Search Results

Search found 8440 results on 338 pages for 'wms implementation'.

Page 42/338 | < Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >

  • Custom Text and Binary Payloads using WebSocket (TOTD #186)

    - by arungupta
    TOTD #185 explained how to process text and binary payloads in a WebSocket endpoint. In summary, a text payload may be received as public void receiveTextMessage(String message) {    . . . } And binary payload may be received as: public void recieveBinaryMessage(ByteBuffer message) {    . . .} As you realize, both of these methods receive the text and binary data in raw format. However you may like to receive and send the data using a POJO. This marshaling and unmarshaling can be done in the method implementation but JSR 356 API provides a cleaner way. For encoding and decoding text payload into POJO, Decoder.Text (for inbound payload) and Encoder.Text (for outbound payload) interfaces need to be implemented. A sample implementation below shows how text payload consisting of JSON structures can be encoded and decoded. public class MyMessage implements Decoder.Text<MyMessage>, Encoder.Text<MyMessage> {     private JsonObject jsonObject;    @Override    public MyMessage decode(String string) throws DecodeException {        this.jsonObject = new JsonReader(new StringReader(string)).readObject();               return this;    }     @Override    public boolean willDecode(String string) {        return true;    }     @Override    public String encode(MyMessage myMessage) throws EncodeException {        return myMessage.jsonObject.toString();    } public JsonObject getObject() { return jsonObject; }} In this implementation, the decode method decodes incoming text payload to MyMessage, the encode method encodes MyMessage for the outgoing text payload, and the willDecode method returns true or false if the message can be decoded. The encoder and decoder implementation classes need to be specified in the WebSocket endpoint as: @WebSocketEndpoint(value="/endpoint", encoders={MyMessage.class}, decoders={MyMessage.class}) public class MyEndpoint { public MyMessage receiveMessage(MyMessage message) { . . . } } Notice the updated method signature where the application is working with MyMessage instead of the raw string. Note that the encoder and decoder implementations just illustrate the point and provide no validation or exception handling. Similarly Encooder.Binary and Decoder.Binary interfaces need to be implemented for encoding and decoding binary payload. Here are some references for you: JSR 356: Java API for WebSocket - Specification (Early Draft) and Implementation (already integrated in GlassFish 4 promoted builds) TOTD #183 - Getting Started with WebSocket in GlassFish TOTD #184 - Logging WebSocket Frames using Chrome Developer Tools, Net-internals and Wireshark TOTD #185: Processing Text and Binary (Blob, ArrayBuffer, ArrayBufferView) Payload in WebSocket Subsequent blogs will discuss the following topics (not necessary in that order) ... Error handling Interface-driven WebSocket endpoint Java client API Client and Server configuration Security Subprotocols Extensions Other topics from the API

    Read the article

  • "type not defined" exception with WF4 RC

    - by avi1234
    Hi, I`m gettin the following exception while invoking my workflow (dynamically): The following errors were encountered while processing the workflow tree: 'DynamicActivity': The private implementation of activity '1: DynamicActivity' has the following validation error: Compiler error(s) encountered processing expression "TryCast(simplerule_out,OutputBase2)". Type 'OutputBase2' is not defined. 'DynamicActivity': The private implementation of activity '1: DynamicActivity' has the following validation error: Compiler error(s) encountered processing expression "Res". Type 'OutputBase2' is not defined. 'DynamicActivity': The private implementation of activity '1: DynamicActivity' has the following validation error: Compiler error(s) encountered processing expression "Res". Type 'OutputBase2' is not defined. 'DynamicActivity': The private implementation of activity '1: DynamicActivity' has the following validation error: Compiler error(s) encountered processing expression "New List(Of OutputBase2)". Type 'OutputBase2' is not defined. The workflow is very simple and worked fine on VS 2010 beta 2! All I`m trying to do is to create new list of my abstract custom type "OutputBase2". public class OutputBase2 { public OutputBase2() { } public bool Succeeded { get; set; } } class Example { public void Exec() { ActivityBuilder builder = new ActivityBuilder(); builder.Name = "act1"; var res = new DynamicActivityProperty { Name = "Res", Type = typeof(OutArgument<List<OutputBase2>>), Value = new OutArgument<List<OutputBase2>>() }; builder.Properties.Add(res); builder.Implementation = new Sequence(); ((Sequence)builder.Implementation).Activities.Add(new Assign<List<OutputBase2>> { To = new VisualBasicReference<List<OutputBase2>> { ExpressionText = res.Name }, Value = new VisualBasicValue<List<OutputBase2>>("New List(Of OutputBase2)") }); Activity act = getActivity(builder); var res2 = WorkflowInvoker.Invoke(act); } string getXamlStringFromActivityBuilder(ActivityBuilder activityBuilder) { string xamlString; StringBuilder stringBuilder = new StringBuilder(); System.IO.StringWriter stringWriter = new System.IO.StringWriter(stringBuilder); System.Xaml.XamlSchemaContext xamlSchemaContext = new System.Xaml.XamlSchemaContext(); System.Xaml.XamlXmlWriter xamlXmlWriter = new System.Xaml.XamlXmlWriter(stringWriter, xamlSchemaContext); System.Xaml.XamlWriter xamlWriter = System.Activities.XamlIntegration.ActivityXamlServices.CreateBuilderWriter(xamlXmlWriter); System.Xaml.XamlServices.Save(xamlWriter, activityBuilder); xamlString = stringBuilder.ToString(); return xamlString; } public Activity getActivity(ActivityBuilder t) { string xamlString = getXamlStringFromActivityBuilder(t); System.IO.StringReader stringReader = new System.IO.StringReader(xamlString); Activity activity = System.Activities.XamlIntegration.ActivityXamlServices.Load(stringReader); return activity; } } Thanks!

    Read the article

  • Miller-rabin exception number?

    - by nightcracker
    Hey everyone. This question is about the number 169716931325235658326303. According to http://www.alpertron.com.ar/ECM.HTM it is prime. According to my miller-rabin implementation in python with 7 repetitions is is composite. With 50 repetitions it is still composite. With 5000 repetitions it is STILL composite. I thought, this might be a problem of my implementation. So I tried GNU MP bignum library, which has a miller-rabin primality test built-in. I tested with 1000000 repetitions. Still composite. This is my implementation of the miller-rabin primality test: def isprime(n, precision=7): if n == 1 or n % 2 == 0: return False elif n < 1: raise ValueError("Out of bounds, first argument must be > 0") d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for repeat in range(precision): a = random.randrange(2, n - 2) x = pow(a, d, n) if x == 1 or x == n - 1: continue for r in range(s - 1): x = pow(x, 2, n) if x == 1: return False if x == n - 1: break else: return False return True And the code for the GMP test: #include <gmp.h> #include <stdio.h> int main(int argc, char* argv[]) { mpz_t test; mpz_init_set_str(test, "169716931325235658326303", 10); printf("%d\n", mpz_probab_prime_p(test, 1000000)); mpz_clear(test); return 0; } As far as I know there are no "exceptions" (which return false positives for any amount of repetitions) to the miller-rabin primality test. Have I stumpled upon one? Is my computer broken? Is the Elliptic Curve Method wrong? What is happening here? EDIT I found the issue, which is http://www.alpertron.com.ar/ECM.HTM. I trusted this applet, I'll contact the author his applet's implementation of the ECM is faulty for this number. Thanks. EDIT2 Hah, the shame! In the end it was something that went wrong with copy/pasting on my side. NOR the applet NOR the miller-rabin algorithm NOR my implementation NOR gmp's implementation of it is wrong, the only thing that's wrong is me. I'm sorry.

    Read the article

  • ASP.NET MVC IoC usability

    - by Andrew Florko
    Hello everybody, How often do you use IoC for controllers/DAL in real projects? IoC allows to abstract application from concrete implementation with additional layer of interfaces that should be implemented. But how often concrete implementation changes? Should we really have to do job twice adding method to interface then the implementation if implementation hardly will ever be changed? I took part in about 10 asp.net projects and DAL (ORM-like and not) was never rewritten completely. Watching lots of videos I clearly understand that IoC "is cool" and the really nice way to program, but does it really needed?

    Read the article

  • My abstract class implements an interface but doesn't implement some of its methods. How do I make i

    - by Stefan Monov
    interface ICanvasTool { void Motion(Point newLocation); void Tick(); } abstract class CanvasTool_BaseDraw : ICanvasTool { protected abstract void PaintAt(Point location); public override void Motion(Point newLocation) { // implementation } } class CanvasTool_Spray : CanvasTool_BaseDraw { protected abstract void PaintAt(Point location) { // implementation } public override void Tick() { // implementation } } This doesn't compile. I could add an abstract method "Tick_Implementation" to CanvasTool_BaseDraw, then implement ICanvasTool.Tick in CanvasTool_BaseDraw with a one-liner that just calls Tick_Implementation. Is this the recommended workaround?

    Read the article

  • javascript XSL in google chrome

    - by Guy
    Hi, I'm using the following javascript code to display xml/xsl: function loadXMLDoc(fname) { var xmlDoc; // code for IE if (window.ActiveXObject) { xmlDoc=new ActiveXObject("Microsoft.XMLDOM"); } // code for Mozilla, Firefox, Opera, etc. else if (document.implementation && document.implementation.createDocument) { xmlDoc=document.implementation.createDocument("","",null); } else { alert('Your browser cannot handle this script'); } try { xmlDoc.async=false; xmlDoc.load(fname); return(xmlDoc); } catch(e) { try //Google Chrome { var xmlhttp = new window.XMLHttpRequest(); xmlhttp.open("GET",file,false); xmlhttp.send(null); xmlDoc = xmlhttp.responseXML.documentElement; return(xmlDoc); } catch(e) { error=e.message; } } } function displayResult() { xml=loadXMLDoc("report.xml"); xsl=loadXMLDoc("report.xsl"); // code for IE if (window.ActiveXObject) { ex=xml.transformNode(xsl); document.getElementById("example").innerHTML=ex; } // code for Mozilla, Firefox, Opera, etc. else if (document.implementation && document.implementation.createDocument) { xsltProcessor=new XSLTProcessor(); xsltProcessor.importStylesheet(xsl); resultDocument = xsltProcessor.transformToFragment(xml,document); document.getElementById("example").appendChild(resultDocument); } } It works find for IE and Firefox but chrome is fail in the line: document.getElementById("example").appendChild(resultDocument); Thank you for you help

    Read the article

  • About Data Objects and DAO Design when using Hibernate

    - by X. Ma
    I'm hesitating between two designs of a database project using Hibernate. Design #1. (1) Create a general data provider interface, including a set of DAO interfaces and general data container classes. It hides the underneath implementation. A data provider implementation could access data in database, or an XML file, or a service, or something else. The user of a data provider does not to know about it. (2) Create a database library with Hibernate. This library implements the data provider interface in (1). The bad thing about Design #1 is that in order to hide the implementation details, I need to create two sets of data container classes. One in the general data provider interface - let's call them DPI-Objects, the other set is used in the database library, exclusively for entity/attribute mapping in Hibernate - let's call them H-Objects. In the DAO implementation, I need to read data from database to create H-Objects (via Hibernate) and then convert H-Objects into DPI-Objects. Design #2. Do not create a general data provider interface. Expose H-Objects directly to components that use the database lib. So the user of the database library needs to be aware of Hibernate. I like design #1 more, but I don't want to create two sets of data container classes. Is that the right way to hide H-Objects and other Hibernate implementation details from the user who uses the database-based data provider? Are there any drawbacks of Design #2? I will not implement other data provider in the new future, so should I just forget about the data provider interface and use Design #2? What do you think about this? Thanks for your time!

    Read the article

  • Unit of measurement API in Java?

    - by Carlos P
    JSR-275 has been rejected, the Units of Measurement API for Java project is a set of interfaces, but haven't found an open source implementation. On this post: Which jsr-275 units implementation should be used? the project owner mentions the implementation was going to be ready by the end of last year on JScience, but didn't find anything there to convert between weight or length units and when I looked for JScience on https://maven.java.net/, I found it, but the JAR wasn't even in the directory https://maven.java.net/content/repositories/snapshots/org/jscience/jscience/5.0-SNAPSHOT/, so I had to get it from somewhere else. Has this project been left behind? And is there currently an implementation for conversion of Units of measurement in Java and even perhaps a Maven repo?

    Read the article

  • Categories & singelton in cocoa

    - by Nava Carmon
    Hi, I have a SingletonClass, which has only one instance. I want to expand it and add to it a category (MoreFeatures). I created a source SingletonClass+MoreFeatures, which interface/implementation looks like that: @interface SingletonClass (MoreFeatures) - (void) feature; @end @implementation SingletonClass (MoreFeatures) - (void) feature() { } @end When I created my SingletonClass i followed the Apple's example of Singleton implementation in cocoa. This singleton resides in a project B, which is a dependency of a bigger project A. I can call for [[SingletonClass sharedInstance] foo] from a source in project A and it works in case that function foo is located in SingletonClass interface/implementation. When I try to call [[SingletonClass sharedInstance] feature] from a source in project A, I get a crash, which says that there is no method feature for class SingletonClass... Why it happens? Thanks a lot, Nava EDIT: The crash happens in a runtime. The category file source resides in project B along with a SingletonClass

    Read the article

  • Compiler doesn't find methods from base class

    - by Paul
    I am having a problem with my virtual methods in a derived class. Here are my (simplified) C++ classes. class Base virtual method accept( MyVisitor1* v ) { /*implementation is here*/ }; virtual method accept( MyVisitor2* v ) { /*implementation is here*/ }; virtual method accept( MyVisitor3* v ) { /*implementation is here*/ }; class DerivedClass virtual method accept( MyVisitor2* v ) { /*implementation is here*/ }; The following use causes VS 2005 to give: "error C2664: 'DerivedClass::accept' : cannot convert parameter 1 from 'Visitor1*' to 'Visitor2 *'". DerivedClass c; MyVisitor1 v1; c.accept(v1); I was expecting the compiler to find and call Base::accept(MyVisitor1) for my DerivedClass as well. Obviously this is not working, but I don't understand why. Any ideas? Thanks, Paul

    Read the article

  • Silly Objective-C inheritance problem when using property

    - by Ben Packard
    I've been scratching my head with this for a couple of hours - I haven't used inheritance much. Here I have set up a simple Test B class that inherits from Test A, where an ivar is declared. But I get the compilation error that the variable is undeclared. This only happens when I add the property and synthesize declarations - works fine without them. TestA Header: #import <Cocoa/Cocoa.h> @interface TestA : NSObject { NSString *testString; } @end TestA Implementation is empty: #import "TestA.h" @implementation TestA @end TestB Header: #import <Cocoa/Cocoa.h> #import "TestA.h" @interface TestB : TestA { } @property NSString *testProp; @end TestB Implementation (Error - 'testString' is undeclared) #import "TestB.h" @implementation TestB @synthesize testProp; - (void)testing{ NSLog(@"test ivar is %@", testString); } @end

    Read the article

  • Django dictionary in templates: Grab key from another objects attribute

    - by Jordan Messina
    I have a dictionary called number_devices I'm passing to a template, the dictionary keys are the ids of a list of objects I'm also passing to the template (called implementations). I'm iterating over the list of objects and then trying to use the object.id to get a value out of the dict like so: {% for implementation in implementations %} {{ number_devices.implementation.id }} {% endfor %} Unfortunately number_devices.implementation is evaluated first, then the result.id is evaluated obviously returning and displaying nothing. I can't use parentheses like: {{ number_devices.(implementation.id) }} because I get a parse error. How do I get around this annoyance in Django templates? Thanks for any help!

    Read the article

  • OpenMP implementations in VC++ 2008, 2010

    - by John
    Depending on implementation, OMP can be quite useful to parallelize fairly arbitrary bits of code - e.g a parallel section inside a method that calls two independent methods - or it can be bad. It depends on how threads are created/cached, I think. How does the VC++ 2008 implementation work? And is the 2010 implementation significantly different in terms of features and performance/flexibility?

    Read the article

  • iPhone - AES256 Encryption Using Built In Library

    - by Robert
    Hey all, I am using http://pastie.org/966473 as a reference as all I need to do is encrypt something using AES256 encrypting. I created a class and put the implementation in the pastie on top of the implementation for my class. @implementation //pastie code @end @implementation //my class code @end In my class code I create a NSMutableData and try to call the EncryptAES method and I get a warning saying it might not respond to that. What am I doing wrong here? do I need to implement the pastie code elsewhere? Thanks for any help.

    Read the article

  • How do I create different Objects using Google Guice?

    - by kunjaan
    I have a Module which binds an Interface to a particular implementation. I use that module to create an object. How do I create a different kind of object with the the interface bound to a different implementation? Do I need to create a new module with the Interface bound to a different implementation?

    Read the article

  • Is this a problem typically solved with IOC?

    - by Dirk
    My current application allows users to define custom web forms through a set of admin screens. it's essentially an EAV type application. As such, I can't hard code HTML or ASP.NET markup to render a given page. Instead, the UI requests an instance of a Form object from the service layer, which in turn constructs one using a several RDMBS tables. Form contains the kind of classes you would expect to see in such a context: Form= IEnumerable<FormSections>=IEnumerable<FormFields> Here's what the service layer looks like: public class MyFormService: IFormService{ public Form OpenForm(int formId){ //construct and return a concrete implementation of Form } } Everything works splendidly (for a while). The UI is none the wiser about what sections/fields exist in a given form: It happily renders the Form object it receives into a functional ASP.NET page. A few weeks later, I get a new requirement from the business: When viewing a non-editable (i.e. read-only) versions of a form, certain field values should be merged together and other contrived/calculated fields should are added. No problem I say. Simply amend my service class so that its methods are more explicit: public class MyFormService: IFormService{ public Form OpenFormForEditing(int formId){ //construct and return a concrete implementation of Form } public Form OpenFormForViewing(int formId){ //construct and a concrete implementation of Form //apply additional transformations to the form } } Again everything works great and balance has been restored to the force. The UI continues to be agnostic as to what is in the Form, and our separation of concerns is achieved. Only a few short weeks later, however, the business puts out a new requirement: in certain scenarios, we should apply only some of the form transformations I referenced above. At this point, it feels like the "explicit method" approach has reached a dead end, unless I want to end up with an explosion of methods (OpenFormViewingScenario1, OpenFormViewingScenario2, etc). Instead, I introduce another level of indirection: public interface IFormViewCreator{ void CreateView(Form form); } public class MyFormService: IFormService{ public Form OpenFormForEditing(int formId){ //construct and return a concrete implementation of Form } public Form OpenFormForViewing(int formId, IFormViewCreator formViewCreator){ //construct a concrete implementation of Form //apply transformations to the dynamic field list return formViewCreator.CreateView(form); } } On the surface, this seems like acceptable approach and yet there is a certain smell. Namely, the UI, which had been living in ignorant bliss about the implementation details of OpenFormForViewing, must possess knowledge of and create an instance of IFormViewCreator. My questions are twofold: Is there a better way to achieve the composability I'm after? (perhaps by using an IoC container or a home rolled factory to create the concrete IFormViewCreator)? Did I fundamentally screw up the abstraction here?

    Read the article

  • Developing Modular Flex Applications

    - by ukdavo
    Hi there I'd like to be able to understand how to develop a Flex application such that I could provide implementation classes at runtime. In the Java world I'd specify interfaces in an JAR (e.g. myapp-api.jar), the implementation in a separate JAR (e.g. myapp-impl.jar) and package these along with other resources in the application WAR (e.g. myapp.war). Within the code of the application I would instantiate the implementation classes dynamically. Is this approach possible in Flex? I'm aware that I can instantiate classes dynamically so that's a good start. I'm a bit confused by modules, RSLs and SWCs though. I was hoping to create a SWF application that had references to an interfaces SWC and an implementation SWC. The idea is that if I need to tweak the application for a specific customer then I could create a new implementation SWC and not have to modify the SWF or interface SWC. Any ideas?

    Read the article

  • Are unspecified and undefined behavior required to be consistent between compiles?

    - by sharptooth
    Let's pretend my program contains a specific construct the C++ Standard states to be unspecified behavior. This basically means the implementation has to do something reasonable but is allowed not to document it. But is the implementation required to produce the same behavior every time it compiles a specific construct with unspecified behavior or is it allowed to produce different behavior in different compiles? What about undefined behavior? Let's pretend my program contains a construct that is UB according to the Standard. The implementation is allowed to exhibit any behavior. But can this behavior differ between compiles of the same program on the same compiler with same settings in the same environment? In other words, if I dereference a null pointer on line 78 in file X.cpp and the implementation formats the drive in such case does it mean that it will do the same after the program is recompiled?

    Read the article

  • Custom ASP.NET Routing to an HttpHandler

    - by Rick Strahl
    As of version 4.0 ASP.NET natively supports routing via the now built-in System.Web.Routing namespace. Routing features are automatically integrated into the HtttpRuntime via a few custom interfaces. New Web Forms Routing Support In ASP.NET 4.0 there are a host of improvements including routing support baked into Web Forms via a RouteData property available on the Page class and RouteCollection.MapPageRoute() route handler that makes it easy to route to Web forms. To map ASP.NET Page routes is as simple as setting up the routes with MapPageRoute:protected void Application_Start(object sender, EventArgs e) { RegisterRoutes(RouteTable.Routes); } void RegisterRoutes(RouteCollection routes) { routes.MapPageRoute("StockQuote", "StockQuote/{symbol}", "StockQuote.aspx"); routes.MapPageRoute("StockQuotes", "StockQuotes/{symbolList}", "StockQuotes.aspx"); } and then accessing the route data in the page you can then use the new Page class RouteData property to retrieve the dynamic route data information:public partial class StockQuote1 : System.Web.UI.Page { protected StockQuote Quote = null; protected void Page_Load(object sender, EventArgs e) { string symbol = RouteData.Values["symbol"] as string; StockServer server = new StockServer(); Quote = server.GetStockQuote(symbol); // display stock data in Page View } } Simple, quick and doesn’t require much explanation. If you’re using WebForms most of your routing needs should be served just fine by this simple mechanism. Kudos to the ASP.NET team for putting this in the box and making it easy! How Routing Works To handle Routing in ASP.NET involves these steps: Registering Routes Creating a custom RouteHandler to retrieve an HttpHandler Attaching RouteData to your HttpHandler Picking up Route Information in your Request code Registering routes makes ASP.NET aware of the Routes you want to handle via the static RouteTable.Routes collection. You basically add routes to this collection to let ASP.NET know which URL patterns it should watch for. You typically hook up routes off a RegisterRoutes method that fires in Application_Start as I did in the example above to ensure routes are added only once when the application first starts up. When you create a route, you pass in a RouteHandler instance which ASP.NET caches and reuses as routes are matched. Once registered ASP.NET monitors the routes and if a match is found just prior to the HttpHandler instantiation, ASP.NET uses the RouteHandler registered for the route and calls GetHandler() on it to retrieve an HttpHandler instance. The RouteHandler.GetHandler() method is responsible for creating an instance of an HttpHandler that is to handle the request and – if necessary – to assign any additional custom data to the handler. At minimum you probably want to pass the RouteData to the handler so the handler can identify the request based on the route data available. To do this you typically add  a RouteData property to your handler and then assign the property from the RouteHandlers request context. This is essentially how Page.RouteData comes into being and this approach should work well for any custom handler implementation that requires RouteData. It’s a shame that ASP.NET doesn’t have a top level intrinsic object that’s accessible off the HttpContext object to provide route data more generically, but since RouteData is directly tied to HttpHandlers and not all handlers support it it might cause some confusion of when it’s actually available. Bottom line is that if you want to hold on to RouteData you have to assign it to a custom property of the handler or else pass it to the handler via Context.Items[] object that can be retrieved on an as needed basis. It’s important to understand that routing is hooked up via RouteHandlers that are responsible for loading HttpHandler instances. RouteHandlers are invoked for every request that matches a route and through this RouteHandler instance the Handler gains access to the current RouteData. Because of this logic it’s important to understand that Routing is really tied to HttpHandlers and not available prior to handler instantiation, which is pretty late in the HttpRuntime’s request pipeline. IOW, Routing works with Handlers but not with earlier in the pipeline within Modules. Specifically ASP.NET calls RouteHandler.GetHandler() from the PostResolveRequestCache HttpRuntime pipeline event. Here’s the call stack at the beginning of the GetHandler() call: which fires just before handler resolution. Non-Page Routing – You need to build custom RouteHandlers If you need to route to a custom Http Handler or other non-Page (and non-MVC) endpoint in the HttpRuntime, there is no generic mapping support available. You need to create a custom RouteHandler that can manage creating an instance of an HttpHandler that is fired in response to a routed request. Depending on what you are doing this process can be simple or fairly involved as your code is responsible based on the route data provided which handler to instantiate, and more importantly how to pass the route data on to the Handler. Luckily creating a RouteHandler is easy by implementing the IRouteHandler interface which has only a single GetHttpHandler(RequestContext context) method. In this method you can pick up the requestContext.RouteData, instantiate the HttpHandler of choice, and assign the RouteData to it. Then pass back the handler and you’re done.Here’s a simple example of GetHttpHandler() method that dynamically creates a handler based on a passed in Handler type./// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } Note that this code checks for a specific type of handler and if it matches assigns the RouteData to this handler. This is optional but quite a common scenario if you want to work with RouteData. If the handler you need to instantiate isn’t under your control but you still need to pass RouteData to Handler code, an alternative is to pass the RouteData via the HttpContext.Items collection:IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; requestContext.HttpContext.Items["RouteData"] = requestContext.RouteData; return handler; } The code in the handler implementation can then pick up the RouteData from the context collection as needed:RouteData routeData = HttpContext.Current.Items["RouteData"] as RouteData This isn’t as clean as having an explicit RouteData property, but it does have the advantage that the route data is visible anywhere in the Handler’s code chain. It’s definitely preferable to create a custom property on your handler, but the Context work-around works in a pinch when you don’t’ own the handler code and have dynamic code executing as part of the handler execution. An Example of a Custom RouteHandler: Attribute Based Route Implementation In this post I’m going to discuss a custom routine implementation I built for my CallbackHandler class in the West Wind Web & Ajax Toolkit. CallbackHandler can be very easily used for creating AJAX, REST and POX requests following RPC style method mapping. You can pass parameters via URL query string, POST data or raw data structures, and you can retrieve results as JSON, XML or raw string/binary data. It’s a quick and easy way to build service interfaces with no fuss. As a quick review here’s how CallbackHandler works: You create an Http Handler that derives from CallbackHandler You implement methods that have a [CallbackMethod] Attribute and that’s it. Here’s an example of an CallbackHandler implementation in an ashx.cs based handler:// RestService.ashx.cs public class RestService : CallbackHandler { [CallbackMethod] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } } CallbackHandler makes it super easy to create a method on the server, pass data to it via POST, QueryString or raw JSON/XML data, and then retrieve the results easily back in various formats. This works wonderful and I’ve used these tools in many projects for myself and with clients. But one thing missing has been the ability to create clean URLs. Typical URLs looked like this: http://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuote&symbol=msfthttp://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuotes&symbolList=msft,intc,gld,slw,mwe&format=xml which works and is clear enough, but also clearly very ugly. It would be much nicer if URLs could look like this: http://www.west-wind.com//WestwindWebtoolkit/Samples/StockQuote/msfthttp://www.west-wind.com/WestwindWebtoolkit/Samples/StockQuotes/msft,intc,gld,slw?format=xml (the Virtual Root in this sample is WestWindWebToolkit/Samples and StockQuote/{symbol} is the route)(If you use FireFox try using the JSONView plug-in make it easier to view JSON content) So, taking a clue from the WCF REST tools that use RouteUrls I set out to create a way to specify RouteUrls for each of the endpoints. The change made basically allows changing the above to: [CallbackMethod(RouteUrl="RestService/StockQuote/{symbol}")] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod(RouteUrl = "RestService/StockQuotes/{symbolList}")] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } where a RouteUrl is specified as part of the Callback attribute. And with the changes made with RouteUrls I can now get URLs like the second set shown earlier. So how does that work? Let’s find out… How to Create Custom Routes As mentioned earlier Routing is made up of several steps: Creating a custom RouteHandler to create HttpHandler instances Mapping the actual Routes to the RouteHandler Retrieving the RouteData and actually doing something useful with it in the HttpHandler In the CallbackHandler routing example above this works out to something like this: Create a custom RouteHandler that includes a property to track the method to call Set up the routes using Reflection against the class Looking for any RouteUrls in the CallbackMethod attribute Add a RouteData property to the CallbackHandler so we can access the RouteData in the code of the handler Creating a Custom Route Handler To make the above work I created a custom RouteHandler class that includes the actual IRouteHandler implementation as well as a generic and static method to automatically register all routes marked with the [CallbackMethod(RouteUrl="…")] attribute. Here’s the code:/// <summary> /// Route handler that can create instances of CallbackHandler derived /// callback classes. The route handler tracks the method name and /// creates an instance of the service in a predictable manner /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler type</typeparam> public class CallbackHandlerRouteHandler : IRouteHandler { /// <summary> /// Method name that is to be called on this route. /// Set by the automatically generated RegisterRoutes /// invokation. /// </summary> public string MethodName { get; set; } /// <summary> /// The type of the handler we're going to instantiate. /// Needed so we can semi-generically instantiate the /// handler and call the method on it. /// </summary> public Type CallbackHandlerType { get; set; } /// <summary> /// Constructor to pass in the two required components we /// need to create an instance of our handler. /// </summary> /// <param name="methodName"></param> /// <param name="callbackHandlerType"></param> public CallbackHandlerRouteHandler(string methodName, Type callbackHandlerType) { MethodName = methodName; CallbackHandlerType = callbackHandlerType; } /// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } /// <summary> /// Generic method to register all routes from a CallbackHandler /// that have RouteUrls defined on the [CallbackMethod] attribute /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler Type</typeparam> /// <param name="routes"></param> public static void RegisterRoutes<TCallbackHandler>(RouteCollection routes) { // find all methods var methods = typeof(TCallbackHandler).GetMethods(BindingFlags.Instance | BindingFlags.Public); foreach (var method in methods) { var attrs = method.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (attrs.Length < 1) continue; CallbackMethodAttribute attr = attrs[0] as CallbackMethodAttribute; if (string.IsNullOrEmpty(attr.RouteUrl)) continue; // Add the route routes.Add(method.Name, new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler)))); } } } The RouteHandler implements IRouteHandler, and its responsibility via the GetHandler method is to create an HttpHandler based on the route data. When ASP.NET calls GetHandler it passes a requestContext parameter which includes a requestContext.RouteData property. This parameter holds the current request’s route data as well as an instance of the current RouteHandler. If you look at GetHttpHandler() you can see that the code creates an instance of the handler we are interested in and then sets the RouteData property on the handler. This is how you can pass the current request’s RouteData to the handler. The RouteData object also has a  RouteData.RouteHandler property that is also available to the Handler later, which is useful in order to get additional information about the current route. In our case here the RouteHandler includes a MethodName property that identifies the method to execute in the handler since that value no longer comes from the URL so we need to figure out the method name some other way. The method name is mapped explicitly when the RouteHandler is created and here the static method that auto-registers all CallbackMethods with RouteUrls sets the method name when it creates the routes while reflecting over the methods (more on this in a minute). The important point here is that you can attach additional properties to the RouteHandler and you can then later access the RouteHandler and its properties later in the Handler to pick up these custom values. This is a crucial feature in that the RouteHandler serves in passing additional context to the handler so it knows what actions to perform. The automatic route registration is handled by the static RegisterRoutes<TCallbackHandler> method. This method is generic and totally reusable for any CallbackHandler type handler. To register a CallbackHandler and any RouteUrls it has defined you simple use code like this in Application_Start (or other application startup code):protected void Application_Start(object sender, EventArgs e) { // Register Routes for RestService CallbackHandlerRouteHandler.RegisterRoutes<RestService>(RouteTable.Routes); } If you have multiple CallbackHandler style services you can make multiple calls to RegisterRoutes for each of the service types. RegisterRoutes internally uses reflection to run through all the methods of the Handler, looking for CallbackMethod attributes and whether a RouteUrl is specified. If it is a new instance of a CallbackHandlerRouteHandler is created and the name of the method and the type are set. routes.Add(method.Name,           new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler) )) ); While the routing with CallbackHandlerRouteHandler is set up automatically for all methods that use the RouteUrl attribute, you can also use code to hook up those routes manually and skip using the attribute. The code for this is straightforward and just requires that you manually map each individual route to each method you want a routed: protected void Application_Start(objectsender, EventArgs e){    RegisterRoutes(RouteTable.Routes);}void RegisterRoutes(RouteCollection routes) { routes.Add("StockQuote Route",new Route("StockQuote/{symbol}",                     new CallbackHandlerRouteHandler("GetStockQuote",typeof(RestService) ) ) );     routes.Add("StockQuotes Route",new Route("StockQuotes/{symbolList}",                     new CallbackHandlerRouteHandler("GetStockQuotes",typeof(RestService) ) ) );}I think it’s clearly easier to have CallbackHandlerRouteHandler.RegisterRoutes() do this automatically for you based on RouteUrl attributes, but some people have a real aversion to attaching logic via attributes. Just realize that the option to manually create your routes is available as well. Using the RouteData in the Handler A RouteHandler’s responsibility is to create an HttpHandler and as mentioned earlier, natively IHttpHandler doesn’t have any support for RouteData. In order to utilize RouteData in your handler code you have to pass the RouteData to the handler. In my CallbackHandlerRouteHandler when it creates the HttpHandler instance it creates the instance and then assigns the custom RouteData property on the handler:IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; Again this only works if you actually add a RouteData property to your handler explicitly as I did in my CallbackHandler implementation:/// <summary> /// Optionally store RouteData on this handler /// so we can access it internally /// </summary> public RouteData RouteData {get; set; } and the RouteHandler needs to set it when it creates the handler instance. Once you have the route data in your handler you can access Route Keys and Values and also the RouteHandler. Since my RouteHandler has a custom property for the MethodName to retrieve it from within the handler I can do something like this now to retrieve the MethodName (this example is actually not in the handler but target is an instance pass to the processor): // check for Route Data method name if (target is CallbackHandler) { var routeData = ((CallbackHandler)target).RouteData; if (routeData != null) methodToCall = ((CallbackHandlerRouteHandler)routeData.RouteHandler).MethodName; } When I need to access the dynamic values in the route ( symbol in StockQuote/{symbol}) I can retrieve it easily with the Values collection (RouteData.Values["symbol"]). In my CallbackHandler processing logic I’m basically looking for matching parameter names to Route parameters: // look for parameters in the routeif(routeData != null){    string parmString = routeData.Values[parameter.Name] as string;    adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType);} And with that we’ve come full circle. We’ve created a custom RouteHandler() that passes the RouteData to the handler it creates. We’ve registered our routes to use the RouteHandler, and we’ve utilized the route data in our handler. For completeness sake here’s the routine that executes a method call based on the parameters passed in and one of the options is to retrieve the inbound parameters off RouteData (as well as from POST data or QueryString parameters):internal object ExecuteMethod(string method, object target, string[] parameters, CallbackMethodParameterType paramType, ref CallbackMethodAttribute callbackMethodAttribute) { HttpRequest Request = HttpContext.Current.Request; object Result = null; // Stores parsed parameters (from string JSON or QUeryString Values) object[] adjustedParms = null; Type PageType = target.GetType(); MethodInfo MI = PageType.GetMethod(method, BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic); if (MI == null) throw new InvalidOperationException("Invalid Server Method."); object[] methods = MI.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (methods.Length < 1) throw new InvalidOperationException("Server method is not accessible due to missing CallbackMethod attribute"); if (callbackMethodAttribute != null) callbackMethodAttribute = methods[0] as CallbackMethodAttribute; ParameterInfo[] parms = MI.GetParameters(); JSONSerializer serializer = new JSONSerializer(); RouteData routeData = null; if (target is CallbackHandler) routeData = ((CallbackHandler)target).RouteData; int parmCounter = 0; adjustedParms = new object[parms.Length]; foreach (ParameterInfo parameter in parms) { // Retrieve parameters out of QueryString or POST buffer if (parameters == null) { // look for parameters in the route if (routeData != null) { string parmString = routeData.Values[parameter.Name] as string; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // GET parameter are parsed as plain string values - no JSON encoding else if (HttpContext.Current.Request.HttpMethod == "GET") { // Look up the parameter by name string parmString = Request.QueryString[parameter.Name]; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // POST parameters are treated as methodParameters that are JSON encoded else if (paramType == CallbackMethodParameterType.Json) //string newVariable = methodParameters.GetValue(parmCounter) as string; adjustedParms[parmCounter] = serializer.Deserialize(Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject( Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); } else if (paramType == CallbackMethodParameterType.Json) adjustedParms[parmCounter] = serializer.Deserialize(parameters[parmCounter], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject(parameters[parmCounter], parameter.ParameterType); parmCounter++; } Result = MI.Invoke(target, adjustedParms); return Result; } The code basically uses Reflection to loop through all the parameters available on the method and tries to assign the parameters from RouteData, QueryString or POST variables. The parameters are converted into their appropriate types and then used to eventually make a Reflection based method call. What’s sweet is that the RouteData retrieval is just another option for dealing with the inbound data in this scenario and it adds exactly two lines of code plus the code to retrieve the MethodName I showed previously – a seriously low impact addition that adds a lot of extra value to this endpoint callback processing implementation. Debugging your Routes If you create a lot of routes it’s easy to run into Route conflicts where multiple routes have the same path and overlap with each other. This can be difficult to debug especially if you are using automatically generated routes like the routes created by CallbackHandlerRouteHandler.RegisterRoutes. Luckily there’s a tool that can help you out with this nicely. Phill Haack created a RouteDebugging tool you can download and add to your project. The easiest way to do this is to grab and add this to your project is to use NuGet (Add Library Package from your Project’s Reference Nodes):   which adds a RouteDebug assembly to your project. Once installed you can easily debug your routes with this simple line of code which needs to be installed at application startup:protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); // Debug your routes RouteDebug.RouteDebugger.RewriteRoutesForTesting(RouteTable.Routes); } Any routed URL then displays something like this: The screen shows you your current route data and all the routes that are mapped along with a flag that displays which route was actually matched. This is useful – if you have any overlap of routes you will be able to see which routes are triggered – the first one in the sequence wins. This tool has saved my ass on a few occasions – and with NuGet now it’s easy to add it to your project in a few seconds and then remove it when you’re done. Routing Around Custom routing seems slightly complicated on first blush due to its disconnected components of RouteHandler, route registration and mapping of custom handlers. But once you understand the relationship between a RouteHandler, the RouteData and how to pass it to a handler, utilizing of Routing becomes a lot easier as you can easily pass context from the registration to the RouteHandler and through to the HttpHandler. The most important thing to understand when building custom routing solutions is to figure out how to map URLs in such a way that the handler can figure out all the pieces it needs to process the request. This can be via URL routing parameters and as I did in my example by passing additional context information as part of the RouteHandler instance that provides the proper execution context. In my case this ‘context’ was the method name, but it could be an actual static value like an enum identifying an operation or category in an application. Basically user supplied data comes in through the url and static application internal data can be passed via RouteHandler property values. Routing can make your application URLs easier to read by non-techie types regardless of whether you’re building Service type or REST applications, or full on Web interfaces. Routing in ASP.NET 4.0 makes it possible to create just about any extensionless URLs you can dream up and custom RouteHanmdler References Sample ProjectIncludes the sample CallbackHandler service discussed here along with compiled versionsof the Westwind.Web and Westwind.Utilities assemblies.  (requires .NET 4.0/VS 2010) West Wind Web Toolkit includes full implementation of CallbackHandler and the Routing Handler West Wind Web Toolkit Source CodeContains the full source code to the Westwind.Web and Westwind.Utilities assemblies usedin these samples. Includes the source described in the post.(Latest build in the Subversion Repository) CallbackHandler Source(Relevant code to this article tree in Westwind.Web assembly) JSONView FireFoxPluginA simple FireFox Plugin to easily view JSON data natively in FireFox.For IE you can use a registry hack to display JSON as raw text.© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  AJAX  HTTP  

    Read the article

< Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >