Search Results

Search found 55276 results on 2212 pages for 'eicar test string'.

Page 425/2212 | < Previous Page | 421 422 423 424 425 426 427 428 429 430 431 432  | Next Page >

  • JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue

    - by John-Brown.Evans
    JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue .c21_2{vertical-align:top;width:487.3pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c15_2{vertical-align:top;width:487.3pt;border-style:solid;border-color:#ffffff;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c0_2{padding-left:0pt;direction:ltr;margin-left:36pt} .c20_2{list-style-type:circle;margin:0;padding:0} .c10_2{list-style-type:disc;margin:0;padding:0} .c6_2{background-color:#ffffff} .c17_2{padding-left:0pt;margin-left:72pt} .c3_2{line-height:1.0;direction:ltr} .c1_2{font-size:10pt;font-family:"Courier New"} .c16_2{color:#1155cc;text-decoration:underline} .c13_2{color:inherit;text-decoration:inherit} .c7_2{background-color:#ffff00} .c9_2{border-collapse:collapse} .c2_2{font-family:"Courier New"} .c18_2{font-size:18pt} .c5_2{font-weight:bold} .c19_2{color:#ff0000} .c12_2{background-color:#f3f3f3;border-style:solid;border-color:#000000;border-width:1pt;} .c14_2{font-size:24pt} .c8_2{direction:ltr;background-color:#ffffff} .c11_2{font-style:italic} .c4_2{height:11pt} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt}.subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:24pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:12pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:11pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} This post is the second in a series of JMS articles which demonstrate how to use JMS queues in a SOA context. In the previous post JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g I showed you how to create a JMS queue and its dependent objects in WebLogic Server. In this article, we will use a sample program to write a message to that queue. Please review the previous post if you have not created those objects yet, as they will be required later in this example. The previous post also includes useful background information and links to the Oracle documentation for addional research. The following post in this series will show how to read the message from the queue again. 1. Source code The following java code will be used to write a message to the JMS queue. It is based on a sample program provided with the WebLogic Server installation. The sample is not installed by default, but needs to be installed manually using the WebLogic Server Custom Installation option, together with many, other useful samples. You can either copy-paste the following code into your editor, or install all the samples. The knowledge base article in My Oracle Support: How To Install WebLogic Server and JMS Samples in WLS 10.3.x (Doc ID 1499719.1) describes how to install the samples. QueueSend.java package examples.jms.queue; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Hashtable; import javax.jms.*; import javax.naming.Context; import javax.naming.InitialContext; import javax.naming.NamingException; /** This example shows how to establish a connection * and send messages to the JMS queue. The classes in this * package operate on the same JMS queue. Run the classes together to * witness messages being sent and received, and to browse the queue * for messages. The class is used to send messages to the queue. * * @author Copyright (c) 1999-2005 by BEA Systems, Inc. All Rights Reserved. */ public class QueueSend { // Defines the JNDI context factory. public final static String JNDI_FACTORY="weblogic.jndi.WLInitialContextFactory"; // Defines the JMS context factory. public final static String JMS_FACTORY="jms/TestConnectionFactory"; // Defines the queue. public final static String QUEUE="jms/TestJMSQueue"; private QueueConnectionFactory qconFactory; private QueueConnection qcon; private QueueSession qsession; private QueueSender qsender; private Queue queue; private TextMessage msg; /** * Creates all the necessary objects for sending * messages to a JMS queue. * * @param ctx JNDI initial context * @param queueName name of queue * @exception NamingException if operation cannot be performed * @exception JMSException if JMS fails to initialize due to internal error */ public void init(Context ctx, String queueName) throws NamingException, JMSException { qconFactory = (QueueConnectionFactory) ctx.lookup(JMS_FACTORY); qcon = qconFactory.createQueueConnection(); qsession = qcon.createQueueSession(false, Session.AUTO_ACKNOWLEDGE); queue = (Queue) ctx.lookup(queueName); qsender = qsession.createSender(queue); msg = qsession.createTextMessage(); qcon.start(); } /** * Sends a message to a JMS queue. * * @param message message to be sent * @exception JMSException if JMS fails to send message due to internal error */ public void send(String message) throws JMSException { msg.setText(message); qsender.send(msg); } /** * Closes JMS objects. * @exception JMSException if JMS fails to close objects due to internal error */ public void close() throws JMSException { qsender.close(); qsession.close(); qcon.close(); } /** main() method. * * @param args WebLogic Server URL * @exception Exception if operation fails */ public static void main(String[] args) throws Exception { if (args.length != 1) { System.out.println("Usage: java examples.jms.queue.QueueSend WebLogicURL"); return; } InitialContext ic = getInitialContext(args[0]); QueueSend qs = new QueueSend(); qs.init(ic, QUEUE); readAndSend(qs); qs.close(); } private static void readAndSend(QueueSend qs) throws IOException, JMSException { BufferedReader msgStream = new BufferedReader(new InputStreamReader(System.in)); String line=null; boolean quitNow = false; do { System.out.print("Enter message (\"quit\" to quit): \n"); line = msgStream.readLine(); if (line != null && line.trim().length() != 0) { qs.send(line); System.out.println("JMS Message Sent: "+line+"\n"); quitNow = line.equalsIgnoreCase("quit"); } } while (! quitNow); } private static InitialContext getInitialContext(String url) throws NamingException { Hashtable env = new Hashtable(); env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY); env.put(Context.PROVIDER_URL, url); return new InitialContext(env); } } 2. How to Use This Class 2.1 From the file system on UNIX/Linux Log in to a machine with a WebLogic installation and create a directory to contain the source and code matching the package name, e.g. $HOME/examples/jms/queue. Copy the above QueueSend.java file to this directory. Set the CLASSPATH and environment to match the WebLogic server environment. Go to $MIDDLEWARE_HOME/user_projects/domains/base_domain/bin  and execute . ./setDomainEnv.sh Collect the following information required to run the script: The JNDI name of a JMS queue to use In the Weblogic server console > Services > Messaging > JMS Modules > (Module name, e.g. TestJMSModule) > (JMS queue name, e.g. TestJMSQueue)Select the queue and note its JNDI name, e.g. jms/TestJMSQueue The JNDI name of a connection factory to connect to the queue Follow the same path as above to get the connection factory for the above queue, e.g. TestConnectionFactory and its JNDI namee.g. jms/TestConnectionFactory The URL and port of the WebLogic server running the above queue Check the JMS server for the above queue and the managed server it is targeted to, for example soa_server1. Now find the port this managed server is listening on, by looking at its entry under Environment > Servers in the WLS console, e.g. 8001 The URL for the server to be given to the QueueSend program in this example will therefore be t3://host.domain:8001 e.g. t3://jbevans-lx.de.oracle.com:8001 Edit QueueSend.java and enter the above queue name and connection factory respectively under ...public final static String  JMS_FACTORY=" jms/TestConnectionFactory "; ... public final static String QUEUE=" jms/TestJMSQueue "; ... Compile QueueSend.java using javac QueueSend.java Go to the source’s top-level directory and execute it using java examples.jms.queue.QueueSend t3://jbevans-lx.de.oracle.com:8001 This will prompt for a text input or “quit” to end. In the WLS console, go to the queue and select Monitoring to confirm that a new message was written to the queue. 2.2 From JDeveloper Create a new application in JDeveloper, called, for example JMSTests. When prompted for a project name, enter QueueSend and select Java as the technology Default Package = examples.jms.queue (but you can enter anything here as you will overwrite it in the code later). Leave the other values at their defaults. Press Finish Create a new Java class called QueueSend and use the default values This will create a file called QueueSend.java. Open QueueSend.java, if it is not already open and replace all its contents with the QueueSend java code listed above Some lines might have warnings due to unfound objects. These are due to missing libraries in the JDeveloper project. Add the following libraries to the JDeveloper project: right-click the QueueSend  project in the navigation menu and select Libraries and Classpath , then Add JAR/Directory  Go to the folder containing the JDeveloper installation and find/choose the file javax.jms_1.1.1.jar , e.g. at D:\oracle\jdev11116\modules\javax.jms_1.1.1.jar Do the same for the weblogic.jar file located, for example in D:\oracle\jdev11116\wlserver_10.3\server\lib\weblogic.jar Now you should be able to compile the project, for example by selecting the Make or Rebuild icons   If you try to execute the project, you will get a usage message, as it requires a parameter pointing to the WLS installation containing the JMS queue, for example t3://jbevans-lx.de.oracle.com:8001 . You can automatically pass this parameter to the program from JDeveloper by editing the project’s Run/Debug/Profile. Select the project properties, select Run/Debug/Profile and edit the Default run configuration and add the connection parameter to the Program Arguments field If you execute it again, you will see that it has passed the parameter to the start command If you get a ClassNotFoundException for the class weblogic.jndi.WLInitialContextFactory , then check that the weblogic.jar file was correctly added to the project in one of the earlier steps above. Set the values of JMS_FACTORY and QUEUE the same way as described above in the description of how to use this from a Linux file system, i.e. ...public final static String  JMS_FACTORY=" jms/TestConnectionFactory "; ... public final static String QUEUE=" jms/TestJMSQueue "; ... You need to make one more change to the project. If you execute it now, it will prompt for the payload for the JMS message, but you won’t be able to enter it by default in JDeveloper. You need to enable program input for the project first. Select the project’s properties, then Tool Settings, then check the Allow Program Input checkbox at the bottom and Save. Now when you execute the project, you will get a text entry field at the bottom into which you can enter the payload. You can enter multiple messages until you enter “quit”, which will cause the program to stop. The following screen shot shows the TestJMSQueue’s Monitoring page, after a message was sent to the queue: This concludes the sample. In the following post I will show you how to read the message from the queue again.

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • C#/.NET Little Wonders: The Generic Func Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Back in one of my three original “Little Wonders” Trilogy of posts, I had listed generic delegates as one of the Little Wonders of .NET.  Later, someone posted a comment saying said that they would love more detail on the generic delegates and their uses, since my original entry just scratched the surface of them. Last week, I began our look at some of the handy generic delegates built into .NET with a description of delegates in general, and the Action family of delegates.  For this week, I’ll launch into a look at the Func family of generic delegates and how they can be used to support generic, reusable algorithms and classes. Quick Delegate Recap Delegates are similar to function pointers in C++ in that they allow you to store a reference to a method.  They can store references to either static or instance methods, and can actually be used to chain several methods together in one delegate. Delegates are very type-safe and can be satisfied with any standard method, anonymous method, or a lambda expression.  They can also be null as well (refers to no method), so care should be taken to make sure that the delegate is not null before you invoke it. Delegates are defined using the keyword delegate, where the delegate’s type name is placed where you would typically place the method name: 1: // This delegate matches any method that takes string, returns nothing 2: public delegate void Log(string message); This delegate defines a delegate type named Log that can be used to store references to any method(s) that satisfies its signature (whether instance, static, lambda expression, etc.). Delegate instances then can be assigned zero (null) or more methods using the operator = which replaces the existing delegate chain, or by using the operator += which adds a method to the end of a delegate chain: 1: // creates a delegate instance named currentLogger defaulted to Console.WriteLine (static method) 2: Log currentLogger = Console.Out.WriteLine; 3:  4: // invokes the delegate, which writes to the console out 5: currentLogger("Hi Standard Out!"); 6:  7: // append a delegate to Console.Error.WriteLine to go to std error 8: currentLogger += Console.Error.WriteLine; 9:  10: // invokes the delegate chain and writes message to std out and std err 11: currentLogger("Hi Standard Out and Error!"); While delegates give us a lot of power, it can be cumbersome to re-create fairly standard delegate definitions repeatedly, for this purpose the generic delegates were introduced in various stages in .NET.  These support various method types with particular signatures. Note: a caveat with generic delegates is that while they can support multiple parameters, they do not match methods that contains ref or out parameters. If you want to a delegate to represent methods that takes ref or out parameters, you will need to create a custom delegate. We’ve got the Func… delegates Just like it’s cousin, the Action delegate family, the Func delegate family gives us a lot of power to use generic delegates to make classes and algorithms more generic.  Using them keeps us from having to define a new delegate type when need to make a class or algorithm generic. Remember that the point of the Action delegate family was to be able to perform an “action” on an item, with no return results.  Thus Action delegates can be used to represent most methods that take 0 to 16 arguments but return void.  You can assign a method The Func delegate family was introduced in .NET 3.5 with the advent of LINQ, and gives us the power to define a function that can be called on 0 to 16 arguments and returns a result.  Thus, the main difference between Action and Func, from a delegate perspective, is that Actions return nothing, but Funcs return a result. The Func family of delegates have signatures as follows: Func<TResult> – matches a method that takes no arguments, and returns value of type TResult. Func<T, TResult> – matches a method that takes an argument of type T, and returns value of type TResult. Func<T1, T2, TResult> – matches a method that takes arguments of type T1 and T2, and returns value of type TResult. Func<T1, T2, …, TResult> – and so on up to 16 arguments, and returns value of type TResult. These are handy because they quickly allow you to be able to specify that a method or class you design will perform a function to produce a result as long as the method you specify meets the signature. For example, let’s say you were designing a generic aggregator, and you wanted to allow the user to define how the values will be aggregated into the result (i.e. Sum, Min, Max, etc…).  To do this, we would ask the user of our class to pass in a method that would take the current total, the next value, and produce a new total.  A class like this could look like: 1: public sealed class Aggregator<TValue, TResult> 2: { 3: // holds method that takes previous result, combines with next value, creates new result 4: private Func<TResult, TValue, TResult> _aggregationMethod; 5:  6: // gets or sets the current result of aggregation 7: public TResult Result { get; private set; } 8:  9: // construct the aggregator given the method to use to aggregate values 10: public Aggregator(Func<TResult, TValue, TResult> aggregationMethod = null) 11: { 12: if (aggregationMethod == null) throw new ArgumentNullException("aggregationMethod"); 13:  14: _aggregationMethod = aggregationMethod; 15: } 16:  17: // method to add next value 18: public void Aggregate(TValue nextValue) 19: { 20: // performs the aggregation method function on the current result and next and sets to current result 21: Result = _aggregationMethod(Result, nextValue); 22: } 23: } Of course, LINQ already has an Aggregate extension method, but that works on a sequence of IEnumerable<T>, whereas this is designed to work more with aggregating single results over time (such as keeping track of a max response time for a service). We could then use this generic aggregator to find the sum of a series of values over time, or the max of a series of values over time (among other things): 1: // creates an aggregator that adds the next to the total to sum the values 2: var sumAggregator = new Aggregator<int, int>((total, next) => total + next); 3:  4: // creates an aggregator (using static method) that returns the max of previous result and next 5: var maxAggregator = new Aggregator<int, int>(Math.Max); So, if we were timing the response time of a web method every time it was called, we could pass that response time to both of these aggregators to get an idea of the total time spent in that web method, and the max time spent in any one call to the web method: 1: // total will be 13 and max 13 2: int responseTime = 13; 3: sumAggregator.Aggregate(responseTime); 4: maxAggregator.Aggregate(responseTime); 5:  6: // total will be 20 and max still 13 7: responseTime = 7; 8: sumAggregator.Aggregate(responseTime); 9: maxAggregator.Aggregate(responseTime); 10:  11: // total will be 40 and max now 20 12: responseTime = 20; 13: sumAggregator.Aggregate(responseTime); 14: maxAggregator.Aggregate(responseTime); The Func delegate family is useful for making generic algorithms and classes, and in particular allows the caller of the method or user of the class to specify a function to be performed in order to generate a result. What is the result of a Func delegate chain? If you remember, we said earlier that you can assign multiple methods to a delegate by using the += operator to chain them.  So how does this affect delegates such as Func that return a value, when applied to something like the code below? 1: Func<int, int, int> combo = null; 2:  3: // What if we wanted to aggregate the sum and max together? 4: combo += (total, next) => total + next; 5: combo += Math.Max; 6:  7: // what is the result? 8: var comboAggregator = new Aggregator<int, int>(combo); Well, in .NET if you chain multiple methods in a delegate, they will all get invoked, but the result of the delegate is the result of the last method invoked in the chain.  Thus, this aggregator would always result in the Math.Max() result.  The other chained method (the sum) gets executed first, but it’s result is thrown away: 1: // result is 13 2: int responseTime = 13; 3: comboAggregator.Aggregate(responseTime); 4:  5: // result is still 13 6: responseTime = 7; 7: comboAggregator.Aggregate(responseTime); 8:  9: // result is now 20 10: responseTime = 20; 11: comboAggregator.Aggregate(responseTime); So remember, you can chain multiple Func (or other delegates that return values) together, but if you do so you will only get the last executed result. Func delegates and co-variance/contra-variance in .NET 4.0 Just like the Action delegate, as of .NET 4.0, the Func delegate family is contra-variant on its arguments.  In addition, it is co-variant on its return type.  To support this, in .NET 4.0 the signatures of the Func delegates changed to: Func<out TResult> – matches a method that takes no arguments, and returns value of type TResult (or a more derived type). Func<in T, out TResult> – matches a method that takes an argument of type T (or a less derived type), and returns value of type TResult(or a more derived type). Func<in T1, in T2, out TResult> – matches a method that takes arguments of type T1 and T2 (or less derived types), and returns value of type TResult (or a more derived type). Func<in T1, in T2, …, out TResult> – and so on up to 16 arguments, and returns value of type TResult (or a more derived type). Notice the addition of the in and out keywords before each of the generic type placeholders.  As we saw last week, the in keyword is used to specify that a generic type can be contra-variant -- it can match the given type or a type that is less derived.  However, the out keyword, is used to specify that a generic type can be co-variant -- it can match the given type or a type that is more derived. On contra-variance, if you are saying you need an function that will accept a string, you can just as easily give it an function that accepts an object.  In other words, if you say “give me an function that will process dogs”, I could pass you a method that will process any animal, because all dogs are animals.  On the co-variance side, if you are saying you need a function that returns an object, you can just as easily pass it a function that returns a string because any string returned from the given method can be accepted by a delegate expecting an object result, since string is more derived.  Once again, in other words, if you say “give me a method that creates an animal”, I can pass you a method that will create a dog, because all dogs are animals. It really all makes sense, you can pass a more specific thing to a less specific parameter, and you can return a more specific thing as a less specific result.  In other words, pay attention to the direction the item travels (parameters go in, results come out).  Keeping that in mind, you can always pass more specific things in and return more specific things out. For example, in the code below, we have a method that takes a Func<object> to generate an object, but we can pass it a Func<string> because the return type of object can obviously accept a return value of string as well: 1: // since Func<object> is co-variant, this will access Func<string>, etc... 2: public static string Sequence(int count, Func<object> generator) 3: { 4: var builder = new StringBuilder(); 5:  6: for (int i=0; i<count; i++) 7: { 8: object value = generator(); 9: builder.Append(value); 10: } 11:  12: return builder.ToString(); 13: } Even though the method above takes a Func<object>, we can pass a Func<string> because the TResult type placeholder is co-variant and accepts types that are more derived as well: 1: // delegate that's typed to return string. 2: Func<string> stringGenerator = () => DateTime.Now.ToString(); 3:  4: // This will work in .NET 4.0, but not in previous versions 5: Sequence(100, stringGenerator); Previous versions of .NET implemented some forms of co-variance and contra-variance before, but .NET 4.0 goes one step further and allows you to pass or assign an Func<A, BResult> to a Func<Y, ZResult> as long as A is less derived (or same) as Y, and BResult is more derived (or same) as ZResult. Sidebar: The Func and the Predicate A method that takes one argument and returns a bool is generally thought of as a predicate.  Predicates are used to examine an item and determine whether that item satisfies a particular condition.  Predicates are typically unary, but you may also have binary and other predicates as well. Predicates are often used to filter results, such as in the LINQ Where() extension method: 1: var numbers = new[] { 1, 2, 4, 13, 8, 10, 27 }; 2:  3: // call Where() using a predicate which determines if the number is even 4: var evens = numbers.Where(num => num % 2 == 0); As of .NET 3.5, predicates are typically represented as Func<T, bool> where T is the type of the item to examine.  Previous to .NET 3.5, there was a Predicate<T> type that tended to be used (which we’ll discuss next week) and is still supported, but most developers recommend using Func<T, bool> now, as it prevents confusion with overloads that accept unary predicates and binary predicates, etc.: 1: // this seems more confusing as an overload set, because of Predicate vs Func 2: public static SomeMethod(Predicate<int> unaryPredicate) { } 3: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } 4:  5: // this seems more consistent as an overload set, since just uses Func 6: public static SomeMethod(Func<int, bool> unaryPredicate) { } 7: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } Also, even though Predicate<T> and Func<T, bool> match the same signatures, they are separate types!  Thus you cannot assign a Predicate<T> instance to a Func<T, bool> instance and vice versa: 1: // the same method, lambda expression, etc can be assigned to both 2: Predicate<int> isEven = i => (i % 2) == 0; 3: Func<int, bool> alsoIsEven = i => (i % 2) == 0; 4:  5: // but the delegate instances cannot be directly assigned, strongly typed! 6: // ERROR: cannot convert type... 7: isEven = alsoIsEven; 8:  9: // however, you can assign by wrapping in a new instance: 10: isEven = new Predicate<int>(alsoIsEven); 11: alsoIsEven = new Func<int, bool>(isEven); So, the general advice that seems to come from most developers is that Predicate<T> is still supported, but we should use Func<T, bool> for consistency in .NET 3.5 and above. Sidebar: Func as a Generator for Unit Testing One area of difficulty in unit testing can be unit testing code that is based on time of day.  We’d still want to unit test our code to make sure the logic is accurate, but we don’t want the results of our unit tests to be dependent on the time they are run. One way (of many) around this is to create an internal generator that will produce the “current” time of day.  This would default to returning result from DateTime.Now (or some other method), but we could inject specific times for our unit testing.  Generators are typically methods that return (generate) a value for use in a class/method. For example, say we are creating a CacheItem<T> class that represents an item in the cache, and we want to make sure the item shows as expired if the age is more than 30 seconds.  Such a class could look like: 1: // responsible for maintaining an item of type T in the cache 2: public sealed class CacheItem<T> 3: { 4: // helper method that returns the current time 5: private static Func<DateTime> _timeGenerator = () => DateTime.Now; 6:  7: // allows internal access to the time generator 8: internal static Func<DateTime> TimeGenerator 9: { 10: get { return _timeGenerator; } 11: set { _timeGenerator = value; } 12: } 13:  14: // time the item was cached 15: public DateTime CachedTime { get; private set; } 16:  17: // the item cached 18: public T Value { get; private set; } 19:  20: // item is expired if older than 30 seconds 21: public bool IsExpired 22: { 23: get { return _timeGenerator() - CachedTime > TimeSpan.FromSeconds(30.0); } 24: } 25:  26: // creates the new cached item, setting cached time to "current" time 27: public CacheItem(T value) 28: { 29: Value = value; 30: CachedTime = _timeGenerator(); 31: } 32: } Then, we can use this construct to unit test our CacheItem<T> without any time dependencies: 1: var baseTime = DateTime.Now; 2:  3: // start with current time stored above (so doesn't drift) 4: CacheItem<int>.TimeGenerator = () => baseTime; 5:  6: var target = new CacheItem<int>(13); 7:  8: // now add 15 seconds, should still be non-expired 9: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(15); 10:  11: Assert.IsFalse(target.IsExpired); 12:  13: // now add 31 seconds, should now be expired 14: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(31); 15:  16: Assert.IsTrue(target.IsExpired); Now we can unit test for 1 second before, 1 second after, 1 millisecond before, 1 day after, etc.  Func delegates can be a handy tool for this type of value generation to support more testable code.  Summary Generic delegates give us a lot of power to make truly generic algorithms and classes.  The Func family of delegates is a great way to be able to specify functions to calculate a result based on 0-16 arguments.  Stay tuned in the weeks that follow for other generic delegates in the .NET Framework!   Tweet Technorati Tags: .NET, C#, CSharp, Little Wonders, Generics, Func, Delegates

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Passing data between android ListActivities in Java

    - by Will Janes
    I am new to Android! I am having a problem getting this code to work... Basically I Go from one list activity to another and pass the text from a list item through the intent of the activity to the new list view, then retrieve that text in the new list activity and then preform a http request based on value of that list item. Log Cat 04-05 17:47:32.370: E/AndroidRuntime(30135): FATAL EXCEPTION: main 04-05 17:47:32.370: E/AndroidRuntime(30135): java.lang.ClassCastException:android.widget.LinearLayout 04-05 17:47:32.370: E/AndroidRuntime(30135): at com.thickcrustdesigns.ufood.CatogPage$1.onItemClick(CatogPage.java:66) 04-05 17:47:32.370: E/AndroidRuntime(30135): at android.widget.AdapterView.performItemClick(AdapterView.java:284) 04-05 17:47:32.370: E/AndroidRuntime(30135): at android.widget.ListView.performItemClick(ListView.java:3731) 04-05 17:47:32.370: E/AndroidRuntime(30135): at android.widget.AbsListView$PerformClick.run(AbsListView.java:1959) 04-05 17:47:32.370: E/AndroidRuntime(30135): at android.os.Handler.handleCallback(Handler.java:587) 04-05 17:47:32.370: E/AndroidRuntime(30135): at android.os.Handler.dispatchMessage(Handler.java:92) 04-05 17:47:32.370: E/AndroidRuntime(30135): at android.os.Looper.loop(Looper.java:130) 04-05 17:47:32.370: E/AndroidRuntime(30135): at android.app.ActivityThread.main(ActivityThread.java:3691) 04-05 17:47:32.370: E/AndroidRuntime(30135): at java.lang.reflect.Method.invokeNative(Native Method) 04-05 17:47:32.370: E/AndroidRuntime(30135): at java.lang.reflect.Method.invoke(Method.java:507) 04-05 17:47:32.370: E/AndroidRuntime(30135): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:907) 04-05 17:47:32.370: E/AndroidRuntime(30135): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:665) 04-05 17:47:32.370: E/AndroidRuntime(30135): at dalvik.system.NativeStart.main(Native Method) ListActivity 1 package com.thickcrustdesigns.ufood; import java.util.ArrayList; import org.apache.http.NameValuePair; import org.apache.http.message.BasicNameValuePair; import org.json.JSONException; import org.json.JSONObject; import android.app.ListActivity; import android.content.Intent; import android.os.Bundle; import android.view.View; import android.widget.AdapterView; import android.widget.AdapterView.OnItemClickListener; import android.widget.Button; import android.widget.ListView; import android.widget.TextView; public class CatogPage extends ListActivity { ListView listView1; Button btn_bk; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.definition_main); btn_bk = (Button) findViewById(R.id.btn_bk); listView1 = (ListView) findViewById(android.R.id.list); ArrayList<NameValuePair> nvp = new ArrayList<NameValuePair>(); nvp.add(new BasicNameValuePair("request", "categories")); ArrayList<JSONObject> jsondefs = Request.fetchData(this, nvp); String[] defs = new String[jsondefs.size()]; for (int i = 0; i < jsondefs.size(); i++) { try { defs[i] = jsondefs.get(i).getString("Name"); } catch (JSONException e) { // TODO Auto-generated catch block e.printStackTrace(); } } uFoodAdapter adapter = new uFoodAdapter(this, R.layout.definition_list, defs); listView1.setAdapter(adapter); ListView lv = getListView(); lv.setOnItemClickListener(new OnItemClickListener() { @Override public void onItemClick(AdapterView<?> parent, View view, int position, long id) { TextView tv = (TextView) view; String p = tv.getText().toString(); Intent i = new Intent(getApplicationContext(), Results.class); i.putExtra("category", p); startActivity(i); } }); btn_bk.setOnClickListener(new View.OnClickListener() { public void onClick(View arg0) { Intent i = new Intent(getApplicationContext(), UFoodAppActivity.class); startActivity(i); } }); } } **ListActivity 2** package com.thickcrustdesigns.ufood; import java.util.ArrayList; import org.apache.http.NameValuePair; import org.apache.http.message.BasicNameValuePair; import org.json.JSONException; import org.json.JSONObject; import android.app.ListActivity; import android.os.Bundle; import android.widget.ListView; public class Results extends ListActivity { ListView listView1; enum Category { Chicken, Beef, Chinese, Cocktails, Curry, Deserts, Fish, ForOne { public String toString() { return "For One"; } }, Lamb, LightBites { public String toString() { return "Light Bites"; } }, Pasta, Pork, Vegetarian } @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); this.setContentView(R.layout.definition_main); listView1 = (ListView) findViewById(android.R.id.list); Bundle data = getIntent().getExtras(); String category = data.getString("category"); Category cat = Category.valueOf(category); String value = null; switch (cat) { case Chicken: value = "Chicken"; break; case Beef: value = "Beef"; break; case Chinese: value = "Chinese"; break; case Cocktails: value = "Cocktails"; break; case Curry: value = "Curry"; break; case Deserts: value = "Deserts"; break; case Fish: value = "Fish"; break; case ForOne: value = "ForOne"; break; case Lamb: value = "Lamb"; break; case LightBites: value = "LightBites"; break; case Pasta: value = "Pasta"; break; case Pork: value = "Pork"; break; case Vegetarian: value = "Vegetarian"; } ArrayList<NameValuePair> nvp = new ArrayList<NameValuePair>(); nvp.add(new BasicNameValuePair("request", "category")); nvp.add(new BasicNameValuePair("cat", value)); ArrayList<JSONObject> jsondefs = Request.fetchData(this, nvp); String[] defs = new String[jsondefs.size()]; for (int i = 0; i < jsondefs.size(); i++) { try { defs[i] = jsondefs.get(i).getString("Name"); } catch (JSONException e) { // TODO Auto-generated catch block e.printStackTrace(); } } uFoodAdapter adapter = new uFoodAdapter(this, R.layout.definition_list, defs); listView1.setAdapter(adapter); } } Request package com.thickcrustdesigns.ufood; import java.io.BufferedReader; import java.io.InputStream; import java.io.InputStreamReader; import java.util.ArrayList; import org.apache.http.HttpEntity; import org.apache.http.HttpResponse; import org.apache.http.NameValuePair; import org.apache.http.client.HttpClient; import org.apache.http.client.entity.UrlEncodedFormEntity; import org.apache.http.client.methods.HttpPost; import org.apache.http.impl.client.DefaultHttpClient; import org.json.JSONArray; import org.json.JSONObject; import android.content.Context; import android.util.Log; import android.widget.Toast; public class Request { @SuppressWarnings("null") public static ArrayList<JSONObject> fetchData(Context context, ArrayList<NameValuePair> nvp) { ArrayList<JSONObject> listItems = new ArrayList<JSONObject>(); InputStream is = null; try { HttpClient httpclient = new DefaultHttpClient(); HttpPost httppost = new HttpPost( "http://co350-11d.projects02.glos.ac.uk/php/database.php"); httppost.setEntity(new UrlEncodedFormEntity(nvp)); HttpResponse response = httpclient.execute(httppost); HttpEntity entity = response.getEntity(); is = entity.getContent(); } catch (Exception e) { Log.e("log_tag", "Error in http connection" + e.toString()); } // convert response to string String result = ""; try { BufferedReader reader = new BufferedReader(new InputStreamReader( is, "iso-8859-1"), 8); InputStream stream = null; StringBuilder sb = null; while ((result = reader.readLine()) != null) { sb.append(result + "\n"); } stream.close(); result = sb.toString(); } catch (Exception e) { Log.e("log_tag", "Error converting result " + e.toString()); } try { JSONArray jArray = new JSONArray(result); for (int i = 0; i < jArray.length(); i++) { JSONObject jo = jArray.getJSONObject(i); listItems.add(jo); } } catch (Exception e) { Toast.makeText(context.getApplicationContext(), "None Found!", Toast.LENGTH_LONG).show(); } return listItems; } } Any help would be grateful! Many Thanks EDIT Sorry very tired so missed out my 2nd ListActivity package com.thickcrustdesigns.ufood; import java.util.ArrayList; import org.apache.http.NameValuePair; import org.apache.http.message.BasicNameValuePair; import org.json.JSONException; import org.json.JSONObject; import android.app.ListActivity; import android.os.Bundle; import android.widget.ListView; public class Results extends ListActivity { ListView listView1; enum Category { Chicken, Beef, Chinese, Cocktails, Curry, Deserts, Fish, ForOne { public String toString() { return "For One"; } }, Lamb, LightBites { public String toString() { return "Light Bites"; } }, Pasta, Pork, Vegetarian } @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); this.setContentView(R.layout.definition_main); listView1 = (ListView) findViewById(android.R.id.list); Bundle data = getIntent().getExtras(); String category = data.getString("category"); Category cat = Category.valueOf(category); String value = null; switch (cat) { case Chicken: value = "Chicken"; break; case Beef: value = "Beef"; break; case Chinese: value = "Chinese"; break; case Cocktails: value = "Cocktails"; break; case Curry: value = "Curry"; break; case Deserts: value = "Deserts"; break; case Fish: value = "Fish"; break; case ForOne: value = "ForOne"; break; case Lamb: value = "Lamb"; break; case LightBites: value = "LightBites"; break; case Pasta: value = "Pasta"; break; case Pork: value = "Pork"; break; case Vegetarian: value = "Vegetarian"; } ArrayList<NameValuePair> nvp = new ArrayList<NameValuePair>(); nvp.add(new BasicNameValuePair("request", "category")); nvp.add(new BasicNameValuePair("cat", value)); ArrayList<JSONObject> jsondefs = Request.fetchData(this, nvp); String[] defs = new String[jsondefs.size()]; for (int i = 0; i < jsondefs.size(); i++) { try { defs[i] = jsondefs.get(i).getString("Name"); } catch (JSONException e) { // TODO Auto-generated catch block e.printStackTrace(); } } uFoodAdapter adapter = new uFoodAdapter(this, R.layout.definition_list, defs); listView1.setAdapter(adapter); } } Sorry again! Cheers guys!

    Read the article

  • DropDownList Value not changing with UpdatePanel and ModalPopupExtender

    - by Richard
    Greetings, I have an asp.net webpage with an modalpopupextender inside of an updatepanel. When I click Ok on the popup, I can get the textbox values from the popup just fine, but the DropDownLists have the old/default value, not the new value I have selected for them. All the controls on the popup are set to enableviewstate = true, and autopostback = false (I just want to make the trip to the server when I click the ok button, not every time I change the value of the popups). Here is the relevant code. ========================== Client Side <asp:UpdatePanel ID="UpdatePanel1" runat="server"> <ContentTemplate> <asp:Panel ID="EditIssuePanel" runat="server" CssClass="modalPopup" Style="display:block;" > <table style="width:500px;"> <tr style="height:50px;"> <td colspan="2" align="center"> <asp:Label ID="lblEditIssueHeader" runat="server" Text="Edit Issue"></asp:Label> </td> </tr> <tr style="height:30px;"> <td class="labelscolumn"> <asp:Label ID="lblIssueName" runat="server" Text="Name:"></asp:Label> </td> <td class="datacolumn"> <asp:TextBox ID="txtName" runat="server" Width="250px" MaxLength="50"></asp:TextBox> </td> </tr> <tr style="height:30px;"> <td class="labelscolumn"> <asp:Label ID="lblDescription" runat="server" Text="Description:"></asp:Label> </td> <td class="datacolumn"> <asp:TextBox ID="txtDescription" runat="server" Width="250px" MaxLength="1000"></asp:TextBox> </td> </tr> <tr style="height:30px;"> <td class="labelscolumn"> <asp:Label ID="lblType" runat="server" Text="Type:"></asp:Label> </td> <td class="datacolumn"> <asp:DropDownList ID="ddlType" runat="server"> <asp:ListItem Selected="True" Value="B">Bug</asp:ListItem> <asp:ListItem Value="R">Request</asp:ListItem> <asp:ListItem Value="O">Other</asp:ListItem> </asp:DropDownList> </td> </tr> <tr style="height:30px;"> <td class="labelscolumn"> <asp:Label ID="lblStatus" runat="server" Text="Status:"></asp:Label> </td> <td class="datacolumn"> <asp:DropDownList ID="ddlStatus" runat="server"> <asp:ListItem Selected="True" Value="L">Logged</asp:ListItem> <asp:ListItem Value="I">In Process</asp:ListItem> <asp:ListItem Value="C">Complete</asp:ListItem> </asp:DropDownList> &nbsp; </td> </tr> <tr style="height:30px;"> <td class="labelscolumn"> <asp:Label ID="lblPriority" runat="server" Text="Priority:"></asp:Label> </td> <td class="datacolumn"> <asp:DropDownList ID="ddlPriority" runat="server" EnableViewState="true" AutoPostBack="false"> <asp:ListItem Selected="True" Value="L">Low</asp:ListItem> <asp:ListItem Value="M">Medium</asp:ListItem> <asp:ListItem Value="H">High</asp:ListItem> </asp:DropDownList> &nbsp;</td> </tr> <tr style="height:30px"> <td class="labelscolumn">Logger</td> <td class="datacolumn"> <asp:Label ID="lblEnteredByClientUserID" runat="server" Text=""></asp:Label> </td> </tr> <tr style="height:30px;"> <td class="labelscolumn"> <asp:Label ID="lblDateResolutionRequested" runat="server" Text="Requested Complete Date:"></asp:Label> </td> <td class="datacolumn"> <igsch:WebDateChooser ID="wdcRequestCompleteDate" runat="server"> </igsch:WebDateChooser> &nbsp;</td> </tr> <tr style="height:30px"> <td class="labelscolumn">Logged Date</td> <td class="datacolumn"> <asp:Label ID="lblLoggedDate" runat="server" Text=""></asp:Label> </td> </tr> <tr style="height:30px"> <td class="labelscolumn">In Process Date</td> <td class="datacolumn"> <asp:Label ID="lblInProcessDate" runat="server" Text=""></asp:Label> </td> </tr> <tr style="height:30px"> <td class="labelscolumn">Resolved Date</td> <td class="datacolumn"> <asp:Label ID="lblResolvedDate" runat="server" Text=""></asp:Label> </td> </tr> <tr style="height:30px;"> <td class="labelscolumn" valign="top"> <asp:Label ID="lblEmailCCList" runat="server" Text="Email CC:"></asp:Label> </td> <td class="datacolumn"> <asp:TextBox ID="txtEmailCCList" runat="server" MaxLength="2000" Rows="0" TextMode="MultiLine" Height="83px" Width="250px"></asp:TextBox> &nbsp;</td> </tr> <tr> <td> <asp:Label ID="lblIssueID" runat="server" Text="" Visible="false"></asp:Label> <asp:Label ID="lblClientID" runat="server" Text="" Visible="false"></asp:Label> </td> <td align="right"> <asp:Button ID="btnEditOk" runat="server" Text="Ok" onclick="btnEditOk_Click"/>&nbsp;&nbsp; <asp:Button ID="btnEditCancel" runat="server" Text="Cancel" onclick="btnEditCancel_Click" />&nbsp;&nbsp;&nbsp;&nbsp; </td> </tr> </table> </asp:Panel> . . . THEN THERE IS A WEBGRID HERE. . . This modal popupextender here got mangled. I cant get stackoverflow to show it right. It shows the properties here though. " BackgroundCssClass="modalBackground" DropShadow="true" OkControlID="btnEditOk" CancelControlID="btnEditCancel" Animations="" </ContentTemplate> </asp:UpdatePanel> ========================================= Server Side protected void btnEditOk_Click(object sender, EventArgs e) { IssueDAO issueDAO = new IssueDAO(); string client = "Eichleay"; string name = null; string description = null; string type = null; string status = null; DateTime? resolvedDate = null; string enteredByClientUserName = User.Identity.Name.ToString(); DateTime? loggedDate = DateTime.Now; DateTime? inProcessDate = null; DateTime? completeDate = null; DateTime? requestCompleteDate = null; string priority = null; int? prioritySort = null; string emailCCList = null; name = txtName.Text.Substring(txtName.Text.Length > 0 ? 1 : 0, (txtName.Text.Length > 0 ? txtName.Text.Length : 1) - 1); description = txtDescription.Text.Substring(txtDescription.Text.Length > 0 ? 1 : 0, (txtDescription.Text.Length == 0 ? 1 : txtDescription.Text.Length) - 1); type = ddlType.SelectedValue; status = ddlStatus.SelectedValue; resolvedDate = string.IsNullOrEmpty(lblResolvedDate.Text) == true ? null : new Nullable<DateTime>(Convert.ToDateTime(lblResolvedDate.Text)); inProcessDate = string.IsNullOrEmpty(lblInProcessDate.Text) == true ? null : new Nullable<DateTime>(Convert.ToDateTime(lblInProcessDate.Text)); completeDate = string.IsNullOrEmpty(lblResolvedDate.Text) == true ? null : new Nullable<DateTime>(Convert.ToDateTime(lblResolvedDate.Text)); requestCompleteDate = wdcRequestCompleteDate.Value == null ? null : string.IsNullOrEmpty(wdcRequestCompleteDate.Value.ToString()) == true ? null : new Nullable<DateTime>(Convert.ToDateTime(wdcRequestCompleteDate.Value.ToString())); priority = ddlPriority.SelectedValue; emailCCList = txtEmailCCList.Text.Substring(txtEmailCCList.Text.Length > 0 ? 1 : 0, (txtEmailCCList.Text.Length > 0 ? txtEmailCCList.Text.Length : 1) - 1); if (lblEditIssueHeader.Text.Substring(0, 3) == "New") { issueDAO.InsertIssue(client, name, description, type, status, resolvedDate, enteredByClientUserName, loggedDate, inProcessDate, completeDate, requestCompleteDate, priority, prioritySort, emailCCList); } else { Issue issue = new Issue(Convert.ToInt32(lblIssueID.Text), lblClientID.Text, txtName.Text.Substring(txtName.Text.Length > 0 ? 1 : 0, (txtName.Text.Length > 0 ? txtName.Text.Length : 1) - 1), txtDescription.Text.Substring(txtDescription.Text.Length > 0 ? 1 : 0, (txtDescription.Text.Length == 0 ? 1 : txtDescription.Text.Length) - 1), ddlType.SelectedValue, ddlStatus.SelectedValue, string.IsNullOrEmpty(lblResolvedDate.Text) == true ? null : new Nullable<DateTime>(Convert.ToDateTime(lblResolvedDate.Text)), lblEnteredByClientUserID.Text, string.IsNullOrEmpty(lblLoggedDate.Text) == true ? null : new Nullable<DateTime>(Convert.ToDateTime(lblLoggedDate.Text)), string.IsNullOrEmpty(lblInProcessDate.Text) == true ? null : new Nullable<DateTime>(Convert.ToDateTime(lblInProcessDate.Text)), string.IsNullOrEmpty(lblResolvedDate.Text) == true ? null : new Nullable<DateTime>(Convert.ToDateTime(lblResolvedDate.Text)), string.IsNullOrEmpty(wdcRequestCompleteDate.Value.ToString()) == true ? null : new Nullable<DateTime>(Convert.ToDateTime(wdcRequestCompleteDate.Value.ToString())), ddlPriority.SelectedValue, null, txtEmailCCList.Text.Substring(txtEmailCCList.Text.Length > 0 ? 1 : 0, (txtEmailCCList.Text.Length > 0 ? txtEmailCCList.Text.Length : 1) - 1)); issueDAO.UpdateIssue(issue); } // wdgIssues.ClearDataSource(); // UpdatePanel1.Update(); lblIssueID.Text = null; lblClientID.Text = null; txtName.Text = null; txtDescription.Text = null; ddlType.SelectedValue = null; ddlStatus.SelectedValue = null; lblLoggedDate.Text = null; lblInProcessDate.Text = null; lblResolvedDate.Text = null; wdcRequestCompleteDate.Value = null; ddlPriority.SelectedValue = null; txtEmailCCList.Text = null; }

