Search Results

Search found 23545 results on 942 pages for 'parallel task library'.

Page 42/942 | < Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >

  • Logging library for (c++) games

    - by Klaim
    I know a lot of logging libraries but didn't test a lot of them. (GoogleLog, Pantheios, the coming boost::log library...) In games, especially in remote multiplayer and multithreaded games, logging is vital to debugging, even if you remove all logs in the end. Let's say I'm making a PC game (not console) that needs logs (multiplayer and multithreaded and/or multiprocess) and I have good reasons for looking for a library for logging (like, I don't have time or I'm not confident in my ability to write one correctly for my case). Assuming that I need : performance ease of use (allow streaming or formating or something like that) reliable (don't leak or crash!) cross-platform (at least Windows, MacOSX, Linux/Ubuntu) Wich logging library would you recommand? Currently, I think that boost::log is the most flexible one (you can even log to remotely!), but have not good performance update: is for high performance, but isn't released yet. Pantheios is often cited but I don't have comparison points on performance and usage. I've used my own lib for a long time but I know it don't manage multithreading so it's a big problem, even if it's fast enough. Google Log seems interesting, I just need to test it but if you already have compared those libs and more, your advice might be of good use. Games are often performance demanding while complex to debug so it would be good to know logging libraries that, in our specific case, have clear advantages.

    Read the article

  • Designing javascript chart library

    - by coolscitist
    I started coding a chart library on top of d3js: My chart library. I read Javascript API reusability and Towards reusable charts. However, I am NOT really following the suggestions because I am not really convinced about them. This is how my library can be used to create a bubble chart: var chart = new XYBubbleChart(); chart.data = [{"xValue":200,"yValue":300},{"xValue":400,"yValue":200},{"xValue":100,"yValue":310}]; //set data chart.dataKey.x = "xValue"; chart.dataKey.y = "yValue"; chart.elementId = "#chart"; chart.createChart(); Here are my questions: It does not use chaining. Is it a big issue? Every property and function is exposed publicly. (Example: width, height are exposed in Chart.js). OOP is all about abstraction and hiding, but I don't really see the point right now. I think exposing everything gives flexibility to change property and functionality inside subclasses and objects without writing a lot of code. What could be pitfalls of such exposure? I have implemented functions like: zooming, "showing info boxes when data point is clicked" as "abilities". (example: XYZoomingAbility.js). Basically, such "abilities" accept "chart" object, play around with public variables of "chart" to add functionality. What this allows me to do is to add an ability by writing: activateZoomAbility(chartObject); My goal is to separate "visualization" from "interactivity". I want "interactivity" like: zooming to be plugged into the chart rather than built inside the chart. Like, I don't want my bubble chart to know anything about "zooming". However, I do want zoomable bubble chart. What is the best way to do this? How to test and what to test? I have written mixed tests: jasmine and actual html files so that I can test manually on browser.

    Read the article

  • Events Driven Library XNA C#

    - by SchautDollar
    Language: C# w/ XNA Framework Relevant and Hopefully Helpful Background Info: I am making a library using the XNA framework for games I make with XNA. The Library has a folder(Namespace) dedication to the GUI. The GUI Controls inherit a base class hooked with the appropriate Interfaces. After a control is made, the programmer can hook the control with a "Frame" or "Module" that will tell the controls when to update and draw with an event. To make a "Frame" or "Module", you would inherit a class with the details coded in. (Kind of how win forms does it.) My reason for doing this is to simplify the process of creating menus with intractable controls. The only way I could think of for making the events for all the controls to function without being class specific would be to typecast a control to an object and typecast it back. (As I have read, this can be terribly inefficient.) Problem: Unfortunately, after I have implemented interfaces into the base classes and changed public delegate void ClickedHandler(BaseControl cntrl); to public delegate void ClickedHandler(Object cntrl, EventArgs e); my game has decreased in performance. This performance could be how I am firing the events, as what happens is the one menu will start fine, but then slowly but surely will freeze up. Every other frame works just fine, I just think it has something to do with the events and... that is why I am asking about them. Question: Is there a better more industry way of dealing with GUI Libraries other then using and implementing Events? Goal: To create a reusable feature rich XNA Control Library implementing performance enhancing standards and so on. Thank-you very much for taking your time to read this. I also hope this will help others possibly facing what I am facing right now.

    Read the article

  • Logging library for (c++) games

    - by Klaim
    I know a lot of logging libraries but didn't test a lot of them. (GoogleLog, Pantheios, the coming boost::log library...) In games, especially in remote multiplayer and multithreaded games, logging is vital to debugging, even if you remove all logs in the end. Let's say I'm making a PC game (not console) that needs logs (multiplayer and multithreaded and/or multiprocess) and I have good reasons for looking for a library for logging (like, I don't have time or I'm not confident in my ability to write one correctly for my case). Assuming that I need : performance ease of use (allow streaming or formating or something like that) reliable (don't leak or crash!) cross-platform (at least Windows, MacOSX, Linux/Ubuntu) Wich logging library would you recommand? Currently, I think that boost::log is the most flexible one (you can even log to remotely!), but have not good performance. Pantheios is often cited but I don't have comparison points on performance and usage. I've used my own lib for a long time but I know it don't manage multithreading so it's a big problem, even if it's fast enough. Google Log seems interesting, I just need to test it but if you already have compared those libs and more, your advice might be of good use. Games are often performance demanding while complex to debug so it would be good to know logging libraries that, in our specific case, have clear advantages.

