Search Results

Search found 20265 results on 811 pages for 'oracle bi 11g scorecards dashboards strategy execution'.

Page 425/811 | < Previous Page | 421 422 423 424 425 426 427 428 429 430 431 432  | Next Page >

  • How can you tell which columns are unused in ALL_TAB_COLS?

    - by thecoop
    When you query the ALL_TAB_COLS view on Oracle 9i, it lists columns marked as UNUSED as well as the 'active' table columns. There doesn't seem to be a field that explicitly says whether a column is UNUSED, or any view I can join to that lists the unused columns in a table. How can I easily find out which are the unused columns, so I can filter them out of ALL_TAB_COLS?

    Read the article

  • Core Data strategy using in memory cache, or no core data at all?

    - by randombits
    I have a user interface where the user can check off a bunch of items from a tableview, almost like a todo list. The items are populated from a Core Data stack. I need to be able to take all of the items they're clicking through and put them into a "temporary" shopping cart. Once they're in the shopping cart, users can go through the list and remove the items, or just submit them to a server. The thing is, the selected items are temporary just like an internet based shopping cart. It's nothing something that gets persisted once the application closes. Once the view is no longer in display, I can assume that the shopping cart is safe to discard. What's the best way to approach this? Since the user is essentially clicking on instances that map back to a Core Data entity .. should I setup a different persistence store such as in memory and add that store to my managed object context?

    Read the article

  • How do I print a triangle of stars using SQL

    - by Vutukuri
    Is it practically possible to create a triangle of stars like this as below in SQL.I know that this could be done easily in any other programming language like C,C++,Java but want to know whether it is really possible with just SQL or PL/SQL.I tried working on it with dual table in Oracle but couldn't get through it. * * * * * * * * * or * * * Can someone please shed somelight if anyone knows about it.

    Read the article

  • How to show 0 when no row found

    - by user1685991
    I have a SQL query in which I am passing sysdate to the query problem is that when there is no matching date in table with sysdate then it don't shows the zero even if there is nvl applied here is my query select * from molasses where trunc(trn_dte) = trunc(sysdate) But it show data only when current date is present in table but I want to show zero if no data found in table.please help me to do this in oracle 10 g. Because some times the situation is like above and I have to display zero when no data found

    Read the article

  • Extract ODBC Data Source information

    - by Zack
    I've gone through ODBC API searching for a function that can extract information of a data source. The closest I found is SQLDataSources that enumerates all data sources and gives you the DSN name/description. But specifically I would to extract the TNS service name of an Oracle data source. This property appears in the registry under ServerName but I found no way to access it through an API.

    Read the article

  • PL/SQL REGEXP_LIKE testing string for allowed characters

    - by Arino
    I need to verify that the provided string has only allowed characters using Oracle regular expressions (REGEXP_LIKE). Allowed chars are: abcdefghijklmnopqrstuvwxyz0123456789_-. Trying to execute SELECT CASE WHEN REGEXP_LIKE('abcdefghijklmnopqrstuvwxyz0123456789_-.' , '^[a-z0-9_\-\.]+$') THEN 'true' ELSE 'false' END tmp FROM dual; results in 'false'. Any ideas on this?

    Read the article

  • Strategy for animation a lot of LED's - thread?, UIView animations? NSOperation? (iPhone)

    - by RickiG
    Hi I have to do some different views containing 72 LED lights. I built an LED Class so I can loop through the LED's and set them to different colors (Green, Red, Orange, Blue None etc.). The LED then loads the appropriate .png. This works fine, I loop over the LED's and set them. Now I know that at some time they will need to not just turn on/off change color, but will have to turn on with a small delay. Like an equalizer. I have a 5-10 views containing the 72 LED's and I would like to achieve the above with the minimum amount of memory/CPU strain. for(LED *l in self.ledArray) { [l display:Green]; } I simply loop as shown above and inside the LED is a switch case that does the correct logic. If this were actual LED's and a microController I would use sleep(100) or similar in the loop, but I would really like to avoid stuff like that for obvious reasons. I was thinking that doing a performOnThread withDelay would really be consuming, so would UIView animation changing the alpha and NSOperation would also be a lot of lifting for a small feature. Is there a both efficient and clever way to go around this? Thanks for any inspiration given:)

    Read the article

  • Maximum capabilities of MySQL

    - by cdated
    How do I know when a project is just to big for MySQL and I should use something with a better reputation for scalability? Is there a max database size for MySQL before degradation of performance occurs? What factors contribute to MySQL not being a viable option compared to a commercial DBMS like Oracle or SQL Server?

    Read the article

  • How can I find columns which have non-null values?

    - by aartist
    I have many columns in oracle database and some new are added with values. I like to find out which columns have values other than 0 or null. So I am looking for column names for which some sort of useful values exists at least in one row. How do I do this? Update: This sounds very close. How do I modify this to suit my needs? select column_name, nullable, num_distinct, num_nulls from all_tab_columns where table_name = 'SOME_TABLE'

    Read the article

  • Getting all rows from a Table where the column contains only 0

    - by Auro
    I got a little problem i need a sql query that gives all rows back that only contains 0 in it. the column is defined as varchar2(6) the values in the column looks like this: 0 00 00 100 bc00 000000 00000 my first solution would be like this: Oracle: substr('000000' || COLUMN_NAME, -6) = '000000' SQL Server: right('000000' + COLUMN_NAME, 6) = '000000' is there an other way? (it needs to work on both systems)

    Read the article

  • SQL Command Not Properly Ended (Nested Aggregation with Group-by)

    - by snowind
    I keep getting this error when I tried to execute this query, although I couldn't figure out what went wrong. I'm using Oracle and JDBC. Here's the query: SELECT Temp.flight_number, Temp.avgprice FROM (SELECT P.flight_number, AVG (P.amount) AS avgprice FROM purchase P GROUP BY P.flight_number) AS Temp WHERE Temp.avgprice = (SELECT MAX (Temp.avgprice) FROM Temp) I'm trying to get the maximum of average price of the tickets that customers have booked, group by flight_number.

    Read the article

  • Migrating from tomcat to tc server - receiving java.sql.SQLException on startup