    Read the article

  • exchange web service C# code send email from home

    - by KK
    Is it possible to write C# code as below and send email using my home network? I have a valid user name and password on that exchange server. Is there any configuration that I can set to achieve this? BTW this code blow works when I run it within office network. I want this code to work when run from any network. String cMSExchangeWebServiceURL = (String)System.Configuration.ConfigurationSettings.AppSettings["MSExchangeWebServiceURL"]; String cEmail = (String)System.Configuration.ConfigurationSettings.AppSettings["Cemail"]; String cPassword = (String)System.Configuration.ConfigurationSettings.AppSettings["Cpassword"]; String cTo = (String)System.Configuration.ConfigurationSettings.AppSettings["CTo"]; ExchangeServiceBinding esb = new ExchangeServiceBinding(); esb.Timeout = 1800000; esb.AllowAutoRedirect = true; esb.UseDefaultCredentials = false; esb.Credentials = new NetworkCredential(cEmail, cPassword); esb.Url = cMSExchangeWebServiceURL; ServicePointManager.ServerCertificateValidationCallback += delegate(object sender1, X509Certificate certificate, X509Chain chain, SslPolicyErrors sslPolicyErrors) { return true; }; // Create a CreateItem request object CreateItemType request = new CreateItemType(); // Setup the request: // Indicate that we only want to send the message. No copy will be saved. request.MessageDisposition = MessageDispositionType.SendOnly; request.MessageDispositionSpecified = true; // Create a message object and set its properties MessageType message = new MessageType(); message.Subject = subject; message.Body = new TestOutgoingEmailServer.com.cogniti.mail1.BodyType(); message.Body.BodyType1 = BodyTypeType.HTML; message.Body.Value = body; message.ToRecipients = new EmailAddressType[3]; message.ToRecipients[0] = new EmailAddressType(); //message.ToRecipients[1] = new EmailAddressType(); //message.ToRecipients[2] = new EmailAddressType(); message.ToRecipients[0].EmailAddress = "[email protected]"; message.ToRecipients[0].RoutingType = "SMTP"; //message.CcRecipients = new EmailAddressType[1]; //message.CcRecipients[0] = new EmailAddressType(); //message.CcRecipients[0].EmailAddress = toEmailAddress.ElementAt(1).ToString(); //message.CcRecipients[0].RoutingType = "SMTP"; //There are some more properties in MessageType object //you can set all according to your requirement // Construct the array of items to send request.Items = new NonEmptyArrayOfAllItemsType(); request.Items.Items = new ItemType[1]; request.Items.Items[0] = message; // Call the CreateItem EWS method. CreateItemResponseType response = esb.CreateItem(request);

    Read the article

  • How to configure Visual Studio 2010 code coverage for ASP.NET MVC unit tests

    - by DigiMortal
    I just got Visual Studio 2010 code coverage work with ASP.NET MVC application unit tests. Everything is simple after you have spent some time with forums, blogs and Google. To save your valuable time I wrote this posting to guide you through the process of making code coverage work with ASP.NET MVC application unit tests. After some fighting with Visual Studio I got everything to work as expected. I am still not very sure why users must deal with this mess, but okay – I survived it. Before you start configuring Visual Studio I expect your solution meets the following needs: there are at least one library that will be tested, there is at least on library that contains tests to be run, there are some classes and some tests for them, and, of course, you are using version of Visual Studio 2010 that supports tests (I have Visual Studio 2010 Ultimate). Now open the following screenshot to separate windows and follow the steps given below. Visual Studio 2010 Test Settings window. Click on image to see it at original size.  Double click on Local.testsettings under Solution Items. Test settings window will be opened. Select “Data and Diagnostics” from left pane. Mark checkboxes “ASP.NET Profiler” and “Code Coverage”. Move cursor to “Code Coverage” line and press Configure button or make double click on line. Assemblies selection window will be opened. Mark checkboxes that are located before assemblies about what you want code coverage reports and apply settings. Save your project and close Visual Studio. Run Visual Studio as Administrator and run tests. NB! Select Test => Run => Tests in Current Context from menu. When tests are run you can open code coverage results by selecting Test => Windows => Code Coverage Results from menu. Here you can see my example test results. Visual Studio 2010 Test Results window. All my tests passed this time. :) Click on image to see it at original size.  And here are the code coverage results. Visual Studio 2101 Code Coverage Results. I need a lot more tests for sure. Click on image to see it at original size.  As you can see everything was pretty simple. But it took me sometime to figure out how to get everything work as expected. Problems? You may face some problems when making code coverage work. Here is my short list of possible problems. Make sure you have all assemblies available for code coverage. In some cases it needs more libraries to be referenced as you currently have. By example, I had to add some more Enterprise Library assemblies to my project. You can use EventViewer to discover errors that where given during testing. Make sure you selected all testable assemblies from Code Coverage settings like shown above. Otherwise you may get empty results. Tests with code coverage are slower because we need ASP.NET profiler. If your machine slows down then try to free more resources.

    Read the article

  • My Tech Ed North America Preview - Certification Edition

    - by Chris Gardner
    In my previous TechEd North America Preview, I addressed all the content I wanted to see at the show. This time, we shall turn our attention to the certifications I might try to pick up. If you have never been to TechEd North America before, one of the greatest things about the event is an on-site certification center. If you have a couple hours to spare, you can walk up to a test. The first test on my agenda is 70-5231. I took this update test once, but did not do well on the MVC portion2. A few practice tests later, and I think I'm ready to fake that section. After that, I need to complete my road to being a master. The good folks here at work have been having a real love / hate relationship with the idea of me become an MCM in SQL Server3. Of course, before I do that, I need to finally take the SQL Administration tests. Thus, we shall add 70-4324 and 70-4505 to the list. Speaking of MCM, TechEd North America will have a special on test 88-9706. This test is normally $500, and you have to find a place to take it7. However, there is a special 50% off rate for people who take it on location. With those kind of prices, I may just take it as a form of study guide. As a final push, I may take some Windows Phone exams. I mentioned in my previous post that I may attend the 70-5998 Exam Cram session. Unfortunately, I will be staffing the Hands-On-Lab at that time. As we know, this has never stopped me from taking a test. This may lead to fits of 70-5069, but after we've come this far... That should complete my list. Do I really think I'll find time to take 6 tests at TechEd North America? Probably not. I have done it at TechEd North America before, but that was before I was TechEd North America staff. I also had a co-worker pass 9 in one year, but he basically did nothing but travel to Orlando in 2007 to take tests. And what's the point of attending a HUGE conference if you don't network? Of course, networking will have to wait for Friday's post... 1 Upgrade: Transition Your MCPD .NET Framework 3.5 Web Developer Skills to MCPD .NET Framework 4 Web Developer 2Because I never have used, nor do I really think I ever will use, MVC... 3By that, I mean they love the idea, and they hate the price 4Microsoft SQL Server 2008, Implementation and Maintenance 5PRO: Designing, Optimizing and Maintaining a Database Administrative Solution Using Microsoft SQL Server 2008 6SQL Server 2008 Microsoft Certified Master: Knowledge Exam 7Which isn't nearly as expensive as the Lab Exam, nor as difficult to find a location. However, it is not offered at every testing facility. 8PRO: Designing and Developing Windows Phone Applications 9TS: Silverlight 4, Development

    Read the article

  • NetBeans Java Hints: Quick & Dirty Guide

    - by Geertjan
    In NetBeans IDE 7.2, a new wizard will be found in the "Module Development" category in the New File dialog, for creating new Java Hints. Select a package in a NetBeans module project. Right click, choose New/Other.../Module Development/Java Hint: You'll then see this: Fill in: Class Name: the name of the class that should be generated. E.g. "Example". Hint Display Name: the display name of the hint itself (as will appear in Tools/Options). E.g. "Example Hint". Warning Message: the warning that should be produced by the hint. E.g. "Something wrong is going on". Hint Description: a longer description of the hint, will appear in Tools/Options and eventually some other places. E.g. "This is an example hint that warns about an example problem." Will also provide an Automatic Fix: whether the hint will provide some kind of transformation. E.g. "yes". Fix Display Name: the display name of such a fix/transformation. E.g. "Fix the problem". Click Finish. Should generate "Example.java", the hint itself: import com.sun.source.util.TreePath; import org.netbeans.api.java.source.CompilationInfo; import org.netbeans.spi.editor.hints.ErrorDescription; import org.netbeans.spi.editor.hints.Fix; import org.netbeans.spi.java.hints.ConstraintVariableType; import org.netbeans.spi.java.hints.ErrorDescriptionFactory; import org.netbeans.spi.java.hints.Hint; import org.netbeans.spi.java.hints.HintContext; import org.netbeans.spi.java.hints.JavaFix; import org.netbeans.spi.java.hints.TriggerPattern; import org.openide.util.NbBundle.Messages; @Hint(displayName = "DN_com.bla.Example", description = "DESC_com.bla.Example", category = "general") //NOI18N @Messages({"DN_com.bla.Example=Example Hint", "DESC_com.bla.Example=This is an example hint that warns about an example problem."}) public class Example { @TriggerPattern(value = "$str.equals(\"\")", //Specify a pattern as needed constraints = @ConstraintVariableType(variable = "$str", type = "java.lang.String")) @Messages("ERR_com.bla.Example=Something wrong is going on") public static ErrorDescription computeWarning(HintContext ctx) { Fix fix = new FixImpl(ctx.getInfo(), ctx.getPath()).toEditorFix(); return ErrorDescriptionFactory.forName(ctx, ctx.getPath(), Bundle.ERR_com.bla_Example(), fix); } private static final class FixImpl extends JavaFix { public FixImpl(CompilationInfo info, TreePath tp) { super(info, tp); } @Override @Messages("FIX_com.bla.Example=Fix the problem") protected String getText() { return Bundle.FIX_com_bla_Example(); } @Override protected void performRewrite(TransformationContext ctx) { //perform the required transformation } } } Should also generate "ExampleTest.java", a test for it. Unfortunately, the wizard infrastructure is not capable of handling changes related to test dependencies. So the ExampleTest.java has a todo list at its begining: /* TODO to make this test work:  - add test dependency on Java Hints Test API (and JUnit 4)  - to ensure that the newest Java language features supported by the IDE are available,   regardless of which JDK you build the module with:  -- for Ant-based modules, add "requires.nb.javac=true" into nbproject/project.properties  -- for Maven-based modules, use dependency:copy in validate phase to create   target/endorsed/org-netbeans-libs-javacapi-*.jar and add to endorseddirs   in maven-compiler-plugin configuration  */Warning: if this is a project for which tests never existed before, you may need to close&reopen the project, so that "Unit Test Libraries" node appears - a bug in apisupport projects, as far as I can tell.  Thanks to Jan Lahoda for the above rough guide.

    Read the article

  • Is it possible to write C# code as below and send email using my home network?

    - by kedar karthik
    Is it possible to write C# code as below and send email using my home network? I have a valid user name and password on that exchange server. Is there any configuration that I can set to achieve this? BTW this code blow works when I run it within office network. I want this code to work when run from any network. String cMSExchangeWebServiceURL = (String)System.Configuration.ConfigurationSettings.AppSettings["MSExchangeWebServiceURL"]; String cEmail = (String)System.Configuration.ConfigurationSettings.AppSettings["Cemail"]; String cPassword = (String)System.Configuration.ConfigurationSettings.AppSettings["Cpassword"]; String cTo = (String)System.Configuration.ConfigurationSettings.AppSettings["CTo"]; ExchangeServiceBinding esb = new ExchangeServiceBinding(); esb.Timeout = 1800000; esb.AllowAutoRedirect = true; esb.UseDefaultCredentials = false; esb.Credentials = new NetworkCredential(cEmail, cPassword); esb.Url = cMSExchangeWebServiceURL; ServicePointManager.ServerCertificateValidationCallback += delegate(object sender1, X509Certificate certificate, X509Chain chain, SslPolicyErrors sslPolicyErrors) { return true; }; // Create a CreateItem request object CreateItemType request = new CreateItemType(); // Setup the request: // Indicate that we only want to send the message. No copy will be saved. request.MessageDisposition = MessageDispositionType.SendOnly; request.MessageDispositionSpecified = true; // Create a message object and set its properties MessageType message = new MessageType(); message.Subject = subject; message.Body = new TestOutgoingEmailServer.com.cogniti.mail1.BodyType(); message.Body.BodyType1 = BodyTypeType.HTML; message.Body.Value = body; message.ToRecipients = new EmailAddressType[3]; message.ToRecipients[0] = new EmailAddressType(); //message.ToRecipients[1] = new EmailAddressType(); //message.ToRecipients[2] = new EmailAddressType(); message.ToRecipients[0].EmailAddress = "[email protected]"; message.ToRecipients[0].RoutingType = "SMTP"; //message.CcRecipients = new EmailAddressType[1]; //message.CcRecipients[0] = new EmailAddressType(); //message.CcRecipients[0].EmailAddress = toEmailAddress.ElementAt(1).ToString(); //message.CcRecipients[0].RoutingType = "SMTP"; //There are some more properties in MessageType object //you can set all according to your requirement // Construct the array of items to send request.Items = new NonEmptyArrayOfAllItemsType(); request.Items.Items = new ItemType[1]; request.Items.Items[0] = message; // Call the CreateItem EWS method. CreateItemResponseType response = esb.CreateItem(request);

    Read the article

  • Implementing Service Level Agreements in Enterprise Manager 12c for Oracle Packaged Applications

    - by Anand Akela
    Contributed by Eunjoo Lee, Product Manager, Oracle Enterprise Manager. Service Level Management, or SLM, is a key tool in the proactive management of any Oracle Packaged Application (e.g., E-Business Suite, Siebel, PeopleSoft, JD Edwards E1, Fusion Apps, etc.). The benefits of SLM are that administrators can utilize representative Application transactions, which are constantly and automatically running behind the scenes, to verify that all of the key application and technology components of an Application are available and performing to expectations. A single transaction can verify the availability and performance of the underlying Application Tech Stack in a much more efficient manner than by monitoring the same underlying targets individually. In this article, we’ll be demonstrating SLM using Siebel Applications, but the same tools and processes apply to any of the Package Applications mentioned above. In this demonstration, we will log into the Siebel Application, navigate to the Contacts View, update a contact phone record, and then log-out. This transaction exposes availability and performance metrics of multiple Siebel Servers, multiple Components and Component Groups, and the Siebel Database - in a single unified manner. We can then monitor and manage these transactions like any other target in EM 12c, including placing pro-active alerts on them if the transaction is either unavailable or is not performing to required levels. The first step in the SLM process is recording the Siebel transaction. The following screenwatch demonstrates how to record Siebel transaction using an EM tool called “OpenScript”. A completed recording is called a “Synthetic Transaction”. The second step in the SLM process is uploading the Synthetic Transaction into EM 12c, and creating Generic Service Tests. We can create a Generic Service Test to execute our synthetic transactions at regular intervals to evaluate the performance of various business flows. As these transactions are running periodically, it is possible to monitor the performance of the Siebel Application by evaluating the performance of the synthetic transactions. The process of creating a Generic Service Test is detailed in the next screenwatch. EM 12c provides a guided workflow for all of the key creation steps, including configuring the Service Test, uploading of the Synthetic Test, determining the frequency of the Service Test, establishing beacons, and selecting performance and usage metrics, just to name a few. The third and final step in the SLM process is the creation of Service Level Agreements (SLA). Service Level Agreements allow Administrators to utilize the previously created Service Tests to specify expected service levels for Application availability, performance, and usage. SLAs can be created for different time periods and for different Service Tests. This last screenwatch demonstrates the process of creating an SLA, as well as highlights the Dashboards and Reports that Administrators can use to monitor Service Test results. Hopefully, this article provides you with a good start point for creating Service Level Agreements for your E-Business Suite, Siebel, PeopleSoft, JD Edwards E1, or Fusion Applications. Enterprise Manager Cloud Control 12c, with the Application Management Suites, represents a quick and easy way to implement Service Level Management capabilities at customer sites. Stay Connected: Twitter |  Face book |  You Tube |  Linked in |  Google+ |  Newsletter

    Read the article

  • Save object states in .data or attr - Performance vs CSS?

    - by Neysor
    In response to my answer yesterday about rotating an Image, Jamund told me to use .data() instead of .attr() First I thought that he is right, but then I thought about a bigger context... Is it always better to use .data() instead of .attr()? I looked in some other posts like what-is-better-data-or-attr or jquery-data-vs-attrdata The answers were not satisfactory for me... So I moved on and edited the example by adding CSS. I thought it might be useful to make a different Style on each image if it rotates. My style was the following: .rp[data-rotate="0"] { border:10px solid #FF0000; } .rp[data-rotate="90"] { border:10px solid #00FF00; } .rp[data-rotate="180"] { border:10px solid #0000FF; } .rp[data-rotate="270"] { border:10px solid #00FF00; } Because design and coding are often separated, it could be a nice feature to handle this in CSS instead of adding this functionality into JavaScript. Also in my case the data-rotate is like a special state which the image currently has. So in my opinion it make sense to represent it within the DOM. I also thought this could be a case where it is much better to save with .attr() then with .data(). Never mentioned before in one of the posts I read. But then i thought about performance. Which function is faster? I built my own test following: <!DOCTYPE HTML> <html> <head> <title>test</title> <script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js"></script> <script type="text/javascript"> function runfirst(dobj,dname){ console.log("runfirst "+dname); console.time(dname+"-attr"); for(i=0;i<10000;i++){ dobj.attr("data-test","a"+i); } console.timeEnd(dname+"-attr"); console.time(dname+"-data"); for(i=0;i<10000;i++){ dobj.data("data-test","a"+i); } console.timeEnd(dname+"-data"); } function runlast(dobj,dname){ console.log("runlast "+dname); console.time(dname+"-data"); for(i=0;i<10000;i++){ dobj.data("data-test","a"+i); } console.timeEnd(dname+"-data"); console.time(dname+"-attr"); for(i=0;i<10000;i++){ dobj.attr("data-test","a"+i); } console.timeEnd(dname+"-attr"); } $().ready(function() { runfirst($("#rp4"),"#rp4"); runfirst($("#rp3"),"#rp3"); runlast($("#rp2"),"#rp2"); runlast($("#rp1"),"#rp1"); }); </script> </head> <body> <div id="rp1">Testdiv 1</div> <div id="rp2" data-test="1">Testdiv 2</div> <div id="rp3">Testdiv 3</div> <div id="rp4" data-test="1">Testdiv 4</div> </body> </html> It should also show if there is a difference with a predefined data-test or not. One result was this: runfirst #rp4 #rp4-attr: 515ms #rp4-data: 268ms runfirst #rp3 #rp3-attr: 505ms #rp3-data: 264ms runlast #rp2 #rp2-data: 260ms #rp2-attr: 521ms runlast #rp1 #rp1-data: 284ms #rp1-attr: 525ms So the .attr() function did always need more time than the .data() function. This is an argument for .data() I thought. Because performance is always an argument! Then I wanted to post my results here with some questions, and in the act of writing I compared with the questions Stack Overflow showed me (similar titles) And true enough, there was one interesting post about performance I read it and run their example. And now I am confused! This test showed that .data() is slower then .attr() !?!! Why is that so? First I thought it is because of a different jQuery library so I edited it and saved the new one. But the result wasn't changing... So now my questions to you: Why are there some differences in the performance in these two examples? Would you prefer to use data- HTML5 attributes instead of data, if it represents a state? Although it wouldn't be needed at the time of coding? Why - Why not? Now depending on the performance: Would performance be an argument for you using .attr() instead of data, if it shows that .attr() is better? Although data is meant to be used for .data()? UPDATE 1: I did see that without overhead .data() is much faster. Misinterpreted the data :) But I'm more interested in my second question. :) Would you prefer to use data- HTML5 attributes instead of data, if it represents a state? Although it wouldn't be needed at the time of coding? Why - Why not? Are there some other reasons you can think of, to use .attr() and not .data()? e.g. interoperability? because .data() is jquery style and HTML Attributes can be read by all... UPDATE 2: As we see from T.J Crowder's speed test in his answer attr is much faster then data! which is again confusing me :) But please! Performance is an argument, but not the highest! So give answers to my other questions please too!

    Read the article

  • Odd behavior when recursively building a return type for variadic functions

    - by Dennis Zickefoose
    This is probably going to be a really simple explanation, but I'm going to give as much backstory as possible in case I'm wrong. Advanced apologies for being so verbose. I'm using gcc4.5, and I realize the c++0x support is still somewhat experimental, but I'm going to act on the assumption that there's a non-bug related reason for the behavior I'm seeing. I'm experimenting with variadic function templates. The end goal was to build a cons-list out of std::pair. It wasn't meant to be a custom type, just a string of pair objects. The function that constructs the list would have to be in some way recursive, with the ultimate return value being dependent on the result of the recursive calls. As an added twist, successive parameters are added together before being inserted into the list. So if I pass [1, 2, 3, 4, 5, 6] the end result should be {1+2, {3+4, 5+6}}. My initial attempt was fairly naive. A function, Build, with two overloads. One took two identical parameters and simply returned their sum. The other took two parameters and a parameter pack. The return value was a pair consisting of the sum of the two set parameters, and the recursive call. In retrospect, this was obviously a flawed strategy, because the function isn't declared when I try to figure out its return type, so it has no choice but to resolve to the non-recursive version. That I understand. Where I got confused was the second iteration. I decided to make those functions static members of a template class. The function calls themselves are not parameterized, but instead the entire class is. My assumption was that when the recursive function attempts to generate its return type, it would instantiate a whole new version of the structure with its own static function, and everything would work itself out. The result was: "error: no matching function for call to BuildStruct<double, double, char, char>::Go(const char&, const char&)" The offending code: static auto Go(const Type& t0, const Type& t1, const Types&... rest) -> std::pair<Type, decltype(BuildStruct<Types...>::Go(rest...))> My confusion comes from the fact that the parameters to BuildStruct should always be the same types as the arguments sent to BuildStruct::Go, but in the error code Go is missing the initial two double parameters. What am I missing here? If my initial assumption about how the static functions would be chosen was incorrect, why is it trying to call the wrong function rather than just not finding a function at all? It seems to just be mixing types willy-nilly, and I just can't come up with an explanation as to why. If I add additional parameters to the initial call, it always burrows down to that last step before failing, so presumably the recursion itself is at least partially working. This is in direct contrast to the initial attempt, which always failed to find a function call right away. Ultimately, I've gotten past the problem, with a fairly elegant solution that hardly resembles either of the first two attempts. So I know how to do what I want to do. I'm looking for an explanation for the failure I saw. Full code to follow since I'm sure my verbal description was insufficient. First some boilerplate, if you feel compelled to execute the code and see it for yourself. Then the initial attempt, which failed reasonably, then the second attempt, which did not. #include <iostream> using std::cout; using std::endl; #include <utility> template<typename T1, typename T2> std::ostream& operator <<(std::ostream& str, const std::pair<T1, T2>& p) { return str << "[" << p.first << ", " << p.second << "]"; } //Insert code here int main() { Execute(5, 6, 4.3, 2.2, 'c', 'd'); Execute(5, 6, 4.3, 2.2); Execute(5, 6); return 0; } Non-struct solution: template<typename Type> Type BuildFunction(const Type& t0, const Type& t1) { return t0 + t1; } template<typename Type, typename... Rest> auto BuildFunction(const Type& t0, const Type& t1, const Rest&... rest) -> std::pair<Type, decltype(BuildFunction(rest...))> { return std::pair<Type, decltype(BuildFunction(rest...))> (t0 + t1, BuildFunction(rest...)); } template<typename... Types> void Execute(const Types&... t) { cout << BuildFunction(t...) << endl; } Resulting errors: test.cpp: In function 'void Execute(const Types& ...) [with Types = {int, int, double, double, char, char}]': test.cpp:33:35: instantiated from here test.cpp:28:3: error: no matching function for call to 'BuildFunction(const int&, const int&, const double&, const double&, const char&, const char&)' Struct solution: template<typename... Types> struct BuildStruct; template<typename Type> struct BuildStruct<Type, Type> { static Type Go(const Type& t0, const Type& t1) { return t0 + t1; } }; template<typename Type, typename... Types> struct BuildStruct<Type, Type, Types...> { static auto Go(const Type& t0, const Type& t1, const Types&... rest) -> std::pair<Type, decltype(BuildStruct<Types...>::Go(rest...))> { return std::pair<Type, decltype(BuildStruct<Types...>::Go(rest...))> (t0 + t1, BuildStruct<Types...>::Go(rest...)); } }; template<typename... Types> void Execute(const Types&... t) { cout << BuildStruct<Types...>::Go(t...) << endl; } Resulting errors: test.cpp: In instantiation of 'BuildStruct<int, int, double, double, char, char>': test.cpp:33:3: instantiated from 'void Execute(const Types& ...) [with Types = {int, int, double, double, char, char}]' test.cpp:38:41: instantiated from here test.cpp:24:15: error: no matching function for call to 'BuildStruct<double, double, char, char>::Go(const char&, const char&)' test.cpp:24:15: note: candidate is: static std::pair<Type, decltype (BuildStruct<Types ...>::Go(BuildStruct<Type, Type, Types ...>::Go::rest ...))> BuildStruct<Type, Type, Types ...>::Go(const Type&, const Type&, const Types& ...) [with Type = double, Types = {char, char}, decltype (BuildStruct<Types ...>::Go(BuildStruct<Type, Type, Types ...>::Go::rest ...)) = char] test.cpp: In function 'void Execute(const Types& ...) [with Types = {int, int, double, double, char, char}]': test.cpp:38:41: instantiated from here test.cpp:33:3: error: 'Go' is not a member of 'BuildStruct<int, int, double, double, char, char>'

    Read the article

  • jqgrid with asp.net webmethod and json working with sorting, paging, searching and LINQ

    - by aimlessWonderer
    THIS WORKS! Most topics covering jqgrid and asp.net seem to relate to just receiving JSON, or working in the MVC framework, or utilizing other handlers or web services... but not many dealt with actually passing parameters back to an actual webmethod in the codebehind. Furthermore, scarce are the examples that contain successful implementation the AJAX paging, sorting, or searching along with LINQ to SQL for asp.net jqGrid. Below is a working example that may help others who need help to pass parameters to jqGrid in order to have correct paging, sorting, filtering.. it uses pieces from here and there... ================================================== First, THE JAVASCRIPT <script type="text/javascript"> $(document).ready(function() { var grid = $("#list"); $("#list").jqGrid({ // setup custom parameter names to pass to server prmNames: { search: "isSearch", nd: null, rows: "numRows", page: "page", sort: "sortField", order: "sortOrder" }, // add by default to avoid webmethod parameter conflicts postData: { searchString: '', searchField: '', searchOper: '' }, // setup ajax call to webmethod datatype: function(postdata) { mtype: "GET", $.ajax({ url: 'PageName.aspx/getGridData', type: "POST", contentType: "application/json; charset=utf-8", data: JSON.stringify(postdata), dataType: "json", success: function(data, st) { if (st == "success") { var grid = jQuery("#list")[0]; grid.addJSONData(JSON.parse(data.d)); } }, error: function() { alert("Error with AJAX callback"); } }); }, // this is what jqGrid is looking for in json callback jsonReader: { root: "rows", page: "page", total: "totalpages", records: "totalrecords", cell: "cell", id: "id", //index of the column with the PK in it userdata: "userdata", repeatitems: true }, colNames: ['Id', 'First Name', 'Last Name'], colModel: [ { name: 'id', index: 'id', width: 55, search: false }, { name: 'fname', index: 'fname', width: 200, searchoptions: { sopt: ['eq', 'ne', 'cn']} }, { name: 'lname', index: 'lname', width: 200, searchoptions: { sopt: ['eq', 'ne', 'cn']} } ], rowNum: 10, rowList: [10, 20, 30], pager: jQuery("#pager"), sortname: "fname", sortorder: "asc", viewrecords: true, caption: "Grid Title Here" }).jqGrid('navGrid', '#pager', { edit: false, add: false, del: false }, {}, // default settings for edit {}, // add {}, // delete { closeOnEscape: true, closeAfterSearch: true}, //search {} ) }); </script> ================================================== Second, THE C# WEBMETHOD [WebMethod] public static string getGridData(int? numRows, int? page, string sortField, string sortOrder, bool isSearch, string searchField, string searchString, string searchOper) { string result = null; MyDataContext db = null; try { //--- retrieve the data db = new MyDataContext("my connection string path"); var query = from u in db.TBL_USERs select u; //--- determine if this is a search filter if (isSearch) { searchOper = getOperator(searchOper); // need to associate correct operator to value sent from jqGrid string whereClause = String.Format("{0} {1} {2}", searchField, searchOper, "@" + searchField); //--- associate value to field parameter Dictionary<string, object> param = new Dictionary<string, object>(); param.Add("@" + searchField, searchString); query = query.Where(whereClause, new object[1] { param }); } //--- setup calculations int pageIndex = page ?? 1; //--- current page int pageSize = numRows ?? 10; //--- number of rows to show per page int totalRecords = query.Count(); //--- number of total items from query int totalPages = (int)Math.Ceiling((decimal)totalRecords / (decimal)pageSize); //--- number of pages //--- filter dataset for paging and sorting IQueryable<TBL_USER> orderedRecords = query.OrderBy(sortfield); IEnumerable<TBL_USER> sortedRecords = orderedRecords.ToList(); if (sortorder == "desc") sortedRecords= sortedRecords.Reverse(); sortedRecords= sortedRecords .Skip((pageIndex - 1) * pageSize) //--- page the data .Take(pageSize); //--- format json var jsonData = new { totalpages = totalPages, //--- number of pages page = pageIndex, //--- current page totalrecords = totalRecords, //--- total items rows = ( from row in sortedRecords select new { i = row.USER_ID, cell = new string[] { row.USER_ID.ToString(), row.FNAME.ToString(), row.LNAME } } ).ToArray() }; result = Newtonsoft.Json.JsonConvert.SerializeObject(jsonData); } catch (Exception ex) { Debug.WriteLine(ex); } finally { if (db != null) db.Dispose(); } return result; } ================================================== Third, NECESSITIES In order to have dynamic OrderBy clauses in the LINQ, I had to pull in a class to my AppCode folder called 'Dynamic.cs'. You can retrieve the file from downloading here. You will find the file in the "DynamicQuery" folder. That file will give you the ability to utilized dynamic ORDERBY clause since we don't know what column we're filtering by except on the initial load. To serialize the JSON back from the C-sharp to the JS, I incorporated the James Newton-King JSON.net DLL found here : http://json.codeplex.com/releases/view/37810. After downloading, there is a "Newtonsoft.Json.Compact.dll" which you can add in your Bin folder as a reference Here's my USING's block using System; using System.Collections; using System.Collections.Generic; using System.Linq; using System.Web.UI.WebControls; using System.Web.Services; using System.Linq.Dynamic; For the Javascript references, I'm using the following scripts in respective order in case that helps some folks: 1) jquery-1.3.2.min.js ... 2) jquery-ui-1.7.2.custom.min.js ... 3) json.min.js ... 4) i18n/grid.locale-en.js ... 5) jquery.jqGrid.min.js For the CSS, I'm using jqGrid's necessities as well as the jQuery UI Theme: 1) jquery_theme/jquery-ui-1.7.2.custom.css ... 2) ui.jqgrid.css The key to getting the parameters from the JS to the WebMethod without having to parse an unserialized string on the backend or having to setup some JS logic to switch methods for different numbers of parameters was this block postData: { searchString: '', searchField: '', searchOper: '' }, Those parameters will still be set correctly when you actually do a search and then reset to empty when you "reset" or want the grid to not do any filtering Hope this helps some others!!!! Please reply if you find major issues or ways of refactoring or doing better that I haven't considered.

    Read the article

  • How can I eager-load a child collection mapped to a non-primary key in NHibernate 2.1.2?

    - by David Rubin
    Hi, I have two objects with a many-to-many relationship between them, as follows: public class LeftHandSide { public LeftHandSide() { Name = String.Empty; Rights = new HashSet<RightHandSide>(); } public int Id { get; set; } public string Name { get; set; } public ICollection<RightHandSide> Rights { get; set; } } public class RightHandSide { public RightHandSide() { OtherProp = String.Empty; Lefts = new HashSet<LeftHandSide>(); } public int Id { get; set; } public string OtherProp { get; set; } public ICollection<LeftHandSide> Lefts { get; set; } } and I'm using a legacy database, so my mappings look like: Notice that LeftHandSide and RightHandSide are associated by a different column than RightHandSide's primary key. <class name="LeftHandSide" table="[dbo].[lefts]" lazy="false"> <id name="Id" column="ID" unsaved-value="0"> <generator class="identity" /> </id> <property name="Name" not-null="true" /> <set name="Rights" table="[dbo].[lefts2rights]"> <key column="leftId" /> <!-- THIS IS THE IMPORTANT BIT: I MUST USE PROPERTY-REF --> <many-to-many class="RightHandSide" column="rightProp" property-ref="OtherProp" /> </set> </class> <class name="RightHandSide" table="[dbo].[rights]" lazy="false"> <id name="Id" column="id" unsaved-value="0"> <generator class="identity" /> </id> <property name="OtherProp" column="otherProp" /> <set name="Lefts" table="[dbo].[lefts2rights]"> <!-- THIS IS THE IMPORTANT BIT: I MUST USE PROPERTY-REF --> <key column="rightProp" property-ref="OtherProp" /> <many-to-many class="LeftHandSide" column="leftId" /> </set> </class> The problem comes when I go to do a query: LeftHandSide lhs = _session.CreateCriteria<LeftHandSide>() .Add(Expression.IdEq(13)) .UniqueResult<LeftHandSide>(); works just fine. But LeftHandSide lhs = _session.CreateCriteria<LeftHandSide>() .Add(Expression.IdEq(13)) .SetFetchMode("Rights", FetchMode.Join) .UniqueResult<LeftHandSide>(); throws an exception (see below). Interestingly, RightHandSide rhs = _session.CreateCriteria<RightHandSide>() .Add(Expression.IdEq(127)) .SetFetchMode("Lefts", FetchMode.Join) .UniqueResult<RightHandSide>(); seems to be perfectly fine as well. NHibernate.Exceptions.GenericADOException Message: Error performing LoadByUniqueKey[SQL: SQL not available] Source: NHibernate StackTrace: c:\opt\nhibernate\2.1.2\source\src\NHibernate\Type\EntityType.cs(563,0): at NHibernate.Type.EntityType.LoadByUniqueKey(String entityName, String uniqueKeyPropertyName, Object key, ISessionImplementor session) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Type\EntityType.cs(428,0): at NHibernate.Type.EntityType.ResolveIdentifier(Object value, ISessionImplementor session, Object owner) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Type\EntityType.cs(300,0): at NHibernate.Type.EntityType.NullSafeGet(IDataReader rs, String[] names, ISessionImplementor session, Object owner) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Persister\Collection\AbstractCollectionPersister.cs(695,0): at NHibernate.Persister.Collection.AbstractCollectionPersister.ReadElement(IDataReader rs, Object owner, String[] aliases, ISessionImplementor session) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Collection\Generic\PersistentGenericSet.cs(54,0): at NHibernate.Collection.Generic.PersistentGenericSet`1.ReadFrom(IDataReader rs, ICollectionPersister role, ICollectionAliases descriptor, Object owner) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(706,0): at NHibernate.Loader.Loader.ReadCollectionElement(Object optionalOwner, Object optionalKey, ICollectionPersister persister, ICollectionAliases descriptor, IDataReader rs, ISessionImplementor session) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(385,0): at NHibernate.Loader.Loader.ReadCollectionElements(Object[] row, IDataReader resultSet, ISessionImplementor session) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(326,0): at NHibernate.Loader.Loader.GetRowFromResultSet(IDataReader resultSet, ISessionImplementor session, QueryParameters queryParameters, LockMode[] lockModeArray, EntityKey optionalObjectKey, IList hydratedObjects, EntityKey[] keys, Boolean returnProxies) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(453,0): at NHibernate.Loader.Loader.DoQuery(ISessionImplementor session, QueryParameters queryParameters, Boolean returnProxies) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(236,0): at NHibernate.Loader.Loader.DoQueryAndInitializeNonLazyCollections(ISessionImplementor session, QueryParameters queryParameters, Boolean returnProxies) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(1649,0): at NHibernate.Loader.Loader.DoList(ISessionImplementor session, QueryParameters queryParameters) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(1568,0): at NHibernate.Loader.Loader.ListIgnoreQueryCache(ISessionImplementor session, QueryParameters queryParameters) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(1562,0): at NHibernate.Loader.Loader.List(ISessionImplementor session, QueryParameters queryParameters, ISet`1 querySpaces, IType[] resultTypes) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Criteria\CriteriaLoader.cs(73,0): at NHibernate.Loader.Criteria.CriteriaLoader.List(ISessionImplementor session) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Impl\SessionImpl.cs(1936,0): at NHibernate.Impl.SessionImpl.List(CriteriaImpl criteria, IList results) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Impl\CriteriaImpl.cs(246,0): at NHibernate.Impl.CriteriaImpl.List(IList results) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Impl\CriteriaImpl.cs(237,0): at NHibernate.Impl.CriteriaImpl.List() c:\opt\nhibernate\2.1.2\source\src\NHibernate\Impl\CriteriaImpl.cs(398,0): at NHibernate.Impl.CriteriaImpl.UniqueResult() c:\opt\nhibernate\2.1.2\source\src\NHibernate\Impl\CriteriaImpl.cs(263,0): at NHibernate.Impl.CriteriaImpl.UniqueResult[T]() D:\proj\CMS3\branches\nh_auth\DomainModel2Tests\Authorization\TempTests.cs(46,0): at CMS.DomainModel.Authorization.TempTests.Test1() Inner Exception System.Collections.Generic.KeyNotFoundException Message: The given key was not present in the dictionary. Source: mscorlib StackTrace: at System.ThrowHelper.ThrowKeyNotFoundException() at System.Collections.Generic.Dictionary`2.get_Item(TKey key) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Persister\Entity\AbstractEntityPersister.cs(2047,0): at NHibernate.Persister.Entity.AbstractEntityPersister.GetAppropriateUniqueKeyLoader(String propertyName, IDictionary`2 enabledFilters) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Persister\Entity\AbstractEntityPersister.cs(2037,0): at NHibernate.Persister.Entity.AbstractEntityPersister.LoadByUniqueKey(String propertyName, Object uniqueKey, ISessionImplementor session) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Type\EntityType.cs(552,0): at NHibernate.Type.EntityType.LoadByUniqueKey(String entityName, String uniqueKeyPropertyName, Object key, ISessionImplementor session) I'm using NHibernate 2.1.2 and I've been debugging into the NHibernate source, but I'm coming up empty. Any suggestions? Thanks so much!

    Read the article

  • JavaScriptSerializer deserialize object "collection" as property in object failing

    - by bill
    Hi All, I have a js object structured like: object.property1 = "some string"; object.property2 = "some string"; object.property3.property1 = "some string"; object.property3.property2 = "some string"; object.property3.property2 = "some string"; i'm using JSON.stringify(object) to pass this with ajax request. When i try to deserialize this using JavaScriptSerializer.Deserialize as a Dictionary i get the following error: No parameterless constructor defined for type of 'System.String'. This exact same process is working for regular object with non "collection" properties.. thanks for any help!

    Read the article

  • jquery nested sortable list

    - by Y.G.J
    i have this code $(document).ready(function() { $("#test-list").sortable({ items: "> li", handle : '.handle', axis: 'y', opacity: 0.6, update : function () { var order = $('#test-list').sortable('serialize'); $("#info").load("process-sortable.asp?"+order+"&id=catid&order=orderid&table=tblCats"); } }); $("#test-sub").sortable({ containment: "ul", items: "li", handle : '.handle', axis: 'y', opacity: 0.6, update : function () { var order = $('#test-list').sortable('serialize'); $("#info").load("process-sortable.asp?"+order+"&id=catid&order=orderid&table=tblCats"); } }); }); for this kind of UL <ul id="test-list"> <li></li> <li> <ul id="test-sub"> <li></li> <li></li> <li></li> <li></li> <li></li> <li></li> </ul> </li> <li></li> <li></li> <li></li> <li></li> </ul> but it can be changed dynamiclly... when i drag and drop the main li it is working when i do it with the childs it will drag the main one what is wrong?

    Read the article

  • ASP.NET TextBox TextChanged event not firing in custom EditorPart

    - by Ben Collins
    This is a classic sort of question, I suppose, but it seems that most people are interested in having the textbox cause a postback. I'm not. I just want the event to fire when a postback occurs. I have created a webpart with a custom editorpart. The editorpart renders with a textbox and a button. Clicking the button causes a dialog to open. When the dialog is closed, it sets the value of the textbox via javascript and then does __doPostBack using the ClientID of the editorpart. The postback happens, but the TextChanged event never fires, and I'm not sure if it's a problem with the way __doPostBack is invoked, or if it's because of the way I'm setting up the event handler, or something else. Here's what I think is the relevant portion of the code from the editorpart: protected override void CreateChildControls() { _txtListUrl = new TextBox(); _txtListUrl.ID = "targetSPList"; _txtListUrl.Style.Add(HtmlTextWriterStyle.Width, "60%"); _txtListUrl.ToolTip = "Select List"; _txtListUrl.CssClass = "ms-input"; _txtListUrl.Attributes.Add("readOnly", "true"); _txtListUrl.Attributes.Add("onChange", "__doPostBack('" + this.ClientID + "', '');"); _txtListUrl.Text = this.ListString; _btnListPicker = new HtmlInputButton(); _btnListPicker.Style.Add(HtmlTextWriterStyle.Width, "60%"); _btnListPicker.Attributes.Add("Title", "Select List"); _btnListPicker.ID = "browseListsSmtButton"; _btnListPicker.Attributes.Add("onClick", "mso_launchListSmtPicker()"); _btnListPicker.Value = "Select List"; this.AddConfigurationOption("News List", "Choose the list that serves as the data source.", new Control[] { _txtListUrl, _btnListPicker }); if (this.ShowViewSelection) { _txtListUrl.TextChanged += new EventHandler(_txtListUrl_TextChanged); _ddlViews = new DropDownList(); _ddlViews.ID = "_ddlViews"; this.AddConfigurationOption("View", _ddlViews); } } protected override void OnPreRender(EventArgs e) { ScriptLink.Register(this.Page, "PickerTreeDialog.js", true); string lastSelectedListId = string.Empty; if (!this.WebId.Equals(Guid.Empty) && !this.ListId.Equals(Guid.Empty)) { lastSelectedListId = SPHttpUtility.EcmaScriptStringLiteralEncode( string.Format("SPList:{0}?SPWeb:{1}:", this.ListId.ToString(), this.WebId.ToString())); } string script = "\r\n var lastSelectedListSmtPickerId = '" + lastSelectedListId + "';" + "\r\n function mso_launchListSmtPicker(){" + "\r\n if (!document.getElementById) return;" + "\r\n" + "\r\n var listTextBox = document.getElementById('" + SPHttpUtility.EcmaScriptStringLiteralEncode(_txtListUrl.ClientID) + "');" + "\r\n if (listTextBox == null) return;" + "\r\n" + "\r\n var serverUrl = '" + SPHttpUtility.EcmaScriptStringLiteralEncode(SPContext.Current.Web.ServerRelativeUrl) + "';" + "\r\n" + "\r\n var callback = function(results) {" + "\r\n if (results == null || results[1] == null || results[2] == null) return;" + "\r\n" + "\r\n lastSelectedListSmtPickerId = results[0];" + "\r\n var listUrl = '';" + "\r\n if (listUrl.substring(listUrl.length-1) != '/') listUrl = listUrl + '/';" + "\r\n if (results[1].charAt(0) == '/') results[1] = results[1].substring(1);" + "\r\n listUrl = listUrl + results[1];" + "\r\n if (listUrl.substring(listUrl.length-1) != '/') listUrl = listUrl + '/';" + "\r\n if (results[2].charAt(0) == '/') results[2] = results[2].substring(1);" + "\r\n listUrl = listUrl + results[2];" + "\r\n listTextBox.value = listUrl;" + "\r\n __doPostBack('" + this.ClientID + "','');" + "\r\n }" + "\r\n LaunchPickerTreeDialog('CbqPickerSelectListTitle','CbqPickerSelectListText','websLists','', serverUrl, lastSelectedListSmtPickerId,'','','/_layouts/images/smt_icon.gif','', callback);" + "\r\n }"; this.Page.ClientScript.RegisterClientScriptBlock(typeof(ListPickerEditorPart), "mso_launchListSmtPicker", script, true); if ((!string.IsNullOrEmpty(_txtListUrl.Text) && _ddlViews.Items.Count == 0) || _listSelectionChanged) { _ddlViews.Items.Clear(); if (!string.IsNullOrEmpty(_txtListUrl.Text)) { using (SPWeb web = SPContext.Current.Site.OpenWeb(this.WebId)) { foreach (SPView view in web.Lists[this.ListId].Views) { _ddlViews.Items.Add(new ListItem(view.Title, view.ID.ToString())); } } _ddlViews.Enabled = _ddlViews.Items.Count > 0; } else { _ddlViews.Enabled = false; } } base.OnPreRender(e); } void _txtListUrl_TextChanged(object sender, EventArgs e) { this.SetPropertiesFromChosenListString(_txtListUrl.Text); _listSelectionChanged = true; } Any ideas? Update: I forgot to mention these methods, which are called above: protected virtual void AddConfigurationOption(string title, Control inputControl) { this.AddConfigurationOption(title, null, inputControl); } protected virtual void AddConfigurationOption(string title, string description, Control inputControl) { this.AddConfigurationOption(title, description, new List<Control>(new Control[] { inputControl })); } protected virtual void AddConfigurationOption(string title, string description, IEnumerable<Control> inputControls) { HtmlGenericControl divSectionHead = new HtmlGenericControl("div"); divSectionHead.Attributes.Add("class", "UserSectionHead"); this.Controls.Add(divSectionHead); HtmlGenericControl labTitle = new HtmlGenericControl("label"); labTitle.InnerHtml = HttpUtility.HtmlEncode(title); divSectionHead.Controls.Add(labTitle); HtmlGenericControl divUserSectionBody = new HtmlGenericControl("div"); divUserSectionBody.Attributes.Add("class", "UserSectionBody"); this.Controls.Add(divUserSectionBody); HtmlGenericControl divUserControlGroup = new HtmlGenericControl("div"); divUserControlGroup.Attributes.Add("class", "UserControlGroup"); divUserSectionBody.Controls.Add(divUserControlGroup); if (!string.IsNullOrEmpty(description)) { HtmlGenericControl spnDescription = new HtmlGenericControl("div"); spnDescription.InnerHtml = HttpUtility.HtmlEncode(description); divUserControlGroup.Controls.Add(spnDescription); } foreach (Control inputControl in inputControls) { divUserControlGroup.Controls.Add(inputControl); } this.Controls.Add(divUserControlGroup); HtmlGenericControl divUserDottedLine = new HtmlGenericControl("div"); divUserDottedLine.Attributes.Add("class", "UserDottedLine"); divUserDottedLine.Style.Add(HtmlTextWriterStyle.Width, "100%"); this.Controls.Add(divUserDottedLine); }

    Read the article

  • NullReferenceException when calling InsertOnSubmit in Linq to Sql.

    - by Charlie
    I'm trying to insert a new object into my database using LINQ to SQL but get a NullReferenceException when I call InsertOnSubmit() in the code snippet below. I'm passing in a derived class called FileUploadAudit, and all properties on the object are set. public void Save(Audit audit) { try { using (ULNDataClassesDataContext dataContext = this.Connection.GetContext()) { if (audit.AuditID > 0) { throw new RepositoryException(RepositoryExceptionCode.EntityAlreadyExists, string.Format("An audit entry with ID {0} already exists and cannot be updated.", audit.AuditID)); } dataContext.Audits.InsertOnSubmit(audit); dataContext.SubmitChanges(); } } catch (Exception ex) { if (ObjectFactory.GetInstance<IExceptionHandler>().HandleException(ex)) { throw; } } } Here's the stack trace: at System.Data.Linq.Table`1.InsertOnSubmit(TEntity entity) at XXXX.XXXX.Repository.AuditRepository.Save(Audit audit) C:\XXXX\AuditRepository.cs:line 25" I've added to the Audit class like this: public partial class Audit { public Audit(string message, ULNComponent component) : this() { this.Message = message; this.DateTimeRecorded = DateTime.Now; this.SetComponent(component); this.ServerName = Environment.MachineName; } public bool IsError { get; set; } public void SetComponent(ULNComponent component) { this.Component = Enum.GetName(typeof(ULNComponent), component); } } And the derived FileUploadAudit looks like this: public class FileUploadAudit : Audit { public FileUploadAudit(string message, ULNComponent component, Guid fileGuid, string originalFilename, string physicalFilename, HttpPostedFileBase postedFile) : base(message, component) { this.FileGuid = fileGuid; this.OriginalFilename = originalFilename; this.PhysicalFileName = physicalFilename; this.PostedFile = postedFile; this.ValidationErrors = new List<string>(); } public Guid FileGuid { get; set; } public string OriginalFilename { get; set; } public string PhysicalFileName { get; set; } public HttpPostedFileBase PostedFile { get; set; } public IList<string> ValidationErrors { get; set; } } Any ideas what the problem is? The closest question I could find to mine is here but my partial Audit class is calling the parameterless constructor in the generated code, and I still get the problem. UPDATE: This problem only occurs when I pass in the derived FileUploadAudit class, the Audit class works fine. The Audit class is generated as a linq to sql class and there are no Properties mapped to database fields in the derived class.

    Read the article

  • Iterate through deserialized xml object

    - by Bruce Adams
    I have a deserialized xml c# objet. I need to iterate through the oject to display all items, in this case there's just one, and display the name, colors and sizes for each item. The xml: <?xml version="1.0" encoding="utf-8"?> <Catalog Name="Example"> <Items> <Item Name="ExampleItem"> <Colors> <Color Name="Black" Value="#000" /> <Color Name="White" Value="#FFF" /> </Colors> <Sizes> <Size Name="Small" Value="10" /> <Size Name="Medium" Value="20" /> </Sizes> </Item> </Items> </Catalog> xsd.exe generated classes: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:2.0.50727.4927 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ using System.Xml.Serialization; // // This source code was auto-generated by xsd, Version=2.0.50727.42. // /// <remarks/> [System.CodeDom.Compiler.GeneratedCodeAttribute("xsd", "2.0.50727.42")] [System.SerializableAttribute()] [System.Diagnostics.DebuggerStepThroughAttribute()] [System.ComponentModel.DesignerCategoryAttribute("code")] [System.Xml.Serialization.XmlTypeAttribute(AnonymousType=true)] [System.Xml.Serialization.XmlRootAttribute(Namespace="", IsNullable=false)] public partial class Catalog { private CatalogItemsItem[][] itemsField; private string nameField; /// <remarks/> [System.Xml.Serialization.XmlArrayAttribute(Form=System.Xml.Schema.XmlSchemaForm.Unqualified)] [System.Xml.Serialization.XmlArrayItemAttribute("Item", typeof(CatalogItemsItem[]), Form=System.Xml.Schema.XmlSchemaForm.Unqualified, IsNullable=false)] public CatalogItemsItem[][] Items { get { return this.itemsField; } set { this.itemsField = value; } } /// <remarks/> [System.Xml.Serialization.XmlAttributeAttribute()] public string Name { get { return this.nameField; } set { this.nameField = value; } } } /// <remarks/> [System.CodeDom.Compiler.GeneratedCodeAttribute("xsd", "2.0.50727.42")] [System.SerializableAttribute()] [System.Diagnostics.DebuggerStepThroughAttribute()] [System.ComponentModel.DesignerCategoryAttribute("code")] [System.Xml.Serialization.XmlTypeAttribute(AnonymousType=true)] public partial class CatalogItemsItem { private CatalogItemsItemColorsColor[][] colorsField; private CatalogItemsItemSizesSize[][] sizesField; private string nameField; /// <remarks/> [System.Xml.Serialization.XmlArrayAttribute(Form=System.Xml.Schema.XmlSchemaForm.Unqualified)] [System.Xml.Serialization.XmlArrayItemAttribute("Color", typeof(CatalogItemsItemColorsColor[]), Form=System.Xml.Schema.XmlSchemaForm.Unqualified, IsNullable=false)] public CatalogItemsItemColorsColor[][] Colors { get { return this.colorsField; } set { this.colorsField = value; } } /// <remarks/> [System.Xml.Serialization.XmlArrayAttribute(Form=System.Xml.Schema.XmlSchemaForm.Unqualified)] [System.Xml.Serialization.XmlArrayItemAttribute("Size", typeof(CatalogItemsItemSizesSize[]), Form=System.Xml.Schema.XmlSchemaForm.Unqualified, IsNullable=false)] public CatalogItemsItemSizesSize[][] Sizes { get { return this.sizesField; } set { this.sizesField = value; } } /// <remarks/> [System.Xml.Serialization.XmlAttributeAttribute()] public string Name { get { return this.nameField; } set { this.nameField = value; } } } /// <remarks/> [System.CodeDom.Compiler.GeneratedCodeAttribute("xsd", "2.0.50727.42")] [System.SerializableAttribute()] [System.Diagnostics.DebuggerStepThroughAttribute()] [System.ComponentModel.DesignerCategoryAttribute("code")] [System.Xml.Serialization.XmlTypeAttribute(AnonymousType=true)] public partial class CatalogItemsItemColorsColor { private string nameField; private string valueField; /// <remarks/> [System.Xml.Serialization.XmlAttributeAttribute()] public string Name { get { return this.nameField; } set { this.nameField = value; } } /// <remarks/> [System.Xml.Serialization.XmlAttributeAttribute()] public string Value { get { return this.valueField; } set { this.valueField = value; } } } /// <remarks/> [System.CodeDom.Compiler.GeneratedCodeAttribute("xsd", "2.0.50727.42")] [System.SerializableAttribute()] [System.Diagnostics.DebuggerStepThroughAttribute()] [System.ComponentModel.DesignerCategoryAttribute("code")] [System.Xml.Serialization.XmlTypeAttribute(AnonymousType=true)] public partial class CatalogItemsItemSizesSize { private string nameField; private string valueField; /// <remarks/> [System.Xml.Serialization.XmlAttributeAttribute()] public string Name { get { return this.nameField; } set { this.nameField = value; } } /// <remarks/> [System.Xml.Serialization.XmlAttributeAttribute()] public string Value { get { return this.valueField; } set { this.valueField = value; } } } /// <remarks/> [System.CodeDom.Compiler.GeneratedCodeAttribute("xsd", "2.0.50727.42")] [System.SerializableAttribute()] [System.Diagnostics.DebuggerStepThroughAttribute()] [System.ComponentModel.DesignerCategoryAttribute("code")] [System.Xml.Serialization.XmlTypeAttribute(AnonymousType=true)] [System.Xml.Serialization.XmlRootAttribute(Namespace="", IsNullable=false)] public partial class NewDataSet { private Catalog[] itemsField; /// <remarks/> [System.Xml.Serialization.XmlElementAttribute("Catalog")] public Catalog[] Items { get { return this.itemsField; } set { this.itemsField = value; } } } Deserialization code: System.Xml.Serialization.XmlSerializer xSerializer = new System.Xml.Serialization.XmlSerializer(typeof(Catalog)); TextReader reader = new StreamReader("catalog.xml"); Catalog catalog = (Catalog)xSerializer.Deserialize(reader); foreach (var item in catalog.Items) { } reader.Close(); When I setp through the code there is one item present in catalog.items, but it is empty, no name, colors or sizes. Any ideas what I need to do? Thanks

    Read the article

  • Binding not writing to datasource on .NET Compact Framework Form -- works on Full Framework

    - by Dave Welling
    I have a problem with a bound user control writing back to it's datasource on a NetCF forms application. The application is too complex to post code, so I made a toy version to show you. I create a form, usercontrol with a combobox, a class (testBind) and another class (TestLookup). I bind a property of the usercontrol ("value") to a property ("selectedValue") on the testBind class. The testBind class implements INotifyPropertyChanged. I create a few fascade methods on the user control to bind the contained combobox to a BindingList(of TestLookup). I create a button to show the value of the testBind bound property (in a MessageBox). The messagebox returns "-1" every time regardless of the combobox entry selected. I can take the EXACT same code, paste it in a full framework Forms app and it will return the correct value of the selected combobox entry. Imports System.ComponentModel Public Class Form2 Inherits Form Private _testBind1 As testBind Private _testUserControlX As UserControlX Friend WithEvents _buttonX As System.Windows.Forms.Button Public Sub New() _buttonX = New System.Windows.Forms.Button _buttonX.Location = New System.Drawing.Point(126, 228) _buttonX.Size = New System.Drawing.Size(70, 21) _testBind1 = New testBind _testUserControlX = New UserControlX() Dim _lookup As New System.ComponentModel.BindingList(Of TestLookup)() _lookup.Add(New TestLookup(1, "text1")) _lookup.Add(New TestLookup(2, "text2")) _testUserControlX.DataSource = _lookup _testUserControlX.DisplayMember = "Text" _testUserControlX.ValueMember = "ID" _testUserControlX.DataBindings.Add("Value", _testBind1, "SelectedID", False, DataSourceUpdateMode.OnValidation) MinimizeBox = False Controls.Add(_testUserControlX) Controls.Add(_buttonX) End Sub Private Sub ButtonX_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles _buttonX.Click MessageBox.Show(_testBind1.SelectedID.ToString()) End Sub Public Class testBind Implements System.ComponentModel.INotifyPropertyChanged Private _selectedRow As Integer = -1 Public Event PropertyChanged(ByVal sender As Object, ByVal e As System.ComponentModel.PropertyChangedEventArgs) Implements System.ComponentModel.INotifyPropertyChanged.PropertyChanged Protected Sub OnPropertyChanged(ByVal PropertyName As String) RaiseEvent PropertyChanged(Me, New PropertyChangedEventArgs(PropertyName)) End Sub Public Property SelectedID() As Integer Get Return _selectedRow End Get Set(ByVal value As Integer) _selectedRow = value OnPropertyChanged("SelectedID") End Set End Property End Class Public Class TestLookup Private _text As String Private _id As Integer Public Sub New(ByVal id As Integer, ByVal text As String) _text = text _id = id End Sub Public Property ID() As Integer Get Return _id End Get Set(ByVal value As Integer) _id = value End Set End Property Public Property Text() As String Get Return _text End Get Set(ByVal value As String) _text = value End Set End Property End Class End Class Public Class UserControlX Inherits System.Windows.Forms.UserControl Friend WithEvents ComboBox1 As System.Windows.Forms.ComboBox Public Sub New() Me.ComboBox1 = New System.Windows.Forms.ComboBox Me.Controls.Add(Me.ComboBox1) End Sub Public Property Value() As Integer Get Return ComboBox1.SelectedValue End Get Set(ByVal value As Integer) ComboBox1.SelectedValue = value End Set End Property Public Property DataSource() As Object Get Return ComboBox1.DataSource End Get Set(ByVal value As Object) ComboBox1.DataSource = value End Set End Property Public Property ValueMember() As String Get Return ComboBox1.ValueMember End Get Set(ByVal value As String) ComboBox1.ValueMember = value End Set End Property Public Property DisplayMember() As String Get Return ComboBox1.DisplayMember End Get Set(ByVal value As String) ComboBox1.DisplayMember = value End Set End Property End Class

    Read the article

  • PHP preg_replace oddity with £ pound sign and ã

    - by Barry Ramsay
    Hello I am applying the following function <?php function replaceChar($string){ $new_string = preg_replace("/[^a-zA-Z0-9\sçéèêëñòóôõöàáâäåìíîïùúûüýÿ]/", "", $string); return $new_string; } $string = "This is some text and numbers 12345 and symbols !£%^#&$ and foreign letters éèêëñòóôõöàáâäåìíîïùúûüýÿ"; echo replaceChar($string); ?> which works fine but if I add ã to the preg_replace like $new_string = preg_replace("/[^a-zA-Z0-9\sçéèêëñòóôõöàáâãäåìíîïùúûüýÿ]/", "", $string); $string = "This is some text and numbers 12345 and symbols !£%^#&$ and foreign letters éèêëñòóôõöàáâäåìíîïùúûüýÿã"; It conflicts with the pound sign £ and replaces the pound sign with the unidentified question mark in black square. This is not critical but does anyone know why this is? Thank you, Barry

    Read the article

  • How to pass object from one activity to another in android

    - by kaibuki
    Hi I am trying to work on sending an object of my "Customer" class from one activity and display on other activity. the code for the customer class : `package com.kaibuki; public class Customer { private String firstName, lastName, Address; int Age; public Customer(String fname, String lname, int age, String address) { firstName = fname; lastName = lname; Age = age; Address = address; } public String printValues() { String data = null; data = "First Name :" + firstName + " Last Name :" + lastName + " Age : " + Age + " Address : " + Address; return data; } } I want to send its object from one activity to another and then display the data on the other activity. Please need urgent help. Thanks alot Kai`

    Read the article

  • Inheritance with POCO entities in Entity Framework 4

    - by Juvaly
    Hi All, I have a Consumer class and a BillableConsumer : Consumer class. When trying to do any operation on my "Consumers" set, I get the error message "Object mapping could not be found for Type with identity Models.BillableConsumer. From the CSDL: <EntityType Name="BillableConsumer" BaseType="Models.Consumer"> <Property Type="String" Name="CardExpiratoin" Nullable="false" /> <Property Type="String" Name="CardNumber" Nullable="false" /> <Property Type="String" Name="City" Nullable="false" /> <Property Type="String" Name="Country" Nullable="false" /> <Property Type="String" Name="CVV" Nullable="false" /> <Property Type="String" Name="NameOnCard" Nullable="false" /> <Property Type="String" Name="PostalCode" Nullable="false" /> <Property Type="String" Name="State" /> <Property Type="String" Name="StreetAddress" Nullable="false" /> </EntityType> From the C-S: <EntitySetMapping Name="Consumers"> <EntityTypeMapping TypeName="IsTypeOf(Models.Consumer)"> <MappingFragment StoreEntitySet="consumer"> <ScalarProperty Name="LoginID" ColumnName="LoginID" /> <ScalarProperty Name="FirstName" ColumnName="FirstName" /> <ScalarProperty Name="LastName" ColumnName="LastName" /> </MappingFragment> </EntityTypeMapping> <EntityTypeMapping TypeName="IsTypeOf(Models.BillableConsumer)"> <MappingFragment StoreEntitySet="billinginformation"> <ScalarProperty Name="CardExpiratoin" ColumnName="CardExpiratoin" /> <ScalarProperty Name="CardNumber" ColumnName="CardNumber" /> <ScalarProperty Name="City" ColumnName="City" /> <ScalarProperty Name="Country" ColumnName="Country" /> <ScalarProperty Name="CVV" ColumnName="CVV" /> <ScalarProperty Name="LoginID" ColumnName="LoginID" /> <ScalarProperty Name="NameOnCard" ColumnName="NameOnCard" /> <ScalarProperty Name="PostalCode" ColumnName="PostalCode" /> <ScalarProperty Name="State" ColumnName="State" /> <ScalarProperty Name="StreetAddress" ColumnName="StreetAddress" /> </MappingFragment> </EntityTypeMapping> </EntitySetMapping> Is this because I did not specifically add the BillableConsumer entity to the object set? How do I do that in a POCO scenario? Thanks! UPDATE: I decided to test whether or not POCOs generated with the T4 template would solve the problem and they did. The most annoying part is that when I restored my original classes from SVN to try and figure out how they are different - they worked as well!! Not adding this as an answer because someone else might have an actual explanation...

    Read the article

< Previous Page | 421 422 423 424 425 426 427 428 429 430 431 432  | Next Page >