    Read the article

  • Semantic Versioning and splitting apart a library, providing a bundled build

    - by Derick Bailey
    I've got a nice, fairly popular JavaScript library that is following Semantic Versioning. The current library has a few dependency libraries, which are available either as separate downloads or as part of a single bundled download. I see a need to head down this path further. I want to extract additional, smaller libraries out of the one larger library. Each of these extracted libraries would be available as separate files, or inside of the one bundled build, again. If I go down this path of extracting the libraries, and providing a bundled version of the final code, does this require a full version change in semantic versioning? Would I have to bump from 1.x to 2.x? My first thought it no: I will not change any public API, so I don't have to change the major version number. But then I wonder... well, I am restructuring a lot of things, even though the final API for the bundled version would be the same. Is there a clear answer from semver on something like this? Do I need to bump first, second or third dot? Or something else?

    Read the article

  • Depending on fixed version of a library and ignore its updates

    - by Moataz Elmasry
    I was talking to a technical boss yesterday. Its about a project in C++ that depends on opencv and he wanted to include a specific opencv version into the svn and keep using this version ignoring any updates which I disagreed with.We had a heated discussion about that. His arguments: Everything has to be delivered into one package and we can't ask the client to install external libraries. We depend on a fixed version so that new updates of opencv won't screw our code. We can't guarantee that within a version update, ex from 3.2.buildx to 3.2.buildy. Buildy the function signatures won't change. My arguments: True everything has to be delivered to the client as one package,but that's what build scripts are for. They download the external libraries and create a bundle. Within updates of the same version 3.2.buildx to 3.2.buildy its impossible that a signature change, unless it is a really crappy framework, which isn't the case with opencv. We deprive ourselves from new updates and features of that library. If there's a bug in the version we took, and even if there's a bug fix later, we won't be able to get that fix. Its simply ineffiecient and anti design to depend on a certain version/build of an external library as it makes our project difficult in the future to adopt to new changes. So I'd like to know what you guys think. Does it really make sense to include a specific version of external library in our svn and keep using it ignoring all updates?

    Read the article

  • NVIDIA Parallel Nsight disponible gratuitement pour Visual Studio pour tirer partie des GPU dans les calculs complexes

    NVIDIA Parallel Nsight disponible gratuitement pour Visual Studio Pour tirer partie des cartes graphique dans les calculs complexes NVIDIA vient de mettre la version 1.51 de son outil Parallel Nsight à la disposition des développeurs utilisant Visual Studio. Sorti par NVIDIA en août dernier, Parallel Nsight permet de développer des applications CUDA C/C++ ou DirectCompute tirant parti de la puissance de calcul des cartes graphiques. La nouvelle version de Parallel Nsight Professional Edition peut-être utilisée avec Visual Studio 2008 ou 2010. Dans un souci de rendre son installation plus simple, NVIDIA a également procédé à la suppression de la clé de licence et d'a...

    Read the article

  • How to get rid of the GUI access from shared library.

    - by Inso Reiges
    Hello, In my project i have a shared library with cross-platform code that provides a very convenient abstraction for a number of its clients. To be more specific, this library provides data access to encrypted files generated by main application on a number of platforms. There is a great deal of complicated code there that implements cryptographic protocols and as such is very error-prone and should be shared as much as possible across clients and platforms. However parsing all this encrypted stuff requires asking user for a number of different secrets ones in a while. The secret can be either a password, a number of shared passwords or a public key file and this list is a hot target for extension in the future. I can't really ask the user for any of those secrets beforehand from main application, because i really don't know what i need to ask for until i start working with the encrypted data directly in the library code. So i will have to create dialogs and call them from the library code. However i really see this as a bad idea, because (among other things) there is a possibility of a windows service using it and services can't have GUI access. The question is, are there any known ways or patterns to get rid of the GUI calls that are suitable for my case? Thank you.

    Read the article

  • workflow assign task to multiple users

    - by Artru
    I have MOSS. I want to make a page where a user, say administrator, could send some instructions to a server, for example using standard library and make task for a group of users forcing them to read files. After the reading users would press "already read it" and administrator would know who did it/who did not. I created simple workflow in office designer and choose assigne task to Group1, which is in the sharepoint server. After WF run everyone who is in Group1 get message about a task, that's great. However this task is general for group and if we go to the site section "current tasks", we can see it, while I want this task for every person in Group1. Futher question, is it possible to create form where administrator will choose users for this task, 'cause now I munualy set group in WF.

    Read the article

  • Parallel Environment (PE) on Sun Grid Engine (6.2u5) won't run jobs: "only offers 0 slots"

    - by Peter Van Heusden
    I have Sun Grid Engine set up (version 6.2u5) on a Ubuntu 10.10 server with 8 cores. In order to be able to reserve multiple slots, I have a parallel environment (PE) set up like this: pe_name serial slots 999 user_lists NONE xuser_lists NONE start_proc_args /bin/true stop_proc_args /bin/true allocation_rule $pe_slots control_slaves FALSE job_is_first_task TRUE urgency_slots min accounting_summary FALSE This is associated with the all.q on the server in question (let's call the server A). However, when I submit a job that uses 4 threads with e.g. qsub -q all.q@A -pe serial 4 mycmd.sh, it never gets scheduled, and I get the following reasoning from qstat: cannot run in PE "serial" because it only offers 0 slots Why is SGE saying "serial" only offers 0 slots, since there are 8 slots available on the server I specified (server A)? The queue in question is configured thus (server names changed): qname all.q hostlist @allhosts seq_no 0 load_thresholds np_load_avg=1.75 suspend_thresholds NONE nsuspend 1 suspend_interval 00:05:00 priority 0 min_cpu_interval 00:05:00 processors UNDEFINED qtype BATCH INTERACTIVE ckpt_list NONE pe_list make orte serial rerun FALSE slots 1,[D=32],[C=8], \ [B=30],[A=8] tmpdir /tmp shell /bin/sh prolog NONE epilog NONE shell_start_mode posix_compliant starter_method NONE suspend_method NONE resume_method NONE terminate_method NONE notify 00:00:60 owner_list NONE user_lists NONE xuser_lists NONE subordinate_list NONE complex_values NONE projects NONE xprojects NONE calendar NONE initial_state default s_rt INFINITY h_rt 08:00:00 s_cpu INFINITY h_cpu INFINITY s_fsize INFINITY h_fsize INFINITY s_data INFINITY h_data INFINITY s_stack INFINITY h_stack INFINITY s_core INFINITY h_core INFINITY s_rss INFINITY h_rss INFINITY s_vmem INFINITY h_vmem INFINITY,[A=30g], \ [B=5g]

    Read the article

  • How to implement reject in parallel approval workflow?

    - by Dmitry Martynov
    I develop a SharePoint workflow with a Replicator activity to replicate a custom activity for every approver. The custom activity implements an approval branch for a particular user. It has classic form with CreateTask, While, OnTaskChanged and CompleteTask activities. I setup UntilCondition on the replicator to cancel execution after one approver chooses to reject the approval and then workflow finishes. The problem happens with other uncompleted tasks which "hang" in their current state. User does not see this state when open the task. I put UpdateAllTasks after the replacator to set the task status to Cancelled. But since there is no event activities between CompleteTask (for the rejected task) and UpdateAllTasks, the UpdateAllTask activity set Cancelled for the rejected task also. The question, what can I do to flush the pending change made by CompleteTask before UpdateAllTasks? Or perhaps, there is another way to implement such workflow. I was thinking about the way to implement Cancel handler for the custom activity with UpdateTask. But I do not know how to implement it and tell to the cancel handler that it executes in the case of the rejection.

    Read the article

  • I want to run two or more procedures in parallel

    - by binod gyawali
    I have list of procedures. All procedures are not dependent upon each other. So, I need to do is, to run the independent procedures in parallel. I have 4 procedures that are to be run parallel. When the procedures are run successfully, now I need to go to the next task. These procedures create about 10 tables. Next task is to execute the set of procedures. I have made one table, where I describe the dependency of these procedures to the tables created above. After any one of the above procedures is completed, I should come to this set of procedures, and find out those procedures whose dependency tables are already created. If any procedure whose dependent tables creation is completed, I need to execute this procedure. Running 4 procedures parallel is done by dts. But, difficulty for me is to transfer the task from the above 4 procedures to the below set of procedures. Please help me to complete my task. Thanks in advance

    Read the article

  • Sysprep and Capture task sequence failing using MDT 2010

    - by Nic Young
    I have created a Windows Deployment Services server in Windows 2008 R2. When I originally set it up I was able to successfully use MDT 2010 to create my boot images as well as creating task sequences that would sysprep and capture, and deploy my custom .wim files. Everything was working perfectly. About a month later I boot up my Windows 7 x86 image and run Windows updates to keep my image up to date. I then go and run my sysprep and capture task sequence and I get the following errors: I searched online for the cause of this error message and it just seems to be a generic permission denied type of error message. I then decided to completely rebuild my VM image from scratch and try again. I am still getting the same error messages as before. The following is what I have tried troubleshooting this issue: Troubleshooting: I have ensured that that UAC and the firewall is turned completely off when trying to capture the image. I have tried recreating the task sequence and making sure that the deployment share is updated. I have ensured that the local Administrator account is enabled and has the same password as specified in the task sequence. I have tried joining the computer to the domain and running the task sequence and I get a different error: I have attempted to run the script from the command prompt with "Run as Administrator" and I still receive the same errors above. For testing purposes I have ensured that Everyone has read/write access to my deployment share. I have spent days on trying to resolve this to no avail. Any ideas? EDIT: Below is the log info from C:\Windows\Deploymentlogs\BDD.log as requested. <![LOG[LTI Windows PE applied successfully]LOG]!><time="11:48:34.000+000" date="07-25-2012" component="LTIApply" context="" type="1" thread="" file="LTIApply"> <![LOG[LTIApply processing completed successfully.]LOG]!><time="11:48:34.000+000" date="07-25-2012" component="LTIApply" context="" type="1" thread="" file="LTIApply"> <![LOG[Microsoft Deployment Toolkit version: 6.0.2223.0]LOG]!><time="11:48:35.000+000" date="07-25-2012" component="ZTIDrivers" context="" type="1" thread="" file="ZTIDrivers"> <![LOG[The task sequencer log is located at C:\Users\nicy\AppData\Local\Temp\SMSTSLog\SMSTS.LOG. For task sequence failures, please consult this log.]LOG]!><time="11:48:35.000+000" date="07-25-2012" component="ZTIDrivers" context="" type="1" thread="" file="ZTIDrivers"> <![LOG[Processing drivers for an X86 operating system.]LOG]!><time="11:48:35.000+000" date="07-25-2012" component="ZTIDrivers" context="" type="1" thread="" file="ZTIDrivers"> <![LOG[TargetOS is the current SystemDrive]LOG]!><time="11:48:35.000+000" date="07-25-2012" component="ZTIDrivers" context="" type="1" thread="" file="ZTIDrivers"> <![LOG[Property DriverCleanup is now = DONE]LOG]!><time="11:48:35.000+000" date="07-25-2012" component="ZTIDrivers" context="" type="1" thread="" file="ZTIDrivers"> <![LOG[Compare Image processor Type with Original [X86] = [X86].]LOG]!><time="11:48:35.000+000" date="07-25-2012" component="ZTIDrivers" context="" type="1" thread="" file="ZTIDrivers"> <![LOG[Prepare machine for Sysprep.]LOG]!><time="11:48:35.000+000" date="07-25-2012" component="ZTIDrivers" context="" type="1" thread="" file="ZTIDrivers"> <![LOG[No driver actions can be taken for OS Images installed from *.wim files.]LOG]!><time="11:48:35.000+000" date="07-25-2012" component="ZTIDrivers" context="" type="1" thread="" file="ZTIDrivers"> <![LOG[ZTIDrivers processing completed successfully.]LOG]!><time="11:48:35.000+000" date="07-25-2012" component="ZTIDrivers" context="" type="1" thread="" file="ZTIDrivers"> <![LOG[Command completed, return code = -2147467259]LOG]!><time="11:48:35.000+000" date="07-25-2012" component="LiteTouch" context="" type="1" thread="" file="LiteTouch"> <![LOG[Litetouch deployment failed, Return Code = -2147467259 0x80004005]LOG]!><time="11:48:35.000+000" date="07-25-2012" component="LiteTouch" context="" type="3" thread="" file="LiteTouch"> <![LOG[For more information, consult the task sequencer log ...\SMSTS.LOG.]LOG]!><time="11:48:35.000+000" date="07-25-2012" component="LiteTouch" context="" type="1" thread="" file="LiteTouch"> <![LOG[Property RetVal is now = -2147467259]LOG]!><time="11:48:35.000+000" date="07-25-2012" component="LiteTouch" context="" type="1" thread="" file="LiteTouch"> <![LOG[Unable to copy log to the network as no SLShare value was specified.]LOG]!><time="11:48:35.000+000" date="07-25-2012" component="LiteTouch" context="" type="1" thread="" file="LiteTouch"> <![LOG[CleanStartItems Complete]LOG]!><time="11:48:35.000+000" date="07-25-2012" component="LiteTouch" context="" type="1" thread="" file="LiteTouch"> <![LOG[Unregistering TSCore.dll.]LOG]!><time="11:48:35.000+000" date="07-25-2012" component="LiteTouch" context="" type="1" thread="" file="LiteTouch"> <![LOG[About to run command: wscript.exe "\\server\deploymentshare$\Scripts\LTICleanup.wsf"]LOG]!><time="11:48:35.000+000" date="07-25-2012" component="LiteTouch" context="" type="1" thread="" file="LiteTouch"> <![LOG[Microsoft Deployment Toolkit version: 6.0.2223.0]LOG]!><time="11:48:36.000+000" date="07-25-2012" component="LTICleanup" context="" type="1" thread="" file="LTICleanup"> <![LOG[Removing AutoAdminLogon registry entries]LOG]!><time="11:48:36.000+000" date="07-25-2012" component="LTICleanup" context="" type="1" thread="" file="LTICleanup"> <![LOG[VSSMaxSize not specified using 5% of volume.]LOG]!><time="11:48:36.000+000" date="07-25-2012" component="LTICleanup" context="" type="1" thread="" file="LTICleanup"> <![LOG[Logs contained 7 errors and 0 warnings.]LOG]!><time="11:48:36.000+000" date="07-25-2012" component="LTICleanup" context="" type="1" thread="" file="LTICleanup"> <![LOG[Stripping BDD commands from unattend.xml template.]LOG]!><time="11:48:36.000+000" date="07-25-2012" component="LTICleanup" context="" type="1" thread="" file="LTICleanup"> <![LOG[Modified unattend.xml saved to C:\windows\panther\unattend.xml]LOG]!><time="11:48:36.000+000" date="07-25-2012" component="LTICleanup" context="" type="1" thread="" file="LTICleanup"> <![LOG[Checking mapped network drive.]LOG]!><time="11:48:36.000+000" date="07-25-2012" component="LTICleanup" context="" type="1" thread="" file="LTICleanup"> <![LOG[testing drive Z: mapped to \\server\deploymentshare$]LOG]!><time="11:48:36.000+000" date="07-25-2012" component="LTICleanup" context="" type="1" thread="" file="LTICleanup"> <![LOG[Disconnecting drive Z: mapped to \\server\deploymentshare$]LOG]!><time="11:48:36.000+000" date="07-25-2012" component="LTICleanup" context="" type="1" thread="" file="LTICleanup"> <![LOG[Cleaning up C:\MININT directory.]LOG]!><time="11:48:36.000+000" date="07-25-2012" component="LTICleanup" context="" type="1" thread="" file="LTICleanup"> <![LOG[Cleaning up TOOLS, SCRIPTS, and PACKAGES directories.]LOG]!><time="11:48:36.000+000" date="07-25-2012" component="LTICleanup" context="" type="1" thread="" file="LTICleanup">

    Read the article

  • How to create a new WCF/MVC/jQuery application from scratch

    - by pjohnson
    As a corporate developer by trade, I don't get much opportunity to create from-the-ground-up web sites; usually it's tweaks, fixes, and new functionality to existing sites. And with hobby sites, I often don't find the challenges I run into with enterprise systems; usually it's starting from Visual Studio's boilerplate project and adding whatever functionality I want to play around with, rarely deploying outside my own machine. So my experience creating a new enterprise-level site was a bit dated, and the technologies to do so have come a long way, and are much more ready to go out of the box. My intention with this post isn't so much to provide any groundbreaking insights, but to just tie together a lot of information in one place to make it easy to create a new site from scratch. Architecture One site I created earlier this year had an MVC 3 front end and a WCF 4-driven service layer. Using Visual Studio 2010, these project types are easy enough to add to a new solution. I created a third Class Library project to store common functionality the front end and services layers both needed to access, for example, the DataContract classes that the front end uses to call services in the service layer. By keeping DataContract classes in a separate project, I avoided the need for the front end to have an assembly/project reference directly to the services code, a bit cleaner and more flexible of an SOA implementation. Consuming the service Even by this point, VS has given you a lot. You have a working web site and a working service, neither of which do much but are great starting points. To wire up the front end and the services, I needed to create proxy classes and WCF client configuration information. I decided to use the SvcUtil.exe utility provided as part of the Windows SDK, which you should have installed if you installed VS. VS also provides an Add Service Reference command since the .NET 1.x ASMX days, which I've never really liked; it creates several .cs/.disco/etc. files, some of which contained hardcoded URL's, adding duplicate files (*1.cs, *2.cs, etc.) without doing a good job of cleaning up after itself. I've found SvcUtil much cleaner, as it outputs one C# file (containing several proxy classes) and a config file with settings, and it's easier to use to regenerate the proxy classes when the service changes, and to then maintain all your configuration in one place (your Web.config, instead of the Service Reference files). I provided it a reference to a copy of my common assembly so it doesn't try to recreate the data contract classes, had it use the type List<T> for collections, and modified the output files' names and .NET namespace, ending up with a command like: svcutil.exe /l:cs /o:MyService.cs /config:MyService.config /r:MySite.Common.dll /ct:System.Collections.Generic.List`1 /n:*,MySite.Web.ServiceProxies http://localhost:59999/MyService.svc I took the generated MyService.cs file and drop it in the web project, under a ServiceProxies folder, matching the namespace and keeping it separate from classes I coded manually. Integrating the config file took a little more work, but only needed to be done once as these settings didn't often change. A great thing Microsoft improved with WCF 4 is configuration; namely, you can use all the default settings and not have to specify them explicitly in your config file. Unfortunately, SvcUtil doesn't generate its config file this way. If you just copy & paste MyService.config's contents into your front end's Web.config, you'll copy a lot of settings you don't need, plus this will get unwieldy if you add more services in the future, each with its own custom binding. Really, as the only mandatory settings are the endpoint's ABC's (address, binding, and contract) you can get away with just this: <system.serviceModel>  <client>    <endpoint address="http://localhost:59999/MyService.svc" binding="wsHttpBinding" contract="MySite.Web.ServiceProxies.IMyService" />  </client></system.serviceModel> By default, the services project uses basicHttpBinding. As you can see, I switched it to wsHttpBinding, a more modern standard. Using something like netTcpBinding would probably be faster and more efficient since the client & service are both written in .NET, but it requires additional server setup and open ports, whereas switching to wsHttpBinding is much simpler. From an MVC controller action method, I instantiated the client, and invoked the method for my operation. As with any object that implements IDisposable, I wrapped it in C#'s using() statement, a tidy construct that ensures Dispose gets called no matter what, even if an exception occurs. Unfortunately there are problems with that, as WCF's ClientBase<TChannel> class doesn't implement Dispose according to Microsoft's own usage guidelines. I took an approach similar to Technology Toolbox's fix, except using partial classes instead of a wrapper class to extend the SvcUtil-generated proxy, making the fix more seamless from the controller's perspective, and theoretically, less code I have to change if and when Microsoft fixes this behavior. User interface The MVC 3 project template includes jQuery and some other common JavaScript libraries by default. I updated the ones I used to the latest versions using NuGet, available in VS via the Tools > Library Package Manager > Manage NuGet Packages for Solution... > Updates. I also used this dialog to remove packages I wasn't using. Given that it's smart enough to know the difference between the .js and .min.js files, I was hoping it would be smart enough to know which to include during build and publish operations, but this doesn't seem to be the case. I ended up using Cassette to perform the minification and bundling of my JavaScript and CSS files; ASP.NET 4.5 includes this functionality out of the box. The web client to web server link via jQuery was easy enough. In my JavaScript function, unobtrusively wired up to a button's click event, I called $.ajax, corresponding to an action method that returns a JsonResult, accomplished by passing my model class to the Controller.Json() method, which jQuery helpfully translates from JSON to a JavaScript object.$.ajax calls weren't perfectly straightforward. I tried using the simpler $.post method instead, but ran into trouble without specifying the contentType parameter, which $.post doesn't have. The url parameter is simple enough, though for flexibility in how the site is deployed, I used MVC's Url.Action method to get the URL, then sent this to JavaScript in a JavaScript string variable. If the request needed input data, I used the JSON.stringify function to convert a JavaScript object with the parameters into a JSON string, which MVC then parses into strongly-typed C# parameters. I also specified "json" for dataType, and "application/json; charset=utf-8" for contentType. For success and error, I provided my success and error handling functions, though success is a bit hairier. "Success" in this context indicates whether the HTTP request succeeds, not whether what you wanted the AJAX call to do on the web server was successful. For example, if you make an AJAX call to retrieve a piece of data, the success handler will be invoked for any 200 OK response, and the error handler will be invoked for failed requests, e.g. a 404 Not Found (if the server rejected the URL you provided in the url parameter) or 500 Internal Server Error (e.g. if your C# code threw an exception that wasn't caught). If an exception was caught and handled, or if the data requested wasn't found, this would likely go through the success handler, which would need to do further examination to verify it did in fact get back the data for which it asked. I discuss this more in the next section. Logging and exception handling At this point, I had a working application. If I ran into any errors or unexpected behavior, debugging was easy enough, but of course that's not an option on public web servers. Microsoft Enterprise Library 5.0 filled this gap nicely, with its Logging and Exception Handling functionality. First I installed Enterprise Library; NuGet as outlined above is probably the best way to do so. I needed a total of three assembly references--Microsoft.Practices.EnterpriseLibrary.ExceptionHandling, Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.Logging, and Microsoft.Practices.EnterpriseLibrary.Logging. VS links with the handy Enterprise Library 5.0 Configuration Console, accessible by right-clicking your Web.config and choosing Edit Enterprise Library V5 Configuration. In this console, under Logging Settings, I set up a Rolling Flat File Trace Listener to write to log files but not let them get too large, using a Text Formatter with a simpler template than that provided by default. Logging to a different (or additional) destination is easy enough, but a flat file suited my needs. At this point, I verified it wrote as expected by calling the Microsoft.Practices.EnterpriseLibrary.Logging.Logger.Write method from my C# code. With those settings verified, I went on to wire up Exception Handling with Logging. Back in the EntLib Configuration Console, under Exception Handling, I used a LoggingExceptionHandler, setting its Logging Category to the category I already had configured in the Logging Settings. Then, from code (e.g. a controller's OnException method, or any action method's catch block), I called the Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.ExceptionPolicy.HandleException method, providing the exception and the exception policy name I had configured in the Exception Handling Settings. Before I got this configured correctly, when I tried it out, nothing was logged. In working with .NET, I'm used to seeing an exception if something doesn't work or isn't set up correctly, but instead working with these EntLib modules reminds me more of JavaScript (before the "use strict" v5 days)--it just does nothing and leaves you to figure out why, I presume due in part to the listener pattern Microsoft followed with the Enterprise Library. First, I verified logging worked on its own. Then, verifying/correcting where each piece wires up to the next resolved my problem. Your C# code calls into the Exception Handling module, referencing the policy you pass the HandleException method; that policy's configuration contains a LoggingExceptionHandler that references a logCategory; that logCategory should be added in the loggingConfiguration's categorySources section; that category references a listener; that listener should be added in the loggingConfiguration's listeners section, which specifies the name of the log file. One final note on error handling, as the proper way to handle WCF and MVC errors is a whole other very lengthy discussion. For AJAX calls to MVC action methods, depending on your configuration, an exception thrown here will result in ASP.NET'S Yellow Screen Of Death being sent back as a response, which is at best unnecessarily and uselessly verbose, and at worst a security risk as the internals of your application are exposed to potential hackers. I mitigated this by overriding my controller's OnException method, passing the exception off to the Exception Handling module as above. I created an ErrorModel class with as few properties as possible (e.g. an Error string), sending as little information to the client as possible, to both maximize bandwidth and mitigate risk. I then return an ErrorModel in JSON format for AJAX requests: if (filterContext.HttpContext.Request.IsAjaxRequest()){    filterContext.Result = Json(new ErrorModel(...));    filterContext.ExceptionHandled = true;} My $.ajax calls from the browser get a valid 200 OK response and go into the success handler. Before assuming everything is OK, I check if it's an ErrorModel or a model containing what I requested. If it's an ErrorModel, or null, I pass it to my error handler. If the client needs to handle different errors differently, ErrorModel can contain a flag, error code, string, etc. to differentiate, but again, sending as little information back as possible is ideal. Summary As any experienced ASP.NET developer knows, this is a far cry from where ASP.NET started when I began working with it 11 years ago. WCF services are far more powerful than ASMX ones, MVC is in many ways cleaner and certainly more unit test-friendly than Web Forms (if you don't consider the code/markup commingling you're doing again), the Enterprise Library makes error handling and logging almost entirely configuration-driven, AJAX makes a responsive UI more feasible, and jQuery makes JavaScript coding much less painful. It doesn't take much work to get a functional, maintainable, flexible application, though having it actually do something useful is a whole other matter.

    Read the article

  • SSW Scrum Rule: Do you know to use clear task descriptions?

    - by Martin Hinshelwood
    When you create tasks in Scrum you are doing this within a time box and you tend to add only the information you need to remember what the task is. And the entire Team was at the meeting and were involved in the discussions around the task, so why do you need more? Once you have accepted a task you should then add as much information as possible so that anyone can pick up that task; what if your numbers come up? Will you be into work the next day? Figure: What if your numbers come up in the lottery? What if the Team runs a syndicate and all your numbers come up? The point is that anything can happen and you need to protect the integrity of the project, the company and the Customer. Add as much information to the task as you think is necessary for anyone to work on the task. If you need to add rich text and images you can do this by attaching an email to the task.   Figure: Bad example, there is not enough information for a non team member to complete this task Figure: Julie provided a lot more information and another team should be able to pick this up. This has been published as Do you know to ensure that relevant emails are attached to tasks in our Rules to Better Scrum using TFS.   Technorati Tags: Scrum,SSW Rules,TFS 2010

    Read the article

  • Preview of MSDN Library Changes

    The MSDN team has been working some potential changes to the online MSDN Library designed to help streamline the navigation experience and make it easier to find the .NET Framework information you need. To solicit feedback on the proposed changes while they are still in development, theyve posted a preview version of some proposed changes to a new MSDN Library Preview site which you can check out.  Theyve also created a survey that leads you through the ideas and asks for your opinions...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • C++ Game Library for SVG Based Game

    - by lefticus
    I'm looking into building a cross-platform opensource 2D RPG style game engine for ChaiScript. I want to be able to do all of the graphics with SVG and need joystick input. I also need the libraries I use to be opensource and compatible with the BSD license. I'm familiar with allegro, ClanLib, and SDL. As far as I can tell, none of these libraries have built in or obvious integration for SVG. Also, I'm aware of the previous conversations on this site regarding Qt for SVG game development. I'm hoping to avoid Qt because of the size and complexity of making it a requirement. Also, Qt does not seem to have joystick input support, which would require that SDL or some other library also be used. So my question can be summed up as this: What is the best way to get SVG and joystick support in a 2D C++ library while minimizing dependencies as much as possible (preferably avoiding Qt altogether)?

    Read the article

  • Pathfinding Java library

    - by Shivan Dragon
    I'm an amateur game developer and somewhat amateur Java developer as well. I'm trying to find a way to have path finding for my game(s). I've first googled for some existing Java libraries that have various path-finding implementations, but I've failed to find any. It seems to me that the only way to get pathfinding code is to use it via a game engine (like Unity). But I'd just like to have a library that I can use and make the game loop and other stuff on my own. Failing to find such a library I've tried implementing some algorithms myself. I've managed to make a running AStar in Java, but for fancier stuff like DStar I find it hard to do it by hand. So then, my question is, are there any Java libraries that contain at least some basic pathfinding algorithms implementations?

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is called MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been cleaned up so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# level syntax sugar. There is no difference to await a async method or a normal method. A method returning Task will be awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } The above code is already cleaned up, but there are still a lot of things. More clean up can be done, and the state machine can be very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> void IAsyncStateMachine.MoveNext() { try { switch (this.State) { // Orginal code is splitted by "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; IAsyncStateMachine this1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this1.MoveNext()); // Callback break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; IAsyncStateMachine this2 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this2.MoveNext()); // Callback break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync_(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; (multiCallMethodAsyncStateMachine as IAsyncStateMachine).MoveNext(); // Original code are in this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clear - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback Since it is about callback, the simplification  can go even further – the entire state machine can be completely purged. Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is literally pretending to wait. In a await expression, a Task object will be return immediately so that caller is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is named MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine, MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been refactored, so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# language level syntax sugar. There is no difference to await a async method or a normal method. As long as a method returns Task, it is awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } Once again, the above state machine code is already refactored, but it still has a lot of things. More clean up can be done if we only keep the core logic, and the state machine can become very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> public void MoveNext() // IAsyncStateMachine member. { try { switch (this.State) { // Original code is split by "await"s into "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; MultiCallMethodAsyncStateMachine that1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => that1.MoveNext()); break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; MultiCallMethodAsyncStateMachine that2 = this; this.currentTaskToAwait.ContinueWith(_ => that2.MoveNext()); break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] public void SetStateMachine(IAsyncStateMachine stateMachine) // IAsyncStateMachine member. { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; multiCallMethodAsyncStateMachine.MoveNext(); // Original code are moved into this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clean - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback If we focus on the point of callback, the simplification  can go even further – the entire state machine can be completely purged, and we can just keep the code inside MoveNext(). Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is not to wait. In a await expression, a Task object will be return immediately so that execution is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Advice on designing a robust program to handle a large library of meta-information & programs

    - by Sam Bryant
    So this might be overly vague, but here it is anyway I'm not really looking for a specific answer, but rather general design principles or direction towards resources that deal with problems like this. It's one of my first large-scale applications, and I would like to do it right. Brief Explanation My basic problem is that I have to write an application that handles a large library of meta-data, can easily modify the meta-data on-the-fly, is robust with respect to crashing, and is very efficient. (Sorta like the design parameters of iTunes, although sometimes iTunes performs more poorly than I would like). If you don't want to read the details, you can skip the rest Long Explanation Specifically I am writing a program that creates a library of image files and meta-data about these files. There is a list of tags that may or may not apply to each image. The program needs to be able to add new images, new tags, assign tags to images, and detect duplicate images, all while operating. The program contains an image Viewer which has tagging operations. The idea is that if a given image A is viewed while the library has tags T1, T2, and T3, then that image will have boolean flags for each of those tags (depending on whether the user tagged that image while it was open in the Viewer). However, prior to being viewed in the Viewer, image A would have no value for tags T1, T2, and T3. Instead it would have a "dirty" flag indicating that it is unknown whether or not A has these tags or not. The program can introduce new tags at any time (which would automatically set all images to "dirty" with respect to this new tag) This program must be fast. It must be easily able to pull up a list of images with or without a certain tag as well as images which are "dirty" with respect to a tag. It has to be crash-safe, in that if it suddenly crashes, all of the tagging information done in that session is not lost (though perhaps it's okay to loose some of it) Finally, it has to work with a lot of images (10,000) I am a fairly experienced programmer, but I have never tried to write a program with such demanding needs and I have never worked with databases. With respect to the meta-data storage, there seem to be a few design choices: Choice 1: Invidual meta-data vs centralized meta-data Individual Meta-Data: have a separate meta-data file for each image. This way, as soon as you change the meta-data for an image, it can be written to the hard disk, without having to rewrite the information for all of the other images. Centralized Meta-Data: Have a single file to hold the meta-data for every file. This would probably require meta-data writes in intervals as opposed to after every change. The benefit here is that you could keep a centralized list of all images with a given tag, ect, making the task of pulling up all images with a given tag very efficient

    Read the article

  • playonlinux is unable to find 32bits / 64bits OpenGL library

    - by footy
    When I open a fresh instalation of playonlinux, it gives 2 dialog box as mentioned in title: playonlinux is unable to find 32bits OpenGL library playonlinux is unable to find 64bits OpenGL library I am using Ubuntu 12.04 (and new to it) and would like to know how to solve this problem EDIT TERMINAL OUTPUT ~$ playonlinux [main] Message: PlayOnLinux (4.1.8) is starting [clean_tmp] Message: Cleaning temp directory Xlib: extension "GLX" missing on display ":0". Xlib: extension "GLX" missing on display ":0". [Check_OpenGL] Warning: Xlib: extension "GLX" missing on display ":0". Xlib: extension "GLX" missing on display ":0". [Check_OpenGL] Warning: [main] Message: Filesystem is compatible [install_plugins] Message: Checking plugin: Capture... [maj_check] Message: Web version : 1349866727 [maj_check] Message: Current local version : 1349563245 [maj_check] Message: Updating list [install_plugins] Message: Checking plugin: ScreenCap... [install_plugins] Message: Checking plugin: PlayOnLinux Vault... /usr/share/playonlinux/bash/startup_after_server: line 38: [: : integer expression expected /usr/share/playonlinux/bash/startup_after_server: line 38: [: : integer expression expected [POL_Config_Write] Message: Config write: LAST_TIMESTAMP 1349866727

    Read the article

  • Pathfinding library

    - by Shivan Dragon
    I'm an amateur game developer and somewhat amateur Java developer as well. I'm trying to find a way to have path finding for my game(s). I've first Googled for some existing Java libraries that have various path-finding implementations, but I've failed to find any. It seems to me that the only way to get pathfinding code is to use it via a game engine (like Unity). But I'd just like to have a library that I can use and make the game loop and other stuff on my own. Failing to find such a library I've tried implementing some algorithms myself. I've managed to make a running A* in Java, but for fancier stuff like D* I find it hard to do it by hand. So then, my question is, are there any Java libraries that contain at least some basic pathfinding algorithms implementations?

    Read the article

  • Looking for a Python UI library comparable with Windows Forms [on hold]

    - by Mitten
    I am looking for a Python UI library which I could use to develop a desktop GUI comparable to what can be done with .NET Windows Forms. I have no previous experience programming UI in Python, so I would rather choose (if there is a choice) something simple. The application I am building would be a document oriented - rich texts, lists and grids, I don't expect to use much graphics - mostly formatted texts. Any pointers, and if there is more than one major GUI library available for Python - how could I quickly test them to see which one is a better fit for my needs?

    Read the article

< Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >