrades safety (otherwise, why do we need constructors?) and that degrade safety by defeating final access modifier When there was java forum alive, java bigots attecked me for these thoughts. Particularly, they dislaked that fields can be initialized in parallel, saying that natural development ensures correctness. When I replied that you could use an advanced engineering to create a human right away, without "developing" any ape first, and it still be an ape, they stopped to listen me. Cos modern technology cannot afford it. Ok, Take something simpler. How do you produce a Renault? Should you construct an Automobile first? No, you start by producing a Renault and, once completed, you'll see that this is an automobile. So, the requirement to produce fields in "natural order" is unnatural. In case of alarmclock or armchair, which are still chair and clock, you may need first develop the base (clock and chair) and then add extra. So, I can have examples where superfields must be initialized first and, oppositely, when they need to be initialized later. The order does not exist in advance. So, the compiler cannot be aware of the proper order. Only programmer/constructor knows is. Compiler should not take more responsibility and enforce the wrong order onto programmer. Saying that I cannot initialize some fields because I did not ininialized the others is like "you cannot initialize the thing because it is not initialized". This is a kind of argument we have. So, to conclude once more, the feature that "protects" me from doing things in simple and right way in order to enforce something that does not add noticeably to the bug elimination at that is a strongly negative thing and it pisses me off, altogether with the all the arguments to support it I've seen so far. It is "a conceptual question about software development" Should there be the requirement to call super() first or not. I do not know. If you do or have an idea, you have place to answer. I think that I have provided enough arguments against this feature. Lets appreciate the ones who benefit form it. Let it just be something more than simple abstract and stupid "write your own language" or "protection" kind of argument. Why do we need it in the language that I am going to develop?

    Read the article

  • Java SE Embedded-Enabled Raspberry Pi Ice Bucket Challenge

    - by hinkmond
    Help fight ALS at: http://www.alsa.org/fight-als/ See: Java SE Embedded-Enabled Raspberry Pi Ice Bucket Challenge My Java SE Enabled Raspberry Pi accepts the nomination for the ALS Ice Bucket Challenge and I hereby nominate the Nest thermostat, the Fitbit fitness tracker, and Apple TV. Take the Ice Bucket Challenge. Help find the cure for ALS: http://www.alsa.org/fight-als/ice-bucket-challenge.html Hinkmond

    Read the article

  • Need help drawings planets in Java.

    - by d33j
    I am looking for help/links/notes/agorithms/URLs/examples on drawing/rendering spheres in pure Java (so that I can hopefully, one day, generate/render planets with various surfaces & atmospheres) So for the moment, i'd be pretty happy to be able to start off with just drawing a wireframed sphere(s). ps: I don't want to use external libraries like Java3D, JOGL or aftermarket engines like JMonkeyEngine, Would rather keep it as straight Java.

    Read the article

  • Java heap space

    - by java_mouse
    In Java/JVM, why do we call the memory place where Java creates objects as "Heap"? Does it use the Heap Data Structure to create/remove/maintain the objects? As I read in the documentation of Heap data structure, the algorithm compares the objects with existing nodes and places them in such a way that Parent object is "greater" than the children. ( Or "lesser" in case of min heap). So in JVM, how are the objects compared against each other before placing them in the heap?

    Read the article

  • [JAVA]How to make my Oracle update/insert action through JAVA faster?

    - by gunbuster363
    [JAVA]How to make my Oracle update/insert action through JAVA faster? Hi everyone, I am facing a problem in my company that is - our program's speed is not fast enough. To be more specific, we are telecommunication company and this program handle call/internet serfing transaction made by every mobile phone users in our city. Because the amount of download content made by the iphone users is just too much, our program cannot handle them fast enough. The situation is, the amount of transaction made by users are double of the transaction processed by our program. Most of the running time of the program are dominated by DB transactions. I've search through the internet and browsed some sites ( for example: http://www.javaperformancetuning.com/tips/rawtips.shtml ) talking about java performace in DB, but I cannot find a suggestion suitable for us. these advices are not applicable/already used, for instance: 1)Use prepared statements. Use parametrized SQL Already used prepared statement. Each time will use different parameter by clear parameters and set parameters. 2)Tune the SQL to minimize the data returned (e.g. not 'SELECT *'). Sure, already used. 3)Use connection pooling. We hold a single connection during the program's execution. And I doubt that pooling cannot solve the problem because our program act as 1 user, so there are no problem for concurrent access to DB. If anyone of you think pooling is good, please tell me why. Thanks. 4)Try to combine queries and batch updates. Cannot do it. Every query/insert/update is depend on the database's information. For example, we look up the DB for the client's information, if we cannot find his usage, we insert the usage into DB, otherwise we do update. 5)Close resources (Connections, Statements, ResultSets) when finished Sure. 6)Select the fastest JDBC driver. I don't know. I've search on the internet about the type of driver available and I am very confused. We use oracle.jdbc.driver.OracleDriver and we use thin instead of oci, that's all I know. In addition, our program is a two-tier way ( java <- oracle ) 7)turn off auto-commit already done that. Looking forwards to any helps, thank you very much.

    Read the article

  • Java GNOME bindings, are those a good idea?

    - by Phobia
    What do you think of Java's GNOME bindings and I was surprised to know that the latest version of the bindings was released this month and they're backed by a company that uses them, which means that there's a considerable amount of activity in the project, and that it's not going to be ditched anytime soon Is this going to be a second chance for Java on the desktop, since GTK+ is cross platform like swing, but less bloated and more responsive Should I be learning how to develop applications using it? or it's not worth the time?

    Read the article

  • Instantiating objects in Java

    - by Davis Naglis
    I'm learning now Java from scratch and when I started to learn about instantiating objects, I don't understand - in which cases do I need to instantiate objects? For example I'm studying from TutsPlus course about it and there is example about "Rectangle" class. Instructor says that it needs to be instantiated. So I started to doubt about - when do I need to instantiate those objects when writing Java code?

    Read the article

  • Why can't Java/C# implement RAII?

    - by mike30
    Question: Why can't Java/C# implement RAII? Clarification: I am aware the garbage collector is not deterministic. So with the current language features it is not possible for an object's Dispose() method to be called automatically on scope exit. But could such a deterministic feature be added? My understanding: I feel an implementation of RAII must satisfy two requirements: 1. The lifetime of a resource must be bound to a scope. 2. Implicit. The freeing of the resource must happen without an explicit statement by the programmer. Analogous to a garbage collector freeing memory without an explicit statement. The "implicitness" only needs to occur at point of use of the class. The class library creator must of course explicitly implement a destructor or Dispose() method. Java/C# satisfy point 1. In C# a resource implementing IDisposable can be bound to a "using" scope: void test() { using(Resource r = new Resource()) { r.foo(); }//resource released on scope exit } This does not satisfy point 2. The programmer must explicitly tie the object to a special "using" scope. Programmers can (and do) forget to explicitly tie the resource to a scope, creating a leak. In fact the "using" blocks are converted to try-finally-dispose() code by the compiler. It has the same explicit nature of the try-finally-dispose() pattern. Without an implicit release, the hook to a scope is syntactic sugar. void test() { //Programmer forgot (or was not aware of the need) to explicitly //bind Resource to a scope. Resource r = new Resource(); r.foo(); }//resource leaked!!! I think it is worth creating a language feature in Java/C# allowing special objects that are hooked to the stack via a smart-pointer. The feature would allow you to flag a class as scope-bound, so that it always is created with a hook to the stack. There could be a options for different for different types of smart pointers. class Resource - ScopeBound { /* class details */ void Dispose() { //free resource } } void test() { //class Resource was flagged as ScopeBound so the tie to the stack is implicit. Resource r = new Resource(); //r is a smart-pointer r.foo(); }//resource released on scope exit. I think implicitness is "worth it". Just as the implicitness of garbage collection is "worth it". Explicit using blocks are refreshing on the eyes, but offer no semantic advantage over try-finally-dispose(). Is it impractical to implement such a feature into the Java/C# languages? Could it be introduced without breaking old code?

