Search Results

Search found 22756 results on 911 pages for 'power query'.

Page 424/911 | < Previous Page | 420 421 422 423 424 425 426 427 428 429 430 431  | Next Page >

  • C non-trivial constants

    - by user525869
    I want to make several constants in C with #define to speed up computation. Two of them are not simply trivial numbers, where one is a right shift, the other is a power. math.h in C gives the function pow() for doubles, whereas I need powers for integers, so I wrote my own function, ipow, so I wouldn't need to be casting everytime. My question is this: One of the #define constants I want to make is a power, say ipow(M, T), where M and T were also #define constants. ipow is a function in the actual code, so this actually seems to slows things down when I run the code (is it running ipow everytime the constant is mentioned?). However, when I ues the built in pow function and just do (int)pow(M,T), the code is sped up. I'm confused as to why this is, since the ipow and pow functions are just as fast. On a more general note, can I define constants using #define using functions inside the actual code? The above example has me confused on whether this speeds things up or actually slows things down.

    Read the article

  • Introduction to the ASP.NET Web API

    - by Stephen.Walther
    I am a huge fan of Ajax. If you want to create a great experience for the users of your website – regardless of whether you are building an ASP.NET MVC or an ASP.NET Web Forms site — then you need to use Ajax. Otherwise, you are just being cruel to your customers. We use Ajax extensively in several of the ASP.NET applications that my company, Superexpert.com, builds. We expose data from the server as JSON and use jQuery to retrieve and update that data from the browser. One challenge, when building an ASP.NET website, is deciding on which technology to use to expose JSON data from the server. For example, how do you expose a list of products from the server as JSON so you can retrieve the list of products with jQuery? You have a number of options (too many options) including ASMX Web services, WCF Web Services, ASHX Generic Handlers, WCF Data Services, and MVC controller actions. Fortunately, the world has just been simplified. With the release of ASP.NET 4 Beta, Microsoft has introduced a new technology for exposing JSON from the server named the ASP.NET Web API. You can use the ASP.NET Web API with both ASP.NET MVC and ASP.NET Web Forms applications. The goal of this blog post is to provide you with a brief overview of the features of the new ASP.NET Web API. You learn how to use the ASP.NET Web API to retrieve, insert, update, and delete database records with jQuery. We also discuss how you can perform form validation when using the Web API and use OData when using the Web API. Creating an ASP.NET Web API Controller The ASP.NET Web API exposes JSON data through a new type of controller called an API controller. You can add an API controller to an existing ASP.NET MVC 4 project through the standard Add Controller dialog box. Right-click your Controllers folder and select Add, Controller. In the dialog box, name your controller MovieController and select the Empty API controller template: A brand new API controller looks like this: using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using System.Web.Http; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { } } An API controller, unlike a standard MVC controller, derives from the base ApiController class instead of the base Controller class. Using jQuery to Retrieve, Insert, Update, and Delete Data Let’s create an Ajaxified Movie Database application. We’ll retrieve, insert, update, and delete movies using jQuery with the MovieController which we just created. Our Movie model class looks like this: namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } public string Title { get; set; } public string Director { get; set; } } } Our application will consist of a single HTML page named Movies.html. We’ll place all of our jQuery code in the Movies.html page. Getting a Single Record with the ASP.NET Web API To support retrieving a single movie from the server, we need to add a Get method to our API controller: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public Movie GetMovie(int id) { // Return movie by id if (id == 1) { return new Movie { Id = 1, Title = "Star Wars", Director = "Lucas" }; } // Otherwise, movie was not found throw new HttpResponseException(HttpStatusCode.NotFound); } } } In the code above, the GetMovie() method accepts the Id of a movie. If the Id has the value 1 then the method returns the movie Star Wars. Otherwise, the method throws an exception and returns 404 Not Found HTTP status code. After building your project, you can invoke the MovieController.GetMovie() method by entering the following URL in your web browser address bar: http://localhost:[port]/api/movie/1 (You’ll need to enter the correct randomly generated port). In the URL api/movie/1, the first “api” segment indicates that this is a Web API route. The “movie” segment indicates that the MovieController should be invoked. You do not specify the name of the action. Instead, the HTTP method used to make the request – GET, POST, PUT, DELETE — is used to identify the action to invoke. The ASP.NET Web API uses different routing conventions than normal ASP.NET MVC controllers. When you make an HTTP GET request then any API controller method with a name that starts with “GET” is invoked. So, we could have called our API controller action GetPopcorn() instead of GetMovie() and it would still be invoked by the URL api/movie/1. The default route for the Web API is defined in the Global.asax file and it looks like this: routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); We can invoke our GetMovie() controller action with the jQuery code in the following HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Get Movie</title> </head> <body> <div> Title: <span id="title"></span> </div> <div> Director: <span id="director"></span> </div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> getMovie(1, function (movie) { $("#title").html(movie.Title); $("#director").html(movie.Director); }); function getMovie(id, callback) { $.ajax({ url: "/api/Movie", data: { id: id }, type: "GET", contentType: "application/json;charset=utf-8", statusCode: { 200: function (movie) { callback(movie); }, 404: function () { alert("Not Found!"); } } }); } </script> </body> </html> In the code above, the jQuery $.ajax() method is used to invoke the GetMovie() method. Notice that the Ajax call handles two HTTP response codes. When the GetMove() method successfully returns a movie, the method returns a 200 status code. In that case, the details of the movie are displayed in the HTML page. Otherwise, if the movie is not found, the GetMovie() method returns a 404 status code. In that case, the page simply displays an alert box indicating that the movie was not found (hopefully, you would implement something more graceful in an actual application). You can use your browser’s Developer Tools to see what is going on in the background when you open the HTML page (hit F12 in the most recent version of most browsers). For example, you can use the Network tab in Google Chrome to see the Ajax request which invokes the GetMovie() method: Getting a Set of Records with the ASP.NET Web API Let’s modify our Movie API controller so that it returns a collection of movies. The following Movie controller has a new ListMovies() method which returns a (hard-coded) collection of movies: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public IEnumerable<Movie> ListMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=1, Title="King Kong", Director="Jackson"}, new Movie {Id=1, Title="Memento", Director="Nolan"} }; } } } Because we named our action ListMovies(), the default Web API route will never match it. Therefore, we need to add the following custom route to our Global.asax file (at the top of the RegisterRoutes() method): routes.MapHttpRoute( name: "ActionApi", routeTemplate: "api/{controller}/{action}/{id}", defaults: new { id = RouteParameter.Optional } ); This route enables us to invoke the ListMovies() method with the URL /api/movie/listmovies. Now that we have exposed our collection of movies from the server, we can retrieve and display the list of movies using jQuery in our HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>List Movies</title> </head> <body> <div id="movies"></div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> listMovies(function (movies) { var strMovies=""; $.each(movies, function (index, movie) { strMovies += "<div>" + movie.Title + "</div>"; }); $("#movies").html(strMovies); }); function listMovies(callback) { $.ajax({ url: "/api/Movie/ListMovies", data: {}, type: "GET", contentType: "application/json;charset=utf-8", }).then(function(movies){ callback(movies); }); } </script> </body> </html>     Inserting a Record with the ASP.NET Web API Now let’s modify our Movie API controller so it supports creating new records: public HttpResponseMessage<Movie> PostMovie(Movie movieToCreate) { // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } The PostMovie() method in the code above accepts a movieToCreate parameter. We don’t actually store the new movie anywhere. In real life, you will want to call a service method to store the new movie in a database. When you create a new resource, such as a new movie, you should return the location of the new resource. In the code above, the URL where the new movie can be retrieved is assigned to the Location header returned in the PostMovie() response. Because the name of our method starts with “Post”, we don’t need to create a custom route. The PostMovie() method can be invoked with the URL /Movie/PostMovie – just as long as the method is invoked within the context of a HTTP POST request. The following HTML page invokes the PostMovie() method. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "Jackson" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }); function createMovie(movieToCreate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); } </script> </body> </html> This page creates a new movie (the Hobbit) by calling the createMovie() method. The page simply displays the Id of the new movie: The HTTP Post operation is performed with the following call to the jQuery $.ajax() method: $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); Notice that the type of Ajax request is a POST request. This is required to match the PostMovie() method. Notice, furthermore, that the new movie is converted into JSON using JSON.stringify(). The JSON.stringify() method takes a JavaScript object and converts it into a JSON string. Finally, notice that success is represented with a 201 status code. The HttpStatusCode.Created value returned from the PostMovie() method returns a 201 status code. Updating a Record with the ASP.NET Web API Here’s how we can modify the Movie API controller to support updating an existing record. In this case, we need to create a PUT method to handle an HTTP PUT request: public void PutMovie(Movie movieToUpdate) { if (movieToUpdate.Id == 1) { // Update the movie in the database return; } // If you can't find the movie to update throw new HttpResponseException(HttpStatusCode.NotFound); } Unlike our PostMovie() method, the PutMovie() method does not return a result. The action either updates the database or, if the movie cannot be found, returns an HTTP Status code of 404. The following HTML page illustrates how you can invoke the PutMovie() method: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Put Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToUpdate = { id: 1, title: "The Hobbit", director: "Jackson" }; updateMovie(movieToUpdate, function () { alert("Movie updated!"); }); function updateMovie(movieToUpdate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToUpdate), type: "PUT", contentType: "application/json;charset=utf-8", statusCode: { 200: function () { callback(); }, 404: function () { alert("Movie not found!"); } } }); } </script> </body> </html> Deleting a Record with the ASP.NET Web API Here’s the code for deleting a movie: public HttpResponseMessage DeleteMovie(int id) { // Delete the movie from the database // Return status code return new HttpResponseMessage(HttpStatusCode.NoContent); } This method simply deletes the movie (well, not really, but pretend that it does) and returns a No Content status code (204). The following page illustrates how you can invoke the DeleteMovie() action: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Delete Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> deleteMovie(1, function () { alert("Movie deleted!"); }); function deleteMovie(id, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify({id:id}), type: "DELETE", contentType: "application/json;charset=utf-8", statusCode: { 204: function () { callback(); } } }); } </script> </body> </html> Performing Validation How do you perform form validation when using the ASP.NET Web API? Because validation in ASP.NET MVC is driven by the Default Model Binder, and because the Web API uses the Default Model Binder, you get validation for free. Let’s modify our Movie class so it includes some of the standard validation attributes: using System.ComponentModel.DataAnnotations; namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } [Required(ErrorMessage="Title is required!")] [StringLength(5, ErrorMessage="Title cannot be more than 5 characters!")] public string Title { get; set; } [Required(ErrorMessage="Director is required!")] public string Director { get; set; } } } In the code above, the Required validation attribute is used to make both the Title and Director properties required. The StringLength attribute is used to require the length of the movie title to be no more than 5 characters. Now let’s modify our PostMovie() action to validate a movie before adding the movie to the database: public HttpResponseMessage PostMovie(Movie movieToCreate) { // Validate movie if (!ModelState.IsValid) { var errors = new JsonArray(); foreach (var prop in ModelState.Values) { if (prop.Errors.Any()) { errors.Add(prop.Errors.First().ErrorMessage); } } return new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } If ModelState.IsValid has the value false then the errors in model state are copied to a new JSON array. Each property – such as the Title and Director property — can have multiple errors. In the code above, only the first error message is copied over. The JSON array is returned with a Bad Request status code (400 status code). The following HTML page illustrates how you can invoke our modified PostMovie() action and display any error messages: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }, function (errors) { var strErrors = ""; $.each(errors, function(index, err) { strErrors += "*" + err + "\n"; }); alert(strErrors); } ); function createMovie(movieToCreate, success, fail) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToCreate), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { success(newMovie); }, 400: function (xhr) { var errors = JSON.parse(xhr.responseText); fail(errors); } } }); } </script> </body> </html> The createMovie() function performs an Ajax request and handles either a 201 or a 400 status code from the response. If a 201 status code is returned then there were no validation errors and the new movie was created. If, on the other hand, a 400 status code is returned then there was a validation error. The validation errors are retrieved from the XmlHttpRequest responseText property. The error messages are displayed in an alert: (Please don’t use JavaScript alert dialogs to display validation errors, I just did it this way out of pure laziness) This validation code in our PostMovie() method is pretty generic. There is nothing specific about this code to the PostMovie() method. In the following video, Jon Galloway demonstrates how to create a global Validation filter which can be used with any API controller action: http://www.asp.net/web-api/overview/web-api-routing-and-actions/video-custom-validation His validation filter looks like this: using System.Json; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http.Controllers; using System.Web.Http.Filters; namespace MyWebAPIApp.Filters { public class ValidationActionFilter:ActionFilterAttribute { public override void OnActionExecuting(HttpActionContext actionContext) { var modelState = actionContext.ModelState; if (!modelState.IsValid) { dynamic errors = new JsonObject(); foreach (var key in modelState.Keys) { var state = modelState[key]; if (state.Errors.Any()) { errors[key] = state.Errors.First().ErrorMessage; } } actionContext.Response = new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } } } } And you can register the validation filter in the Application_Start() method in the Global.asax file like this: GlobalConfiguration.Configuration.Filters.Add(new ValidationActionFilter()); After you register the Validation filter, validation error messages are returned from any API controller action method automatically when validation fails. You don’t need to add any special logic to any of your API controller actions to take advantage of the filter. Querying using OData The OData protocol is an open protocol created by Microsoft which enables you to perform queries over the web. The official website for OData is located here: http://odata.org For example, here are some of the query options which you can use with OData: · $orderby – Enables you to retrieve results in a certain order. · $top – Enables you to retrieve a certain number of results. · $skip – Enables you to skip over a certain number of results (use with $top for paging). · $filter – Enables you to filter the results returned. The ASP.NET Web API supports a subset of the OData protocol. You can use all of the query options listed above when interacting with an API controller. The only requirement is that the API controller action returns its data as IQueryable. For example, the following Movie controller has an action named GetMovies() which returns an IQueryable of movies: public IQueryable<Movie> GetMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=2, Title="King Kong", Director="Jackson"}, new Movie {Id=3, Title="Willow", Director="Lucas"}, new Movie {Id=4, Title="Shrek", Director="Smith"}, new Movie {Id=5, Title="Memento", Director="Nolan"} }.AsQueryable(); } If you enter the following URL in your browser: /api/movie?$top=2&$orderby=Title Then you will limit the movies returned to the top 2 in order of the movie Title. You will get the following results: By using the $top option in combination with the $skip option, you can enable client-side paging. For example, you can use $top and $skip to page through thousands of products, 10 products at a time. The $filter query option is very powerful. You can use this option to filter the results from a query. Here are some examples: Return every movie directed by Lucas: /api/movie?$filter=Director eq ‘Lucas’ Return every movie which has a title which starts with ‘S’: /api/movie?$filter=startswith(Title,’S') Return every movie which has an Id greater than 2: /api/movie?$filter=Id gt 2 The complete documentation for the $filter option is located here: http://www.odata.org/developers/protocols/uri-conventions#FilterSystemQueryOption Summary The goal of this blog entry was to provide you with an overview of the new ASP.NET Web API introduced with the Beta release of ASP.NET 4. In this post, I discussed how you can retrieve, insert, update, and delete data by using jQuery with the Web API. I also discussed how you can use the standard validation attributes with the Web API. You learned how to return validation error messages to the client and display the error messages using jQuery. Finally, we briefly discussed how the ASP.NET Web API supports the OData protocol. For example, you learned how to filter records returned from an API controller action by using the $filter query option. I’m excited about the new Web API. This is a feature which I expect to use with almost every ASP.NET application which I build in the future.

    Read the article

  • Introduction to the ASP.NET Web API

    - by Stephen.Walther
    I am a huge fan of Ajax. If you want to create a great experience for the users of your website – regardless of whether you are building an ASP.NET MVC or an ASP.NET Web Forms site — then you need to use Ajax. Otherwise, you are just being cruel to your customers. We use Ajax extensively in several of the ASP.NET applications that my company, Superexpert.com, builds. We expose data from the server as JSON and use jQuery to retrieve and update that data from the browser. One challenge, when building an ASP.NET website, is deciding on which technology to use to expose JSON data from the server. For example, how do you expose a list of products from the server as JSON so you can retrieve the list of products with jQuery? You have a number of options (too many options) including ASMX Web services, WCF Web Services, ASHX Generic Handlers, WCF Data Services, and MVC controller actions. Fortunately, the world has just been simplified. With the release of ASP.NET 4 Beta, Microsoft has introduced a new technology for exposing JSON from the server named the ASP.NET Web API. You can use the ASP.NET Web API with both ASP.NET MVC and ASP.NET Web Forms applications. The goal of this blog post is to provide you with a brief overview of the features of the new ASP.NET Web API. You learn how to use the ASP.NET Web API to retrieve, insert, update, and delete database records with jQuery. We also discuss how you can perform form validation when using the Web API and use OData when using the Web API. Creating an ASP.NET Web API Controller The ASP.NET Web API exposes JSON data through a new type of controller called an API controller. You can add an API controller to an existing ASP.NET MVC 4 project through the standard Add Controller dialog box. Right-click your Controllers folder and select Add, Controller. In the dialog box, name your controller MovieController and select the Empty API controller template: A brand new API controller looks like this: using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using System.Web.Http; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { } } An API controller, unlike a standard MVC controller, derives from the base ApiController class instead of the base Controller class. Using jQuery to Retrieve, Insert, Update, and Delete Data Let’s create an Ajaxified Movie Database application. We’ll retrieve, insert, update, and delete movies using jQuery with the MovieController which we just created. Our Movie model class looks like this: namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } public string Title { get; set; } public string Director { get; set; } } } Our application will consist of a single HTML page named Movies.html. We’ll place all of our jQuery code in the Movies.html page. Getting a Single Record with the ASP.NET Web API To support retrieving a single movie from the server, we need to add a Get method to our API controller: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public Movie GetMovie(int id) { // Return movie by id if (id == 1) { return new Movie { Id = 1, Title = "Star Wars", Director = "Lucas" }; } // Otherwise, movie was not found throw new HttpResponseException(HttpStatusCode.NotFound); } } } In the code above, the GetMovie() method accepts the Id of a movie. If the Id has the value 1 then the method returns the movie Star Wars. Otherwise, the method throws an exception and returns 404 Not Found HTTP status code. After building your project, you can invoke the MovieController.GetMovie() method by entering the following URL in your web browser address bar: http://localhost:[port]/api/movie/1 (You’ll need to enter the correct randomly generated port). In the URL api/movie/1, the first “api” segment indicates that this is a Web API route. The “movie” segment indicates that the MovieController should be invoked. You do not specify the name of the action. Instead, the HTTP method used to make the request – GET, POST, PUT, DELETE — is used to identify the action to invoke. The ASP.NET Web API uses different routing conventions than normal ASP.NET MVC controllers. When you make an HTTP GET request then any API controller method with a name that starts with “GET” is invoked. So, we could have called our API controller action GetPopcorn() instead of GetMovie() and it would still be invoked by the URL api/movie/1. The default route for the Web API is defined in the Global.asax file and it looks like this: routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); We can invoke our GetMovie() controller action with the jQuery code in the following HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Get Movie</title> </head> <body> <div> Title: <span id="title"></span> </div> <div> Director: <span id="director"></span> </div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> getMovie(1, function (movie) { $("#title").html(movie.Title); $("#director").html(movie.Director); }); function getMovie(id, callback) { $.ajax({ url: "/api/Movie", data: { id: id }, type: "GET", contentType: "application/json;charset=utf-8", statusCode: { 200: function (movie) { callback(movie); }, 404: function () { alert("Not Found!"); } } }); } </script> </body> </html> In the code above, the jQuery $.ajax() method is used to invoke the GetMovie() method. Notice that the Ajax call handles two HTTP response codes. When the GetMove() method successfully returns a movie, the method returns a 200 status code. In that case, the details of the movie are displayed in the HTML page. Otherwise, if the movie is not found, the GetMovie() method returns a 404 status code. In that case, the page simply displays an alert box indicating that the movie was not found (hopefully, you would implement something more graceful in an actual application). You can use your browser’s Developer Tools to see what is going on in the background when you open the HTML page (hit F12 in the most recent version of most browsers). For example, you can use the Network tab in Google Chrome to see the Ajax request which invokes the GetMovie() method: Getting a Set of Records with the ASP.NET Web API Let’s modify our Movie API controller so that it returns a collection of movies. The following Movie controller has a new ListMovies() method which returns a (hard-coded) collection of movies: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public IEnumerable<Movie> ListMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=1, Title="King Kong", Director="Jackson"}, new Movie {Id=1, Title="Memento", Director="Nolan"} }; } } } Because we named our action ListMovies(), the default Web API route will never match it. Therefore, we need to add the following custom route to our Global.asax file (at the top of the RegisterRoutes() method): routes.MapHttpRoute( name: "ActionApi", routeTemplate: "api/{controller}/{action}/{id}", defaults: new { id = RouteParameter.Optional } ); This route enables us to invoke the ListMovies() method with the URL /api/movie/listmovies. Now that we have exposed our collection of movies from the server, we can retrieve and display the list of movies using jQuery in our HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>List Movies</title> </head> <body> <div id="movies"></div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> listMovies(function (movies) { var strMovies=""; $.each(movies, function (index, movie) { strMovies += "<div>" + movie.Title + "</div>"; }); $("#movies").html(strMovies); }); function listMovies(callback) { $.ajax({ url: "/api/Movie/ListMovies", data: {}, type: "GET", contentType: "application/json;charset=utf-8", }).then(function(movies){ callback(movies); }); } </script> </body> </html>     Inserting a Record with the ASP.NET Web API Now let’s modify our Movie API controller so it supports creating new records: public HttpResponseMessage<Movie> PostMovie(Movie movieToCreate) { // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } The PostMovie() method in the code above accepts a movieToCreate parameter. We don’t actually store the new movie anywhere. In real life, you will want to call a service method to store the new movie in a database. When you create a new resource, such as a new movie, you should return the location of the new resource. In the code above, the URL where the new movie can be retrieved is assigned to the Location header returned in the PostMovie() response. Because the name of our method starts with “Post”, we don’t need to create a custom route. The PostMovie() method can be invoked with the URL /Movie/PostMovie – just as long as the method is invoked within the context of a HTTP POST request. The following HTML page invokes the PostMovie() method. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "Jackson" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }); function createMovie(movieToCreate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); } </script> </body> </html> This page creates a new movie (the Hobbit) by calling the createMovie() method. The page simply displays the Id of the new movie: The HTTP Post operation is performed with the following call to the jQuery $.ajax() method: $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); Notice that the type of Ajax request is a POST request. This is required to match the PostMovie() method. Notice, furthermore, that the new movie is converted into JSON using JSON.stringify(). The JSON.stringify() method takes a JavaScript object and converts it into a JSON string. Finally, notice that success is represented with a 201 status code. The HttpStatusCode.Created value returned from the PostMovie() method returns a 201 status code. Updating a Record with the ASP.NET Web API Here’s how we can modify the Movie API controller to support updating an existing record. In this case, we need to create a PUT method to handle an HTTP PUT request: public void PutMovie(Movie movieToUpdate) { if (movieToUpdate.Id == 1) { // Update the movie in the database return; } // If you can't find the movie to update throw new HttpResponseException(HttpStatusCode.NotFound); } Unlike our PostMovie() method, the PutMovie() method does not return a result. The action either updates the database or, if the movie cannot be found, returns an HTTP Status code of 404. The following HTML page illustrates how you can invoke the PutMovie() method: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Put Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToUpdate = { id: 1, title: "The Hobbit", director: "Jackson" }; updateMovie(movieToUpdate, function () { alert("Movie updated!"); }); function updateMovie(movieToUpdate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToUpdate), type: "PUT", contentType: "application/json;charset=utf-8", statusCode: { 200: function () { callback(); }, 404: function () { alert("Movie not found!"); } } }); } </script> </body> </html> Deleting a Record with the ASP.NET Web API Here’s the code for deleting a movie: public HttpResponseMessage DeleteMovie(int id) { // Delete the movie from the database // Return status code return new HttpResponseMessage(HttpStatusCode.NoContent); } This method simply deletes the movie (well, not really, but pretend that it does) and returns a No Content status code (204). The following page illustrates how you can invoke the DeleteMovie() action: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Delete Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> deleteMovie(1, function () { alert("Movie deleted!"); }); function deleteMovie(id, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify({id:id}), type: "DELETE", contentType: "application/json;charset=utf-8", statusCode: { 204: function () { callback(); } } }); } </script> </body> </html> Performing Validation How do you perform form validation when using the ASP.NET Web API? Because validation in ASP.NET MVC is driven by the Default Model Binder, and because the Web API uses the Default Model Binder, you get validation for free. Let’s modify our Movie class so it includes some of the standard validation attributes: using System.ComponentModel.DataAnnotations; namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } [Required(ErrorMessage="Title is required!")] [StringLength(5, ErrorMessage="Title cannot be more than 5 characters!")] public string Title { get; set; } [Required(ErrorMessage="Director is required!")] public string Director { get; set; } } } In the code above, the Required validation attribute is used to make both the Title and Director properties required. The StringLength attribute is used to require the length of the movie title to be no more than 5 characters. Now let’s modify our PostMovie() action to validate a movie before adding the movie to the database: public HttpResponseMessage PostMovie(Movie movieToCreate) { // Validate movie if (!ModelState.IsValid) { var errors = new JsonArray(); foreach (var prop in ModelState.Values) { if (prop.Errors.Any()) { errors.Add(prop.Errors.First().ErrorMessage); } } return new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } If ModelState.IsValid has the value false then the errors in model state are copied to a new JSON array. Each property – such as the Title and Director property — can have multiple errors. In the code above, only the first error message is copied over. The JSON array is returned with a Bad Request status code (400 status code). The following HTML page illustrates how you can invoke our modified PostMovie() action and display any error messages: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }, function (errors) { var strErrors = ""; $.each(errors, function(index, err) { strErrors += "*" + err + "n"; }); alert(strErrors); } ); function createMovie(movieToCreate, success, fail) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToCreate), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { success(newMovie); }, 400: function (xhr) { var errors = JSON.parse(xhr.responseText); fail(errors); } } }); } </script> </body> </html> The createMovie() function performs an Ajax request and handles either a 201 or a 400 status code from the response. If a 201 status code is returned then there were no validation errors and the new movie was created. If, on the other hand, a 400 status code is returned then there was a validation error. The validation errors are retrieved from the XmlHttpRequest responseText property. The error messages are displayed in an alert: (Please don’t use JavaScript alert dialogs to display validation errors, I just did it this way out of pure laziness) This validation code in our PostMovie() method is pretty generic. There is nothing specific about this code to the PostMovie() method. In the following video, Jon Galloway demonstrates how to create a global Validation filter which can be used with any API controller action: http://www.asp.net/web-api/overview/web-api-routing-and-actions/video-custom-validation His validation filter looks like this: using System.Json; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http.Controllers; using System.Web.Http.Filters; namespace MyWebAPIApp.Filters { public class ValidationActionFilter:ActionFilterAttribute { public override void OnActionExecuting(HttpActionContext actionContext) { var modelState = actionContext.ModelState; if (!modelState.IsValid) { dynamic errors = new JsonObject(); foreach (var key in modelState.Keys) { var state = modelState[key]; if (state.Errors.Any()) { errors[key] = state.Errors.First().ErrorMessage; } } actionContext.Response = new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } } } } And you can register the validation filter in the Application_Start() method in the Global.asax file like this: GlobalConfiguration.Configuration.Filters.Add(new ValidationActionFilter()); After you register the Validation filter, validation error messages are returned from any API controller action method automatically when validation fails. You don’t need to add any special logic to any of your API controller actions to take advantage of the filter. Querying using OData The OData protocol is an open protocol created by Microsoft which enables you to perform queries over the web. The official website for OData is located here: http://odata.org For example, here are some of the query options which you can use with OData: · $orderby – Enables you to retrieve results in a certain order. · $top – Enables you to retrieve a certain number of results. · $skip – Enables you to skip over a certain number of results (use with $top for paging). · $filter – Enables you to filter the results returned. The ASP.NET Web API supports a subset of the OData protocol. You can use all of the query options listed above when interacting with an API controller. The only requirement is that the API controller action returns its data as IQueryable. For example, the following Movie controller has an action named GetMovies() which returns an IQueryable of movies: public IQueryable<Movie> GetMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=2, Title="King Kong", Director="Jackson"}, new Movie {Id=3, Title="Willow", Director="Lucas"}, new Movie {Id=4, Title="Shrek", Director="Smith"}, new Movie {Id=5, Title="Memento", Director="Nolan"} }.AsQueryable(); } If you enter the following URL in your browser: /api/movie?$top=2&$orderby=Title Then you will limit the movies returned to the top 2 in order of the movie Title. You will get the following results: By using the $top option in combination with the $skip option, you can enable client-side paging. For example, you can use $top and $skip to page through thousands of products, 10 products at a time. The $filter query option is very powerful. You can use this option to filter the results from a query. Here are some examples: Return every movie directed by Lucas: /api/movie?$filter=Director eq ‘Lucas’ Return every movie which has a title which starts with ‘S’: /api/movie?$filter=startswith(Title,’S') Return every movie which has an Id greater than 2: /api/movie?$filter=Id gt 2 The complete documentation for the $filter option is located here: http://www.odata.org/developers/protocols/uri-conventions#FilterSystemQueryOption Summary The goal of this blog entry was to provide you with an overview of the new ASP.NET Web API introduced with the Beta release of ASP.NET 4. In this post, I discussed how you can retrieve, insert, update, and delete data by using jQuery with the Web API. I also discussed how you can use the standard validation attributes with the Web API. You learned how to return validation error messages to the client and display the error messages using jQuery. Finally, we briefly discussed how the ASP.NET Web API supports the OData protocol. For example, you learned how to filter records returned from an API controller action by using the $filter query option. I’m excited about the new Web API. This is a feature which I expect to use with almost every ASP.NET application which I build in the future.

    Read the article

  • Built-in GZip/Deflate Compression on IIS 7.x

    - by Rick Strahl
    IIS 7 improves internal compression functionality dramatically making it much easier than previous versions to take advantage of compression that’s built-in to the Web server. IIS 7 also supports dynamic compression which allows automatic compression of content created in your own applications (ASP.NET or otherwise!). The scheme is based on content-type sniffing and so it works with any kind of Web application framework. While static compression on IIS 7 is super easy to set up and turned on by default for most text content (text/*, which includes HTML and CSS, as well as for JavaScript, Atom, XAML, XML), setting up dynamic compression is a bit more involved, mostly because the various default compression settings are set in multiple places down the IIS –> ASP.NET hierarchy. Let’s take a look at each of the two approaches available: Static Compression Compresses static content from the hard disk. IIS can cache this content by compressing the file once and storing the compressed file on disk and serving the compressed alias whenever static content is requested and it hasn’t changed. The overhead for this is minimal and should be aggressively enabled. Dynamic Compression Works against application generated output from applications like your ASP.NET apps. Unlike static content, dynamic content must be compressed every time a page that requests it regenerates its content. As such dynamic compression has a much bigger impact than static caching. How Compression is configured Compression in IIS 7.x  is configured with two .config file elements in the <system.WebServer> space. The elements can be set anywhere in the IIS/ASP.NET configuration pipeline all the way from ApplicationHost.config down to the local web.config file. The following is from the the default setting in ApplicationHost.config (in the %windir%\System32\inetsrv\config forlder) on IIS 7.5 with a couple of small adjustments (added json output and enabled dynamic compression): <?xml version="1.0" encoding="UTF-8"?> <configuration> <system.webServer> <httpCompression directory="%SystemDrive%\inetpub\temp\IIS Temporary Compressed Files"> <scheme name="gzip" dll="%Windir%\system32\inetsrv\gzip.dll" staticCompressionLevel="9" /> <dynamicTypes> <add mimeType="text/*" enabled="true" /> <add mimeType="message/*" enabled="true" /> <add mimeType="application/x-javascript" enabled="true" /> <add mimeType="application/json" enabled="true" /> <add mimeType="*/*" enabled="false" /> </dynamicTypes> <staticTypes> <add mimeType="text/*" enabled="true" /> <add mimeType="message/*" enabled="true" /> <add mimeType="application/x-javascript" enabled="true" /> <add mimeType="application/atom+xml" enabled="true" /> <add mimeType="application/xaml+xml" enabled="true" /> <add mimeType="*/*" enabled="false" /> </staticTypes> </httpCompression> <urlCompression doStaticCompression="true" doDynamicCompression="true" /> </system.webServer> </configuration> You can find documentation on the httpCompression and urlCompression keys here respectively: http://msdn.microsoft.com/en-us/library/ms690689%28v=vs.90%29.aspx http://msdn.microsoft.com/en-us/library/aa347437%28v=vs.90%29.aspx The httpCompression Element – What and How to compress Basically httpCompression configures what types to compress and how to compress them. It specifies the DLL that handles gzip encoding and the types of documents that are to be compressed. Types are set up based on mime-types which looks at returned Content-Type headers in HTTP responses. For example, I added the application/json to mime type to my dynamic compression types above to allow that content to be compressed as well since I have quite a bit of AJAX content that gets sent to the client. The UrlCompression Element – Enables and Disables Compression The urlCompression element is a quick way to turn compression on and off. By default static compression is enabled server wide, and dynamic compression is disabled server wide. This might be a bit confusing because the httpCompression element also has a doDynamicCompression attribute which is set to true by default, but the urlCompression attribute by the same name actually overrides it. The urlCompression element only has three attributes: doStaticCompression, doDynamicCompression and dynamicCompressionBeforeCache. The doCompression attributes are the final determining factor whether compression is enabled, so it’s a good idea to be explcit! The default for doDynamicCompression='false”, but doStaticCompression="true"! Static Compression is enabled by Default, Dynamic Compression is not Because static compression is very efficient in IIS 7 it’s enabled by default server wide and there probably is no reason to ever change that setting. Dynamic compression however, since it’s more resource intensive, is turned off by default. If you want to enable dynamic compression there are a few quirks you have to deal with, namely that enabling it in ApplicationHost.config doesn’t work. Setting: <urlCompression doDynamicCompression="true" /> in applicationhost.config appears to have no effect and I had to move this element into my local web.config to make dynamic compression work. This is actually a smart choice because you’re not likely to want dynamic compression in every application on a server. Rather dynamic compression should be applied selectively where it makes sense. However, nowhere is it documented that the setting in applicationhost.config doesn’t work (or more likely is overridden somewhere and disabled lower in the configuration hierarchy). So: remember to set doDynamicCompression=”true” in web.config!!! How Static Compression works Static compression works against static content loaded from files on disk. Because this content is static and not bound to change frequently – such as .js, .css and static HTML content – it’s fairly easy for IIS to compress and then cache the compressed content. The way this works is that IIS compresses the files into a special folder on the server’s hard disk and then reads the content from this location if already compressed content is requested and the underlying file resource has not changed. The semantics of serving an already compressed file are very efficient – IIS still checks for file changes, but otherwise just serves the already compressed file from the compression folder. The compression folder is located at: %windir%\inetpub\temp\IIS Temporary Compressed Files\ApplicationPool\ If you look into the subfolders you’ll find compressed files: These files are pre-compressed and IIS serves them directly to the client until the underlying files are changed. As I mentioned before – static compression is on by default and there’s very little reason to turn that functionality off as it is efficient and just works out of the box. The one tweak you might want to do is to set the compression level to maximum. Since IIS only compresses content very infrequently it would make sense to apply maximum compression. You can do this with the staticCompressionLevel setting on the scheme element: <scheme name="gzip" dll="%Windir%\system32\inetsrv\gzip.dll" staticCompressionLevel="9" /> Other than that the default settings are probably just fine. Dynamic Compression – not so fast! By default dynamic compression is disabled and that’s actually quite sensible – you should use dynamic compression very carefully and think about what content you want to compress. In most applications it wouldn’t make sense to compress *all* generated content as it would generate a significant amount of overhead. Scott Fortsyth has a great post that details some of the performance numbers and how much impact dynamic compression has. Depending on how busy your server is you can play around with compression and see what impact it has on your server’s performance. There are also a few settings you can tweak to minimize the overhead of dynamic compression. Specifically the httpCompression key has a couple of CPU related keys that can help minimize the impact of Dynamic Compression on a busy server: dynamicCompressionDisableCpuUsage dynamicCompressionEnableCpuUsage By default these are set to 90 and 50 which means that when the CPU hits 90% compression will be disabled until CPU utilization drops back down to 50%. Again this is actually quite sensible as it utilizes CPU power from compression when available and falling off when the threshold has been hit. It’s a good way some of that extra CPU power on your big servers to use when utilization is low. Again these settings are something you likely have to play with. I would probably set the upper limit a little lower than 90% maybe around 70% to make this a feature that kicks in only if there’s lots of power to spare. I’m not really sure how accurate these CPU readings that IIS uses are as Cpu usage on Web Servers can spike drastically even during low loads. Don’t trust settings – do some load testing or monitor your server in a live environment to see what values make sense for your environment. Finally for dynamic compression I tend to add one Mime type for JSON data, since a lot of my applications send large chunks of JSON data over the wire. You can do that with the application/json content type: <add mimeType="application/json" enabled="true" /> What about Deflate Compression? The default compression is GZip. The documentation hints that you can use a different compression scheme and mentions Deflate compression. And sure enough you can change the compression settings to: <scheme name="deflate" dll="%Windir%\system32\inetsrv\gzip.dll" staticCompressionLevel="9" /> to get deflate style compression. The deflate algorithm produces slightly more compact output so I tend to prefer it over GZip but more HTTP clients (other than browsers) support GZip than Deflate so be careful with this option if you build Web APIs. I also had some issues with the above value actually being applied right away. Changing the scheme in applicationhost.config didn’t show up on the site  right away. It required me to do a full IISReset to get that change to show up before I saw the change over to deflate compressed content. Content was slightly more compressed with deflate – not sure if it’s worth the slightly less common compression type, but the option at least is available. IIS 7 finally makes GZip Easy In summary IIS 7 makes GZip easy finally, even if the configuration settings are a bit obtuse and the documentation is seriously lacking. But once you know the basic settings I’ve described here and the fact that you can override all of this in your local web.config it’s pretty straight forward to configure GZip support and tweak it exactly to your needs. Static compression is a total no brainer as it adds very little overhead compared to direct static file serving and provides solid compression. Dynamic Compression is a little more tricky as it does add some overhead to servers, so it probably will require some tweaking to get the right balance of CPU load vs. compression ratios. Looking at large sites like Amazon, Yahoo, NewEgg etc. – they all use Related Content Code based ASP.NET GZip Caveats HttpWebRequest and GZip Responses © Rick Strahl, West Wind Technologies, 2005-2011Posted in IIS7   ASP.NET  

    Read the article

  • Request Limit Length Limits for IIS&rsquo;s requestFiltering Module

    - by Rick Strahl
    Today I updated my CodePaste.net site to MVC 3 and pushed an update to the site. The update of MVC went pretty smooth as well as most of the update process to the live site. Short of missing a web.config change in the /views folder that caused blank pages on the server, the process was relatively painless. However, one issue that kicked my ass for about an hour – and not foe the first time – was a problem with my OpenId authentication using DotNetOpenAuth. I tested the site operation fairly extensively locally and everything worked no problem, but on the server the OpenId returns resulted in a 404 response from IIS for a nice friendly OpenId return URL like this: http://codepaste.net/Account/OpenIdLogon?dnoa.userSuppliedIdentifier=http%3A%2F%2Frstrahl.myopenid.com%2F&dnoa.return_to_sig_handle=%7B634239223364590000%7D%7BjbHzkg%3D%3D%7D&dnoa.return_to_sig=7%2BcGhp7UUkcV2B8W29ibIDnZuoGoqzyS%2F%2FbF%2FhhYscgWzjg%2BB%2Fj10ZpNdBkUCu86dkTL6f4OK2zY5qHhCnJ2Dw%3D%3D&openid.assoc_handle=%7BHMAC-SHA256%7D%7B4cca49b2%7D%7BMVGByQ%3D%3D%7D&openid.claimed_id=http%3A%2F%2Frstrahl.myopenid.com%2F&openid.identity=http%3A%2F%2Frstrahl.myopenid.com%2F&openid.mode=id_res&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.ns.sreg=http%3A%2F%2Fopenid.net%2Fextensions%2Fsreg%2F1.1&openid.op_endpoint=http%3A%2F%2Fwww.myopenid.com%2Fserver&openid.response_nonce=2010-10-29T04%3A12%3A53Zn5F4r5&openid.return_to=http%3A%2F%2Fcodepaste.net%2FAccount%2FOpenIdLogon%3Fdnoa.userSuppliedIdentifier%3Dhttp%253A%252F%252Frstrahl.myopenid.com%252F%26dnoa.return_to_sig_handle%3D%257B634239223364590000%257D%257BjbHzkg%253D%253D%257D%26dnoa.return_to_sig%3D7%252BcGhp7UUkcV2B8W29ibIDnZuoGoqzyS%252F%252FbF%252FhhYscgWzjg%252BB%252Fj10ZpNdBkUCu86dkTL6f4OK2zY5qHhCnJ2Dw%253D%253D&openid.sig=h1GCSBTDAn1on98sLA6cti%2Bj1M6RffNerdVEI80mnYE%3D&openid.signed=assoc_handle%2Cclaimed_id%2Cidentity%2Cmode%2Cns%2Cns.sreg%2Cop_endpoint%2Cresponse_nonce%2Creturn_to%2Csigned%2Csreg.email%2Csreg.fullname&openid.sreg.email=rstrahl%40host.com&openid.sreg.fullname=Rick+Strahl A 404 of course isn’t terribly helpful – normally a 404 is a resource not found error, but the resource is definitely there. So how the heck do you figure out what’s wrong? If you’re just interested in the solution, here’s the short version: IIS by default allows only for a 1024 byte query string, which is obviously exceeded by the above. The setting is controlled by the RequestFiltering module in IIS 6 and later which can be configured in ApplicationHost.config (in \%windir\system32\inetsvr\config). To set the value configure the requestLimits key like so: <configuration> <security> <requestFiltering> <requestLimits maxQueryString="2048"> </requestLimits> </requestFiltering> </security> </configuration> This fixed me right up and made the requests work. How do you find out about problems like this? Ah yes the troubles of an administrator? Read on and I’ll take you through a quick review of how I tracked this down. Finding the Problem The issue with the error returned is that IIS returns a 404 Resource not found error and doesn’t provide much information about it. If you’re lucky enough to be able to run your site from the localhost IIS is actually very helpful and gives you the right information immediately in a nicely detailed error page. The bottom of the page actually describes exactly what needs to be fixed. One problem with this easy way to find an error: You HAVE TO run localhost. On my server which has about 10 domains running localhost doesn’t point at the particular site I had problems with so I didn’t get the luxury of this nice error page. Using Failed Request Tracing to retrieve Error Info The first place I go with IIS errors is to turn on Failed Request Tracing in IIS to get more error information. If you have access to the server to make a configuration change you can enable Failed Request Tracing like this: Find the Failed Request Tracing Rules in the IIS Service Manager.   Select the option and then Edit Site Tracing to enable tracing. Then add a rule for * (all content) and specify status codes from 100-999 to capture all errors. if you know exactly what error you’re looking for it might help to specify it exactly to keep the number of errors down. Then run your request and let it fail. IIS will throw error log files into a folder like this C:\inetpub\logs\FailedReqLogFiles\W3SVC5 where the last 5 is the instance ID of the site. These files are XML but they include an XSL stylesheet that provides some decent formatting. In this case it pointed me straight at the offending module:   Ok, it’s the RequestFilteringModule. Request Filtering is built into IIS 6-7 and configured in ApplicationHost.config. This module defines a few basic rules about what paths and extensions are allowed in requests and among other things how long a query string is allowed to be. Most of these settings are pretty sensible but the query string value can easily become a problem especially if you’re dealing with OpenId since these return URLs are quite extensive. Debugging failed requests is never fun, but IIS 6 and forward at least provides us the tools that can help us point in the right direction. The error message the FRT report isn’t as nice as the IIS error message but it at least points at the offending module which gave me the clue I needed to look at request restrictions in ApplicationHost.config. This would still be a stretch if you’re not intimately familiar, but I think with some Google searches it would be easy to track this down with a few tries… Hope this was useful to some of you. Useful to me to put this out as a reminder – I’ve run into this issue before myself and totally forgot. Next time I got it, right?© Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  Security  

    Read the article

  • PHP OCI8 and Oracle 11g DRCP Connection Pooling in Pictures

    - by christopher.jones
    Here is a screen shot from a PHP OCI8 connection pooling demo that I like to run. It graphically shows how little database host memory is needed when using DRCP connection pooling with Oracle Database 11g. Migrating to DRCP can be as simple as starting the pool and changing the connection string in your PHP application. The script that generated the data for this graph was a simple "Parts" query application being run under various simulated user loads. I was running the database on a small Oracle Linux server with just 2G of memory. I used PHP OCI8 1.4. Apache is in pre-fork mode, as needed for PHP. Each graph has time on the horizontal access in arbitrary 'tick' time units. Click the image to see it full sized. Pooled connections Beginning with the top left graph, At tick time 65 I used Apache's 'ab' tool to start 100 concurrent 'users' running the application. These users connected to the database using DRCP: $c = oci_pconnect('phpdemo', 'welcome', 'myhost/orcl:pooled'); A second hundred DRCP users were added to the system at tick 80 and a final hundred users added at tick 100. At about tick 110 I stopped the test and restarted Apache. This closed all the connections. The bottom left graph shows the number of statements being executed by the database per second, with some spikes for background database activity and some variability for this small test. Each extra batch of users adds another 'step' of load to the system. Looking at the top right Server Process graph shows the database server processes doing the query work for each web user. As user load is added, the DRCP server pool increases (in green). The pool is initially at its default size 4 and quickly ramps up to about (I'm guessing) 35. At tick time 100 the pool increases to my configured maximum of 40 processes. Those 40 processes are doing the query work for all 300 web users. When I stopped the test at tick 110, the pooled processes remained open waiting for more users to connect. If I had left the test quiet for the DRCP 'inactivity_timeout' period (300 seconds by default), the pool would have shrunk back to 4 processes. Looking at the bottom right, you can see the amount of memory being consumed by the database. During the initial quiet period about 500M of memory was in use. The absolute number is just an indication of my particular DB configuration. As the number of pooled processes increases, each process needs more memory. You can see the shape of the memory graph echoes the Server Process graph above it. Each of the 300 web users will also need a few kilobytes but this is almost too small to see on the graph. Non-pooled connections Compare the DRCP case with using 'dedicated server' processes. At tick 140 I started 100 web users who did not use pooled connections: $c = oci_pconnect('phpdemo', 'welcome', 'myhost/orcl'); This connection string change is the only difference between the two tests. At ticks 155 and 165 I started two more batches of 100 simulated users each. At about tick 195 I stopped the user load but left Apache running. Apache then gradually returned to its quiescent state, killing idle httpd processes and producing the downward slope at the right of the graphs as the persistent database connection in each Apache process was closed. The Executions per Second graph on the bottom left shows the same step increases as for the earlier DRCP case. The database is handling this load. But look at the number of Server processes on the top right graph. There is now a one-to-one correspondence between Apache/PHP processes and DB server processes. Each PHP processes has one DB server processes dedicated to it. Hence the term 'dedicated server'. The memory required on the database is proportional to all those database server processes started. Almost all my system's memory was consumed. I doubt it would have coped with any more user load. Summary Oracle Database 11g DRCP connection pooling significantly reduces database host memory requirements allow more system memory to be allocated for the SGA and allowing the system to scale to handled thousands of concurrent PHP users. Even for small systems, using DRCP allows more web users to be active. More information about PHP and DRCP can be found in the PHP Scalability and High Availability chapter of The Underground PHP and Oracle Manual.

    Read the article

  • Chart Control in ASP.Net 4 – Second Part

    - by sreejukg
      Couple of weeks before, I have written an introduction about the chart control available in .Net framework. In that article, I explained the basic usage of the chart control with a simple example. You can read that article from the url http://weblogs.asp.net/sreejukg/archive/2010/12/31/getting-started-with-chart-control-in-asp-net-4-0.aspx. In this article I am going to demonstrate how one can generate various types of charts that can be generated easily using the ASP.Net chart control. Let us recollect the data sample we were working in the previous sample. The following is the data I used in the previous article. id SaleAmount SalesPerson SaleType SaleDate CompletionStatus (%) 1 1000 Jack Development 2010-01-01 100 2 300 Mills Consultancy 2010-04-14 90 3 4000 Mills Development 2010-05-15 80 4 2500 Mike eMarketting 2010-06-15 40 5 1080 Jack Development 2010-07-15 30 6 6500 Mills Consultancy 2010-08-24 65 In this article I am going to demonstrate various graphical reports generated from this data with the help of chart control. The following are the reports I am going to generate 1. Representation of share of Sales by each Sales person. 2. Representation of share of sales data according to sale type 3. Representation of sales progress over time period I am going to demonstrate how to bind the chart control programmatically. In order to facilitate this, I created an aspx page named “SalesAnalysis.Aspx” to my project. In the page I added the following controls 1. Dropdownlist control – with id ddlAnalysisType, user will use this to choose the type of chart they want to see. 2. A Button control – with id btnSubmit , by clicking this button, the chart based on the dropdownlist selection will be shown to the user 3. A label Control – with id lblMessage, to display the message to the user, initially this will ask the user to select an option and click on the button. 4. Chart control – with id chrtAnalysis, by default, I set visible = false so that during the page load the chart will be hidden to the users. The following is the initial output of the page. Generating chart for salesperson share Now from Visual Studio, I have double clicked on the button; it created the event handler btnSubmit_Click. In the button Submit event handler, I am using a switch case to execute the corresponding SQL statement and bind it to the chart control. The below is the code for generating the sales person share chart using a pie chart. The above code produces the following output The steps for creating the above chart can be summarized as follows. You specify a chart area, then a series and bind the chart to some x and y values. That is it. If you want to control the chart size and position, you can set the properties for the ChartArea.Position element. For e.g. in the previous code, after instantiating the chart area, setting the below code will give you a bigger pie chart. c.Position.Width = 100; c.Position.Height = 100; The width and height values are in percentage. In this case the chart will be generated by utilizing all the width and height of the chart object. See the output updated with the width and height set to 100% each. Generate Chart for sales type share Now for generating the chart according to the sales type, you just need to change the SQL query and x and y values of the chart. The Sql query used is “SELECT SUM(saleAmount) amount, SaleType from SalesData group by SaleType” and the X-Value is amount and Y-Values is SaleType. s.XValueMember = "SaleType"; s.YValueMembers = "amount"; After modifying the above code with these, the following output is generated. Generate Chart for sales progress over time period For generating the progress of sale chart against sales amount / period, line chart is the ideal tool. In order to facilitate the line chart, you can use Chart Type as System.Web.UI.DataVisualization.Charting.SeriesChartType.Line. Also we need to retrieve the amount and sales date from the data source. I have used the following query to facilitate this. “SELECT SaleAmount, SaleDate FROM SalesData” The output for the line chart is as follows Now you have seen how easily you can build various types of charts. Chart control is an excellent one that helps you to bring business intelligence to your applications. What I demonstrated in only a small part of what you can do with the chart control. Refer http://msdn.microsoft.com/en-us/library/dd456632.aspx for further reading. If you want to get the project files in zip format, post your email below. Hope you enjoyed reading this article.

    Read the article

  • PASS Summit 2010 Recap

    - by AjarnMark
    Last week I attended my eighth PASS Summit in nine years, and every year it is a fantastic event!  I was fortunate my first year to have a contact (Bill Graziano (blog | Twitter) from SQLTeam) that I was expecting to meet, and who got me started on a good track of making new contacts.  Each year I have made a few more, and renewed friendships from years past.  Many of the attendees agree that the pure networking opportunities are one of the best benefits of attending the Summit.  And there’s a lot of great technical stuff, too, some of the things that stick out for me this year include… Pre-Con Monday: PowerShell with Allen White (blog | Twitter).  This was the first time that I attended a pre-con.  For those not familiar with the concept, the regular sessions for the conference are 75-90 minutes long.  For an extra fee, you can attend a full-day session on a single topic during a pre- or post-conference training day.  I had been meaning for several months to dive in and learn PowerShell, but just never seemed to find (or make) the time for it, so when I saw this was one of the all-day sessions, and I was planning to be there on Monday anyway, I decided to go for it.  And it was well worth it!  I definitely came out of there with a good foundation to build my own PowerShell scripts, plus several sample scripts that he showed which already cover the first four or five things I was planning to do with PowerShell anyway.  This looks like the right tool for me to build an automated version of our software deployment process, which right now contains many repeated steps.  Thanks Allen! Service Broker with Denny Cherry (blog | Twitter).  I remembered reading Denny’s blog post on Using Service Broker instead of Replication, and ever since then I have been thinking about using this to populate a new reporting-focused Data Repository that we will be building in the near future.  When I saw he was doing this session, I thought it would be great to get more information and be able to ask the author questions.  When I brought this idea back to my boss, he really liked it, as we had previously been discussing doing nightly data loads, with an option to manually trigger a mid-day load if up-to-the-minute data was needed for something.  If we go the Service Broker route, we can keep the Repository current in near real-time.  Hooray! DBA Mythbusters with Paul Randal (blog | Twitter).  Even though I read every one of the posts in Paul’s blog series of the same name, I had to go see the legend in person.  It was great, and I still learned something new! How to Conduct Effective Meetings with Joe Webb (blog | Twitter).  I always like to sit in on a session that Joe does.  I met Joe several years ago when both he and Bill Graziano were on the PASS Board of Directors together, and we have kept in touch.  Joe is very well-spoken and has great experience with both SQL Server and business.  And we could certainly use some pointers at my work (probably yours, too) on making our meetings more effective and to run on-time.  Of course, now that I’m the Chapter Leader for the Professional Development virtual chapter, I also had to sit in on this ProfDev session and recruit Joe to do a presentation or two for the chapter next year. Query Optimization with David DeWitt.  Anyone who has seen Dr. David DeWitt present the 3rd keynote at a PASS Summit over the last three years knows what a great time it is to sit and listen to him make some really complicated and advanced topic easy to understand (although it still makes your head hurt).  It still amazes me that the simple two-table join query from pubs that he used in his example can possibly have 22 million possible physical query plans.  Ouch! Exhibit Hall:  This year I spent more serious time in the exhibit hall than any year past.  I have talked my boss into making a significant (for us) investment in monitoring tools next year, and this was a great opportunity to talk with all the big-hitters.  Readers of mine may recall that I fell in love with the SQL Sentry Power Suite several months ago and wrote a blog entry about it just from the trial version.  Well as things turned out, short-term budget priorities shifted, and we weren’t able to make the purchase then.  I have it in the budget for next year, but since I was going to the Summit, my boss wanted me to look at the other options to see if this was really the one that we wanted.  I spent a couple of hours talking with representatives from Red-Gate, Idera, Confio, and Quest about their offerings, and giving them each the same 3 scenarios that I wanted to be able to accomplish based on the questions and issues that arise in our company.  It was interesting to discover the different approaches or “world view” that each vendor takes to the subject of performance monitoring and troubleshooting.  I may write a separate article that goes into this in more depth, but the product that best aligned with our point of view, and met the current needs we have is still the SQL Sentry Power Suite.  I’m not saying that the others are bad or wrong or anything like that, just that the way they tackled the issue did not align as well with our particular needs as does SQL Sentry’s product.  And that was something I learned too, when you go shopping for these products, you really need to know what you want to get from them.  It’s best if you have a few example scenarios from work that you can use to test out how well each tool fits your particular needs. Overall, another GREAT event.  I can’t wait to get the DVDs so I can sit in on a bunch of other sessions that I couldn’t get to because I was in one of the ones above.  And I can hardly wait until next year!

    Read the article

  • Entity Framework Batch Update and Future Queries

    - by pwelter34
    Entity Framework Extended Library A library the extends the functionality of Entity Framework. Features Batch Update and Delete Future Queries Audit Log Project Package and Source NuGet Package PM> Install-Package EntityFramework.Extended NuGet: http://nuget.org/List/Packages/EntityFramework.Extended Source: http://github.com/loresoft/EntityFramework.Extended Batch Update and Delete A current limitations of the Entity Framework is that in order to update or delete an entity you have to first retrieve it into memory. Now in most scenarios this is just fine. There are however some senerios where performance would suffer. Also, for single deletes, the object must be retrieved before it can be deleted requiring two calls to the database. Batch update and delete eliminates the need to retrieve and load an entity before modifying it. Deleting //delete all users where FirstName matches context.Users.Delete(u => u.FirstName == "firstname"); Update //update all tasks with status of 1 to status of 2 context.Tasks.Update( t => t.StatusId == 1, t => new Task {StatusId = 2}); //example of using an IQueryable as the filter for the update var users = context.Users .Where(u => u.FirstName == "firstname"); context.Users.Update( users, u => new User {FirstName = "newfirstname"}); Future Queries Build up a list of queries for the data that you need and the first time any of the results are accessed, all the data will retrieved in one round trip to the database server. Reducing the number of trips to the database is a great. Using this feature is as simple as appending .Future() to the end of your queries. To use the Future Queries, make sure to import the EntityFramework.Extensions namespace. Future queries are created with the following extension methods... Future() FutureFirstOrDefault() FutureCount() Sample // build up queries var q1 = db.Users .Where(t => t.EmailAddress == "[email protected]") .Future(); var q2 = db.Tasks .Where(t => t.Summary == "Test") .Future(); // this triggers the loading of all the future queries var users = q1.ToList(); In the example above, there are 2 queries built up, as soon as one of the queries is enumerated, it triggers the batch load of both queries. // base query var q = db.Tasks.Where(t => t.Priority == 2); // get total count var q1 = q.FutureCount(); // get page var q2 = q.Skip(pageIndex).Take(pageSize).Future(); // triggers execute as a batch int total = q1.Value; var tasks = q2.ToList(); In this example, we have a common senerio where you want to page a list of tasks. In order for the GUI to setup the paging control, you need a total count. With Future, we can batch together the queries to get all the data in one database call. Future queries work by creating the appropriate IFutureQuery object that keeps the IQuerable. The IFutureQuery object is then stored in IFutureContext.FutureQueries list. Then, when one of the IFutureQuery objects is enumerated, it calls back to IFutureContext.ExecuteFutureQueries() via the LoadAction delegate. ExecuteFutureQueries builds a batch query from all the stored IFutureQuery objects. Finally, all the IFutureQuery objects are updated with the results from the query. Audit Log The Audit Log feature will capture the changes to entities anytime they are submitted to the database. The Audit Log captures only the entities that are changed and only the properties on those entities that were changed. The before and after values are recorded. AuditLogger.LastAudit is where this information is held and there is a ToXml() method that makes it easy to turn the AuditLog into xml for easy storage. The AuditLog can be customized via attributes on the entities or via a Fluent Configuration API. Fluent Configuration // config audit when your application is starting up... var auditConfiguration = AuditConfiguration.Default; auditConfiguration.IncludeRelationships = true; auditConfiguration.LoadRelationships = true; auditConfiguration.DefaultAuditable = true; // customize the audit for Task entity auditConfiguration.IsAuditable<Task>() .NotAudited(t => t.TaskExtended) .FormatWith(t => t.Status, v => FormatStatus(v)); // set the display member when status is a foreign key auditConfiguration.IsAuditable<Status>() .DisplayMember(t => t.Name); Create an Audit Log var db = new TrackerContext(); var audit = db.BeginAudit(); // make some updates ... db.SaveChanges(); var log = audit.LastLog;

    Read the article

  • How-to dynamically filter model-driven LOV

    - by Frank Nimphius
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Often developers need to filter a LOV query with information obtained from an ADF Faces form or other where. The sample below shows how to define a launch popup listener configured on the launchPopupListener property of the af:inputListOfValues component to filter a list of values. <af:inputListOfValues id="departmentIdId"    value="#{bindings.DepartmentId.inputValue}"                                          model="#{bindings.DepartmentId.listOfValuesModel}"    launchPopupListener="#{PopupLauncher.onPopupLaunch}" … >         … </af:inputListOfValues> A list of values is queried using a search binding that gets created in the PageDef file of a view when a lis of value component gets added. The managed bean code below looks this search binding up to then add a view criteria that filters the query. Note: There is no public API yet available for the FacesCtrlLOVBinding class, which is why I use the internal package class it in the example. public void onPopupLaunch(LaunchPopupEvent launchPopupEvent) {   BindingContext bctx = BindingContext.getCurrent();   BindingContainer bindings = bctx.getCurrentBindingsEntry();   FacesCtrlLOVBinding lov =        (FacesCtrlLOVBinding)bindings.get("DepartmentId");   ViewCriteriaManager vcm =   lov.getListIterBinding().getViewObject().getViewCriteriaManager();             //make sure the view criteria is cleared   vcm.removeViewCriteria(vcm.DFLT_VIEW_CRITERIA_NAME);   //create a new view criteria   ViewCriteria vc =          new ViewCriteria(lov.getListIterBinding().getViewObject());   //use the default view criteria name   //"__DefaultViewCriteria__"   vc.setName(vcm.DFLT_VIEW_CRITERIA_NAME);   //create a view criteria row for all queryable attributes   ViewCriteriaRow vcr = new ViewCriteriaRow(vc);   //for this sample I set the query filter to DepartmentId 60.   //You may determine it at runtime by reading it from a managed bean   //or binding layer   vcr.setAttribute("DepartmentId", 60);   //also note that the view criteria row consists of all attributes   //that belong to the LOV list view object, which means that you can   //filter on multiple attributes   vc.addRow(vcr);             lov.getListIterBinding().getViewObject().applyViewCriteria(vc); }  Note: Instead of using the vcm.DFLT_VIEW_CRITERIA_NAME name you can also define a custom name for the view criteria.

    Read the article

  • org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'transactionManager

    - by BilalFromParis
    when I add the code into my spring configuration file beans-hibernate.xml <bean id="transactionManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager"> <property name="sessionFactory" ref="sessionFactory" /> </bean> It doesn't work and I don't know why, can someone help me please ? My Dao Class is : public class CourseDaoImpl implements CourseDao { private SessionFactory sessionFactory; public void setSessionFactory(SessionFactory sessionFactory) { this.sessionFactory = sessionFactory; } @Transactional public void store(Course course) { sessionFactory.getCurrentSession().saveOrUpdate(course); } @Transactional public void delete(Long courseId) { Course course = (Course)sessionFactory.getCurrentSession().get(Course.class, courseId); sessionFactory.getCurrentSession().delete(course); } @Transactional(readOnly=true) public Course findById(Long courseId) { return (Course)sessionFactory.getCurrentSession().get(Course.class, courseId); } @Transactional public List<Course> findAll() { Query query = sessionFactory.getCurrentSession().createQuery("FROM Course"); return (List<Course>)query.list(); } } but : juil. 04, 2012 3:38:18 AM org.springframework.context.support.AbstractApplicationContext prepareRefresh Infos: Refreshing org.springframework.context.support.ClassPathXmlApplicationContext@6ba8fb1b: startup date [Wed Jul 04 03:38:18 CEST 2012]; root of context hierarchy juil. 04, 2012 3:38:18 AM org.springframework.beans.factory.xml.XmlBeanDefinitionReader loadBeanDefinitions Infos: Loading XML bean definitions from class path resource [beans-hibernate.xml] juil. 04, 2012 3:38:19 AM org.springframework.beans.factory.support.DefaultListableBeanFactory preInstantiateSingletons Infos: Pre-instantiating singletons in org.springframework.beans.factory.support.DefaultListableBeanFactory@5a7fed46: defining beans [org.springframework.aop.config.internalAutoProxyCreator,org.springframework.transaction.annotation.AnnotationTransactionAttributeSource#0,org.springframework.transaction.interceptor.TransactionInterceptor#0,org.springframework.transaction.config.internalTransactionAdvisor,sessionFactory,transactionManager,courseDao]; root of factory hierarchy juil. 04, 2012 3:38:19 AM org.hibernate.annotations.common.Version INFO: HCANN000001: Hibernate Commons Annotations {4.0.1.Final} juil. 04, 2012 3:38:19 AM org.hibernate.Version logVersion INFO: HHH000412: Hibernate Core {4.1.3.Final} juil. 04, 2012 3:38:19 AM org.hibernate.cfg.Environment INFO: HHH000206: hibernate.properties not found juil. 04, 2012 3:38:19 AM org.hibernate.cfg.Environment buildBytecodeProvider INFO: HHH000021: Bytecode provider name : javassist juil. 04, 2012 3:38:19 AM org.hibernate.service.jdbc.connections.internal.DriverManagerConnectionProviderImpl configure INFO: HHH000402: Using Hibernate built-in connection pool (not for production use!) juil. 04, 2012 3:38:19 AM org.hibernate.service.jdbc.connections.internal.DriverManagerConnectionProviderImpl configure INFO: HHH000115: Hibernate connection pool size: 20 juil. 04, 2012 3:38:19 AM org.hibernate.service.jdbc.connections.internal.DriverManagerConnectionProviderImpl configure INFO: HHH000006: Autocommit mode: false juil. 04, 2012 3:38:19 AM org.hibernate.service.jdbc.connections.internal.DriverManagerConnectionProviderImpl configure INFO: HHH000401: using driver [org.hibernate.dialect.PostgreSQLDialect] at URL [jdbc:postgresql://localhost:5432/spring] juil. 04, 2012 3:38:19 AM org.hibernate.service.jdbc.connections.internal.DriverManagerConnectionProviderImpl configure INFO: HHH000046: Connection properties: {user=Bilal, password=**} juil. 04, 2012 3:38:19 AM org.hibernate.dialect.Dialect INFO: HHH000400: Using dialect: org.hibernate.dialect.PostgreSQLDialect juil. 04, 2012 3:38:19 AM org.hibernate.engine.jdbc.internal.LobCreatorBuilder useContextualLobCreation INFO: HHH000423: Disabling contextual LOB creation as JDBC driver reported JDBC version [3] less than 4 juil. 04, 2012 3:38:19 AM org.hibernate.engine.transaction.internal.TransactionFactoryInitiator initiateService INFO: HHH000399: Using default transaction strategy (direct JDBC transactions) juil. 04, 2012 3:38:19 AM org.hibernate.hql.internal.ast.ASTQueryTranslatorFactory INFO: HHH000397: Using ASTQueryTranslatorFactory juil. 04, 2012 3:38:19 AM org.hibernate.tool.hbm2ddl.SchemaUpdate execute INFO: HHH000228: Running hbm2ddl schema update juil. 04, 2012 3:38:19 AM org.hibernate.tool.hbm2ddl.SchemaUpdate execute INFO: HHH000102: Fetching database metadata juil. 04, 2012 3:38:19 AM org.hibernate.tool.hbm2ddl.SchemaUpdate execute INFO: HHH000396: Updating schema juil. 04, 2012 3:38:19 AM org.hibernate.tool.hbm2ddl.TableMetadata INFO: HHH000261: Table found: public.course juil. 04, 2012 3:38:19 AM org.hibernate.tool.hbm2ddl.TableMetadata INFO: HHH000037: Columns: [fee, id, title, end_date, begin_date] juil. 04, 2012 3:38:19 AM org.hibernate.tool.hbm2ddl.TableMetadata INFO: HHH000108: Foreign keys: [] juil. 04, 2012 3:38:19 AM org.hibernate.tool.hbm2ddl.TableMetadata INFO: HHH000126: Indexes: [course_pkey] juil. 04, 2012 3:38:19 AM org.hibernate.tool.hbm2ddl.SchemaUpdate execute INFO: HHH000232: Schema update complete juil. 04, 2012 3:38:19 AM org.springframework.beans.factory.support.DefaultSingletonBeanRegistry destroySingletons Infos: Destroying singletons in org.springframework.beans.factory.support.DefaultListableBeanFactory@5a7fed46: defining beans [org.springframework.aop.config.internalAutoProxyCreator,org.springframework.transaction.annotation.AnnotationTransactionAttributeSource#0,org.springframework.transaction.interceptor.TransactionInterceptor#0,org.springframework.transaction.config.internalTransactionAdvisor,sessionFactory,transactionManager,courseDao]; root of factory hierarchy juil. 04, 2012 3:38:19 AM org.hibernate.service.jdbc.connections.internal.DriverManagerConnectionProviderImpl stop INFO: HHH000030: Cleaning up connection pool [jdbc:postgresql://localhost:5432/spring] Exception in thread "main" org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'transactionManager' defined in class path resource [beans-hibernate.xml]: Invocation of init method failed; nested exception is java.lang.NoClassDefFoundError: org/hibernate/engine/SessionFactoryImplementor at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1455) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:519) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:456) at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:294) at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:225) at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:291) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:193) at org.springframework.beans.factory.support.DefaultListableBeanFactory.preInstantiateSingletons(DefaultListableBeanFactory.java:585) at org.springframework.context.support.AbstractApplicationContext.finishBeanFactoryInitialization(AbstractApplicationContext.java:913) at org.springframework.context.support.AbstractApplicationContext.refresh(AbstractApplicationContext.java:464) at org.springframework.context.support.ClassPathXmlApplicationContext.(ClassPathXmlApplicationContext.java:139) at org.springframework.context.support.ClassPathXmlApplicationContext.(ClassPathXmlApplicationContext.java:83) at com.boutaya.bill.main.Main.main(Main.java:14) Caused by: java.lang.NoClassDefFoundError: org/hibernate/engine/SessionFactoryImplementor at org.springframework.orm.hibernate3.SessionFactoryUtils.getDataSource(SessionFactoryUtils.java:123) at org.springframework.orm.hibernate3.HibernateTransactionManager.afterPropertiesSet(HibernateTransactionManager.java:411) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.invokeInitMethods(AbstractAutowireCapableBeanFactory.java:1514) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1452) ... 12 more Caused by: java.lang.ClassNotFoundException: org.hibernate.engine.SessionFactoryImplementor at java.net.URLClassLoader$1.run(Unknown Source) at java.net.URLClassLoader$1.run(Unknown Source) at java.security.AccessController.doPrivileged(Native Method) at java.net.URLClassLoader.findClass(Unknown Source) at java.lang.ClassLoader.loadClass(Unknown Source) at sun.misc.Launcher$AppClassLoader.loadClass(Unknown Source) at java.lang.ClassLoader.loadClass(Unknown Source) ... 16 more I think the problem is when I use the Class : org.springframework.orm.hibernate3.HibernateTransactionManager ???

    Read the article

  • Retrieve Performance Data from SOA Infrastructure Database

    - by fip
    My earlier blog posting shows how to enable, retrieve and interpret BPEL engine performance statistics to aid performance troubleshooting. The strength of BPEL engine statistics at EM is its break down per request. But there are some limitations with the BPEL performance statistics mentioned in that blog posting: The statistics were stored in memory instead of being persisted. To avoid memory overflow, the data are stored to a buffer with limited size. When the statistic entries exceed the limitation, old data will be flushed out to give ways to new statistics. Therefore it can only keep the last X number of entries of data. The statistics 5 hour ago may not be there anymore. The BPEL engine performance statistics only includes latencies. It does not provide throughputs. Fortunately, Oracle SOA Suite runs with the SOA Infrastructure database and a lot of performance data are naturally persisted there. It is at a more coarse grain than the in-memory BPEL Statistics, but it does have its own strengths as it is persisted. Here I would like offer examples of some basic SQL queries you can run against the infrastructure database of Oracle SOA Suite 11G to acquire the performance statistics for a given period of time. You can run it immediately after you modify the date range to match your actual system. 1. Asynchronous/one-way messages incoming rates The following query will show number of messages sent to one-way/async BPEL processes during a given time period, organized by process names and states select composite_name composite, state, count(*) Count from dlv_message where receive_date >= to_timestamp('2012-10-24 21:00:00','YYYY-MM-DD HH24:MI:SS') and receive_date <= to_timestamp('2012-10-24 21:59:59','YYYY-MM-DD HH24:MI:SS') group by composite_name, state order by Count; 2. Throughput of BPEL process instances The following query shows the number of synchronous and asynchronous process instances created during a given time period. It list instances of all states, including the unfinished and faulted ones. The results will include all composites cross all SOA partitions select state, count(*) Count, composite_name composite, component_name,componenttype from cube_instance where creation_date >= to_timestamp('2012-10-24 21:00:00','YYYY-MM-DD HH24:MI:SS') and creation_date <= to_timestamp('2012-10-24 21:59:59','YYYY-MM-DD HH24:MI:SS') group by composite_name, component_name, componenttype order by count(*) desc; 3. Throughput and latencies of BPEL process instances This query is augmented on the previous one, providing more comprehensive information. It gives not only throughput but also the maximum, minimum and average elapse time BPEL process instances. select composite_name Composite, component_name Process, componenttype, state, count(*) Count, trunc(Max(extract(day from (modify_date-creation_date))*24*60*60 + extract(hour from (modify_date-creation_date))*60*60 + extract(minute from (modify_date-creation_date))*60 + extract(second from (modify_date-creation_date))),4) MaxTime, trunc(Min(extract(day from (modify_date-creation_date))*24*60*60 + extract(hour from (modify_date-creation_date))*60*60 + extract(minute from (modify_date-creation_date))*60 + extract(second from (modify_date-creation_date))),4) MinTime, trunc(AVG(extract(day from (modify_date-creation_date))*24*60*60 + extract(hour from (modify_date-creation_date))*60*60 + extract(minute from (modify_date-creation_date))*60 + extract(second from (modify_date-creation_date))),4) AvgTime from cube_instance where creation_date >= to_timestamp('2012-10-24 21:00:00','YYYY-MM-DD HH24:MI:SS') and creation_date <= to_timestamp('2012-10-24 21:59:59','YYYY-MM-DD HH24:MI:SS') group by composite_name, component_name, componenttype, state order by count(*) desc;   4. Combine all together Now let's combine all of these 3 queries together, and parameterize the start and end time stamps to make the script a bit more robust. The following script will prompt for the start and end time before querying against the database: accept startTime prompt 'Enter start time (YYYY-MM-DD HH24:MI:SS)' accept endTime prompt 'Enter end time (YYYY-MM-DD HH24:MI:SS)' Prompt "==== Rejected Messages ===="; REM 2012-10-24 21:00:00 REM 2012-10-24 21:59:59 select count(*), composite_dn from rejected_message where created_time >= to_timestamp('&&StartTime','YYYY-MM-DD HH24:MI:SS') and created_time <= to_timestamp('&&EndTime','YYYY-MM-DD HH24:MI:SS') group by composite_dn; Prompt " "; Prompt "==== Throughput of one-way/asynchronous messages ===="; select state, count(*) Count, composite_name composite from dlv_message where receive_date >= to_timestamp('&StartTime','YYYY-MM-DD HH24:MI:SS') and receive_date <= to_timestamp('&EndTime','YYYY-MM-DD HH24:MI:SS') group by composite_name, state order by Count; Prompt " "; Prompt "==== Throughput and latency of BPEL process instances ====" select state, count(*) Count, trunc(Max(extract(day from (modify_date-creation_date))*24*60*60 + extract(hour from (modify_date-creation_date))*60*60 + extract(minute from (modify_date-creation_date))*60 + extract(second from (modify_date-creation_date))),4) MaxTime, trunc(Min(extract(day from (modify_date-creation_date))*24*60*60 + extract(hour from (modify_date-creation_date))*60*60 + extract(minute from (modify_date-creation_date))*60 + extract(second from (modify_date-creation_date))),4) MinTime, trunc(AVG(extract(day from (modify_date-creation_date))*24*60*60 + extract(hour from (modify_date-creation_date))*60*60 + extract(minute from (modify_date-creation_date))*60 + extract(second from (modify_date-creation_date))),4) AvgTime, composite_name Composite, component_name Process, componenttype from cube_instance where creation_date >= to_timestamp('&StartTime','YYYY-MM-DD HH24:MI:SS') and creation_date <= to_timestamp('&EndTime','YYYY-MM-DD HH24:MI:SS') group by composite_name, component_name, componenttype, state order by count(*) desc;  

    Read the article

  • Another Marketing Conference, part one – the best morning sessions.

    - by Roger Hart
    Yesterday I went to Another Marketing Conference. I honestly can’t tell if the title is just tipping over into smug, but in the balance of things that doesn’t matter, because it was a good conference. There was an enjoyable blend of theoretical and practical, and enough inter-disciplinary spread to keep my inner dilettante grinning from ear to ear. Sure, there was a bumpy bit in the middle, with two back-to-back sales pitches and a rather thin overview of the state of the web. But the signal:noise ratio at AMC2012 was impressively high. Here’s the first part of my write-up of the sessions. It’s a bit of a mammoth. It’s also a bit of a mash-up of what was said and what I thought about it. I’ll add links to the videos and slides from the sessions as they become available. Although it was in the morning session, I’ve not included Vanessa Northam’s session on the power of internal comms to build brand ambassadors. It’ll be in the next roundup, as this is already pushing 2.5k words. First, the important stuff. I was keeping a tally, and nobody said “synergy” or “leverage”. I did, however, hear the term “marketeers” six times. Shame on you – you know who you are. 1 – Branding in a post-digital world, Graham Hales This initially looked like being a sales presentation for Interbrand, but Graham pulled it out of the bag a few minutes in. He introduced a model for brand management that was essentially Plan >> Do >> Check >> Act, with Do and Check rolled up together, and went on to stress that this looks like on overall business management model for a reason. Brand has to be part of your overall business strategy and metrics if you’re going to care about it at all. This was the first iteration of what proved to be one of the event’s emergent themes: do it throughout the stack or don’t bother. Graham went on to remind us that brands, in so far as they are owned at all, are owned by and co-created with our customers. Advertising can offer a message to customers, but they provide the expression of a brand. This was a preface to talking about an increasingly chaotic marketplace, with increasingly hard-to-manage purchase processes. Services like Amazon reviews and TripAdvisor (four presenters would make this point) saturate customers with information, and give them a kind of vigilante power to comment on and define brands. Consequentially, they experience a number of “moments of deflection” in our sales funnels. Our control is lessened, and failure to engage can negatively-impact buying decisions increasingly poorly. The clearest example given was the failure of NatWest’s “caring bank” campaign, where staff in branches, customer support, and online presences didn’t align. A discontinuity of experience basically made the campaign worthless, and disgruntled customers talked about it loudly on social media. This in turn presented an opportunity to engage and show caring, but that wasn’t taken. What I took away was that brand (co)creation is ongoing and needs monitoring and metrics. But reciprocally, given you get what you measure, strategy and metrics must include brand if any kind of branding is to work at all. Campaigns and messages must permeate product and service design. What that doesn’t mean (and Graham didn’t say it did) is putting Marketing at the top of the pyramid, and having them bawl demands at Product Management, Support, and Development like an entitled toddler. It’s going to have to be collaborative, and session 6 on internal comms handled this really well. The main thing missing here was substantiating data, and the main question I found myself chewing on was: if we’re building brands collaboratively and in the open, what about the cultural politics of trolling? 2 – Challenging our core beliefs about human behaviour, Mark Earls This was definitely the best show of the day. It was also some of the best content. Mark talked us through nudging, behavioural economics, and some key misconceptions around decision making. Basically, people aren’t rational, they’re petty, reactive, emotional sacks of meat, and they’ll go where they’re led. Comforting stuff. Examples given were the spread of the London Riots and the “discovery” of the mountains of Kong, and the popularity of Susan Boyle, which, in turn made me think about Per Mollerup’s concept of “social wayshowing”. Mark boiled his thoughts down into four key points which I completely failed to write down word for word: People do, then think – Changing minds to change behaviour doesn’t work. Post-rationalization rules the day. See also: mere exposure effects. Spock < Kirk - Emotional/intuitive comes first, then we rationalize impulses. The non-thinking, emotive, reactive processes run much faster than the deliberative ones. People are not really rational decision makers, so  intervening with information may not be appropriate. Maximisers or satisficers? – Related to the last point. People do not consistently, rationally, maximise. When faced with an abundance of choice, they prefer to satisfice than evaluate, and will often follow social leads rather than think. Things tend to converge – Behaviour trends to a consensus normal. When faced with choices people overwhelmingly just do what they see others doing. Humans are extraordinarily good at mirroring behaviours and receiving influence. People “outsource the cognitive load” of choices to the crowd. Mark’s headline quote was probably “the real influence happens at the table next to you”. Reference examples, word of mouth, and social influence are tremendously important, and so talking about product experiences may be more important than talking about products. This reminded me of Kathy Sierra’s “creating bad-ass users” concept of designing to make people more awesome rather than products they like. If we can expose user-awesome, and make sharing easy, we can normalise the behaviours we want. If we normalize the behaviours we want, people should make and post-rationalize the buying decisions we want.  Where we need to be: “A bigger boy made me do it” Where we are: “a wizard did it and ran away” However, it’s worth bearing in mind that some purchasing decisions are personal and informed rather than social and reactive. There’s a quadrant diagram, in fact. What was really interesting, though, towards the end of the talk, was some advice for working out how social your products might be. The standard technology adoption lifecycle graph is essentially about social product diffusion. So this idea isn’t really new. Geoffrey Moore’s “chasm” idea may not strictly apply. However, his concepts of beachheads and reference segments are exactly what is required to normalize and thus enable purchase decisions (behaviour change). The final thing is that in only very few categories does a better product actually affect purchase decision. Where the choice is personal and informed, this is true. But where it’s personal and impulsive, or in any way social, “better” is trumped by popularity, endorsement, or “point of sale salience”. UX, UCD, and e-commerce know this to be true. A better (and easier) experience will always beat “more features”. Easy to use, and easy to observe being used will beat “what the user says they want”. This made me think about the astounding stickiness of rational fallacies, “common sense” and the pathological willful simplifications of the media. Rational fallacies seem like they’re basically the heuristics we use for post-rationalization. If I were profoundly grimy and cynical, I’d suggest deploying a boat-load in our messaging, to see if they’re really as sticky and appealing as they look. 4 – Changing behaviour through communication, Stephen Donajgrodzki This was a fantastic follow up to Mark’s session. Stephen basically talked us through some tactics used in public information/health comms that implement the kind of behavioural theory Mark introduced. The session was largely about how to get people to do (good) things they’re predisposed not to do, and how communication can (and can’t) make positive interventions. A couple of things stood out, in particular “implementation intentions” and how they can be linked to goals. For example, in order to get people to check and test their smoke alarms (a goal intention, rarely actualized  an information campaign will attempt to link this activity to the clocks going back or forward (a strong implementation intention, well-actualized). The talk reinforced the idea that making behaviour changes easy and visible normalizes them and makes them more likely to succeed. To do this, they have to be embodied throughout a product and service cycle. Experiential disconnects undermine the normalization. So campaigns, products, and customer interactions must be aligned. This is underscored by the second section of the presentation, which talked about interventions and pre-conditions for change. Taking the examples of drug addiction and stopping smoking, Stephen showed us a framework for attempting (and succeeding or failing in) behaviour change. He noted that when the change is something people fundamentally want to do, and that is easy, this gets a to simpler. Coordinated, easily-observed environmental pressures create preconditions for change and build motivation. (price, pub smoking ban, ad campaigns, friend quitting, declining social acceptability) A triggering even leads to a change attempt. (getting a cold and panicking about how bad the cough is) Interventions can be made to enable an attempt (NHS services, public information, nicotine patches) If it succeeds – yay. If it fails, there’s strong negative enforcement. Triggering events seem largely personal, but messaging can intervene in the creation of preconditions and in supporting decisions. Stephen talked more about systems of thinking and “bounded rationality”. The idea being that to enable change you need to break through “automatic” thinking into “reflective” thinking. Disruption and emotion are great tools for this, but that is only the start of the process. It occurs to me that a great deal of market research is focused on determining triggers rather than analysing necessary preconditions. Although they are presumably related. The final section talked about setting goals. Marketing goals are often seen as deriving directly from business goals. However, marketing may be unable to deliver on these directly where decision and behaviour-change processes are involved. In those cases, marketing and communication goals should be to create preconditions. They should also consider priming and norms. Content marketing and brand awareness are good first steps here, as brands can be heuristics in decision making for choice-saturated consumers, or those seeking education. 5 – The power of engaged communities and how to build them, Harriet Minter (the Guardian) The meat of this was that you need to let communities define and establish themselves, and be quick to react to their needs. Harriet had been in charge of building the Guardian’s community sites, and learned a lot about how they come together, stabilize  grow, and react. Crucially, they can’t be about sales or push messaging. A community is not just an audience. It’s essential to start with what this particular segment or tribe are interested in, then what they want to hear. Eventually you can consider – in light of this – what they might want to buy, but you can’t start with the product. A community won’t cohere around one you’re pushing. Her tips for community building were (again, sorry, not verbatim): Set goals Have some targets. Community building sounds vague and fluffy, but you can have (and adjust) concrete goals. Think like a start-up This is the “lean” stuff. Try things, fail quickly, respond. Don’t restrict platforms Let the audience choose them, and be aware of their differences. For example, LinkedIn is very different to Twitter. Track your stats Related to the first point. Keeping an eye on the numbers lets you respond. They should be qualified, however. If you want a community of enterprise decision makers, headcount alone may be a bad metric – have you got CIOs, or just people who want to get jobs by mingling with CIOs? Build brand advocates Do things to involve people and make them awesome, and they’ll cheer-lead for you. The last part really got my attention. Little bits of drive-by kindness go a long way. But more than that, genuinely helping people turns them into powerful advocates. Harriet gave an example of the Guardian engaging with an aspiring journalist on its Q&A forums. Through a series of serendipitous encounters he became a BBC producer, and now enthusiastically speaks up for the Guardian community sites. Cultivating many small, authentic, influential voices may have a better pay-off than schmoozing the big guys. This could be particularly important in the context of Mark and Stephen’s models of social, endorsement-led, and example-led decision making. There’s a lot here I haven’t covered, and it may be worth some follow-up on community building. Thoughts I was quite sceptical of nudge theory and behavioural economics. First off it sounds too good to be true, and second it sounds too sinister to permit. But I haven’t done the background reading. So I’m going to, and if it seems to hold real water, and if it’s possible to do it ethically (Stephen’s presentations suggests it may be) then it’s probably worth exploring. The message seemed to be: change what people do, and they’ll work out why afterwards. Moreover, the people around them will do it too. Make the things you want them to do extraordinarily easy and very, very visible. Normalize and support the decisions you want them to make, and they’ll make them. In practice this means not talking about the thing, but showing the user-awesome. Glib? Perhaps. But it feels worth considering. Also, if I ever run a marketing conference, I’m going to ban speakers from using examples from Apple. Quite apart from not being consistently generalizable, it’s becoming an irritating cliché.

    Read the article

  • Building applications with WCF - Intro

    - by skjagini
    I am going to write series of articles using Windows Communication Framework (WCF) to develop client and server applications and this is the first part of that series. What is WCF As Juwal puts in his Programming WCF book, WCF provides an SDK for developing and deploying services on Windows, provides runtime environment to expose CLR types as services and consume services as CLR types. Building services with WCF is incredibly easy and it’s implementation provides a set of industry standards and off the shelf plumbing including service hosting, instance management, reliability, transaction management, security etc such that it greatly increases productivity Scenario: Lets consider a typical bank customer trying to create an account, deposit amount and transfer funds between accounts, i.e. checking and savings. To make it interesting, we are going to divide the functionality into multiple services and each of them working with database directly. We will run test cases with and without transactional support across services. In this post we will build contracts, services, data access layer, unit tests to verify end to end communication etc, nothing big stuff here and we dig into other features of the WCF in subsequent posts with incremental changes. In any distributed architecture we have two pieces i.e. services and clients. Services as the name implies provide functionality to execute various pieces of business logic on the server, and clients providing interaction to the end user. Services can be built with Web Services or with WCF. Service built on WCF have the advantage of binding independent, i.e. can run against TCP and HTTP protocol without any significant changes to the code. Solution Services Profile: For creating a new bank customer, getting details about existing customer ProfileContract ProfileService Checking Account: To get checking account balance, deposit or withdraw amount CheckingAccountContract CheckingAccountService Savings Account: To get savings account balance, deposit or withdraw amount SavingsAccountContract SavingsAccountService ServiceHost: To host services, i.e. running the services at particular address, binding and contract where client can connect to Client: Helps end user to use services like creating account and amount transfer between the accounts BankDAL: Data access layer to work with database     BankDAL It’s no brainer not to use an ORM as many matured products are available currently in market including Linq2Sql, Entity Framework (EF), LLblGenPro etc. For this exercise I am going to use Entity Framework 4.0, CTP 5 with code first approach. There are two approaches when working with data, data driven and code driven. In data driven we start by designing tables and their constrains in database and generate entities in code while in code driven (code first) approach entities are defined in code and the metadata generated from the entities is used by the EF to create tables and table constrains. In previous versions the entity classes had  to derive from EF specific base classes. In EF 4 it  is not required to derive from any EF classes, the entities are not only persistence ignorant but also enable full test driven development using mock frameworks.  Application consists of 3 entities, Customer entity which contains Customer details; CheckingAccount and SavingsAccount to hold the respective account balance. We could have introduced an Account base class for CheckingAccount and SavingsAccount which is certainly possible with EF mappings but to keep it simple we are just going to follow 1 –1 mapping between entity and table mappings. Lets start out by defining a class called Customer which will be mapped to Customer table, observe that the class is simply a plain old clr object (POCO) and has no reference to EF at all. using System;   namespace BankDAL.Model { public class Customer { public int Id { get; set; } public string FullName { get; set; } public string Address { get; set; } public DateTime DateOfBirth { get; set; } } }   In order to inform EF about the Customer entity we have to define a database context with properties of type DbSet<> for every POCO which needs to be mapped to a table in database. EF uses convention over configuration to generate the metadata resulting in much less configuration. using System.Data.Entity;   namespace BankDAL.Model { public class BankDbContext: DbContext { public DbSet<Customer> Customers { get; set; } } }   Entity constrains can be defined through attributes on Customer class or using fluent syntax (no need to muscle with xml files), CustomerConfiguration class. By defining constrains in a separate class we can maintain clean POCOs without corrupting entity classes with database specific information.   using System; using System.Data.Entity.ModelConfiguration;   namespace BankDAL.Model { public class CustomerConfiguration: EntityTypeConfiguration<Customer> { public CustomerConfiguration() { Initialize(); }   private void Initialize() { //Setting the Primary Key this.HasKey(e => e.Id);   //Setting required fields this.HasRequired(e => e.FullName); this.HasRequired(e => e.Address); //Todo: Can't create required constraint as DateOfBirth is not reference type, research it //this.HasRequired(e => e.DateOfBirth); } } }   Any queries executed against Customers property in BankDbContext are executed against Cusomers table. By convention EF looks for connection string with key of BankDbContext when working with the context.   We are going to define a helper class to work with Customer entity with methods for querying, adding new entity etc and these are known as repository classes, i.e., CustomerRepository   using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CustomerRepository { private readonly IDbSet<Customer> _customers;   public CustomerRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _customers = bankDbContext.Customers; }   public IQueryable<Customer> Query() { return _customers; }   public void Add(Customer customer) { _customers.Add(customer); } } }   From the above code it is observable that the Query methods returns customers as IQueryable i.e. customers are retrieved only when actually used i.e. iterated. Returning as IQueryable also allows to execute filtering and joining statements from business logic using lamba expressions without cluttering the data access layer with tens of methods.   Our CheckingAccountRepository and SavingsAccountRepository look very similar to each other using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CheckingAccountRepository { private readonly IDbSet<CheckingAccount> _checkingAccounts;   public CheckingAccountRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _checkingAccounts = bankDbContext.CheckingAccounts; }   public IQueryable<CheckingAccount> Query() { return _checkingAccounts; }   public void Add(CheckingAccount account) { _checkingAccounts.Add(account); }   public IQueryable<CheckingAccount> GetAccount(int customerId) { return (from act in _checkingAccounts where act.CustomerId == customerId select act); }   } } The repository classes look very similar to each other for Query and Add methods, with the help of C# generics and implementing repository pattern (Martin Fowler) we can reduce the repeated code. Jarod from ElegantCode has posted an article on how to use repository pattern with EF which we will implement in the subsequent articles along with WCF Unity life time managers by Drew Contracts It is very easy to follow contract first approach with WCF, define the interface and append ServiceContract, OperationContract attributes. IProfile contract exposes functionality for creating customer and getting customer details.   using System; using System.ServiceModel; using BankDAL.Model;   namespace ProfileContract { [ServiceContract] public interface IProfile { [OperationContract] Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth);   [OperationContract] Customer GetCustomer(int id);   } }   ICheckingAccount contract exposes functionality for working with checking account, i.e., getting balance, deposit and withdraw of amount. ISavingsAccount contract looks the same as checking account.   using System.ServiceModel;   namespace CheckingAccountContract { [ServiceContract] public interface ICheckingAccount { [OperationContract] decimal? GetCheckingAccountBalance(int customerId);   [OperationContract] void DepositAmount(int customerId,decimal amount);   [OperationContract] void WithdrawAmount(int customerId, decimal amount);   } }   Services   Having covered the data access layer and contracts so far and here comes the core of the business logic, i.e. services.   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } ProfileService implements the IProfile contract for creating customer and getting customer detail using CustomerRepository. using System; using System.Linq; using System.ServiceModel; using BankDAL; using BankDAL.Model; using BankDAL.Repositories; using ProfileContract;   namespace ProfileService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Profile: IProfile { public Customer CreateAccount( string customerName, string address, DateTime dateOfBirth) { Customer cust = new Customer { FullName = customerName, Address = address, DateOfBirth = dateOfBirth };   using (var bankDbContext = new BankDbContext()) { new CustomerRepository(bankDbContext).Add(cust); bankDbContext.SaveChanges(); } return cust; }   public Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth) { return CreateAccount(customerName, address, dateOfBirth); } public Customer GetCustomer(int id) { return new CustomerRepository(new BankDbContext()).Query() .Where(i => i.Id == id).FirstOrDefault(); }   } } From the above code you shall observe that we are calling bankDBContext’s SaveChanges method and there is no save method specific to customer entity because EF manages all the changes centralized at the context level and all the pending changes so far are submitted in a batch and it is represented as Unit of Work. Similarly Checking service implements ICheckingAccount contract using CheckingAccountRepository, notice that we are throwing overdraft exception if the balance falls by zero. WCF has it’s own way of raising exceptions using fault contracts which will be explained in the subsequent articles. SavingsAccountService is similar to CheckingAccountService. using System; using System.Linq; using System.ServiceModel; using BankDAL.Model; using BankDAL.Repositories; using CheckingAccountContract;   namespace CheckingAccountService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Checking:ICheckingAccount { public decimal? GetCheckingAccountBalance(int customerId) { using (var bankDbContext = new BankDbContext()) { CheckingAccount account = (new CheckingAccountRepository(bankDbContext) .GetAccount(customerId)).FirstOrDefault();   if (account != null) return account.Balance;   return null; } }   public void DepositAmount(int customerId, decimal amount) { using(var bankDbContext = new BankDbContext()) { var checkingAccountRepository = new CheckingAccountRepository(bankDbContext); CheckingAccount account = (checkingAccountRepository.GetAccount(customerId)) .FirstOrDefault();   if (account == null) { account = new CheckingAccount() { CustomerId = customerId }; checkingAccountRepository.Add(account); }   account.Balance = account.Balance + amount; if (account.Balance < 0) throw new ApplicationException("Overdraft not accepted");   bankDbContext.SaveChanges(); } } public void WithdrawAmount(int customerId, decimal amount) { DepositAmount(customerId, -1*amount); } } }   BankServiceHost The host acts as a glue binding contracts with it’s services, exposing the endpoints. The services can be exposed either through the code or configuration file, configuration file is preferred as it allows run time changes to service behavior even after deployment. We have 3 services and for each of the service you need to define name (the class that implements the service with fully qualified namespace) and endpoint known as ABC, i.e. address, binding and contract. We are using netTcpBinding and have defined the base address with for each of the contracts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <system.serviceModel> <services> <service name="ProfileService.Profile"> <endpoint binding="netTcpBinding" contract="ProfileContract.IProfile"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Profile"/> </baseAddresses> </host> </service> <service name="CheckingAccountService.Checking"> <endpoint binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Checking"/> </baseAddresses> </host> </service> <service name="SavingsAccountService.Savings"> <endpoint binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Savings"/> </baseAddresses> </host> </service> </services> </system.serviceModel> Have to open the services by creating service host which will handle the incoming requests from clients.   using System;   namespace ServiceHost { class Program { static void Main(string[] args) { CreateHosts(); Console.ReadLine(); }   private static void CreateHosts() { CreateHost(typeof(ProfileService.Profile),"Profile Service"); CreateHost(typeof(SavingsAccountService.Savings), "Savings Account Service"); CreateHost(typeof(CheckingAccountService.Checking), "Checking Account Service"); }   private static void CreateHost(Type type, string hostDescription) { System.ServiceModel.ServiceHost host = new System.ServiceModel.ServiceHost(type); host.Open();   if (host.ChannelDispatchers != null && host.ChannelDispatchers.Count != 0 && host.ChannelDispatchers[0].Listener != null) Console.WriteLine("Started: " + host.ChannelDispatchers[0].Listener.Uri); else Console.WriteLine("Failed to start:" + hostDescription); } } } BankClient    The client has no knowledge about service business logic other than the functionality it exposes through the contract, end points and a proxy to work against. The endpoint data and server proxy can be generated by right clicking on the project reference and choosing ‘Add Service Reference’ and entering the service end point address. Or if you have access to source, you can manually reference contract dlls and update clients configuration file to point to the service end point if the server and client happens to be being built using .Net framework. One of the pros with the manual approach is you don’t have to work against messy code generated files.   <system.serviceModel> <client> <endpoint name="tcpProfile" address="net.tcp://localhost:1000/Profile" binding="netTcpBinding" contract="ProfileContract.IProfile"/> <endpoint name="tcpCheckingAccount" address="net.tcp://localhost:1000/Checking" binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <endpoint name="tcpSavingsAccount" address="net.tcp://localhost:1000/Savings" binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/>   </client> </system.serviceModel> The client uses a façade to connect to the services   using System.ServiceModel; using CheckingAccountContract; using ProfileContract; using SavingsAccountContract;   namespace Client { public class ProxyFacade { public static IProfile ProfileProxy() { return (new ChannelFactory<IProfile>("tcpProfile")).CreateChannel(); }   public static ICheckingAccount CheckingAccountProxy() { return (new ChannelFactory<ICheckingAccount>("tcpCheckingAccount")) .CreateChannel(); }   public static ISavingsAccount SavingsAccountProxy() { return (new ChannelFactory<ISavingsAccount>("tcpSavingsAccount")) .CreateChannel(); }   } }   With that in place, lets get our unit tests going   using System; using System.Diagnostics; using BankDAL.Model; using NUnit.Framework; using ProfileContract;   namespace Client { [TestFixture] public class Tests { private void TransferFundsFromSavingsToCheckingAccount(int customerId, decimal amount) { ProxyFacade.CheckingAccountProxy().DepositAmount(customerId, amount); ProxyFacade.SavingsAccountProxy().WithdrawAmount(customerId, amount); }   private void TransferFundsFromCheckingToSavingsAccount(int customerId, decimal amount) { ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, amount); ProxyFacade.CheckingAccountProxy().WithdrawAmount(customerId, amount); }     [Test] public void CreateAndGetProfileTest() { IProfile profile = ProxyFacade.ProfileProxy(); const string customerName = "Tom"; int customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)).Id; Customer customer = profile.GetCustomer(customerId); Assert.AreEqual(customerName,customer.FullName); }   [Test] public void DepositWithDrawAndTransferAmountTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Smith" + DateTime.Now.ToString("HH:mm:ss"); var customer = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)); // Deposit to Savings ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 100); ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 25); Assert.AreEqual(125, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); // Withdraw ProxyFacade.SavingsAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(95, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id));   // Deposit to Checking ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 60); ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 40); Assert.AreEqual(100, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); // Withdraw ProxyFacade.CheckingAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(70, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Savings to Checking TransferFundsFromSavingsToCheckingAccount(customer.Id,10); Assert.AreEqual(85, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Checking to Savings TransferFundsFromCheckingToSavingsAccount(customer.Id, 50); Assert.AreEqual(135, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(30, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); }   [Test] public void FundTransfersWithOverDraftTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Angelina" + DateTime.Now.ToString("HH:mm:ss");   var customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1972, 1, 1)).Id;   ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, 100); TransferFundsFromSavingsToCheckingAccount(customerId,80); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId));   try { TransferFundsFromSavingsToCheckingAccount(customerId,30); } catch (Exception e) { Debug.WriteLine(e.Message); }   Assert.AreEqual(110, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId)); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); } } }   We are creating a new instance of the channel for every operation, we will look into instance management and how creating a new instance of channel affects it in subsequent articles. The first two test cases deals with creation of Customer, deposit and withdraw of month between accounts. The last case, FundTransferWithOverDraftTest() is interesting. Customer starts with depositing $100 in SavingsAccount followed by transfer of $80 in to checking account resulting in $20 in savings account.  Customer then initiates $30 transfer from Savings to Checking resulting in overdraft exception on Savings with $30 being deposited to Checking. As we are not running both the requests in transactions the customer ends up with more amount than what he started with $100. In subsequent posts we will look into transactions handling.  Make sure the ServiceHost project is set as start up project and start the solution. Run the test cases either from NUnit client or TestDriven.Net/Resharper which ever is your favorite tool. Make sure you have updated the data base connection string in the ServiceHost config file to point to your local database

    Read the article

  • Scripting out Contained Database Users

    - by Argenis
      Today’s blog post comes from a Twitter thread on which @SQLSoldier, @sqlstudent144 and @SQLTaiob were discussing the internals of contained database users. Unless you have been living under a rock, you’ve heard about the concept of contained users within a SQL Server database (hit the link if you have not). In this article I’d like to show you that you can, indeed, script out contained database users and recreate them on another database, as either contained users or as good old fashioned logins/server principals as well. Why would this be useful? Well, because you would not need to know the password for the user in order to recreate it on another instance. I know there is a limited number of scenarios where this would be necessary, but nonetheless I figured I’d throw this blog post to show how it can be done. A more obscure use case: with the password hash (which I’m about to show you how to obtain) you could also crack the password using a utility like hashcat, as highlighted on this SQLServerCentral article. The Investigation SQL Server uses System Base Tables to save the password hashes of logins and contained database users. For logins it uses sys.sysxlgns, whereas for contained database users it leverages sys.sysowners. I’ll show you what I do to figure this stuff out: I create a login/contained user, and then I immediately browse the transaction log with, for example, fn_dblog. It’s pretty obvious that only two base tables touched by the operation are sys.sysxlgns, and also sys.sysprivs – the latter is used to track permissions. If I connect to the DAC on my instance, I can query for the password hash of this login I’ve just created. A few interesting things about this hash. This was taken on my laptop, and I happen to be running SQL Server 2014 RTM CU2, which is the latest public build of SQL Server 2014 as of time of writing. In 2008 R2 and prior versions (back to 2000), the password hashes would start with 0x0100. The reason why this changed is because starting with SQL Server 2012 password hashes are kept using a SHA512 algorithm, as opposed to SHA-1 (used since 2000) or Snefru (used in 6.5 and 7.0). SHA-1 is nowadays deemed unsafe and is very easy to crack. For regular SQL logins, this information is exposed through the sys.sql_logins catalog view, so there is really no need to connect to the DAC to grab an SID/password hash pair. For contained database users, there is (currently) no method of obtaining SID or password hashes without connecting to the DAC. If we create a contained database user, this is what we get from the transaction log: Note that the System Base Table used in this case is sys.sysowners. sys.sysprivs is used as well, and again this is to track permissions. To query sys.sysowners, you would have to connect to the DAC, as I mentioned previously. And this is what you would get: There are other ways to figure out what SQL Server uses under the hood to store contained database user password hashes, like looking at the execution plan for a query to sys.dm_db_uncontained_entities (Thanks, Robert Davis!) SIDs, Logins, Contained Users, and Why You Care…Or Not. One of the reasons behind the existence of Contained Users was the concept of portability of databases: it is really painful to maintain Server Principals (Logins) synced across most shared-nothing SQL Server HA/DR technologies (Mirroring, Availability Groups, and Log Shipping). Often times you would need the Security Identifier (SID) of these logins to match across instances, and that meant that you had to fetch whatever SID was assigned to the login on the principal instance so you could recreate it on a secondary. With contained users you normally wouldn’t care about SIDs, as the users are always available (and synced, as long as synchronization takes place) across instances. Now you might be presented some particular requirement that might specify that SIDs synced between logins on certain instances and contained database users on other databases. How would you go about creating a contained database user with a specific SID? The answer is that you can’t do it directly, but there’s a little trick that would allow you to do it. Create a login with a specified SID and password hash, create a user for that server principal on a partially contained database, then migrate that user to contained using the system stored procedure sp_user_migrate_to_contained, then drop the login. CREATE LOGIN <login_name> WITH PASSWORD = <password_hash> HASHED, SID = <sid> ; GO USE <partially_contained_db>; GO CREATE USER <user_name> FROM LOGIN <login_name>; GO EXEC sp_migrate_user_to_contained @username = <user_name>, @rename = N’keep_name’, @disablelogin = N‘disable_login’; GO DROP LOGIN <login_name>; GO Here’s how this skeleton would look like in action: And now I have a contained user with a specified SID and password hash. In my example above, I renamed the user after migrated it to contained so that it is, hopefully, easier to understand. Enjoy!

    Read the article

  • Making your WCF Web Apis to speak in multiple languages

    - by cibrax
    One of the key aspects of how the web works today is content negotiation. The idea of content negotiation is based on the fact that a single resource can have multiple representations, so user agents (or clients) and servers can work together to chose one of them. The http specification defines several “Accept” headers that a client can use to negotiate content with a server, and among all those, there is one for restricting the set of natural languages that are preferred as a response to a request, “Accept-Language”. For example, a client can specify “es” in this header for specifying that he prefers to receive the content in spanish or “en” in english. However, there are certain scenarios where the “Accept-Language” header is just not enough, and you might want to have a way to pass the “accepted” language as part of the resource url as an extension. For example, http://localhost/ProductCatalog/Products/1.es” returns all the descriptions for the product with id “1” in spanish. This is useful for scenarios in which you want to embed the link somewhere, such a document, an email or a page.  Supporting both scenarios, the header and the url extension, is really simple in the new WCF programming model. You only need to provide a processor implementation for any of them. Let’s say I have a resource implementation as part of a product catalog I want to expose with the WCF web apis. [ServiceContract][Export]public class ProductResource{ IProductRepository repository;  [ImportingConstructor] public ProductResource(IProductRepository repository) { this.repository = repository; }  [WebGet(UriTemplate = "{id}")] public Product Get(string id, HttpResponseMessage response) { var product = repository.GetById(int.Parse(id)); if (product == null) { response.StatusCode = HttpStatusCode.NotFound; response.Content = new StringContent(Messages.OrderNotFound); }  return product; }} The Get method implementation in this resource assumes the desired culture will be attached to the current thread (Thread.CurrentThread.Culture). Another option is to pass the desired culture as an additional argument in the method, so my processor implementation will handle both options. This method is also using an auto-generated class for handling string resources, Messages, which is available in the different cultures that the service implementation supports. For example, Messages.resx contains “OrderNotFound”: “Order Not Found” Messages.es.resx contains “OrderNotFound”: “No se encontro orden” The processor implementation bellow tackles the first scenario, in which the desired language is passed as part of the “Accept-Language” header. public class CultureProcessor : Processor<HttpRequestMessage, CultureInfo>{ string defaultLanguage = null;  public CultureProcessor(string defaultLanguage = "en") { this.defaultLanguage = defaultLanguage; this.InArguments[0].Name = HttpPipelineFormatter.ArgumentHttpRequestMessage; this.OutArguments[0].Name = "culture"; }  public override ProcessorResult<CultureInfo> OnExecute(HttpRequestMessage request) { CultureInfo culture = null; if (request.Headers.AcceptLanguage.Count > 0) { var language = request.Headers.AcceptLanguage.First().Value; culture = new CultureInfo(language); } else { culture = new CultureInfo(defaultLanguage); }  Thread.CurrentThread.CurrentCulture = culture; Messages.Culture = culture;  return new ProcessorResult<CultureInfo> { Output = culture }; }}   As you can see, the processor initializes a new CultureInfo instance with the value provided in the “Accept-Language” header, and set that instance to the current thread and the auto-generated resource class with all the messages. In addition, the CultureInfo instance is returned as an output argument called “culture”, making possible to receive that argument in any method implementation   The following code shows the implementation of the processor for handling languages as url extensions.   public class CultureExtensionProcessor : Processor<HttpRequestMessage, Uri>{ public CultureExtensionProcessor() { this.OutArguments[0].Name = HttpPipelineFormatter.ArgumentUri; }  public override ProcessorResult<Uri> OnExecute(HttpRequestMessage httpRequestMessage) { var requestUri = httpRequestMessage.RequestUri.OriginalString;  var extensionPosition = requestUri.LastIndexOf(".");  if (extensionPosition > -1) { var extension = requestUri.Substring(extensionPosition + 1);  var query = httpRequestMessage.RequestUri.Query;  requestUri = string.Format("{0}?{1}", requestUri.Substring(0, extensionPosition), query); ;  var uri = new Uri(requestUri);  httpRequestMessage.Headers.AcceptLanguage.Clear();  httpRequestMessage.Headers.AcceptLanguage.Add(new StringWithQualityHeaderValue(extension));  var result = new ProcessorResult<Uri>();  result.Output = uri;  return result; }  return new ProcessorResult<Uri>(); }} The last step is to inject both processors as part of the service configuration as it is shown bellow, public void RegisterRequestProcessorsForOperation(HttpOperationDescription operation, IList<Processor> processors, MediaTypeProcessorMode mode){ processors.Insert(0, new CultureExtensionProcessor()); processors.Add(new CultureProcessor());} Once you configured the two processors in the pipeline, your service will start speaking different languages :). Note: Url extensions don’t seem to be working in the current bits when you are using Url extensions in a base address. As far as I could see, ASP.NET intercepts the request first and tries to route the request to a registered ASP.NET Http Handler with that extension. For example, “http://localhost/ProductCatalog/products.es” does not work, but “http://localhost/ProductCatalog/products/1.es” does.

    Read the article

  • New Replication, Optimizer and High Availability features in MySQL 5.6.5!

    - by Rob Young
    As the Product Manager for the MySQL database it is always great to announce when the MySQL Engineering team delivers another great product release.  As a field DBA and developer it is even better when that release contains improvements and innovation that I know will help those currently using MySQL for apps that range from modest intranet sites to the most highly trafficked web sites on the web.  That said, it is my pleasure to take my hat off to MySQL Engineering for today's release of the MySQL 5.6.5 Development Milestone Release ("DMR"). The new highlighted features in MySQL 5.6.5 are discussed here: New Self-Healing Replication ClustersThe 5.6.5 DMR improves MySQL Replication by adding Global Transaction Ids and automated utilities for self-healing Replication clusters.  Prior to 5.6.5 this has been somewhat of a pain point for MySQL users with most developing custom solutions or looking to costly, complex third-party solutions for these capabilities.  With 5.6.5 these shackles are all but removed by a solution that is included with the GPL version of the database and supporting GPL tools.  You can learn all about the details of the great, problem solving Replication features in MySQL 5.6 in Mat Keep's Developer Zone article.  New Replication Administration and Failover UtilitiesAs mentioned above, the new Replication features, Global Transaction Ids specifically, are now supported by a set of automated GPL utilities that leverage the new GTIDs to provide administration and manual or auto failover to the most up to date slave (that is the default, but user configurable if needed) in the event of a master failure. The new utilities, along with links to Engineering related blogs, are discussed in detail in the DevZone Article noted above. Better Query Optimization and ThroughputThe MySQL Optimizer team continues to amaze with the latest round of improvements in 5.6.5. Along with much refactoring of the legacy code base, the Optimizer team has improved complex query optimization and throughput by adding these functional improvements: Subquery Optimizations - Subqueries are now included in the Optimizer path for runtime optimization.  Better throughput of nested queries enables application developers to simplify and consolidate multiple queries and result sets into a single unit or work. Optimizer now uses CURRENT_TIMESTAMP as default for DATETIME columns - For simplification, this eliminates the need for application developers to assign this value when a column of this type is blank by default. Optimizations for Range based queries - Optimizer now uses ready statistics vs Index based scans for queries with multiple range values. Optimizations for queries using filesort and ORDER BY.  Optimization criteria/decision on execution method is done now at optimization vs parsing stage. Print EXPLAIN in JSON format for hierarchical readability and Enterprise tool consumption. You can learn the details about these new features as well all of the Optimizer based improvements in MySQL 5.6 by following the Optimizer team blog. You can download and try the MySQL 5.6.5 DMR here. (look under "Development Releases")  Please let us know what you think!  The new HA utilities for Replication Administration and Failover are available as part of the MySQL Workbench Community Edition, which you can download here .Also New in MySQL LabsAs has become our tradition when announcing DMRs we also like to provide "Early Access" development features to the MySQL Community via the MySQL Labs.  Today is no exception as we are also releasing the following to Labs for you to download, try and let us know your thoughts on where we need to improve:InnoDB Online OperationsMySQL 5.6 now provides Online ADD Index, FK Drop and Online Column RENAME.  These operations are non-blocking and will continue to evolve in future DMRs.  You can learn the grainy details by following John Russell's blog.InnoDB data access via Memcached API ("NotOnlySQL") - Improved refresh of an earlier feature releaseSimilar to Cluster 7.2, MySQL 5.6 provides direct NotOnlySQL access to InnoDB data via the familiar Memcached API. This provides the ultimate in flexibility for developers who need fast, simple key/value access and complex query support commingled within their applications.Improved Transactional Performance, ScaleThe InnoDB Engineering team has once again under promised and over delivered in the area of improved performance and scale.  These improvements are also included in the aggregated Spring 2012 labs release:InnoDB CPU cache performance improvements for modern, multi-core/CPU systems show great promise with internal tests showing:    2x throughput improvement for read only activity 6x throughput improvement for SELECT range Read/Write benchmarks are in progress More details on the above are available here. You can download all of the above in an aggregated "InnoDB 2012 Spring Labs Release" binary from the MySQL Labs. You can also learn more about these improvements and about related fixes to mysys mutex and hash sort by checking out the InnoDB team blog.MySQL 5.6.5 is another installment in what we believe will be the best release of the MySQL database ever.  It also serves as a shining example of how the MySQL Engineering team at Oracle leads in MySQL innovation.You can get the overall Oracle message on the MySQL 5.6.5 DMR and Early Access labs features here. As always, thanks for your continued support of MySQL, the #1 open source database on the planet!

    Read the article

  • Some notes on Reflector 7

    - by CliveT
    Both Bart and I have blogged about some of the changes that we (and other members of the team) have made to .NET Reflector for version 7, including the new tabbed browsing model, the inclusion of Jason Haley's PowerCommands add-in and some improvements to decompilation such as handling iterator blocks. The intention of this blog post is to cover all of the main new features in one place, and to describe the three new editions of .NET Reflector 7. If you'd simply like to try out the latest version of the beta for yourself you can do so here. Three new editions .NET Reflector 7 will come in three new editions: .NET Reflector .NET Reflector VS .NET Reflector VSPro The first edition is just the standalone Windows application. The latter two editions include the Windows application, but also add the power of Reflector into Visual Studio so that you can save time switching tools and quickly get to the bottom of a debugging issue that involves third-party code. Let's take a look at some of the new features in each edition. Tabbed browsing .NET Reflector now has a tabbed browsing model, in which the individual tabs have independent histories. You can open a new tab to view the selected object by using CTRL+CLICK. I've found this really useful when I'm investigating a particular piece of code but then want to focus on some other methods that I find along the way. For version 7, we wanted to implement the basic idea of tabs to see whether it is something that users will find helpful. If it is something that enhances productivity, we will add more tab-based features in a future version. PowerCommands add-in We have also included Jason Haley's PowerCommands add-in as part of version 7. This add-in provides a number of useful commands, including support for opening .xap files and extracting the constituent assemblies, and a query editor that allows C# queries to be written and executed against the Reflector object model . All of the PowerCommands features can be turned on from the options menu. We will be really interested to see what people are finding useful for further integration into the main tool in the future. My personal favourite part of the PowerCommands add-in is the query editor. You can set up as many of your own queries as you like, but we provide 25 to get you started. These do useful things like listing all extension methods in a given assembly, and displaying other lower-level information, such as the number of times that a given method uses the box IL instruction. These queries can be extracted and then executed from the 'Run Query' context menu within the assembly explorer. Moreover, the queries can be loaded, modified, and saved using the built-in editor, allowing very specific user customization and sharing of queries. The PowerCommands add-in contains many other useful utilities. For example, you can open an item using an external application, work with enumeration bit flags, or generate assembly binding redirect files. You can see Bart's earlier post for a more complete list. .NET Reflector VS .NET Reflector VS adds a brand new Reflector object browser into Visual Studio to save you time opening .NET Reflector separately and browsing for an object. A 'Decompile and Explore' option is also added to the context menu of references in the Solution Explorer, so you don't need to leave Visual Studio to look through decompiled code. We've also added some simple navigation features to allow you to move through the decompiled code as quickly and easily as you can in .NET Reflector. When this is selected, the add-in decompiles the given assembly, Once the decompilation has finished, a clone of the Reflector assembly explorer can be used inside Visual Studio. When Reflector generates the source code, it records the location information. You can therefore navigate from the source file to other decompiled source using the 'Go To Definition' context menu item. This then takes you to the definition in another decompiled assembly. .NET Reflector VSPro .NET Reflector VSPro builds on the features in .NET Reflector VS to add the ability to debug any source code you decompile. When you decompile with .NET Reflector VSPro, a matching .pdb is generated, so you can use Visual Studio to debug the source code as if it were part of the project. You can now use all the standard debugging techniques that you are used to in the Visual Studio debugger, and step through decompiled code as if it were your own. Again, you can select assemblies for decompilation. They are then decompiled. And then you can debug as if they were one of your own source code files. The future of .NET Reflector As I have mentioned throughout this post, most of the new features in version 7 are exploratory steps and we will be watching feedback closely. Although we don't want to speculate now about any other new features or bugs that will or won't be fixed in the next few versions of .NET Reflector, Bart has mentioned in a previous post that there are lots of improvements we intend to make. We plan to do this with great care and without taking anything away from the simplicity of the core product. User experience is something that we pride ourselves on at Red Gate, and it is clear that Reflector is still a long way off our usual standards. We plan for the next few versions of Reflector to be worked on by some of our top usability specialists who have been involved with our other market-leading products such as the ANTS Profilers and SQL Compare. I re-iterate the need for the really great simple mode in .NET Reflector to remain intact regardless of any other improvements we are planning to make. I really hope that you enjoy using some of the new features in version 7 and that Reflector continues to be your favourite .NET development tool for a long time to come.

    Read the article

  • Kendo UI Mobile with Knockout for Master-Detail Views

    - by Steve Michelotti
    Lately I’ve been playing with Kendo UI Mobile to build iPhone apps. It’s similar to jQuery Mobile in that they are both HTML5/JavaScript based frameworks for buildings mobile apps. The primary thing that drew me to investigate Kendo UI was its innate ability to adaptively render a native looking app based on detecting the device it’s currently running on. In other words, it will render to look like a native iPhone app if it’s running on an iPhone and it will render to look like a native Droid app if it’s running on a Droid. This is in contrast to jQuery Mobile which looks the same on all devices and, therefore, it can never quite look native for whatever device it’s running on. My first impressions of Kendo UI were great. Using HTML5 data-* attributes to define “roles” for UI elements is easy, the rendering looked great, and the basic navigation was simple and intuitive. However, I ran into major confusion when trying to figure out how to “correctly” build master-detail views. Since I was already very family with KnockoutJS, I set out to use that framework in conjunction with Kendo UI Mobile to build the following simple scenario: I wanted to have a simple “Task Manager” application where my first screen just showed a list of tasks like this:   Then clicking on a specific task would navigate to a detail screen that would show all details of the specific task that was selected:   Basic navigation between views in Kendo UI is simple. The href of an <a> tag just needs to specify a hash tag followed by the ID of the view to navigate to as shown in this jsFiddle (notice the href of the <a> tag matches the id of the second view):   Direct link to jsFiddle: here. That is all well and good but the problem I encountered was: how to pass data between the views? Specifically, I need the detail view to display all the details of whichever task was selected. If I was doing this with my typical technique with KnockoutJS, I know exactly what I would do. First I would create a view model that had my collection of tasks and a property for the currently selected task like this: 1: function ViewModel() { 2: var self = this; 3: self.tasks = ko.observableArray(data); 4: self.selectedTask = ko.observable(null); 5: } Then I would bind my list of tasks to the unordered list - I would attach a “click” handler to each item (each <li> in the unordered list) so that it would select the “selectedTask” for the view model. The problem I found is this approach simply wouldn’t work for Kendo UI Mobile. It completely ignored the click handlers that I was trying to attach to the <a> tags – it just wanted to look at the href (at least that’s what I observed). But if I can’t intercept this, then *how* can I pass data or any context to the next view? The only thing I was able to find in the Kendo documentation is that you can pass query string arguments on the view name you’re specifying in the href. This enabled me to do the following: Specify the task ID in each href – something like this: <a href=”#taskDetail?id=3></a> Attach an “init method” (via the “data-show” attribute on the details view) that runs whenever the view is activated Inside this “init method”, grab the task ID passed from the query string to look up the item from my view model’s list of tasks in order to set the selected task I was able to get all that working with about 20 lines of JavaScript as shown in this jsFiddle. If you click on the Results tab, you can navigate between views and see the the detail screen is correctly binding to the selected item:   Direct link to jsFiddle: here.   With all that being done, I was very happy to get it working with the behavior I wanted. However, I have no idea if that is the “correct” way to do it or if there is a “better” way to do it. I know that Kendo UI comes with its own data binding framework but my preference is to be able to use (the well-documented) KnockoutJS since I’m already familiar with that framework rather than having to learn yet another new framework. While I think my solution above is probably “acceptable”, there are still a couple of things that bug me about it. First, it seems odd that I have to loop through my items to *find* my selected item based on the ID that was passed on the query string - normally, with Knockout I can just refer directly to my selected item from where it was used. Second, it didn’t feel exactly right that I had to rely on the “data-show” method of the details view to set my context – normally with Knockout, I could just attach a click handler to the <a> tag that was actually clicked by the user in order to set the “selected item.” I’m not sure if I’m being too picky. I know there are many people that have *way* more expertise in Kendo UI compared to me – I’d be curious to know if there are better ways to achieve the same results.

    Read the article

  • Trigger Happy

    - by Tim Dexter
    Its been a while, I know, we’ll say no more OK? I’ll just write …In the latest BIP 11.1.1.6 release and if I’m really honest; the release before this (we'll call it dot 5 for brevity.) The boys and gals in the engine room have been real busy enhancing BIP with some new functionality. Those of you that use the scheduling engine in OBIEE may already know and use the ‘conditional scheduling’ feature. This allows you to be more intelligent about what reports get run and sent to folks on a scheduled basis. You create a ‘trigger’ analysis (answer) that is executed at schedule time prior to the main report. When the schedule rolls around, the trigger is run, if it returns rows, then the main report is run and delivered. If there are no rows returned, then the main report is not run. Useful right? Your users are not bombarded with 20 reports in their inbox every week that they need to wade throu. They get a handful that they know they need to look at. If you ensure you use conditional formatting in the report then they can find the anomalous data in the reports very quickly and move on to the rest of their day more quickly. You could even think of OBIEE as a virtual team member, scouring the data on your behalf 24/7 and letting you know when its found an issue.BI Publisher, wanting the team t-shirt and the khaki pants, has followed suit. You can now set up ‘triggers’ for it to execute before it runs the main report. Just like its big brother, if the scheduled report trigger returns rows of data; it then executes the main report. Otherwise, the report is skipped until the next schedule time rolls around. Sound familiar?BIP differs a little, in that you only need to construct a query to act as the trigger rather than a complete report. Let assume we have a monthly wage by department report on a schedule. We only want to send the report to managers if their departmental wages reach and/or exceed a certain amount. The toughest part about this is coming up with the SQL to test the business rule you want to implement. For my example, its not that tough: select d.department_name, sum(e.salary) as wage_total from employees e, departments d where d.department_id = e.department_id group by d.department_name having sum(e.salary) > 230000 We're looking for departments where the wage cost is greater than 230,000 Dexter Dollars! With a bit of messing I found out you can parametrize the query. Users can then set a value at schedule time if they need to. To create the trigger is straightforward enough. You can create multiple triggers for users to select at schedule time. Notice I also used a parameter in the query, :wamount. Note the matching parameter in the tree on the left. You also dont need to return multiple columns, one is fine, the key is if there are rows returned. You can build the rest of your report as usual. At scheduling time the Schedule tab has a bit more on it. If your users want to set the trigger, they check the Use Trigger box. The page will then pop fields to pick the appropriate trigger they want to use, even a trigger on another data model if needed. Note it will also ask for the parameter value associated with the trigger. At this point you should note that the data model does not make a distinction between trigger and data model (extract) parameters. So users will see the parameters on the General and Schedule tabs. If per chance you do need to just have a trigger parameters. You can just hide them from the report using the Parameters popup in the report designer, just un-check the 'Show' box I have tested the opposite case where you do not want main report parameters seen in the trigger section. BIP handles that for you! Once the report hits its allotted schedule time, the trigger is executed. Based on the results the report will either run or be 'skipped.' Now, you have a smarter scheduler that will only deliver reports when folks need to see them and take action on the contents. More official info here for developers and here for users.

    Read the article

  • Closing the gap between strategy and execution with Oracle Business Intelligence 11g

    - by manan.goel(at)oracle.com
    Wikipedia defines strategy as a plan of action designed to achieve a particular goal. An example of this is General Electric's acquisitions and divestiture strategy (plan) designed to propel GE to number 1 or 2 place (goal) in every business segment that it operated in. Execution on the other hand can be defined as the actions taken to getting things done. In GE's case execution will be steps followed for mergers/acquisitions or divestiture. Business press has written extensively about the importance of both strategy and execution in achieving desired business objectives. Perhaps the quote from Thomas Edison says it best - "vision without execution is hallucination". Conversely, it can be said that "execution without vision" is well may be "wishful thinking". Research overwhelmingly point towards the wide gap between strategy and execution. According to a published study, 49% of surveyed executives perceive a gap between their organizations' ability to develop and communicate sound strategies and their ability to implement those strategies. Further, of these respondents, 64% don't have full confidence that their companies will be able to close the gap. Having established the severity and importance of the problem let's talk about the reasons for the strategy-execution gap. The common reasons include: -        Lack of clearly defined goals -        Lack of consistent measure of success -        Lack of ownership -        Lack of alignment -        Lack of communication -        Lack of proper execution -        Lack of monitoring       There are multiple approaches to solving the problem including organizational development practices, technology enablement etc. In most cases a combination of approaches is required to achieve the desired result. For the purposes of this discussion, I'll focus on technology.  Imagine an integrated closed loop technology platform that automates the entire management cycle from defining strategy to assigning ownership to communicating goals to achieving alignment to collaboration to taking actions to monitoring progress and achieving mid course corrections. Besides, for best ROI and lowest TCO such a system should also have characteristics like:  Complete -        Full functionality -        Rich end user access Open -        Any data source -        Any business application -        Any technology stack  Integrated -        Common metadata -        Common security -        Common system management From a capabilities perspective the system should provide the following capabilities: Define -        Strategy -        Objectives -        Ownership -        KPI's Communicate -        Pervasive -        Collaborative -        Role based -        Secure Execute -        Integrated -        Intuitive -        Secure -        Ubiquitous Monitor -        Multiple styles and formats -        Exception based -        Push & Pull Having talked about the business problem and outlined the blueprint for a technology solution, let's talk about how Oracle Business Intelligence 11g can help. Oracle Business Intelligence is a comprehensive business intelligence solution for reporting, ad hoc query and analysis, OLAP, dashboards and scorecards. Oracle's best in class BI platform is based on an architecturally integrated technology foundation that provides a unified end user experience and features a Common Enterprise Information Model, with common security, query request generation and optimization, and system management. The BI platform is ·         Complete - meaning it delivers all modes and styles of BI including reporting, ad hoc query and analysis, OLAP, dashboards and scorecards with a rich end user experience that includes visualization, collaboration, alerts and notifications, search and mobile access. ·         Open - meaning the BI platform integrates with any data source, ETL tool, business application, application server, security infrastructure, portal technology as well as any ODBC compliant third party analytical tool. The suite accesses data from multiple heterogeneous sources--including popular relational and multidimensional data sources and major ERP and CRM applications from Oracle and SAP. ·         Integrated - meaning the BI platform is based on an architecturally integrated technology foundation built on an open, standards based service oriented architecture.  The platform features a common enterprise information model, common security model and a common configuration, deployment and systems management framework. To summarize, Oracle Business Intelligence is a comprehensive, integrated BI platform that lets you define strategy, identify objectives, assign ownership, define KPI's, collaborate, take action, monitor, report and do course corrections all form a single interface and a single system. The platform's integrated metadata model and task based design ensures that the entire workflow from defining strategy to execution to monitoring is completely integrated delivering end to end visibility, transparency and agility. Click here to learn more about Oracle BI 11g. 

    Read the article

  • Database Owner Conundrum

    - by Johnm
    Have you ever restored a database from a production environment on Server A into a development environment on Server B and had some items, such as Service Broker, mysteriously cease functioning? You might want to consider reviewing the database owner property of the database. The Scenario Recently, I was developing some messaging functionality that utilized the Service Broker feature of SQL Server in a development environment. Within the instance of the development environment resided two databases: One was a restored version of a production database that we will call "RestoreDB". The second database was a brand new database that has yet to exist in the production environment that we will call "DevDB". The goal is to setup a communication path between RestoreDB and DevDB that will later be implemented into the production database. After implementing all of the Service Broker objects that are required to communicate within a database as well as between two databases on the same instance I found myself a bit confounded. My testing was showing that the communication was successful when it was occurring internally within DevDB; but the communication between RestoreDB and DevDB did not appear to be working. Profiler to the rescue After carefully reviewing my code for any misspellings, missing commas or any other minor items that might be a syntactical cause of failure, I decided to launch Profiler to aid in the troubleshooting. After simulating the cross database messaging, I noticed the following error appearing in Profiler: An exception occurred while enqueueing a message in the target queue. Error: 33009, State: 2. The database owner SID recorded in the master database differs from the database owner SID recorded in database '[Database Name Here]'. You should correct this situation by resetting the owner of database '[Database Name Here]' using the ALTER AUTHORIZATION statement. Now, this error message is a helpful one. Not only does it identify the issue in plain language, it also provides a potential solution. An execution of the following query that utilizes the catalog view sys.transmission_queue revealed the same error message for each communication attempt: SELECT     * FROM        sys.transmission_queue; Seeing the situation as a learning opportunity I dove a bit deeper. Reviewing the database properties  The owner of a specific database can be easily viewed by right-clicking the database in SQL Server Management Studio and selecting the "properties" option. The owner is listed on the "General" page of the properties screen. In my scenario, the database in the production server was created by Frank the DBA; therefore his server login appeared as the owner: "ServerName\Frank". While this is interesting information, it certainly doesn't tell me much in regard to the SID (security identifier) and its existence, or lack thereof, in the master database as the error suggested. I pulled together the following query to gather more interesting information: SELECT     a.name     , a.owner_sid     , b.sid     , b.name     , b.type_desc FROM        master.sys.databases a     LEFT OUTER JOIN master.sys.server_principals b         ON a.owner_sid = b.sid WHERE     a.name not in ('master','tempdb','model','msdb'); This query also helped identify how many other user databases in the instance were experiencing the same issue. In this scenario, I saw that there were no matching SIDs in server_principals to the owner SID for my database. What login should be used as the database owner instead of Frank's? The system stored procedure sp_helplogins will provide a list of the valid logins that can be used. Here is an example of its use, revealing all available logins: EXEC sp_helplogins;  Fixing a hole The error message stated that the recommended solution was to execute the ALTER AUTHORIZATION statement. The full statement for this scenario would appear as follows: ALTER AUTHORIZATION ON DATABASE:: [Database Name Here] TO [Login Name]; Another option is to execute the following statement using the sp_changedbowner system stored procedure; but please keep in mind that this stored procedure has been deprecated and will likely disappear in future versions of SQL Server: EXEC dbo.sp_changedbowner @loginname = [Login Name]; .And They Lived Happily Ever After Upon changing the database owner to an existing login and simulating the inner and cross database messaging the errors have ceased. More importantly, all messages sent through this feature now successfully complete their journey. I have added the ownership change to my restoration script for the development environment.

    Read the article

  • ROracle support for TimesTen In-Memory Database

    - by Sam Drake
    Today's guest post comes from Jason Feldhaus, a Consulting Member of Technical Staff in the TimesTen Database organization at Oracle.  He shares with us a sample session using ROracle with the TimesTen In-Memory database.  Beginning in version 1.1-4, ROracle includes support for the Oracle Times Ten In-Memory Database, version 11.2.2. TimesTen is a relational database providing very fast and high throughput through its memory-centric architecture.  TimesTen is designed for low latency, high-volume data, and event and transaction management. A TimesTen database resides entirely in memory, so no disk I/O is required for transactions and query operations. TimesTen is used in applications requiring very fast and predictable response time, such as real-time financial services trading applications and large web applications. TimesTen can be used as the database of record or as a relational cache database to Oracle Database. ROracle provides an interface between R and the database, providing the rich functionality of the R statistical programming environment using the SQL query language. ROracle uses the OCI libraries to handle database connections, providing much better performance than standard ODBC.The latest ROracle enhancements include: Support for Oracle TimesTen In-Memory Database Support for Date-Time using R's POSIXct/POSIXlt data types RAW, BLOB and BFILE data type support Option to specify number of rows per fetch operation Option to prefetch LOB data Break support using Ctrl-C Statement caching support Times Ten 11.2.2 contains enhanced support for analytics workloads and complex queries: Analytic functions: AVG, SUM, COUNT, MAX, MIN, DENSE_RANK, RANK, ROW_NUMBER, FIRST_VALUE and LAST_VALUE Analytic clauses: OVER PARTITION BY and OVER ORDER BY Multidimensional grouping operators: Grouping clauses: GROUP BY CUBE, GROUP BY ROLLUP, GROUP BY GROUPING SETS Grouping functions: GROUP, GROUPING_ID, GROUP_ID WITH clause, which allows repeated references to a named subquery block Aggregate expressions over DISTINCT expressions General expressions that return a character string in the source or a pattern within the LIKE predicate Ability to order nulls first or last in a sort result (NULLS FIRST or NULLS LAST in the ORDER BY clause) Note: Some functionality is only available with Oracle Exalytics, refer to the TimesTen product licensing document for details. Connecting to TimesTen is easy with ROracle. Simply install and load the ROracle package and load the driver. > install.packages("ROracle") > library(ROracle) Loading required package: DBI > drv <- dbDriver("Oracle") Once the ROracle package is installed, create a database connection object and connect to a TimesTen direct driver DSN as the OS user. > conn <- dbConnect(drv, username ="", password="", dbname = "localhost/SampleDb_1122:timesten_direct") You have the option to report the server type - Oracle or TimesTen? > print (paste ("Server type =", dbGetInfo (conn)$serverType)) [1] "Server type = TimesTen IMDB" To create tables in the database using R data frame objects, use the function dbWriteTable. In the following example we write the built-in iris data frame to TimesTen. The iris data set is a small example data set containing 150 rows and 5 columns. We include it here not to highlight performance, but so users can easily run this example in their R session. > dbWriteTable (conn, "IRIS", iris, overwrite=TRUE, ora.number=FALSE) [1] TRUE Verify that the newly created IRIS table is available in the database. To list the available tables and table columns in the database, use dbListTables and dbListFields, respectively. > dbListTables (conn) [1] "IRIS" > dbListFields (conn, "IRIS") [1] "SEPAL.LENGTH" "SEPAL.WIDTH" "PETAL.LENGTH" "PETAL.WIDTH" "SPECIES" To retrieve a summary of the data from the database we need to save the results to a local object. The following call saves the results of the query as a local R object, iris.summary. The ROracle function dbGetQuery is used to execute an arbitrary SQL statement against the database. When connected to TimesTen, the SQL statement is processed completely within main memory for the fastest response time. > iris.summary <- dbGetQuery(conn, 'SELECT SPECIES, AVG ("SEPAL.LENGTH") AS AVG_SLENGTH, AVG ("SEPAL.WIDTH") AS AVG_SWIDTH, AVG ("PETAL.LENGTH") AS AVG_PLENGTH, AVG ("PETAL.WIDTH") AS AVG_PWIDTH FROM IRIS GROUP BY ROLLUP (SPECIES)') > iris.summary SPECIES AVG_SLENGTH AVG_SWIDTH AVG_PLENGTH AVG_PWIDTH 1 setosa 5.006000 3.428000 1.462 0.246000 2 versicolor 5.936000 2.770000 4.260 1.326000 3 virginica 6.588000 2.974000 5.552 2.026000 4 <NA> 5.843333 3.057333 3.758 1.199333 Finally, disconnect from the TimesTen Database. > dbCommit (conn) [1] TRUE > dbDisconnect (conn) [1] TRUE We encourage you download Oracle software for evaluation from the Oracle Technology Network. See these links for our software: Times Ten In-Memory Database,  ROracle.  As always, we welcome comments and questions on the TimesTen and  Oracle R technical forums.

    Read the article

  • Tips for XNA WP7 Developers

    - by Michael B. McLaughlin
    There are several things any XNA developer should know/consider when coming to the Windows Phone 7 platform. This post assumes you are familiar with the XNA Framework and with the changes between XNA 3.1 and XNA 4.0. It’s not exhaustive; it’s simply a list of things I’ve gathered over time. I may come back and add to it over time, and I’m happy to add anything anyone else has experienced or learned as well. Display · The screen is either 800x480 or 480x800. · But you aren’t required to use only those resolutions. · The hardware scaler on the phone will scale up from 240x240. · One dimension will be capped at 800 and the other at 480; which depends on your code, but you cannot have, e.g., an 800x600 back buffer – that will be created as 800x480. · The hardware scaler will not normally change aspect ratio, though, so no unintended stretching. · Any dimension (width, height, or both) below 240 will be adjusted to 240 (without any aspect ratio adjustment such that, e.g. 200x240 will be treated as 240x240). · Dimensions below 240 will be honored in terms of calculating whether to use portrait or landscape. · If dimensions are exactly equal or if height is greater than width then game will be in portrait. · If width is greater than height, the game will be in landscape. · Landscape games will automatically flip if the user turns the phone 180°; no code required. · Default landscape is top = left. In other words a user holding a phone who starts a landscape game will see the first image presented so that the “top” of the screen is along the right edge of his/her phone, such that the natural behavior would be to turn the phone 90° so that the top of the phone will be held in the user’s left hand and the bottom would be held in the user’s right hand. · The status bar (where the clock, battery power, etc., are found) is hidden when the Game-derived class sets GraphicsDeviceManager.IsFullScreen = true. It is shown when IsFullScreen = false. The default value is false (i.e. the status bar is shown). · You should have a good reason for hiding the status bar. Users find it helpful to know what time it is, how much charge their battery has left, and whether or not their phone is in service range. This is especially true for casual games that you expect someone to play for a few minutes at a time, e.g. while waiting for some event to start, for a phone call to come in, or for a train, bus, or subway to arrive. · In portrait mode, the status bar occupies 32 pixels of space. This means that a game with a back buffer of 480x800 will be scaled down to occupy approximately 461x768 screen pixels. Setting the back buffer to 480x768 (or some resolution with the same 0.625 aspect ratio) will avoid this scaling. · In landscape mode, the status bar occupies 72 pixels of space. This means that a game with a back buffer of 800x480 will be scaled down to occupy approximately 728x437 screen pixels. Setting the back buffer to 728x480 (or some resolution with the same 1.51666667 aspect ratio) will avoid this scaling. Input · Touch input is scaled with screen size. · So if your back buffer is 600x360, a tap in the bottom right corner will come in as (599,359). You don’t need to do anything special to get this automatic scaling of touch behavior. · If you do not use full area of the screen, any touch input outside the area you use will still register as a touch input. For example, if you set a portrait resolution of 240x240, it would be scaled up to occupy a 480x480 area, centered in the screen. If you touch anywhere above this area, you will get a touch input of (X,0) where X is a number from 0 to 239 (in accordance with your 240 pixel wide back buffer). Any touch below this area will give a touch input of (X,239). · If you keep the status bar visible, touches within its area will not be passed to your game. · In general, a screen measurement is the diagonal. So a 3.5” screen is 3.5” long from the bottom right corner to the top left corner. With an aspect ratio of 0.6 (480/800 = 0.6), this means that a phone with a 3.5” screen is only approximately 1.8” wide by 3” tall. So there are approximately 267 pixels in an inch on a 3.5” screen. · Again, this time in metric! 3.5 inches is approximately 8.89 cm. So an 8.89 cm screen is 8.89 cm long from the bottom right corner to the top left corner. With an aspect ratio of 0.6, this means that a phone with an 8.89 cm screen is only approximately 4.57 cm wide by 7.62 cm tall. So there are approximately 105 pixels in a centimeter on an 8.89 cm screen. · Think about the size of your finger tip. If you do not have large hands, think about the size of the fingertip of someone with large hands. Consider that when you are sizing your touch input. Especially consider that when you are spacing two touch targets near one another. You need to judge it for yourself, but items that are next to each other and are each 100x100 should be fine when it comes to selecting items individually. Smaller targets than that are ok provided that you leave space between them. · You want your users to have a pleasant experience. Making touch controls too small or too close to one another will make them nervous about whether they will touch the right target. Take this into account when you plan out your game initially. If possible, do some quick size mockups on an actual phone using colored rectangles that you position and size where you plan to have your game controls. Adjust as necessary. · People do not have transparent hands! Nor are their hands the size of a mouse pointer icon. Consider leaving a dedicated space for input rather than forcing the user to cover up to one-third of the screen with a finger just to play the game. · Another benefit of designing your controls to use a dedicated area is that you’re less likely to have players moving their finger(s) so frantically that they accidentally hit the back button, start button, or search button (many phones have one or more of these on the screen itself – it’s easy to hit one by accident and really annoying if you hit, e.g., the search button and then quickly tap back only to find out that the game didn’t save your progress such that you just wasted all the time you spent playing). · People do not like doing somersaults in order to move something forward with accelerometer-based controls. Test your accelerometer-based controls extensively and get a lot of feedback. Very well-known games from noted publishers have created really bad accelerometer controls and been virtually unplayable as a result. Also be wary of exceptions and other possible failures that the documentation warns about. · When done properly, the accelerometer can add a nice touch to your game (see, e.g. ilomilo where the accelerometer was used to move the background; it added a nice touch without frustrating the user; I also think CarniVale does direct accelerometer controls very well). However, if done poorly, it will make your game an abomination unto the Marketplace. Days, weeks, perhaps even months of development time that you will never get back. I won’t name names; you can search the marketplace for games with terrible reviews and you’ll find them. Graphics · The maximum frame rate is 30 frames per second. This was set as a compromise between battery life and quality. · At least one model of phone is known to have a screen refresh rate that is between 59 and 60 hertz. Because of this, using a fixed time step with a target frame rate of 30 will cause a slight internal delay to build up as the framework is forced to wait slightly for the next refresh. Eventually the delay will get to the point where a draw is skipped in order to recover from the delay. (See Nick's comment below for clarification.) · To deal with that delay, you can either stay with a fixed time step and set the frame rate slightly lower or else you can go to a variable time step and make sure to adjust all of your update data (e.g. player movement distance) to take into account the elapsed time from the last update. A variable time step makes your update logic slightly more complicated but will avoid frame skips entirely. · Currently there are no custom shaders. This might change in the future (there is no hardware limitation preventing it; it simply wasn’t a feature that could be implemented in the time available before launch). · There are five built-in shaders. You can create a lot of nice effects with the built-in shaders. · There is more power on the CPU than there is on the GPU so things you might typically off-load to the GPU will instead make sense to do on the CPU side. · This is a phone. It is not a PC. It is not an Xbox 360. The emulator runs on a PC and uses the full power of your PC. It is very good for testing your code for bugs and doing early prototyping and layout. You should not use it to measure performance. Use actual phone hardware instead. · There are many phone models, each of which has slightly different performance levels for I/O, screen blitting, CPU performance, etc. Do not take your game right to the performance limit on your phone since for some other phones you might be crossing their limits and leaving players with a bad experience. Leave a cushion to account for hardware differences. · Smaller screened phones will have slightly more dots per inch (dpi). Larger screened phones will have slightly less. Either way, the dpi will be much higher than the typical 96 found on most computer screens. Make sure that whoever is doing art for your game takes this into account. · Screens are only required to have 16 bit color (65,536 colors). This is common among smart phones. Using gradients on a 16 bit display can produce an ugly artifact known as banding. Banding is when, rather than a smooth transition from one color to another, you instead see distinct lines. Be careful to avoid this when possible. Banding can be avoided through careful art creation. Its effects can be minimized and even unnoticeable when the texture in question is always moving. You should be careful not to rely on “looks good on my phone” since some phones do have 32-bit displays and thus you’ll find yourself wondering why you’re getting bad reviews that complain about the graphics. Avoid gradients; if you can’t, make sure they are 16-bit safe. Audio · Never rely on sounds as your sole signal to the player that something is happening in the game. They might have the sound off. They might be playing somewhere loud. Etc. · You have to provide controls to disable sound & music. These should be separate. · On at least one model of phone, the volume control API currently has no effect. Players can adjust sound with their hardware volume buttons, but in game selectors simply won’t work. As such, it may not be worth the effort of providing anything beyond on/off switches for sound and music. · MediaPlayer.GameHasControl will return true when a game is hooked up to a PC running Zune. When Zune is running, any attempts to do anything (beyond check GameHasControl) with MediaPlayer will cause an exception to be thrown. If this exception is thrown, catch it and disable music. Exceptions take time to propagate; you don’t want one popping up in every single run of your game’s Update method. · Remember that players can already be listening to music or using the FM radio. In this case GameHasControl will be false and you should handle this appropriately. You can, alternately, ask the player for permission to stop their current music and play your music instead, but the (current) requirement that you restore their music when done is very hard (if not impossible) to deal with. · You can still play sound effects even when the game doesn’t have control of the music, but don’t think this is a backdoor to playing music. Your game will fail certification if your “sound effect” seems to be more like music in scope and length.

    Read the article

  • ROracle support for TimesTen In-Memory Database

    - by Sherry LaMonica
    Today's guest post comes from Jason Feldhaus, a Consulting Member of Technical Staff in the TimesTen Database organization at Oracle.  He shares with us a sample session using ROracle with the TimesTen In-Memory database.  Beginning in version 1.1-4, ROracle includes support for the Oracle Times Ten In-Memory Database, version 11.2.2. TimesTen is a relational database providing very fast and high throughput through its memory-centric architecture.  TimesTen is designed for low latency, high-volume data, and event and transaction management. A TimesTen database resides entirely in memory, so no disk I/O is required for transactions and query operations. TimesTen is used in applications requiring very fast and predictable response time, such as real-time financial services trading applications and large web applications. TimesTen can be used as the database of record or as a relational cache database to Oracle Database. ROracle provides an interface between R and the database, providing the rich functionality of the R statistical programming environment using the SQL query language. ROracle uses the OCI libraries to handle database connections, providing much better performance than standard ODBC.The latest ROracle enhancements include: Support for Oracle TimesTen In-Memory Database Support for Date-Time using R's POSIXct/POSIXlt data types RAW, BLOB and BFILE data type support Option to specify number of rows per fetch operation Option to prefetch LOB data Break support using Ctrl-C Statement caching support Times Ten 11.2.2 contains enhanced support for analytics workloads and complex queries: Analytic functions: AVG, SUM, COUNT, MAX, MIN, DENSE_RANK, RANK, ROW_NUMBER, FIRST_VALUE and LAST_VALUE Analytic clauses: OVER PARTITION BY and OVER ORDER BY Multidimensional grouping operators: Grouping clauses: GROUP BY CUBE, GROUP BY ROLLUP, GROUP BY GROUPING SETS Grouping functions: GROUP, GROUPING_ID, GROUP_ID WITH clause, which allows repeated references to a named subquery block Aggregate expressions over DISTINCT expressions General expressions that return a character string in the source or a pattern within the LIKE predicate Ability to order nulls first or last in a sort result (NULLS FIRST or NULLS LAST in the ORDER BY clause) Note: Some functionality is only available with Oracle Exalytics, refer to the TimesTen product licensing document for details. Connecting to TimesTen is easy with ROracle. Simply install and load the ROracle package and load the driver. > install.packages("ROracle") > library(ROracle) Loading required package: DBI > drv <- dbDriver("Oracle") Once the ROracle package is installed, create a database connection object and connect to a TimesTen direct driver DSN as the OS user. > conn <- dbConnect(drv, username ="", password="", dbname = "localhost/SampleDb_1122:timesten_direct") You have the option to report the server type - Oracle or TimesTen? > print (paste ("Server type =", dbGetInfo (conn)$serverType)) [1] "Server type = TimesTen IMDB" To create tables in the database using R data frame objects, use the function dbWriteTable. In the following example we write the built-in iris data frame to TimesTen. The iris data set is a small example data set containing 150 rows and 5 columns. We include it here not to highlight performance, but so users can easily run this example in their R session. > dbWriteTable (conn, "IRIS", iris, overwrite=TRUE, ora.number=FALSE) [1] TRUE Verify that the newly created IRIS table is available in the database. To list the available tables and table columns in the database, use dbListTables and dbListFields, respectively. > dbListTables (conn) [1] "IRIS" > dbListFields (conn, "IRIS") [1] "SEPAL.LENGTH" "SEPAL.WIDTH" "PETAL.LENGTH" "PETAL.WIDTH" "SPECIES" To retrieve a summary of the data from the database we need to save the results to a local object. The following call saves the results of the query as a local R object, iris.summary. The ROracle function dbGetQuery is used to execute an arbitrary SQL statement against the database. When connected to TimesTen, the SQL statement is processed completely within main memory for the fastest response time. > iris.summary <- dbGetQuery(conn, 'SELECT SPECIES, AVG ("SEPAL.LENGTH") AS AVG_SLENGTH, AVG ("SEPAL.WIDTH") AS AVG_SWIDTH, AVG ("PETAL.LENGTH") AS AVG_PLENGTH, AVG ("PETAL.WIDTH") AS AVG_PWIDTH FROM IRIS GROUP BY ROLLUP (SPECIES)') > iris.summary SPECIES AVG_SLENGTH AVG_SWIDTH AVG_PLENGTH AVG_PWIDTH 1 setosa 5.006000 3.428000 1.462 0.246000 2 versicolor 5.936000 2.770000 4.260 1.326000 3 virginica 6.588000 2.974000 5.552 2.026000 4 <NA> 5.843333 3.057333 3.758 1.199333 Finally, disconnect from the TimesTen Database. > dbCommit (conn) [1] TRUE > dbDisconnect (conn) [1] TRUE We encourage you download Oracle software for evaluation from the Oracle Technology Network. See these links for our software: Times Ten In-Memory Database,  ROracle.  As always, we welcome comments and questions on the TimesTen and  Oracle R technical forums.

    Read the article

< Previous Page | 420 421 422 423 424 425 426 427 428 429 430 431  | Next Page >