    - by user470184
    I'm receiving below error when I start tcServer. I do not receive this error on standalone version of tomcat. Is there extra config I need to add for tcServer ? WARNING: Unexpected exception resolving reference java.sql.SQLException: Io exception: The Network Adapter could not establish the connection at oracle.jdbc.driver.DatabaseError.throwSqlException(DatabaseError.java:112) at oracle.jdbc.driver.DatabaseError.throwSqlException(DatabaseError.java:146) at oracle.jdbc.driver.DatabaseError.throwSqlException(DatabaseError.java:255) at oracle.jdbc.driver.T4CConnection.logon(T4CConnection.java:387) at oracle.jdbc.driver.PhysicalConnection.(PhysicalConnection.java:441) at oracle.jdbc.driver.T4CConnection.(T4CConnection.java:165) at oracle.jdbc.driver.T4CDriverExtension.getConnection(T4CDriverExtension.java:35) at oracle.jdbc.driver.OracleDriver.connect(OracleDriver.java:801) at org.apache.tomcat.jdbc.pool.PooledConnection.connectUsingDriver(PooledConnection.java:277) at org.apache.tomcat.jdbc.pool.PooledConnection.connect(PooledConnection.java:182) at org.apache.tomcat.jdbc.pool.ConnectionPool.createConnection(ConnectionPool.java:699) at org.apache.tomcat.jdbc.pool.ConnectionPool.borrowConnection(ConnectionPool.java:631) at org.apache.tomcat.jdbc.pool.ConnectionPool.init(ConnectionPool.java:485) at org.apache.tomcat.jdbc.pool.ConnectionPool.(ConnectionPool.java:143) at org.apache.tomcat.jdbc.pool.DataSourceProxy.pCreatePool(DataSourceProxy.java:116) at org.apache.tomcat.jdbc.pool.DataSourceProxy.createPool(DataSourceProxy.java:103) at org.apache.tomcat.jdbc.pool.DataSourceFactory.createDataSource(DataSourceFactory.java:539) at org.apache.tomcat.jdbc.pool.DataSourceFactory.getObjectInstance(DataSourceFactory.java:237) at org.apache.naming.factory.ResourceFactory.getObjectInstance(ResourceFactory.java:140) at javax.naming.spi.NamingManager.getObjectInstance(NamingManager.java:304) at org.apache.naming.NamingContext.lookup(NamingContext.java:793) at org.apache.naming.NamingContext.lookup(NamingContext.java:140) at org.apache.naming.NamingContext.lookup(NamingContext.java:781) at org.apache.naming.NamingContext.lookup(NamingContext.java:153) at org.apache.catalina.core.NamingContextListener.addResource(NamingContextListener.java:1028) at org.apache.catalina.core.NamingContextListener.createNamingContext(NamingContextListener.java:637) at org.apache.catalina.core.NamingContextListener.lifecycleEvent(NamingContextListener.java:238) at org.apache.catalina.util.LifecycleSupport.fireLifecycleEvent(LifecycleSupport.java:142) at org.apache.catalina.core.StandardServer.start(StandardServer.java:747) at org.apache.catalina.startup.Catalina.start(Catalina.java:595) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.catalina.startup.Bootstrap.start(Bootstrap.java:289) at org.apache.catalina.startup.Bootstrap.main(Bootstrap.java:414)

    Read the article

  • Web Self Service installation on Windows

    - by Rajesh Sharma
    Web Self Service (WSS) installation on windows is pretty straight forward but you might face some issues if deployed under tomcat. Here's a step-by-step guide to install Oracle Utilities Web Self Service on windows.   Below installation steps are done on: Oracle Utilities Framework version 2.2.0 Oracle Utilities Application - Customer Care & Billing version 2.2.0 Application server - Apache Tomcat 6.0.13 on default port 6500 Other settings include: SPLBASE = C:\spl\CCBDEMO22 SPLENVIRON = CCBV22 SPLWAS = TCAT   Follow these steps for a Web Self Service installation on windows: Download Web Self Service application from edelivery.   Copy the delivery file Release-SelfService-V2.2.0.zip from the Oracle Utilities Customer Care and Billing version 2.2.0 Web Self Service folder on the installation media to a directory on your Windows box where you would like to install the application, in our case it's a temporary folder C:\wss_temp.   Setup application environment, execute splenviron.cmd -e <ENVIRON_NAME>   Create base folder for Self Service application named SelfService under %SPLEBASE%\splapp\applications   Install Oracle Utilities Web Self Service   C:\wss_temp\Release-SelfService-V2.2.0>install.cmd -d %SPLEBASE%\splapp\applications\SelfService   Web Self Service installation menu. Populate environment values for each item.   ******************************************************** Pick your installation options: ******************************************************** 1. Destination directory name for installation.             | C:\spl\CCBDEMO22\splapp\applications\SelfService 2. Web Server Host.                                         | CCBV22 3. Web Server Port Number.                                  | 6500 4. Mail SMTP Host.                                          | CCBV22 5. Top Product Installation directory.                      | C:\spl\CCBDEMO22 6.     Web Application Server Type.                         | TCAT 7.     When OAS: SPLWeb OC4J instance name is required.     | OC4J1 8.     When WAS: SPLWeb server instance name is required.   | server1   P. Process the installation. Each item in the above list should be configured for a successful installation. Choose option to configure or (P) to process the installation:  P   Option 7 and Option 8 can be ignored for TCAT.   Above step installs SelfService.war file in the destination directory. We need to explode this war file. Change directory to the installation destination folder, and   C:\spl\CCBDEMO22\splapp\applications\SelfService>jar -xf SelfService.war   Review SelfServiceConfig.properties and CMSelfServiceConfig.properties. Change any properties value within the file specific to your installation/site. Generally default settings apply, for this exercise assumes that WEB user already exists in your application database.   For more information on property file customization, refer to Oracle Utilities Web Self Service Configuration section in Customer Care & Billing Installation Guide.   Add context entry in server.xml located under tomcat-base folder C:\spl\CCBDEMO22\product\tomcatBase\conf   ... <!-- SPL Context -->           <Context path="" docBase="C:/spl/CCBDEMO22/splapp/applications/root" debug="0" privileged="true"/>           <Context path="/appViewer" docBase="C:/spl/CCBDEMO22/splapp/applications/appViewer" debug="0" privileged="true"/>           <Context path="/help" docBase="C:/spl/CCBDEMO22/splapp/applications/help" debug="0" privileged="true"/>           <Context path="/XAIApp" docBase="C:/spl/CCBDEMO22/splapp/applications/XAIApp" debug="0" privileged="true"/>           <Context path="/SelfService" docBase="C:/spl/CCBDEMO22/splapp/applications/SelfService" debug="0" privileged="true"/> ...   Add User in tomcat-users.xml file located under tomcat-base folder C:\spl\CCBDEMO22\product\tomcatBase\conf   <user username="WEB" password="selfservice" roles="cisusers"/>   Note the password is "selfservice", this is the default password set within the SelfServiceConfig.properties file with base64 encoding.   Restart the application (spl.cmd stop | start)   12.  Although Apache Tomcat version 6.0.13 does not come with the admin pack, you can verify whether SelfService application is loaded and running, go to following URL http://server:port/manager/list, in our case it'll be http://ccbv22:6500/manager/list Following output will be displayed   OK - Listed applications for virtual host localhost /admin:running:0:C:/tomcat/apache-tomcat-6.0.13/webapps/ROOT/admin /XAIApp:running:0:C:/spl/CCBDEMO22/splapp/applications/XAIApp /host-manager:running:0:C:/tomcat/apache-tomcat-6.0.13/webapps/host-manager /SelfService:running:0:C:/spl/CCBDEMO22/splapp/applications/SelfService /appViewer:running:0:C:/spl/CCBDEMO22/splapp/applications/appViewer /manager:running:1:C:/tomcat/apache-tomcat-6.0.13/webapps/manager /help:running:0:C:/spl/CCBDEMO22/splapp/applications/help /:running:0:C:/spl/CCBDEMO22/splapp/applications/root   Also ensure that the XAIApp is running.   Run Oracle Utilities Web Self Service application http://server:port/SelfService in our case it'll be  http://ccbv22:6500/SelfService   Still doesn't work? And you get '503 HTTP response' at the time of customer registration?     This is because XAI service is still unavailable. There is initialize.waittime set for a default value of 90 seconds for the XAI Application to come up.   Remember WSS uses XAI to perform actions/validations on the CC&B database.  

    Read the article

  • JMX Based Monitoring - Part Four - Business App Server Monitoring

    - by Anthony Shorten
    In the last blog entry I talked about the Oracle Utilities Application Framework V4 feature for monitoring and managing aspects of the Web Application Server using JMX. In this blog entry I am going to discuss a similar new feature that allows JMX to be used for management and monitoring the Oracle Utilities business application server component. This feature is primarily focussed on performance tracking of the product. In first release of Oracle Utilities Customer Care And Billing (V1.x I am talking about), we used to use Oracle Tuxedo as part of the architecture. In Oracle Utilities Application Framework V2.0 and above, we removed Tuxedo from the architecture. One of the features that some customers used within Tuxedo was the performance tracking ability. The idea was that you enabled performance logging on the individual Tuxedo servers and then used a utility named txrpt to produce a performance report. This report would list every service called, the number of times it was called and the average response time. When I worked a performance consultant, I used this report to identify badly performing services and also gauge the overall performance characteristics of a site. When Tuxedo was removed from the architecture this information was also lost. While you can get some information from access.log and some Mbeans supplied by the Web Application Server it was not at the same granularity as txrpt or as useful. I am happy to say we have not only reintroduced this facility in Oracle Utilities Application Framework but it is now accessible via JMX and also we have added more detail into the performance tracking. Most of this new design was working with customers around the world to make sure we introduced a new feature that not only satisfied their performance tracking needs but allowed for finer grained performance analysis. As with the Web Application Server, the Business Application Server JMX monitoring is enabled by specifying a JMX port number in RMI Port number for JMX Business and initial credentials in the JMX Enablement System User ID and JMX Enablement System Password configuration options. These options are available using the configureEnv[.sh] -a utility. These credentials are shared across the Web Application Server and Business Application Server for authorization purposes. Once this is information is supplied a number of configuration files are built (by the initialSetup[.sh] utility) to configure the facility: spl.properties - contains the JMX URL, the security configuration and the mbeans that are enabled. For example, on my demonstration machine: spl.runtime.management.rmi.port=6750 spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi://localhost:6750/oracle/ouaf/ejbAppConnector jmx.remote.x.password.file=scripts/ouaf.jmx.password.file jmx.remote.x.access.file=scripts/ouaf.jmx.access.file ouaf.jmx.com.splwg.ejb.service.management.PerformanceStatistics=enabled ouaf.jmx.* files - contain the userid and password. The default configuration uses the JMX default configuration. You can use additional security features by altering the spl.properties file manually or using a custom template. For more security options see JMX Security for more details. Once it has been configured and the changes reflected in the product using the initialSetup[.sh] utility the JMX facility can be used. For illustrative purposes I will use jconsole but any JSR160 complaint browser or client can be used (with the appropriate configuration). Once you start jconsole (ensure that splenviron[.sh] is executed prior to execution to set the environment variables or for remote connection, ensure java is in your path and jconsole.jar in your classpath) you specify the URL in the spl.runtime.management.connnector.url.default entry. For example: You are then able to track performance of the product using the PerformanceStatistics Mbean. The attributes of the PerformanceStatistics Mbean are counts of each object type. This is where this facility differs from txrpt. The information that is collected includes the following: The Service Type is captured so you can filter the results in terms of the type of service. For maintenance type services you can even see the transaction type (ADD, CHANGE etc) so you can see the performance of updates against read transactions. The Minimum and Maximum are also collected to give you an idea of the spread of performance. The last call is recorded. The date, time and user of the last call are recorded to give you an idea of the timeliness of the data. The Mbean maintains a set of counters per Service Type to give you a summary of the types of transactions being executed. This gives you an overall picture of the types of transactions and volumes at your site. There are a number of interesting operations that can also be performed: reset - This resets the statistics back to zero. This is an important operation. For example, txrpt is restricted to collecting statistics per hour, which is ok for most people. But what if you wanted to be more granular? This operation allows to set the collection period to anything you wish. The statistics collected will represent values since the last restart or last reset. completeExecutionDump - This is the operation that produces a CSV in memory to allow extraction of the data. All the statistics are extracted (see the Server Administration Guide for a full list). This can be then loaded into a database, a tool or simply into your favourite spreadsheet for analysis. Here is an extract of an execution dump from my demonstration environment to give you an idea of the format: ServiceName, ServiceType, MinTime, MaxTime, Avg Time, # of Calls, Latest Time, Latest Date, Latest User ... CFLZLOUL, EXECUTE_LIST, 15.0, 64.0, 22.2, 10, 16.0, 2009-12-16::11-25-36-932, ASHORTEN CILBBLLP, READ, 106.0, 1184.0, 466.3333333333333, 6, 106.0, 2009-12-16::11-39-01-645, BOBAMA CILBBLLP, DELETE, 70.0, 146.0, 108.0, 2, 70.0, 2009-12-15::12-53-58-280, BPAYS CILBBLLP, ADD, 860.0, 4903.0, 2243.5, 8, 860.0, 2009-12-16::17-54-23-862, LELLISON CILBBLLP, CHANGE, 112.0, 3410.0, 815.1666666666666, 12, 112.0, 2009-12-16::11-40-01-103, ASHORTEN CILBCBAL, EXECUTE_LIST, 8.0, 84.0, 26.0, 22, 23.0, 2009-12-16::17-54-01-643, LJACKMAN InitializeUserInfoService, READ_SYSTEM, 49.0, 962.0, 70.83777777777777, 450, 63.0, 2010-02-25::11-21-21-667, ASHORTEN InitializeUserService, READ_SYSTEM, 130.0, 2835.0, 234.85777777777778, 450, 216.0, 2010-02-25::11-21-21-446, ASHORTEN MenuLoginService, READ_SYSTEM, 530.0, 1186.0, 703.3333333333334, 9, 530.0, 2009-12-16::16-39-31-172, ASHORTEN NavigationOptionDescriptionService, READ_SYSTEM, 2.0, 7.0, 4.0, 8, 2.0, 2009-12-21::09-46-46-892, ASHORTEN ... There are other operations and attributes available. Refer to the Server Administration Guide provided with your product to understand the full et of operations and attributes. This is one of the many features I am proud that we implemented as it allows flexible monitoring of the performance of the product.

    Read the article

  • Code Coverage for Maven Integrated in NetBeans IDE 7.2

    - by Geertjan
    In NetBeans IDE 7.2, JaCoCo is supported natively, i.e., out of the box, as a code coverage engine for Maven projects, since Cobertura does not work with JDK 7 language constructs. (Although, note that Cobertura is supported as well in NetBeans IDE 7.2.) It isn't part of NetBeans IDE 7.2 Beta, so don't even try there; you need some development build from after that. I downloaded the latest development build today. To enable JaCoCo features in NetBeans IDE, you need do no different to what you'd do when enabling JaCoCo in Maven itself, which is rather wonderful. In both cases, all you need to do is add this to the "plugins" section of your POM: <plugin> <groupId>org.jacoco</groupId> <artifactId>jacoco-maven-plugin</artifactId> <version>0.5.7.201204190339</version> <executions> <execution> <goals> <goal>prepare-agent</goal> </goals> </execution> <execution> <id>report</id> <phase>prepare-package</phase> <goals> <goal>report</goal> </goals> </execution> </executions> </plugin> Now you're done and ready to examine the code coverage of your tests, whether they are JUnit or TestNG. At this point, i.e., for no other reason than that you added the above snippet into your POM, you will have a new Code Coverage menu when you right-click on the project node: If you click Show Report above, the Code Coverage Report window opens. Here, once you've run your tests, you can actually see how many classes have been covered by your tests, which is pretty useful since 100% tests passing doesn't mean much when you've only tested one class, as you can see very graphically below: Then, when you click the bars in the Code Coverage Report window, the class under test is shown, with the methods for which tests exist highlighted in green and those that haven't been covered in red: (Note: Of course, striving for 100% code coverage is a bit nonsensical. For example, writing tests for your getters and setters may not be the most useful way to spend one's time. But being able to measure, and visualize, code coverage is certainly useful regardless of the percentage you're striving to achieve.) Best of all about all this is that everything you see above is available out of the box in NetBeans IDE 7.2. Take a look at what else NetBeans IDE 7.2 brings for the first time to the world of Maven: http://wiki.netbeans.org/NewAndNoteworthyNB72#Maven

    Read the article

< Previous Page | 421 422 423 424 425 426 427 428 429 430 431 432  | Next Page >