    Read the article

  • Java game applet development

    - by RomZes
    I'm getting 4 sec delay when sending objects over UDP. Working on small game and trying to implement multiplayer. For now just trying to synchronize movements of 2 balls on the screen. StartingPoint.java is my server(first player), that receiving serialized objects (coordinates). SecondPlayer.java is client that sending serialized objects to server. When I'm moving my first object it appears 4 seconds later on different screen. StartingPoint.java @Override public void run() { byte[] receiveData = new byte[256]; byte[] sendData = new byte[256]; // DatagramSocket socketS; try { socket = new DatagramSocket(5000); System.out.println("Socket created on "+ port + " port"); } catch (SocketException e1) { // TODO Auto-generated catch block e1.printStackTrace(); } while(true){ b1.update(this); b3.update(); System.out.println("Starting server..."); //// Receiving and deserializing object try { //socket.setSoTimeout(1000); DatagramPacket packet = new DatagramPacket(buf, buf.length); socket.receive(packet); byte[] data = packet.getData(); ByteArrayInputStream in = new ByteArrayInputStream(data); ObjectInputStream is = new ObjectInputStream(in); // socket.setSoTimeout(300); b1 = (Ball) is.readObject(); } catch (IOException | ClassNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } repaint(); try { Thread.sleep(17); } catch (InterruptedException e) { e.printStackTrace(); } SecondPlayer.java @Override public void run() { while(true){ b.update(); networkSend(); repaint(); try { Thread.sleep(17); } catch (InterruptedException e) { e.printStackTrace(); } } public void networkSend(){ // Serialize to a byte array try { ByteArrayOutputStream bStream = new ByteArrayOutputStream(); ObjectOutputStream oo; oo = new ObjectOutputStream(bStream); oo.writeObject(b); oo.flush(); oo.close(); byte[] bufCar = bStream.toByteArray(); //socket = new DatagramSocket(); //socket.setSoTimeout(1000); InetAddress address = InetAddress.getByName("localhost"); DatagramPacket packet = new DatagramPacket(bufCar, bufCar.length, address, port); socket.send(packet); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); }

    Read the article

  • creating a Menu from SQLite values in Java

    - by shanahobo86
    I am trying to create a ListMenu using data from an SQLite database to define the name of each MenuItem. So in a class called menu.java I have defined the array String classes [] = {}; which should hold each menu item name. In a DBAdapter class I created a function so the user can insert info to a table (This all works fine btw). public long insertContact(String name, String code, String location, String comments, int days, int start, int end, String type) { ContentValues initialValues = new ContentValues(); initialValues.put(KEY_NAME, name); initialValues.put(KEY_CODE, code); initialValues.put(KEY_LOCATION, location); initialValues.put(KEY_COMMENTS, comments); initialValues.put(KEY_DAYS, days); initialValues.put(KEY_START, start); initialValues.put(KEY_END, end); initialValues.put(KEY_TYPE, type); return db.insert(DATABASE_TABLE, null, initialValues); } It would be the Strings inserted into KEY_NAME that I need to populate that String array with. Does anyone know if this is possible? Thanks so much for the help guys. If I implement that function by Sam/Mango the program crashes, am I using it incorrectly or is the error due to the unknown size of the array? DBAdapter db = new DBAdapter(this); String classes [] = db.getClasses(); edit: I should mention that if I manually define the array: String classes [] = {"test1", "test2", "test3", etc}; It works fine. The error is a NullPointerException Here's the logcat (sorry about the formatting). I hadn't initialized with db = helper.getReadableDatabase(); in the getClasses() function but unfortunately it didn't fix the problem. 11-11 22:53:39.117: D/dalvikvm(17856): Late-enabling CheckJNI 11-11 22:53:39.297: D/TextLayoutCache(17856): Using debug level: 0 - Debug Enabled: 0 11-11 22:53:39.337: D/libEGL(17856): loaded /system/lib/egl/libGLES_android.so 11-11 22:53:39.337: D/libEGL(17856): loaded /system/lib/egl/libEGL_adreno200.so 11-11 22:53:39.357: D/libEGL(17856): loaded /system/lib/egl/libGLESv1_CM_adreno200.so 11-11 22:53:39.357: D/libEGL(17856): loaded /system/lib/egl/libGLESv2_adreno200.so 11-11 22:53:39.387: I/Adreno200-EGLSUB(17856): <ConfigWindowMatch:2078>: Format RGBA_8888. 11-11 22:53:39.407: D/memalloc(17856): /dev/pmem: Mapped buffer base:0x5c66d000 size:36593664 offset:32825344 fd:65 11-11 22:53:39.417: E/(17856): Can't open file for reading 11-11 22:53:39.417: E/(17856): Can't open file for reading 11-11 22:53:39.417: D/OpenGLRenderer(17856): Enabling debug mode 0 11-11 22:53:39.477: D/memalloc(17856): /dev/pmem: Mapped buffer base:0x5ecd3000 size:40361984 offset:36593664 fd:68 11-11 22:53:40.507: D/memalloc(17856): /dev/pmem: Mapped buffer base:0x61451000 size:7254016 offset:3485696 fd:71 11-11 22:53:41.077: I/Adreno200-EGLSUB(17856): <ConfigWindowMatch:2078>: Format RGBA_8888. 11-11 22:53:41.077: D/memalloc(17856): /dev/pmem: Mapped buffer base:0x61c4c000 size:7725056 offset:7254016 fd:74 11-11 22:53:41.097: D/memalloc(17856): /dev/pmem: Mapped buffer base:0x623aa000 size:8196096 offset:7725056 fd:80 11-11 22:53:41.937: D/memalloc(17856): /dev/pmem: Mapped buffer base:0x62b7b000 size:8667136 offset:8196096 fd:83 11-11 22:53:41.977: D/memalloc(17856): /dev/pmem: Unmapping buffer base:0x61c4c000 size:7725056 offset:7254016 11-11 22:53:41.977: D/memalloc(17856): /dev/pmem: Unmapping buffer base:0x623aa000 size:8196096 offset:7725056 11-11 22:53:41.977: D/memalloc(17856): /dev/pmem: Unmapping buffer base:0x62b7b000 size:8667136 offset:8196096 11-11 22:53:42.167: I/Adreno200-EGLSUB(17856): <ConfigWindowMatch:2078>: Format RGBA_8888. 11-11 22:53:42.177: D/memalloc(17856): /dev/pmem: Mapped buffer base:0x61c5d000 size:17084416 offset:13316096 fd:74 11-11 22:53:42.317: D/memalloc(17856): /dev/pmem: Mapped buffer base:0x63853000 size:20852736 offset:17084416 fd:80 11-11 22:53:42.357: D/OpenGLRenderer(17856): Flushing caches (mode 0) 11-11 22:53:42.357: D/memalloc(17856): /dev/pmem: Unmapping buffer base:0x5c66d000 size:36593664 offset:32825344 11-11 22:53:42.357: D/memalloc(17856): /dev/pmem: Unmapping buffer base:0x5ecd3000 size:40361984 offset:36593664 11-11 22:53:42.367: D/memalloc(17856): /dev/pmem: Unmapping buffer base:0x61451000 size:7254016 offset:3485696 11-11 22:53:42.757: D/memalloc(17856): /dev/pmem: Mapped buffer base:0x5c56d000 size:24621056 offset:20852736 fd:65 11-11 22:53:44.247: D/AndroidRuntime(17856): Shutting down VM 11-11 22:53:44.247: W/dalvikvm(17856): threadid=1: thread exiting with uncaught exception (group=0x40ac3210) 11-11 22:53:44.257: E/AndroidRuntime(17856): FATAL EXCEPTION: main 11-11 22:53:44.257: E/AndroidRuntime(17856): java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{niall.shannon.timetable/niall.shannon.timetable.menu}: java.lang.NullPointerException 11-11 22:53:44.257: E/AndroidRuntime(17856): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:1891) 11-11 22:53:44.257: E/AndroidRuntime(17856): at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:1992) 11-11 22:53:44.257: E/AndroidRuntime(17856): at android.app.ActivityThread.access$600(ActivityThread.java:127) 11-11 22:53:44.257: E/AndroidRuntime(17856): at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1158) 11-11 22:53:44.257: E/AndroidRuntime(17856): at android.os.Handler.dispatchMessage(Handler.java:99) 11-11 22:53:44.257: E/AndroidRuntime(17856): at android.os.Looper.loop(Looper.java:137) 11-11 22:53:44.257: E/AndroidRuntime(17856): at android.app.ActivityThread.main(ActivityThread.java:4441) 11-11 22:53:44.257: E/AndroidRuntime(17856): at java.lang.reflect.Method.invokeNative(Native Method) 11-11 22:53:44.257: E/AndroidRuntime(17856): at java.lang.reflect.Method.invoke(Method.java:511) 11-11 22:53:44.257: E/AndroidRuntime(17856): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:823) 11-11 22:53:44.257: E/AndroidRuntime(17856): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:590) 11-11 22:53:44.257: E/AndroidRuntime(17856): at dalvik.system.NativeStart.main(Native Method) 11-11 22:53:44.257: E/AndroidRuntime(17856): Caused by: java.lang.NullPointerException 11-11 22:53:44.257: E/AndroidRuntime(17856): at android.content.ContextWrapper.openOrCreateDatabase(ContextWrapper.java:221) 11-11 22:53:44.257: E/AndroidRuntime(17856): at android.database.sqlite.SQLiteOpenHelper.getWritableDatabase(SQLiteOpenHelper.java:157) 11-11 22:53:44.257: E/AndroidRuntime(17856): at niall.shannon.timetable.DBAdapter.getClasses(DBAdapter.java:151) 11-11 22:53:44.257: E/AndroidRuntime(17856): at niall.shannon.timetable.menu.<init>(menu.java:15) 11-11 22:53:44.257: E/AndroidRuntime(17856): at java.lang.Class.newInstanceImpl(Native Method) 11-11 22:53:44.257: E/AndroidRuntime(17856): at java.lang.Class.newInstance(Class.java:1319) 11-11 22:53:44.257: E/AndroidRuntime(17856): at android.app.Instrumentation.newActivity(Instrumentation.java:1023) 11-11 22:53:44.257: E/AndroidRuntime(17856): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:1882) 11-11 22:53:44.257: E/AndroidRuntime(17856): ... 11 more 11-11 22:53:46.527: I/Process(17856): Sending signal. PID: 17856 SIG: 9

    Read the article

  • Java ME scorecard with vector and multiple input fields/screens

    - by proximity
    I have made a scorecard with 5 holes, for each a input field (shots), and a image is shown. The input should be saved into a vector and shown on each hole, eg. hole 2: enter shots, underneath it "total shots: 4" (if you have made 4 shots on hole 1). In the end I would need a sum up of all shots, eg. Hole 1: 4 Hole 2: 3 Hole 3: 2 ... Total: 17 Could someone please help me with this task? { f = new Form("Scorecard"); d = Display.getDisplay(this); mTextField = new TextField("Shots:", "", 2, TextField.NUMERIC); f.append(mTextField); mStatus = new StringItem("Hole 1:", "Par 3, 480m"); f.append(mStatus); try { Image j = Image.createImage("/hole1.png"); ImageItem ii = new ImageItem("", j, 3, "Hole 1"); f.append(ii); } catch (java.io.IOException ioe) {} catch (Exception e) {} f.addCommand(mBackCommand); f.addCommand(mNextCommand); f.addCommand(mExitCommand); f.setCommandListener(this); Display.getDisplay(this).setCurrent(f); } public void startApp() { mBackCommand = new Command("Back", Command.BACK, 0); mNextCommand = new Command("Next", Command.OK, 1); mExitCommand = new Command("Exit", Command.EXIT, 2); } public void pauseApp() { } public void destroyApp(boolean unconditional) { } public void commandAction(Command c, Displayable d) { if (c == mExitCommand) { destroyApp(true); notifyDestroyed(); } else if ( c == mNextCommand) { // -> go to next hole input! save the mTextField input into a vector. } } } ------------------------------ Full code --------------------------------- import java.util.; import javax.microedition.midlet.; import javax.microedition.lcdui.*; public class ScorerMIDlet extends MIDlet implements CommandListener { private Command mExitCommand, mBackCommand, mNextCommand; private Display d; private Form f; private TextField mTextField; private Alert a; private StringItem mHole1; private int b; // repeat holeForm for all five holes and add the input into a vector or array. Display the values in the end after asking for todays date and put todays date in top of the list. Make it possible to go back in the form, eg. hole 3 - hole 2 - hole 1 public void holeForm(int b) { f = new Form("Scorecard"); d = Display.getDisplay(this); mTextField = new TextField("Shots:", "", 2, TextField.NUMERIC); f.append(mTextField); mHole1 = new StringItem("Hole 1:", "Par 5, 480m"); f.append(mHole1); try { Image j = Image.createImage("/hole1.png"); ImageItem ii = new ImageItem("", j, 3, "Hole 1"); f.append(ii); } catch (java.io.IOException ioe) {} catch (Exception e) {} // Set date&time in the end long now = System.currentTimeMillis(); DateField df = new DateField("Playing date:", DateField.DATE_TIME); df.setDate(new Date(now)); f.append(df); f.addCommand(mBackCommand); f.addCommand(mNextCommand); f.addCommand(mExitCommand); f.setCommandListener(this); Display.getDisplay(this).setCurrent(f); } public void startApp() { mBackCommand = new Command("Back", Command.BACK, 0); mNextCommand = new Command("OK-Next", Command.OK, 1); mExitCommand = new Command("Exit", Command.EXIT, 2); b = 0; holeForm(b); } public void pauseApp() {} public void destroyApp(boolean unconditional) {} public void commandAction(Command c, Displayable d) { if (c == mExitCommand) { destroyApp(true); notifyDestroyed(); } else if ( c == mNextCommand) { holeForm(b); } } }

    Read the article

  • jenkins-maven-android when running throwing the error "android-sdk-linux/platforms" is not a directory"

    - by Sam
    I start setting up the jenkins-maven-android and i'm facing an issue when running the jenkin job. My Machine Details $uname -a Linux development2 3.0.0-12-virtual #20-Ubuntu SMP Fri Oct 7 18:19:02 UTC 2011 x86_64 x86_64 x86_64 GNU/Linux Steps to install the Android SDK in Ubuntu https://help.ubuntu.com/community/AndroidSDK since i'm working on headless env (ssh to client machine) i used following command to install the platform tools android update sdk --no-ui download apache maven and install on http://maven.apache.org/download.html mvn -version output root@development2:/opt/android-sdk-linux/tools# mvn -version Apache Maven 3.0.4 (r1232337; 2012-01-17 08:44:56+0000) Maven home: /opt/apache-maven-3.0.4 Java version: 1.6.0_24, vendor: Sun Microsystems Inc. Java home: /usr/lib/jvm/java-6-openjdk/jre Default locale: en_US, platform encoding: UTF-8 OS name: "linux", version: "3.0.0-12-virtual", arch: "amd64", family: "unix" root@development2:/opt/android-sdk-linux/tools# ran the following two command as mention in below sudo apt-get update sudo apt-get install ia32-libs Problems with Eclipse and Android SDK http://developer.android.com/sdk/installing/index.html As error suggest i gave the path to android SDK in jenkins build config still im getting the error clean install -Dandroid.sdk.path=/opt/android-sdk-linux Can someone help me to resolve this. Thanks Error I'm Getting Waiting for Jenkins to finish collecting data mavenExecutionResult exceptions not empty message : Failed to execute goal com.jayway.maven.plugins.android.generation2:android-maven-plugin:3.1.1:generate-sources (default-generate-sources) on project base-template: Execution default-generate-sources of goal com.jayway.maven.plugins.android.generation2:android-maven-plugin:3.1.1:generate-sources failed: Path "/opt/android-sdk-linux/platforms" is not a directory. Please provide a proper Android SDK directory path as configuration parameter <sdk><path>...</path></sdk> in the plugin <configuration/>. As an alternative, you may add the parameter to commandline: -Dandroid.sdk.path=... or set environment variable ANDROID_HOME. cause : Execution default-generate-sources of goal com.jayway.maven.plugins.android.generation2:android-maven-plugin:3.1.1:generate-sources failed: Path "/opt/android-sdk-linux/platforms" is not a directory. Please provide a proper Android SDK directory path as configuration parameter <sdk><path>...</path></sdk> in the plugin <configuration/>. As an alternative, you may add the parameter to commandline: -Dandroid.sdk.path=... or set environment variable ANDROID_HOME. Stack trace : org.apache.maven.lifecycle.LifecycleExecutionException: Failed to execute goal com.jayway.maven.plugins.android.generation2:android-maven-plugin:3.1.1:generate-sources (default-generate-sources) on project base-template: Execution default-generate-sources of goal com.jayway.maven.plugins.android.generation2:android-maven-plugin:3.1.1:generate-sources failed: Path "/opt/android-sdk-linux/platforms" is not a directory. Please provide a proper Android SDK directory path as configuration parameter <sdk><path>...</path></sdk> in the plugin <configuration/>. As an alternative, you may add the parameter to commandline: -Dandroid.sdk.path=... or set environment variable ANDROID_HOME. at org.apache.maven.lifecycle.internal.MojoExecutor.execute(MojoExecutor.java:225) at org.apache.maven.lifecycle.internal.MojoExecutor.execute(MojoExecutor.java:153) at org.apache.maven.lifecycle.internal.MojoExecutor.execute(MojoExecutor.java:145) at org.apache.maven.lifecycle.internal.LifecycleModuleBuilder.buildProject(LifecycleModuleBuilder.java:84) at org.apache.maven.lifecycle.internal.LifecycleModuleBuilder.buildProject(LifecycleModuleBuilder.java:59) at org.apache.maven.lifecycle.internal.LifecycleStarter.singleThreadedBuild(LifecycleStarter.java:183) at org.apache.maven.lifecycle.internal.LifecycleStarter.execute(LifecycleStarter.java:161) at org.apache.maven.DefaultMaven.doExecute(DefaultMaven.java:320) at org.apache.maven.DefaultMaven.execute(DefaultMaven.java:156) at org.jvnet.hudson.maven3.launcher.Maven3Launcher.main(Maven3Launcher.java:79) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.codehaus.plexus.classworlds.launcher.Launcher.launchStandard(Launcher.java:329) at org.codehaus.plexus.classworlds.launcher.Launcher.launch(Launcher.java:239) at org.jvnet.hudson.maven3.agent.Maven3Main.launch(Maven3Main.java:158) at hudson.maven.Maven3Builder.call(Maven3Builder.java:98) at hudson.maven.Maven3Builder.call(Maven3Builder.java:64) at hudson.remoting.UserRequest.perform(UserRequest.java:118) at hudson.remoting.UserRequest.perform(UserRequest.java:48) at hudson.remoting.Request$2.run(Request.java:326) at hudson.remoting.InterceptingExecutorService$1.call(InterceptingExecutorService.java:72) at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:334) at java.util.concurrent.FutureTask.run(FutureTask.java:166) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603) at java.lang.Thread.run(Thread.java:679) Caused by: org.apache.maven.plugin.PluginExecutionException: Execution default-generate-sources of goal com.jayway.maven.plugins.android.generation2:android-maven-plugin:3.1.1:generate-sources failed: Path "/opt/android-sdk-linux/platforms" is not a directory. Please provide a proper Android SDK directory path as configuration parameter <sdk><path>...</path></sdk> in the plugin <configuration/>. As an alternative, you may add the parameter to commandline: -Dandroid.sdk.path=... or set environment variable ANDROID_HOME. at org.apache.maven.plugin.DefaultBuildPluginManager.executeMojo(DefaultBuildPluginManager.java:110) at org.apache.maven.lifecycle.internal.MojoExecutor.execute(MojoExecutor.java:209) ... 27 more Caused by: com.jayway.maven.plugins.android.InvalidSdkException: Path "/opt/android-sdk-linux/platforms" is not a directory. Please provide a proper Android SDK directory path as configuration parameter <sdk><path>...</path></sdk> in the plugin <configuration/>. As an alternative, you may add the parameter to commandline: -Dandroid.sdk.path=... or set environment variable ANDROID_HOME. at com.jayway.maven.plugins.android.AndroidSdk.assertPathIsDirectory(AndroidSdk.java:125) at com.jayway.maven.plugins.android.AndroidSdk.getPlatformDirectories(AndroidSdk.java:285) at com.jayway.maven.plugins.android.AndroidSdk.findAvailablePlatforms(AndroidSdk.java:260) at com.jayway.maven.plugins.android.AndroidSdk.<init>(AndroidSdk.java:80) at com.jayway.maven.plugins.android.AbstractAndroidMojo.getAndroidSdk(AbstractAndroidMojo.java:844) at com.jayway.maven.plugins.android.phase01generatesources.GenerateSourcesMojo.generateR(GenerateSourcesMojo.java:329) at com.jayway.maven.plugins.android.phase01generatesources.GenerateSourcesMojo.execute(GenerateSourcesMojo.java:102) at org.apache.maven.plugin.DefaultBuildPluginManager.executeMojo(DefaultBuildPluginManager.java:101) ... 28 more channel stopped Finished: FAILURE* android home Echo root@development2:~# echo $ANDROID_HOME /opt/android-sdk-linux

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

< Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >