Search Results

Search found 14841 results on 594 pages for 'performance monitoring'.

Page 42/594 | < Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >

  • Which program do you recommend for monitoring the list of installed programs in Windows?

    - by Nickolai Leschov
    I am in charge of a computer network in a small company (20..30 computers). Recently the need arose to control what kinds of programs our company is using i.e. to collect information that is available when one opens "Add or Remove Programs" in Windows. I would like to have a program that will collect this kind of information over the network of Windows machines. What is your recommendation?

    Read the article

  • Performance of tokenizing CSS in PHP

    - by Boldewyn
    This is a noob question from someone who hasn't written a parser/lexer ever before. I'm writing a tokenizer/parser for CSS in PHP (please don't repeat with 'OMG, why in PHP?'). The syntax is written down by the W3C neatly here (CSS2.1) and here (CSS3, draft). It's a list of 21 possible tokens, that all (but two) cannot be represented as static strings. My current approach is to loop through an array containing the 21 patterns over and over again, do an if (preg_match()) and reduce the source string match by match. In principle this works really good. However, for a 1000 lines CSS string this takes something between 2 and 8 seconds, which is too much for my project. Now I'm banging my head how other parsers tokenize and parse CSS in fractions of seconds. OK, C is always faster than PHP, but nonetheless, are there any obvious D'Oh! s that I fell into? I made some optimizations, like checking for '@', '#' or '"' as the first char of the remaining string and applying only the relevant regexp then, but this hadn't brought any great performance boosts. My code (snippet) so far: $TOKENS = array( 'IDENT' => '...regexp...', 'ATKEYWORD' => '@...regexp...', 'String' => '"...regexp..."|\'...regexp...\'', //... ); $string = '...CSS source string...'; $stream = array(); // we reduce $string token by token while ($string != '') { $string = ltrim($string, " \t\r\n\f"); // unconsumed whitespace at the // start is insignificant but doing a trim reduces exec time by 25% $matches = array(); // loop through all possible tokens foreach ($TOKENS as $t => $p) { // The '&' is used as delimiter, because it isn't used anywhere in // the token regexps if (preg_match('&^'.$p.'&Su', $string, $matches)) { $stream[] = array($t, $matches[0]); $string = substr($string, strlen($matches[0])); // Yay! We found one that matches! continue 2; } } // if we come here, we have a syntax error and handle it somehow } // result: an array $stream consisting of arrays with // 0 => type of token // 1 => token content

    Read the article

  • Need advice on a monitoring, reminder and warning application.

    - by cbmeeks
    I am a developer that also has to monitor several things on different servers. Such as: 1) Did all of the MS SQL databases backup last night? 2) Did all of the MySQL databases backup last night? 3) Were the database dumps actually copied to the right folder? 4) How much free space is left on each server's hard drives? 5) How big are folders "abc", "def", "etc" getting? 6) Send emails/alerts when thresholds are reached Etc. Just basically something to help me NOT forget such important things. I thought about writing something myself but didn't want to waste the effort if something is already out there. I would also prefer one application instead of many if I could. Thanks. EDIT Forgot to mention the operating system. These run on Windows Server 2003 and/or 2008. In fact, what would be cool is a program that supports multiple servers from one machine. Something that can log into those servers.

    Read the article

  • agent-based simulation: performance issue: Python vs NetLogo & Repast

    - by max
    I'm replicating a small piece of Sugarscape agent simulation model in Python 3. I found the performance of my code is ~3 times slower than that of NetLogo. Is it likely the problem with my code, or can it be the inherent limitation of Python? Obviously, this is just a fragment of the code, but that's where Python spends two-thirds of the run-time. I hope if I wrote something really inefficient it might show up in this fragment: UP = (0, -1) RIGHT = (1, 0) DOWN = (0, 1) LEFT = (-1, 0) all_directions = [UP, DOWN, RIGHT, LEFT] # point is just a tuple (x, y) def look_around(self): max_sugar_point = self.point max_sugar = self.world.sugar_map[self.point].level min_range = 0 random.shuffle(self.all_directions) for r in range(1, self.vision+1): for d in self.all_directions: p = ((self.point[0] + r * d[0]) % self.world.surface.length, (self.point[1] + r * d[1]) % self.world.surface.height) if self.world.occupied(p): # checks if p is in a lookup table (dict) continue if self.world.sugar_map[p].level > max_sugar: max_sugar = self.world.sugar_map[p].level max_sugar_point = p if max_sugar_point is not self.point: self.move(max_sugar_point) Roughly equivalent code in NetLogo (this fragment does a bit more than the Python function above): ; -- The SugarScape growth and motion procedures. -- to M ; Motion rule (page 25) locals [ps p v d] set ps (patches at-points neighborhood) with [count turtles-here = 0] if (count ps > 0) [ set v psugar-of max-one-of ps [psugar] ; v is max sugar w/in vision set ps ps with [psugar = v] ; ps is legal sites w/ v sugar set d distance min-one-of ps [distance myself] ; d is min dist from me to ps agents set p random-one-of ps with [distance myself = d] ; p is one of the min dist patches if (psugar >= v and includeMyPatch?) [set p patch-here] setxy pxcor-of p pycor-of p ; jump to p set sugar sugar + psugar-of p ; consume its sugar ask p [setpsugar 0] ; .. setting its sugar to 0 ] set sugar sugar - metabolism ; eat sugar (metabolism) set age age + 1 end On my computer, the Python code takes 15.5 sec to run 1000 steps; on the same laptop, the NetLogo simulation running in Java inside the browser finishes 1000 steps in less than 6 sec. EDIT: Just checked Repast, using Java implementation. And it's also about the same as NetLogo at 5.4 sec. Recent comparisons between Java and Python suggest no advantage to Java, so I guess it's just my code that's to blame? EDIT: I understand MASON is supposed to be even faster than Repast, and yet it still runs Java in the end.

    Read the article

  • Performance Optimization for Matrix Rotation

    - by Summer_More_More_Tea
    Hello everyone: I'm now trapped by a performance optimization lab in the book "Computer System from a Programmer's Perspective" described as following: In a N*N matrix M, where N is multiple of 32, the rotate operation can be represented as: Transpose: interchange elements M(i,j) and M(j,i) Exchange rows: Row i is exchanged with row N-1-i A example for matrix rotation(N is 3 instead of 32 for simplicity): ------- ------- |1|2|3| |3|6|9| ------- ------- |4|5|6| after rotate is |2|5|8| ------- ------- |7|8|9| |1|4|7| ------- ------- A naive implementation is: #define RIDX(i,j,n) ((i)*(n)+(j)) void naive_rotate(int dim, pixel *src, pixel *dst) { int i, j; for (i = 0; i < dim; i++) for (j = 0; j < dim; j++) dst[RIDX(dim-1-j, i, dim)] = src[RIDX(i, j, dim)]; } I come up with an idea by inner-loop-unroll. The result is: Code Version Speed Up original 1x unrolled by 2 1.33x unrolled by 4 1.33x unrolled by 8 1.55x unrolled by 16 1.67x unrolled by 32 1.61x I also get a code snippet from pastebin.com that seems can solve this problem: void rotate(int dim, pixel *src, pixel *dst) { int stride = 32; int count = dim >> 5; src += dim - 1; int a1 = count; do { int a2 = dim; do { int a3 = stride; do { *dst++ = *src; src += dim; } while(--a3); src -= dim * stride + 1; dst += dim - stride; } while(--a2); src += dim * (stride + 1); dst -= dim * dim - stride; } while(--a1); } After carefully read the code, I think main idea of this solution is treat 32 rows as a data zone, and perform the rotating operation respectively. Speed up of this version is 1.85x, overwhelming all the loop-unroll version. Here are the questions: In the inner-loop-unroll version, why does increment slow down if the unrolling factor increase, especially change the unrolling factor from 8 to 16, which does not effect the same when switch from 4 to 8? Does the result have some relationship with depth of the CPU pipeline? If the answer is yes, could the degrade of increment reflect pipeline length? What is the probable reason for the optimization of data-zone version? It seems that there is no too much essential difference from the original naive version. EDIT: My test environment is Intel Centrino Duo processor and the verion of gcc is 4.4 Any advice will be highly appreciated! Kind regards!

    Read the article

  • How to set up raid monitoring on a Adaptec AAC-RAID on a Dell?

    - by pjz
    I've got Debian on a Dell with an Adaptec RAID: AAC0: kernel 4.1-0[7417] AAC0: monitor 4.1-0[7417] AAC0: bios 4.1-0[7417] AAC0: serial 4edf09 scsi2 : aacraid Vendor: CERC Model: DATA 1 Rev: V1.0 Type: Direct-Access ANSI SCSI revision: 02 Vendor: CERC Model: Data 2 Rev: V1.0 Type: Direct-Access ANSI SCSI revision: 02 I've got it set up using the fine afacli tool (ick). Is there a way to get it to email me when there's an error? Do I need to hand-roll a script for this? what's the right version of the afacli tool to use? v4.1 gets SIGABRT and exits after I ask it to 'container list' or 'enclosure list' v2.8's enclosure commands don't work either Do I need to upgrade firmware? to what? from where? how?

    Read the article

  • Monitoring the status of accounts with IT Service providers (ISP, Domain Registrar etc.)

    - by Sholom
    Hi All, Short version: You have software that tells you when your servers power-outlet is down. It monitors multiple servers from one management console, alerts you when something is wrong etc. Does anyone know of software that will let me take the same approach to monitor if the money-outlet (the bill!) is down (not paid) to my IT Services providers (ISP, Domain Registrar, MX Backup service etc). I need a top down, centrally managed service that is capable of sending out alerts. Just like the one that monitors my own exchange server etc. I don't mind if i have to manually enter every payment. Long version: Our very likable but absent minded bookkeeper keeps neglecting to pay our IT vendors on time. Just this past week our internet service was disconnected. Same could happen to many other mission critical accounts (domain registrar, backup MX, anti-virus license, HackerSafe (McAfee secure) service and even an 800 number to name a few). As the sysadmin, i monitor my severs to make sure they are plugged into the power-outlet. I believe i should also monitor my services to make sure they are plugged in to their money-outlet. To compound the problem, when the power goes out someone else will likely notice and notify me. But if a bill is not payed, no one will ever notice until service is lost. Lost as in losing our domain name which would cause a lot more damage then the power failing on our server. [Solution] = [Doesn't work because]: Retrain the bookkeeper = Wishful thinking. Notify my manager = Already have (via email). Protects me, does not solve problem. Fire bookkeeper = What makes you so sure the next one will never forget? Bottom line: Humans are humans and sooner or later something critical will be royally messed up. We need to partner with a machine to help us out here. Anybody have the same problem? What software/solution do you use? I would like software that emails me when a bill is passed due just like i get an email when the power outlet fails. Anyone hear of anything like that? Thanks

    Read the article

  • Neo4j 1.9.4 (REST Server,CYPHER) performance issue

    - by user2968943
    I have Neo4j 1.9.4 installed on 24 core 24Gb ram (centos) machine and for most queries CPU usage spikes goes to 200% with only few concurrent requests. Domain: some sort of social application where few types of nodes(profiles) with 3-30 text/array properties and 36 relationship types with at least 3 properties. Most of nodes currently has ~300-500 relationships. Current data set footprint(from console): LogicalLogSize=4294907 (32MB) ArrayStoreSize=1675520 (12MB) NodeStoreSize=1342170 (10MB) PropertyStoreSize=1739548 (13MB) RelationshipStoreSize=6395202 (48MB) StringStoreSize=1478400 (11MB) which is IMHO really small. most queries looks like this one(with more or less WITH .. MATCH .. statements and few queries with variable length relations but the often fast): START targetUser=node({id}), currentUser=node({current}) MATCH targetUser-[contact:InContactsRelation]->n, n-[:InLocationRelation]->l, n-[:InCategoryRelation]->c WITH currentUser, targetUser,n, l,c, contact.fav is not null as inFavorites MATCH n<-[followers?:InContactsRelation]-() WITH currentUser, targetUser,n, l,c,inFavorites, COUNT(followers) as numFollowers RETURN id(n) as id, n.name? as name, n.title? as title, n._class as _class, n.avatar? as avatar, n.avatar_type? as avatar_type, l.name as location__name, c.name as category__name, true as isInContacts, inFavorites as isInFavorites, numFollowers it runs in ~1s-3s(for first run) and ~1s-70ms (for consecutive and it depends on query) and there is about 5-10 queries runs for each impression. Another interesting behavior is when i try run query from console(neo4j) on my local machine many consecutive times(just press ctrl+enter for few seconds) it has almost constant execution time but when i do it on server it goes slower exponentially and i guess it somehow related with my problem. Problem: So my problem is that neo4j is very CPU greedy(for 24 core machine its may be not an issue but its obviously overkill for small project). First time i used AWS EC2 m1.large instance but over all performance was bad, during testing, CPU always was over 100%. Some relevant parts of configuration: neostore.nodestore.db.mapped_memory=1280M wrapper.java.maxmemory=8192 note: I already tried configuration where all memory related parameters where HIGH and it didn't worked(no change at all). Question: Where to digg? configuration? scheme? queries? what i'm doing wrong? if need more info(logs, configs) just ask ;)

    Read the article

  • need some help figuring out clamav & monit monitoring error...unixsocket...

    - by Ronedog
    I need a bit of help figuring something out. First off, I'm not very well versed with FreeBSD servers, etc. but with some direction hopefully I can get this fixed. I'm using FreeBSD and installed Monit so I could monitor some of the processes that run tomcat, apache, mysql, sendmail, clamav. So far, I'm only successful in getting apache & mysql to be monitored. I'm getting this error for clamav in the log file for /var/log/monit.log 'clamavd' failed, cannot open a connection to UNIX[/usr/local/etc/rc.d/clamav-clamd] My config file for clamav in /etc/monitrc is: #################################################################### # CLAMAV Virus Checks #################################################################### check process clamavd with pidfile /var/run/clamav/clamd.pid group virus start program = "/usr/local/etc/rc.d/clamav-clamd start" stop program = "/usr/local/etc/rc.d/clamav-clamd stop" if failed unixsocket /usr/local/etc/rc.d/clamav-clamd then restart if 5 restarts within 5 cycles then timeout Honestly, I really don't know much of what's going on here. My host who helped me get the box set up basically installed clamav, but doesn't offer this kind of detail in supporting me, so I'm left to figure this stuff out on my own as I own the box, but they provide the isp service. Is there anyone who can help me troubleshoot this? Thanks for your help in advance.

    Read the article

  • Improving performance on data pasting 2000 rows with validations

    - by Lohit
    I have N rows (which could be nothing less than 1000) on an excel spreadsheet. And in this sheet our project has 150 columns like this: Now, our application needs data to be copied (using normal Ctrl+C) and pasted (using Ctrl+V) from the excel file sheet on our GUI sheet. Copy pasting 1000 records takes around 5-6 seconds which is okay for our requirement, but the problem is when we need to make sure the data entered is valid. So we have to validate data in each row generate appropriate error messages and format the data as per requirement. So we need to at runtime parse and evaluate data in each row. Now all the formatting of data and validations come from the back-end database and we have it in a data-table (dtValidateAndFormatConditions). The conditions would be around 50. So you can see how slow this whole process becomes since N X 150 X 50 operations are required to complete this whole process. Initially it took approximately 2-3 minutes but now i have reduced it to 20 - 30 seconds. However i have increased the speed by making an expression parser of my own - and not by any algorithm, is there any other way i can improve performance, by using Divide and Conquer or some other mechanism. Currently i am not really sure how to go about this. Here is what part of my code looks like: public virtual void ValidateAndFormatOnCopyPaste(DataTable DtCopied, int CurRow) { foreach (DataRow dRow in dtValidateAndFormatConditions.Rows) { string Condition = dRow["Condition"]; string FormatValue = Value = dRow["Value"]; GetValidatedFormattedData(DtCopied,ref Condition, ref FormatValue ,iRowIndex); Condition = Parse(Condition); dRow["Condition"] = Condition; FormatValue = Parse(FormatValue ); dRow["Value"] = FormatValue; } } The above code gets called row-wise like this: public override void ValidateAndFormat(DataTable dtChangedRecords, CellRange cr) { int iRowStart = cr.Row, iRowEnd = cr.Row + cr.RowCount; for (int iRow = iRowStart; iRow < iRowEnd; iRow++) { ValidateAndFormatOnCopyPaste(dtChangedRecords,iRow); } } Please know my question needs a more algorithmic solution than code optimization, however any answers containing code related optimizations will be appreciated as well. (Tagged Linq because although not seen i have been using linq in some parts of my code).

    Read the article

  • Is there a system monitoring tool that lets me write complex queries against the data?

    - by benhsu
    I am looking for a system stat collection tool that will let me write queries against the data collected. I am planning to answer questions like: what is the average load, over the last 30 days, on this machine between 9AM and 5PM, as opposed to at night what was the average disk io on these 10 machines yesterday what was the average daytime memory usage on these 10 machines last week, as opposed to 2 weeks ago Has anyone done this with, say, collectd or graphite?

    Read the article

  • Is Linq Faster, Slower or the same?

    - by Vaccano
    Is this: Box boxToFind = AllBoxes.Where(box => box.BoxNumber == boxToMatchTo.BagNumber); Faster or slower than this: Box boxToFind ; foreach (Box box in AllBoxes) { if (box.BoxNumber == boxToMatchTo.BoxNumber) { boxToFind = box; } } Both give me the result I am looking for (boxToFind). This is going to run on a mobile device that I need to be performance conscientious of.

    Read the article

  • How can I get a windows server to collate and email 4 daily reports/graphs for server performance

    - by Glyn Darkin
    I run a windows 2008 webserver and would like to setup the most basic performance monitoring in the world. What i would like is: a plot of ASP.Net request time for each w3wp process for a 24hour period a plot of CPU% utilisation for each w3wp process for a 24hour period a plot of Memory utilisation for each w3wp process for a 24hour period a plot of network utilisation for each w3wp process for a 24hour period a plot of disk utilisation for each w3wp process for a 24hour period I would these plots to be emailed to me each morning. Anybody know what is the simplest way to set this up? Thanks for your help in advance. Glyn

    Read the article

  • High accuracy cpu timers

    - by John Robertson
    An expert in highly optimized code once told me that an important part of his strategy was the availability of extremely high performance timers on the CPU. Does anyone know what those are and how one can access them to test various code optimizations? While I am interested regardless, I also wanted to ask whether it is possible to access them from something higher than assembly (or with only a little assembly) via visual studio C++?

    Read the article

  • Automated monitoring of a remote system that sends email alerts.

    - by user23105
    I need to monitor a remote system where the only access I have is that I can subscribe to email alerts of completed/failed jobs. I would like a system that can monitor these emails and provide an SMS or other alert when: An email indicates failure. A process that was expected to complete by a given time has not. A process that was expected to complete N minutes after completion of another process has not completed. Are there any existing tools that allow this? I'd consider any option - SaaS, open-source, COTS, as long as I don't have to write it myself! Cheers, Blake

    Read the article

  • Are there any open-source simple network monitoring applications? [duplicate]

    - by scottm
    This question already has an answer here: What tool do you use to monitor your servers? 73 answers I am debugging a problem with one of our systems. Every Sunday, it stops communicating with another server. If we reboot both servers, communication works again. I was wondering if there are any small footprint apps that monitor TCP port availability and network connectivity, possibly logging any downtime. I'd also like it to be open source if possible, but if there is another solution that is proprietary, I'd like to hear about it also.

    Read the article

  • SQL SERVER – Faster SQL Server Databases and Applications – Power and Control with SafePeak Caching Options

    - by Pinal Dave
    Update: This blog post is written based on the SafePeak, which is available for free download. Today, I’d like to examine more closely one of my preferred technologies for accelerating SQL Server databases, SafePeak. Safepeak’s software provides a variety of advanced data caching options, techniques and tools to accelerate the performance and scalability of SQL Server databases and applications. I’d like to look more closely at some of these options, as some of these capabilities could help you address lagging database and performance on your systems. To better understand the available options, it is best to start by understanding the difference between the usual “Basic Caching” vs. SafePeak’s “Dynamic Caching”. Basic Caching Basic Caching (or the stale and static cache) is an ability to put the results from a query into cache for a certain period of time. It is based on TTL, or Time-to-live, and is designed to stay in cache no matter what happens to the data. For example, although the actual data can be modified due to DML commands (update/insert/delete), the cache will still hold the same obsolete query data. Meaning that with the Basic Caching is really static / stale cache.  As you can tell, this approach has its limitations. Dynamic Caching Dynamic Caching (or the non-stale cache) is an ability to put the results from a query into cache while maintaining the cache transaction awareness looking for possible data modifications. The modifications can come as a result of: DML commands (update/insert/delete), indirect modifications due to triggers on other tables, executions of stored procedures with internal DML commands complex cases of stored procedures with multiple levels of internal stored procedures logic. When data modification commands arrive, the caching system identifies the related cache items and evicts them from cache immediately. In the dynamic caching option the TTL setting still exists, although its importance is reduced, since the main factor for cache invalidation (or cache eviction) become the actual data updates commands. Now that we have a basic understanding of the differences between “basic” and “dynamic” caching, let’s dive in deeper. SafePeak: A comprehensive and versatile caching platform SafePeak comes with a wide range of caching options. Some of SafePeak’s caching options are automated, while others require manual configuration. Together they provide a complete solution for IT and Data managers to reach excellent performance acceleration and application scalability for  a wide range of business cases and applications. Automated caching of SQL Queries: Fully/semi-automated caching of all “read” SQL queries, containing any types of data, including Blobs, XMLs, Texts as well as all other standard data types. SafePeak automatically analyzes the incoming queries, categorizes them into SQL Patterns, identifying directly and indirectly accessed tables, views, functions and stored procedures; Automated caching of Stored Procedures: Fully or semi-automated caching of all read” stored procedures, including procedures with complex sub-procedure logic as well as procedures with complex dynamic SQL code. All procedures are analyzed in advance by SafePeak’s  Metadata-Learning process, their SQL schemas are parsed – resulting with a full understanding of the underlying code, objects dependencies (tables, views, functions, sub-procedures) enabling automated or semi-automated (manually review and activate by a mouse-click) cache activation, with full understanding of the transaction logic for cache real-time invalidation; Transaction aware cache: Automated cache awareness for SQL transactions (SQL and in-procs); Dynamic SQL Caching: Procedures with dynamic SQL are pre-parsed, enabling easy cache configuration, eliminating SQL Server load for parsing time and delivering high response time value even in most complicated use-cases; Fully Automated Caching: SQL Patterns (including SQL queries and stored procedures) that are categorized by SafePeak as “read and deterministic” are automatically activated for caching; Semi-Automated Caching: SQL Patterns categorized as “Read and Non deterministic” are patterns of SQL queries and stored procedures that contain reference to non-deterministic functions, like getdate(). Such SQL Patterns are reviewed by the SafePeak administrator and in usually most of them are activated manually for caching (point and click activation); Fully Dynamic Caching: Automated detection of all dependent tables in each SQL Pattern, with automated real-time eviction of the relevant cache items in the event of “write” commands (a DML or a stored procedure) to one of relevant tables. A default setting; Semi Dynamic Caching: A manual cache configuration option enabling reducing the sensitivity of specific SQL Patterns to “write” commands to certain tables/views. An optimization technique relevant for cases when the query data is either known to be static (like archive order details), or when the application sensitivity to fresh data is not critical and can be stale for short period of time (gaining better performance and reduced load); Scheduled Cache Eviction: A manual cache configuration option enabling scheduling SQL Pattern cache eviction based on certain time(s) during a day. A very useful optimization technique when (for example) certain SQL Patterns can be cached but are time sensitive. Example: “select customers that today is their birthday”, an SQL with getdate() function, which can and should be cached, but the data stays relevant only until 00:00 (midnight); Parsing Exceptions Management: Stored procedures that were not fully parsed by SafePeak (due to too complex dynamic SQL or unfamiliar syntax), are signed as “Dynamic Objects” with highest transaction safety settings (such as: Full global cache eviction, DDL Check = lock cache and check for schema changes, and more). The SafePeak solution points the user to the Dynamic Objects that are important for cache effectiveness, provides easy configuration interface, allowing you to improve cache hits and reduce cache global evictions. Usually this is the first configuration in a deployment; Overriding Settings of Stored Procedures: Override the settings of stored procedures (or other object types) for cache optimization. For example, in case a stored procedure SP1 has an “insert” into table T1, it will not be allowed to be cached. However, it is possible that T1 is just a “logging or instrumentation” table left by developers. By overriding the settings a user can allow caching of the problematic stored procedure; Advanced Cache Warm-Up: Creating an XML-based list of queries and stored procedure (with lists of parameters) for periodically automated pre-fetching and caching. An advanced tool allowing you to handle more rare but very performance sensitive queries pre-fetch them into cache allowing high performance for users’ data access; Configuration Driven by Deep SQL Analytics: All SQL queries are continuously logged and analyzed, providing users with deep SQL Analytics and Performance Monitoring. Reduce troubleshooting from days to minutes with database objects and SQL Patterns heat-map. The performance driven configuration helps you to focus on the most important settings that bring you the highest performance gains. Use of SafePeak SQL Analytics allows continuous performance monitoring and analysis, easy identification of bottlenecks of both real-time and historical data; Cloud Ready: Available for instant deployment on Amazon Web Services (AWS). As you can see, there are many options to configure SafePeak’s SQL Server database and application acceleration caching technology to best fit a lot of situations. If you’re not familiar with their technology, they offer free-trial software you can download that comes with a free “help session” to help get you started. You can access the free trial here. Also, SafePeak is available to use on Amazon Cloud. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Loading PNGs into OpenGL performance issues - Java & JOGL much slower than C# & Tao.OpenGL

    - by Edward Cresswell
    I am noticing a large performance difference between Java & JOGL and C# & Tao.OpenGL when both loading PNGs from storage into memory, and when loading that BufferedImage (java) or Bitmap (C# - both are PNGs on hard drive) 'into' OpenGL. This difference is quite large, so I assumed I was doing something wrong, however after quite a lot of searching and trying different loading techniques I've been unable to reduce this difference. With Java I get an image loaded in 248ms and loaded into OpenGL in 728ms The same on C# takes 54ms to load the image, and 34ms to load/create texture. The image in question above is a PNG containing transparency, sized 7200x255, used for a 2D animated sprite. I realise the size is really quite ridiculous and am considering cutting up the sprite, however the large difference is still there (and confusing). On the Java side the code looks like this: BufferedImage image = ImageIO.read(new File(fileName)); texture = TextureIO.newTexture(image, false); texture.setTexParameteri(GL.GL_TEXTURE_MIN_FILTER, GL.GL_LINEAR); texture.setTexParameteri(GL.GL_TEXTURE_MAG_FILTER, GL.GL_LINEAR); The C# code uses: Bitmap t = new Bitmap(fileName); t.RotateFlip(RotateFlipType.RotateNoneFlipY); Rectangle r = new Rectangle(0, 0, t.Width, t.Height); BitmapData bd = t.LockBits(r, ImageLockMode.ReadOnly, PixelFormat.Format32bppArgb); Gl.glBindTexture(Gl.GL_TEXTURE_2D, tID); Gl.glTexImage2D(Gl.GL_TEXTURE_2D, 0, Gl.GL_RGBA, t.Width, t.Height, 0, Gl.GL_BGRA, Gl.GL_UNSIGNED_BYTE, bd.Scan0); Gl.glTexParameteri(Gl.GL_TEXTURE_2D, Gl.GL_TEXTURE_MIN_FILTER, Gl.GL_LINEAR); Gl.glTexParameteri(Gl.GL_TEXTURE_2D, Gl.GL_TEXTURE_MAG_FILTER, Gl.GL_LINEAR); t.UnlockBits(bd); t.Dispose(); After quite a lot of testing I can only come to the conclusion that Java/JOGL is just slower here - PNG reading might not be as quick, or that I'm still doing something wrong. Thanks. Edit2: I have found that creating a new BufferedImage with format TYPE_INT_ARGB_PRE decreases OpenGL texture load time by almost half - this includes having to create the new BufferedImage, getting the Graphics2D from it and then rendering the previously loaded image to it. Edit3: Benchmark results for 5 variations. I wrote a small benchmarking tool, the following results come from loading a set of 33 pngs, most are very wide, 5 times. testStart: ImageIO.read(file) -> TextureIO.newTexture(image) result: avg = 10250ms, total = 51251 testStart: ImageIO.read(bis) -> TextureIO.newTexture(image) result: avg = 10029ms, total = 50147 testStart: ImageIO.read(file) -> TextureIO.newTexture(argbImage) result: avg = 5343ms, total = 26717 testStart: ImageIO.read(bis) -> TextureIO.newTexture(argbImage) result: avg = 5534ms, total = 27673 testStart: TextureIO.newTexture(file) result: avg = 10395ms, total = 51979 ImageIO.read(bis) refers to the technique described in James Branigan's answer below. argbImage refers to the technique described in my previous edit: img = ImageIO.read(file); argbImg = new BufferedImage(img.getWidth(), img.getHeight(), TYPE_INT_ARGB_PRE); g = argbImg.createGraphics(); g.drawImage(img, 0, 0, null); texture = TextureIO.newTexture(argbImg, false); Any more methods of loading (either images from file, or images to OpenGL) would be appreciated, I will update these benchmarks.

    Read the article

  • Performance issues with repeatable loops as control part

    - by djerry
    Hey guys, In my application, i need to show made calls to the user. The user can arrange some filters, according to what they want to see. The problem is that i find it quite hard to filter the calls without losing performance. This is what i am using now : private void ProcessFilterChoice() { _filteredCalls = ServiceConnector.ServiceConnector.SingletonServiceConnector.Proxy.GetAllCalls().ToList(); if (cboOutgoingIncoming.SelectedIndex > -1) GetFilterPartOutgoingIncoming(); if (cboInternExtern.SelectedIndex > -1) GetFilterPartInternExtern(); if (cboDateFilter.SelectedIndex > -1) GetFilteredCallsByDate(); wbPdf.Source = null; btnPrint.Content = "Pdf preview"; } private void GetFilterPartOutgoingIncoming() { if (cboOutgoingIncoming.SelectedItem.ToString().Equals("Outgoing")) for (int i = _filteredCalls.Count - 1; i > -1; i--) { if (_filteredCalls[i].Caller.E164.Length > 4 || _filteredCalls[i].Caller.E164.Equals("0")) _filteredCalls.RemoveAt(i); } else if (cboOutgoingIncoming.SelectedItem.ToString().Equals("Incoming")) for (int i = _filteredCalls.Count - 1; i > -1; i--) { if (_filteredCalls[i].Called.E164.Length > 4 || _filteredCalls[i].Called.E164.Equals("0")) _filteredCalls.RemoveAt(i); } } private void GetFilterPartInternExtern() { if (cboInternExtern.SelectedItem.ToString().Equals("Intern")) for (int i = _filteredCalls.Count - 1; i > -1; i--) { if (_filteredCalls[i].Called.E164.Length > 4 || _filteredCalls[i].Caller.E164.Length > 4 || _filteredCalls[i].Caller.E164.Equals("0")) _filteredCalls.RemoveAt(i); } else if (cboInternExtern.SelectedItem.ToString().Equals("Extern")) for (int i = _filteredCalls.Count - 1; i > -1; i--) { if ((_filteredCalls[i].Called.E164.Length < 5 && _filteredCalls[i].Caller.E164.Length < 5) || _filteredCalls[i].Called.E164.Equals("0")) _filteredCalls.RemoveAt(i); } } private void GetFilteredCallsByDate() { DateTime period = DateTime.Now; switch (cboDateFilter.SelectedItem.ToString()) { case "Today": period = DateTime.Today; break; case "Last week": period = DateTime.Today.Subtract(new TimeSpan(7, 0, 0, 0)); break; case "Last month": period = DateTime.Today.AddMonths(-1); break; case "Last year": period = DateTime.Today.AddYears(-1); break; default: return; } for (int i = _filteredCalls.Count - 1; i > -1; i--) { if (_filteredCalls[i].Start < period) _filteredCalls.RemoveAt(i); } } _filtered calls is a list of "calls". Calls is a class that looks like this : [DataContract] public class Call { private User caller, called; private DateTime start, end; private string conferenceId; private int id; private bool isNew = false; [DataMember] public bool IsNew { get { return isNew; } set { isNew = value; } } [DataMember] public int Id { get { return id; } set { id = value; } } [DataMember] public string ConferenceId { get { return conferenceId; } set { conferenceId = value; } } [DataMember] public DateTime End { get { return end; } set { end = value; } } [DataMember] public DateTime Start { get { return start; } set { start = value; } } [DataMember] public User Called { get { return called; } set { called = value; } } [DataMember] public User Caller { get { return caller; } set { caller = value; } } Can anyone direct me to a better solution or make some suggestions.

    Read the article

  • FairWarning Privacy Monitoring Solutions Rely on MySQL to Secure Patient Data

    - by Rebecca Hansen
    FairWarning® solutions have audited well over 120 billion events, each of which was processed and stored in a MySQL database. FairWarning is the world's leading supplier of privacy monitoring solutions for electronic health records, relied on by over 1,200 Hospitals and 5,000 Clinics to keep their patients' data safe. In January 2014, FairWarning was awarded the highest commendation in healthcare IT as the first ever Category Leader for Patient Privacy Monitoring in the "2013 Best in KLAS: Software & Services" report[1]. FairWarning has used MySQL as their solutions’ database from their start in 2005 to worldwide expansion and market leadership. FairWarning recently migrated their solutions from MyISAM to InnoDB and updated from MySQL 5.5 to 5.6. Following are some of benefits they’ve had as a result of those changes and reasons for their continued reliance on MySQL (from FairWarning MySQL Case Study). Scalability to Handle Terabytes of Data FairWarning's customers have a lot of data: On average, FairWarning customers receive over 700,000 events to be processed daily. Over 25% of their customers receive over 30 million events per day, which equates to over 1 billion events and nearly one terabyte (TB) of new data each month. Databases range in size from a few hundred GBs to 10+ TBs for enterprise deployments (data are rolled off after 13 months). Low or Zero Admin = Few DBAs "MySQL has not required a lot of administration. After it's been tuned, configured, and optimized for size on initial setup, we have very low administrative costs. I can scale and add more customers without adding DBAs. This has had a big, positive impact on our business.” - Chris Arnold, FairWarning Vice President of Product Management and Engineering. Performance Schema  As the size of FairWarning's customers has increased, so have their tables and data volumes. MySQL 5.6’ new maintenance and management features have helped FairWarning keep up. In particular, MySQL 5.6 performance schema’s low-level metrics have provided critical insight into how the system is performing and why. Support for Mutli-CPU Threads MySQL 5.6' support for multiple concurrent CPU threads, and FairWarning's custom data loader allow multiple files to load into a single table simultaneously vs. one at a time. As a result, their data load time has been reduced by 500%. MySQL Enterprise Hot Backup Because hospitals and clinics never stop, FairWarning solutions can’t either. FairWarning changed from using mysqldump to MySQL Enterprise Hot Backup, which has reduced downtime, restore time, and storage requirements. For many of their larger customers, restore time has decreased by 80%. MySQL Enterprise Edition and Product Roadmap Provide Complete Solution "MySQL's product roadmap fully addresses our needs. We like the fact that MySQL Enterprise Edition has everything included; there's no need to purchase separate modules."  - Chris Arnold Learn More>> FairWarning MySQL Case Study Why MySQL 5.6 is an Even Better Embedded Database for Your Products presentation Updating Your Products to MySQL 5.6, Best Practices for OEMs on-demand webinar (audio and / or slides + Q&A transcript) MyISAM to InnoDB – Why and How on-demand webinar (same stuff) Top 10 Reasons to Use MySQL as an Embedded Database white paper [1] 2013 Best in KLAS: Software & Services report, January, 2014. © 2014 KLAS Enterprises, LLC. All rights reserved.

    Read the article

  • SQL query performance optimization (TimesTen)

    - by Sergey Mikhanov
    Hi community, I need some help with TimesTen DB query optimization. I made some measures with Java profiler and found the code section that takes most of the time (this code section executes the SQL query). What is strange that this query becomes expensive only for some specific input data. Here’s the example. We have two tables that we are querying, one represents the objects we want to fetch (T_PROFILEGROUP), another represents the many-to-many link from some other table (T_PROFILECONTEXT_PROFILEGROUPS). We are not querying linked table. These are the queries that I executed with DB profiler running (they are the same except for the ID): Command> select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1464837998949302272; < 1169655247309537280 > < 1169655249792565248 > < 1464837997699399681 > 3 rows found. Command> select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1466585677823868928; < 1169655247309537280 > 1 row found. This is what I have in the profiler: 12:14:31.147 1 SQL 2L 6C 10825P Preparing: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1464837998949302272 12:14:31.147 2 SQL 4L 6C 10825P sbSqlCmdCompile ()(E): (Found already compiled version: refCount:01, bucket:47) cmdType:100, cmdNum:1146695. 12:14:31.147 3 SQL 4L 6C 10825P Opening: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1464837998949302272; 12:14:31.147 4 SQL 4L 6C 10825P Fetching: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1464837998949302272; 12:14:31.148 5 SQL 4L 6C 10825P Fetching: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1464837998949302272; 12:14:31.148 6 SQL 4L 6C 10825P Fetching: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1464837998949302272; 12:14:31.228 7 SQL 4L 6C 10825P Fetching: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1464837998949302272; 12:14:31.228 8 SQL 4L 6C 10825P Closing: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1464837998949302272; 12:14:35.243 9 SQL 2L 6C 10825P Preparing: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1466585677823868928 12:14:35.243 10 SQL 4L 6C 10825P sbSqlCmdCompile ()(E): (Found already compiled version: refCount:01, bucket:44) cmdType:100, cmdNum:1146697. 12:14:35.243 11 SQL 4L 6C 10825P Opening: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1466585677823868928; 12:14:35.243 12 SQL 4L 6C 10825P Fetching: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1466585677823868928; 12:14:35.243 13 SQL 4L 6C 10825P Fetching: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1466585677823868928; 12:14:35.243 14 SQL 4L 6C 10825P Closing: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1466585677823868928; It’s clear that the first query took almost 100ms, while the second was executed instantly. It’s not about queries precompilation (the first one is precompiled too, as same queries happened earlier). We have DB indices for all columns used here: T_PROFILEGROUP.M_ID, T_PROFILECONTEXT_PROFILEGROUPS.M_ID_OID and T_PROFILECONTEXT_PROFILEGROUPS.M_ID_EID. My questions are: Why querying the same set of tables yields such a different performance for different parameters? Which indices are involved here? Is there any way to improve this simple query and/or the DB to make it faster? UPDATE: to give the feeling of size: Command> select count(*) from T_PROFILEGROUP; < 183840 > 1 row found. Command> select count(*) from T_PROFILECONTEXT_PROFILEGROUPS; < 2279104 > 1 row found.

    Read the article

  • Performance experiences for running Windows 7 on a Thin-Client?

    - by Peter Bernier
    Has anyone else tried installing Windows 7 on thin-client hardware? I'd be very interested to hear about other people's experiences and what sort of hardware tweaks they had to do to get it to work. (Yes, I realize this is completely unsupported.. half the fun of playing with machines and beta/RC versions is trying out unsupported scenarios. :) ) I managed to get Windows 7 installed on a modified Wyse 9450 Thin-Client and while the performance isn't great, it is usable, particularly as an RDP workstation. Before installing 7, I added another 256Mb of ram (512 total), a 60G laptop hard-drive and a PCI videocard to the 9450 (this was in order to increase the supported screen resolution). I basically did this in order to see whether or not it was possible to get 7 installed on such minimal hardware, and see what the performance would be. For a 550Mhz processor, I was reasonably impressed. I've been using the machine for RDP for the last couple of days and it actually seems slightly snappier than the default Windows XP embedded install (although this is more likely the result of the extra hardware). I'll be running some more tests later on as I'm curious to see particularl whether the streaming video performance will improve. I'd love to hear about anyone's experiences getting 7 to work on extremely low-powered hardware. Particularly any sort of tweaks that you've discovered in order to increase performance..

    Read the article

  • To what extent is size a factor in SSD performance?

    - by artif
    To what extent is the size of an SSD a factor in its performance? In my mind, correct me if I'm wrong, a bigger SSD should be, everything else being equal, faster than a smaller one. A bigger SSD would have more erase blocks and thus more leeway for the FTL (flash translation layer) to do garbage collection optimization. Also there would be more time before TRIM became necessary. I see on Wikipedia that it remarks that "The performance of the SSD can scale with the number of parallel NAND flash chips used in the device" so it seems throughput also increases significantly. Also many SSDs contain internal caches of some sort and presumably those caches are larger for correspondingly large SSDs. But supposing this effect exists, I would like a quantitative analysis. Does throughput increase linearly? How much is garbage collection impacted, if at all? Does latency stay the same? And so on. Would the performance of a 8 GB SSD be significantly different from, for example, an 80 GB SSD assuming both used high quality chips, controllers, etc? Are there any resources (webpages, research papers, presentations, books, etc) that discuss correlations between SSD performance (4 KB random write speed, latency, maximum sequential throughput, etc) and size? I realize this does not really sound like a programming question but it is relevant for what I'm working on (using flash for caching hard drive data) which does involve programming. If there is a better place to ask this question, eg a more hardware oriented site, what would that be? Something like the equivalent of stack overflow (or perhaps a forum) for in-depth questions on hardware interfaces, internals, etc would be appreciated.

    Read the article

< Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >