Search Results

Search found 35200 results on 1408 pages for 't string'.

Page 425/1408 | < Previous Page | 421 422 423 424 425 426 427 428 429 430 431 432  | Next Page >

  • concatenation output problem (toString Array) - java

    - by dowln
    Hello, I am trying to display the output as "1(10) 2(23) 3(29)" but instead getting output as "1 2 3 (10)(23)(29)". I would be grateful if someone could have a look the code and possible help me. I don't want to use arraylist. the code this // int[] Groups = {10, 23, 29}; in the constructor public String toString() { String tempStringB = ""; String tempStringA = " "; String tempStringC = " "; for (int x = 1; x<=3; x+=1) { tempStringB = tempStringB + x + " "; } for(int i = 0; i < Group.length;i++) { tempStringA = tempStringA + "(" + Groups[i] + ")"; } tempStringC = tempStringB + tempStringA; return tempStringC; }

    Read the article

  • Parsing groupings of strings (Python)

    - by j00niner
    I have a string that looks something like this: [["Name1","ID1","DDY1", "CALL1", "WHEN1"], ["Name2","ID2","DDY2", "CALL2", "WHEN2"],...]; This string was taking from a website. Their can be any amount of groupings. How could I parse this string and print just the Name variables of each grouping?

    Read the article

  • C# IndexOutOfRange issue, probably simple.

    - by MWC
    Banging my head off the wall due to this. I'm getting the error at cell[rcell] = repack[counter] even though I have 190 items in the repack array. private string csvtogrid(string input) { input = input.Replace("\r", ",").Substring(2).TrimEnd(',').Trim().Replace("\n", ",").Replace(",,,", ",").Replace(",,",","); string[] repack = input.Split(','); string[] cell = { }; int rcell = 1; for (int counter = 1; counter < repack.Length; counter++) { if (rcell < 4) { cell[rcell] = repack[counter]; rcell++; } procgrid.Rows.Add(cell[1], cell[2], cell[3]); rcell = 1; } richTextBox1.Text = input; return null; }

    Read the article

  • getting duplicate array output - java

    - by dowln
    Hello, Can someone could be kind and help me out here. Thanks in advance... My code below outputs the string as duplicates. I don't want to use Sets or ArrayList. I am using java.util.Random. I am trying to write a code that checks if string has already been randomly outputted and if it does, then it won't display. Where I am going wrong and how do I fix this. public class Worldcountries { private static Random nums = new Random(); private static String[] countries = { "America", "Candada", "Chile", "Argentina" }; public static int Dice() { return (generator.nums.nextInt(6) + 1); } public String randomCounties() { String aTemp = " "; int numOfTimes = Dice(); int dup = 0; for(int i=0 ; i<numOfTimes; i++) { // I think it's in the if statement where I am going wrong. if (!countries[i].equals(countries[i])) { i = i + 1; } else { dup--; } // and maybe here aTemp = aTemp + countries[nums.nextInt(countries.length)]; aTemp = aTemp + ","; } return aTemp; } } So the output I am getting (randomly) is, "America, America, Chile" when it should be "America, Chile".

    Read the article

  • Many network adapters at machine, need to find one that is used for traffic in Windows (from .net)

    - by viko
    My application use Web-service. I'm control from what workstation was request and for this send MAC-Address how parameter of all methods. But then I start testing application in real, I found workstations which have many network adapters - Ethernet, Wireless, Bluetooth. When I get MAC-address using next code: var networkAdapters = NetworkInterface.GetAllNetworkInterfaces(); if (networkAdapters == null || networkAdapters.Length == 0) return string.Empty; string address = string.Empty; foreach (var adapter in networkAdapters) { var a = adapter.GetPhysicalAddress(); if (a != null && a.ToString() != string.Empty) { address = a.ToString(); break; } } return address; Sometimes Web-service receive from workstation different MAC-Addresses, but I want get always only one MAC-address. Please, help me.

    Read the article

  • DisplayMemberPath is not working in WPF

    - by WpfBee
    I want to display CustomerList\CustomerName property items to the listBox using ItemsSource DisplayMemberPath property only. But it is not working. I do not want to use DataContext or any other binding in my problem. Please help. My code is given below: MainWindow.xaml.cs namespace BindingAnItemControlToAList { /// <summary> /// Interaction logic for MainWindow.xaml /// </summary> public partial class MainWindow : Window { public MainWindow() { InitializeComponent(); } } public class Customer { public string Name {get;set;} public string LastName { get; set; } } public class CustomerList { public List<Customer> Customers { get; set; } public List<string> CustomerName { get; set; } public List<string> CustomerLastName { get; set; } public CustomerList() { Customers = new List<Customer>(); CustomerName = new List<string>(); CustomerLastName = new List<string>(); CustomerName.Add("Name1"); CustomerLastName.Add("LastName1"); CustomerName.Add("Name2"); CustomerLastName.Add("LastName2"); Customers.Add(new Customer() { Name = CustomerName[0], LastName = CustomerLastName[0] }); Customers.Add(new Customer() { Name = CustomerName[1], LastName = CustomerLastName[1] }); } } } **MainWindow.Xaml** <Window x:Class="BindingAnItemControlToAList.MainWindow" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:local="clr-namespace:BindingAnItemControlToAList" Title="MainWindow" Height="350" Width="525" Loaded="Window_Loaded" > <Window.Resources> <local:CustomerList x:Key="Cust"/> </Window.Resources> <Grid Name="Grid1"> <ListBox ItemsSource="{Binding Source={StaticResource Cust}}" DisplayMemberPath="CustomerName" Height="172" HorizontalAlignment="Left" Margin="27,23,0,0" Name="lstStates" VerticalAlignment="Top" Width="245" /> </Grid> </Window>

    Read the article

  • Java, UnmarshallingException caused by XML attribute with special chars: ;ìè+òàù-<^èç°§_>!£$%&/()=?~

    - by segolas
    Hi, my xml file has a tag with an attribute "containsValue" which contains the "special" characters you can see in the subject: <original_msg_body id="msgBodySpecialCharsRule" containsValue=";ìè+òàù-<^èç°§_>!£$%&/()=?~`'#;" /> in my xml schema the attribute has xs:string: <xs:attribute name="containsValue" type="xs:string" /> I use this value inside a Java software which check if this value is contained inside another String. but I always obtain this Exception: javax.xml.bind.UnmarshalException - with linked exception: [org.xml.sax.SAXParseException: The value of attribute "containsValue" associated with an element type "original_msg_body" must not contain the '<' character.] How can I solve it? I've tried changing the attribute type to xs:NMTOKEN, ut I get the same exception. Is there any other type? I think I could change the characters encoding, for example using the HTML representation, like <, but than could be tricky for the string comparison...

    Read the article

  • Extra line breaks inserted in MrEd text%

    - by Jesse Millikan
    In a DrScheme project, I'm using a MrEd editor-canvas% with text% and inserting a string from a literal in a Scheme file. This results in an extra blank line in the editor for each line of text I'm trying to insert. Is this a Windows vs. Unix linebreak problem? I can't find anything about text% treats line breaks in the documentation. ; Inside a class definition: (define/public (edit-pattern p j b d h) (send input-beat set-value (number->string b)) (send input-dwell set-value (number->string d)) (send hold-beats set-value (number->string h)) (send juggler-t erase) ; Why do these add extra newlines (send juggler-t insert j) (send pattern-t erase) (send pattern-t insert p)) (define juggler-ec (new editor-canvas% [parent this] [line-count 12])) (define juggler-t (new text%)) (send juggler-ec set-editor juggler-t) (define pattern-ec (new editor-canvas% [parent this] [line-count 20])) (define pattern-t (new text%)) (send pattern-ec set-editor pattern-t) ; Lots of other stuff...

    Read the article

  • How to stop auto encoding of <%= strings %> with Rails 3.0beta

    - by christophercotton
    I'm using rails 3.0beta3. In my index.html.erb and in my index.js.erb, if I have: <%= "string with unsafe characters' like <" %> It will automatically be encoded to: string with unsafe characters&quot; like &amp; just the same as if I had used: <%=h "string with unsafe characters' like <" %> How do I get it to stop? I have stored some short bits of JavaScript that I need to insert into the template without it automatically encoding the string?

    Read the article

  • Remove %20 from URL using jquery

    - by Pankaj
    hello all When i am trying to get query string value from URL using JQuery, It replace space to %20 for each 1 space.If there are 3space then my query string value contain %20 3times. i want to replace these %20 back with space using Jquery, so that i can use these query string value. How can i do this.

    Read the article

  • Dynamic JSON Parsing in .NET with JsonValue

    - by Rick Strahl
    So System.Json has been around for a while in Silverlight, but it's relatively new for the desktop .NET framework and now moving into the lime-light with the pending release of ASP.NET Web API which is bringing a ton of attention to server side JSON usage. The JsonValue, JsonObject and JsonArray objects are going to be pretty useful for Web API applications as they allow you dynamically create and parse JSON values without explicit .NET types to serialize from or into. But even more so I think JsonValue et al. are going to be very useful when consuming JSON APIs from various services. Yes I know C# is strongly typed, why in the world would you want to use dynamic values? So many times I've needed to retrieve a small morsel of information from a large service JSON response and rather than having to map the entire type structure of what that service returns, JsonValue actually allows me to cherry pick and only work with the values I'm interested in, without having to explicitly create everything up front. With JavaScriptSerializer or DataContractJsonSerializer you always need to have a strong type to de-serialize JSON data into. Wouldn't it be nice if no explicit type was required and you could just parse the JSON directly using a very easy to use object syntax? That's exactly what JsonValue, JsonObject and JsonArray accomplish using a JSON parser and some sweet use of dynamic sauce to make it easy to access in code. Creating JSON on the fly with JsonValue Let's start with creating JSON on the fly. It's super easy to create a dynamic object structure. JsonValue uses the dynamic  keyword extensively to make it intuitive to create object structures and turn them into JSON via dynamic object syntax. Here's an example of creating a music album structure with child songs using JsonValue:[TestMethod] public void JsonValueOutputTest() { // strong type instance var jsonObject = new JsonObject(); // dynamic expando instance you can add properties to dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; album.Artist = "AC/DC"; album.YearReleased = 1977; album.Songs = new JsonArray() as dynamic; dynamic song = new JsonObject(); song.SongName = "Dirty Deeds Done Dirt Cheap"; song.SongLength = "4:11"; album.Songs.Add(song); song = new JsonObject(); song.SongName = "Love at First Feel"; song.SongLength = "3:10"; album.Songs.Add(song); Console.WriteLine(album.ToString()); } This produces proper JSON just as you would expect: {"AlbumName":"Dirty Deeds Done Dirt Cheap","Artist":"AC\/DC","YearReleased":1977,"Songs":[{"SongName":"Dirty Deeds Done Dirt Cheap","SongLength":"4:11"},{"SongName":"Love at First Feel","SongLength":"3:10"}]} The important thing about this code is that there's no explicitly type that is used for holding the values to serialize to JSON. I am essentially creating this value structure on the fly by adding properties and then serialize it to JSON. This means this code can be entirely driven at runtime without compile time restraints of structure for the JSON output. Here I use JsonObject() to create a new object and immediately cast it to dynamic. JsonObject() is kind of similar in behavior to ExpandoObject in that it allows you to add properties by simply assigning to them. Internally, JsonValue/JsonObject these values are stored in pseudo collections of key value pairs that are exposed as properties through the DynamicObject functionality in .NET. The syntax gets a little tedious only if you need to create child objects or arrays that have to be explicitly defined first. Other than that the syntax looks like normal object access sytnax. Always remember though these values are dynamic - which means no Intellisense and no compiler type checking. It's up to you to ensure that the values you create are accessed consistently and without typos in your code. Note that you can also access the JsonValue instance directly and get access to the underlying type. This means you can assign properties by string, which can be useful for fully data driven JSON generation from other structures. Below you can see both styles of access next to each other:// strong type instance var jsonObject = new JsonObject(); // you can explicitly add values here jsonObject.Add("Entered", DateTime.Now); // expando style instance you can just 'use' properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; JsonValue internally stores properties keys and values in collections and you can iterate over them at runtime. You can also manipulate the collections if you need to to get the object structure to look exactly like you want. Again, if you've used ExpandoObject before JsonObject/Value are very similar in the behavior of the structure. Reading JSON strings into JsonValue The JsonValue structure supports importing JSON via the Parse() and Load() methods which can read JSON data from a string or various streams respectively. Essentially JsonValue includes the core JSON parsing to turn a JSON string into a collection of JsonValue objects that can be then referenced using familiar dynamic object syntax. Here's a simple example:[TestMethod] public void JsonValueParsingTest() { var jsonString = @"{""Name"":""Rick"",""Company"":""West Wind"",""Entered"":""2012-03-16T00:03:33.245-10:00""}"; dynamic json = JsonValue.Parse(jsonString); // values require casting string name = json.Name; string company = json.Company; DateTime entered = json.Entered; Assert.AreEqual(name, "Rick"); Assert.AreEqual(company, "West Wind"); } The JSON string represents an object with three properties which is parsed into a JsonValue object and cast to dynamic. Once cast to dynamic I can then go ahead and access the object using familiar object syntax. Note that the actual values - json.Name, json.Company, json.Entered - are actually of type JsonPrimitive and I have to assign them to their appropriate types first before I can do type comparisons. The dynamic properties will automatically cast to the right type expected as long as the compiler can resolve the type of the assignment or usage. The AreEqual() method oesn't as it expects two object instances and comparing json.Company to "West Wind" is comparing two different types (JsonPrimitive to String) which fails. So the intermediary assignment is required to make the test pass. The JSON structure can be much more complex than this simple example. Here's another example of an array of albums serialized to JSON and then parsed through with JsonValue():[TestMethod] public void JsonArrayParsingTest() { var jsonString = @"[ { ""Id"": ""b3ec4e5c"", ""AlbumName"": ""Dirty Deeds Done Dirt Cheap"", ""Artist"": ""AC/DC"", ""YearReleased"": 1977, ""Entered"": ""2012-03-16T00:13:12.2810521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/61kTaH-uZBL._AA115_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/gp/product/B00008BXJ4/ref=as_li_ss_tl?ie=UTF8&tag=westwindtechn-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=B00008BXJ4"", ""Songs"": [ { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Dirty Deeds Done Dirt Cheap"", ""SongLength"": ""4:11"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Love at First Feel"", ""SongLength"": ""3:10"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Big Balls"", ""SongLength"": ""2:38"" } ] }, { ""Id"": ""67280fb8"", ""AlbumName"": ""Echoes, Silence, Patience & Grace"", ""Artist"": ""Foo Fighters"", ""YearReleased"": 2007, ""Entered"": ""2012-03-16T00:13:12.2810521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/41mtlesQPVL._SL500_AA280_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/gp/product/B000UFAURI/ref=as_li_ss_tl?ie=UTF8&tag=westwindtechn-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=B000UFAURI"", ""Songs"": [ { ""AlbumId"": ""67280fb8"", ""SongName"": ""The Pretender"", ""SongLength"": ""4:29"" }, { ""AlbumId"": ""67280fb8"", ""SongName"": ""Let it Die"", ""SongLength"": ""4:05"" }, { ""AlbumId"": ""67280fb8"", ""SongName"": ""Erase/Replay"", ""SongLength"": ""4:13"" } ] }, { ""Id"": ""7b919432"", ""AlbumName"": ""End of the Silence"", ""Artist"": ""Henry Rollins Band"", ""YearReleased"": 1992, ""Entered"": ""2012-03-16T00:13:12.2800521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/51FO3rb1tuL._SL160_AA160_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/End-Silence-Rollins-Band/dp/B0000040OX/ref=sr_1_5?ie=UTF8&qid=1302232195&sr=8-5"", ""Songs"": [ { ""AlbumId"": ""7b919432"", ""SongName"": ""Low Self Opinion"", ""SongLength"": ""5:24"" }, { ""AlbumId"": ""7b919432"", ""SongName"": ""Grip"", ""SongLength"": ""4:51"" } ] } ]"; dynamic albums = JsonValue.Parse(jsonString); foreach (dynamic album in albums) { Console.WriteLine(album.AlbumName + " (" + album.YearReleased.ToString() + ")"); foreach (dynamic song in album.Songs) { Console.WriteLine("\t" + song.SongName ); } } Console.WriteLine(albums[0].AlbumName); Console.WriteLine(albums[0].Songs[1].SongName);}   It's pretty sweet how easy it becomes to parse even complex JSON and then just run through the object using object syntax, yet without an explicit type in the mix. In fact it looks and feels a lot like if you were using JavaScript to parse through this data, doesn't it? And that's the point…© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  Web Api  JSON   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • ASP.NET MVC Paging/Sorting/Filtering using the MVCContrib Grid and Pager

    - by rajbk
    This post walks you through creating a UI for paging, sorting and filtering a list of data items. It makes use of the excellent MVCContrib Grid and Pager Html UI helpers. A sample project is attached at the bottom. Our UI will eventually look like this. The application will make use of the Northwind database. The top portion of the page has a filter area region. The filter region is enclosed in a form tag. The select lists are wired up with jQuery to auto post back the form. The page has a pager region at the top and bottom of the product list. The product list has a link to display more details about a given product. The column headings are clickable for sorting and an icon shows the sort direction. Strongly Typed View Models The views are written to expect strongly typed objects. We suffix these strongly typed objects with ViewModel since they are designed specifically for passing data down to the view.  The following listing shows the ProductViewModel. This class will be used to hold information about a Product. We use attributes to specify if the property should be hidden and what its heading in the table should be. This metadata will be used by the MvcContrib Grid to render the table. Some of the properties are hidden from the UI ([ScaffoldColumn(false)) but are needed because we will be using those for filtering when writing our LINQ query. public ActionResult Index( string productName, int? supplierID, int? categoryID, GridSortOptions gridSortOptions, int? page) {   var productList = productRepository.GetProductsProjected();   // Set default sort column if (string.IsNullOrWhiteSpace(gridSortOptions.Column)) { gridSortOptions.Column = "ProductID"; }   // Filter on SupplierID if (supplierID.HasValue) { productList = productList.Where(a => a.SupplierID == supplierID); }   // Filter on CategoryID if (categoryID.HasValue) { productList = productList.Where(a => a.CategoryID == categoryID); }   // Filter on ProductName if (!string.IsNullOrWhiteSpace(productName)) { productList = productList.Where(a => a.ProductName.Contains(productName)); }   // Create all filter data and set current values if any // These values will be used to set the state of the select list and textbox // by sending it back to the view. var productFilterViewModel = new ProductFilterViewModel(); productFilterViewModel.SelectedCategoryID = categoryID ?? -1; productFilterViewModel.SelectedSupplierID = supplierID ?? -1; productFilterViewModel.Fill();   // Order and page the product list var productPagedList = productList .OrderBy(gridSortOptions.Column, gridSortOptions.Direction) .AsPagination(page ?? 1, 10);     var productListContainer = new ProductListContainerViewModel { ProductPagedList = productPagedList, ProductFilterViewModel = productFilterViewModel, GridSortOptions = gridSortOptions };   return View(productListContainer); } The following diagram shows the rest of the key ViewModels in our design. We have a container class called ProductListContainerViewModel which has nested classes. The ProductPagedList is of type IPagination<ProductViewModel>. The MvcContrib expects the IPagination<T> interface to determine the page number and page size of the collection we are working with. You convert any IEnumerable<T> into an IPagination<T> by calling the AsPagination extension method in the MvcContrib library. It also creates a paged set of type ProductViewModel. The ProductFilterViewModel class will hold information about the different select lists and the ProductName being searched on. It will also hold state of any previously selected item in the lists and the previous search criteria (you will recall that this type of state information was stored in Viewstate when working with WebForms). With MVC there is no state storage and so all state has to be fetched and passed back to the view. The GridSortOptions is a type defined in the MvcContrib library and is used by the Grid to determine the current column being sorted on and the current sort direction. The following shows the view and partial views used to render our UI. The Index view expects a type ProductListContainerViewModel which we described earlier. <%Html.RenderPartial("SearchFilters", Model.ProductFilterViewModel); %> <% Html.RenderPartial("Pager", Model.ProductPagedList); %> <% Html.RenderPartial("SearchResults", Model); %> <% Html.RenderPartial("Pager", Model.ProductPagedList); %> The View contains a partial view “SearchFilters” and passes it the ProductViewFilterContainer. The SearchFilter uses this Model to render all the search lists and textbox. The partial view “Pager” uses the ProductPageList which implements the interface IPagination. The “Pager” view contains the MvcContrib Pager helper used to render the paging information. This view is repeated twice since we want the pager UI to be available at the top and bottom of the product list. The Pager partial view is located in the Shared directory so that it can be reused across Views. The partial view “SearchResults” uses the ProductListContainer model. This partial view contains the MvcContrib Grid which needs both the ProdctPagedList and GridSortOptions to render itself. The Controller Action An example of a request like this: /Products?productName=test&supplierId=29&categoryId=4. The application receives this GET request and maps it to the Index method of the ProductController. Within the action we create an IQueryable<ProductViewModel> by calling the GetProductsProjected() method. /// <summary> /// This method takes in a filter list, paging/sort options and applies /// them to an IQueryable of type ProductViewModel /// </summary> /// <returns> /// The return object is a container that holds the sorted/paged list, /// state for the fiters and state about the current sorted column /// </returns> public ActionResult Index( string productName, int? supplierID, int? categoryID, GridSortOptions gridSortOptions, int? page) {   var productList = productRepository.GetProductsProjected();   // Set default sort column if (string.IsNullOrWhiteSpace(gridSortOptions.Column)) { gridSortOptions.Column = "ProductID"; }   // Filter on SupplierID if (supplierID.HasValue) { productList.Where(a => a.SupplierID == supplierID); }   // Filter on CategoryID if (categoryID.HasValue) { productList = productList.Where(a => a.CategoryID == categoryID); }   // Filter on ProductName if (!string.IsNullOrWhiteSpace(productName)) { productList = productList.Where(a => a.ProductName.Contains(productName)); }   // Create all filter data and set current values if any // These values will be used to set the state of the select list and textbox // by sending it back to the view. var productFilterViewModel = new ProductFilterViewModel(); productFilterViewModel.SelectedCategoryID = categoryID ?? -1; productFilterViewModel.SelectedSupplierID = supplierID ?? -1; productFilterViewModel.Fill();   // Order and page the product list var productPagedList = productList .OrderBy(gridSortOptions.Column, gridSortOptions.Direction) .AsPagination(page ?? 1, 10);     var productListContainer = new ProductListContainerViewModel { ProductPagedList = productPagedList, ProductFilterViewModel = productFilterViewModel, GridSortOptions = gridSortOptions };   return View(productListContainer); } The supplier, category and productname filters are applied to this IQueryable if any are present in the request. The ProductPagedList class is created by applying a sort order and calling the AsPagination method. Finally the ProductListContainerViewModel class is created and returned to the view. You have seen how to use strongly typed views with the MvcContrib Grid and Pager to render a clean lightweight UI with strongly typed views. You also saw how to use partial views to get data from the strongly typed model passed to it from the parent view. The code also shows you how to use jQuery to auto post back. The sample is attached below. Don’t forget to change your connection string to point to the server containing the Northwind database. NorthwindSales_MvcContrib.zip My name is Kobayashi. I work for Keyser Soze.

    Read the article

  • Building applications with WPF, MVVM and Prism(aka CAG)

    - by skjagini
    In this article I am going to walk through an application using WPF and Prism (aka composite application guidance, CAG) which simulates engaging a taxi (cab).  The rules are simple, the app would have3 screens A login screen to authenticate the user An information screen. A screen to engage the cab and roam around and calculating the total fare Metered Rate of Fare The meter is required to be engaged when a cab is occupied by anyone $3.00 upon entry $0.35 for each additional unit The unit fare is: one-fifth of a mile, when the cab is traveling at 6 miles an hour or more; or 60 seconds when not in motion or traveling at less than 12 miles per hour. Night surcharge of $.50 after 8:00 PM & before 6:00 AM Peak hour Weekday Surcharge of $1.00 Monday - Friday after 4:00 PM & before 8:00 PM New York State Tax Surcharge of $.50 per ride. Example: Friday (2010-10-08) 5:30pm Start at Lexington Ave & E 57th St End at Irving Pl & E 15th St Start = $3.00 Travels 2 miles at less than 6 mph for 15 minutes = $3.50 Travels at more than 12 mph for 5 minutes = $1.75 Peak hour Weekday Surcharge = $1.00 (ride started at 5:30 pm) New York State Tax Surcharge = $0.50 Before we dive into the app, I would like to give brief description about the framework.  If you want to jump on to the source code, scroll all the way to the end of the post. MVVM MVVM pattern is in no way related to the usage of PRISM in your application and should be considered if you are using WPF irrespective of PRISM or not. Lets say you are not familiar with MVVM, your typical UI would involve adding some UI controls like text boxes, a button, double clicking on the button,  generating event handler, calling a method from business layer and updating the user interface, it works most of the time for developing small scale applications. The problem with this approach is that there is some amount of code specific to business logic wrapped in UI specific code which is hard to unit test it, mock it and MVVM helps to solve the exact problem. MVVM stands for Model(M) – View(V) – ViewModel(VM),  based on the interactions with in the three parties it should be called VVMM,  MVVM sounds more like MVC (Model-View-Controller) so the name. Why it should be called VVMM: View – View Model - Model WPF allows to create user interfaces using XAML and MVVM takes it to the next level by allowing complete separation of user interface and business logic. In WPF each view will have a property, DataContext when set to an instance of a class (which happens to be your view model) provides the data the view is interested in, i.e., view interacts with view model and at the same time view model interacts with view through DataContext. Sujith, if view and view model are interacting directly with each other how does MVVM is helping me separation of concerns? Well, the catch is DataContext is of type Object, since it is of type object view doesn’t know exact type of view model allowing views and views models to be loosely coupled. View models aggregate data from models (data access layer, services, etc) and make it available for views through properties, methods etc, i.e., View Models interact with Models. PRISM Prism is provided by Microsoft Patterns and Practices team and it can be downloaded from codeplex for source code,  samples and documentation on msdn.  The name composite implies, to compose user interface from different modules (views) without direct dependencies on each other, again allowing  loosely coupled development. Well Sujith, I can already do that with user controls, why shall I learn another framework?  That’s correct, you can decouple using user controls, but you still have to manage some amount of coupling, like how to do you communicate between the controls, how do you subscribe/unsubscribe, loading/unloading views dynamically. Prism is not a replacement for user controls, provides the following features which greatly help in designing the composite applications. Dependency Injection (DI)/ Inversion of Control (IoC) Modules Regions Event Aggregator  Commands Simply put, MVVM helps building a single view and Prism helps building an application using the views There are other open source alternatives to Prism, like MVVMLight, Cinch, take a look at them as well. Lets dig into the source code.  1. Solution The solution is made of the following projects Framework: Holds the common functionality in building applications using WPF and Prism TaxiClient: Start up project, boot strapping and app styling TaxiCommon: Helps with the business logic TaxiModules: Holds the meat of the application with views and view models TaxiTests: To test the application 2. DI / IoC Dependency Injection (DI) as the name implies refers to injecting dependencies and Inversion of Control (IoC) means the calling code has no direct control on the dependencies, opposite of normal way of programming where dependencies are passed by caller, i.e inversion; aside from some differences in terminology the concept is same in both the cases. The idea behind DI/IoC pattern is to reduce the amount of direct coupling between different components of the application, the higher the dependency the more tightly coupled the application resulting in code which is hard to modify, unit test and mock.  Initializing Dependency Injection through BootStrapper TaxiClient is the starting project of the solution and App (App.xaml)  is the starting class that gets called when you run the application. From the App’s OnStartup method we will invoke BootStrapper.   namespace TaxiClient { /// <summary> /// Interaction logic for App.xaml /// </summary> public partial class App : Application { protected override void OnStartup(StartupEventArgs e) { base.OnStartup(e);   (new BootStrapper()).Run(); } } } BootStrapper is your contact point for initializing the application including dependency injection, creating Shell and other frameworks. We are going to use Unity for DI and there are lot of open source DI frameworks like Spring.Net, StructureMap etc with different feature set  and you can choose a framework based on your preferences. Note that Prism comes with in built support for Unity, for example we are deriving from UnityBootStrapper in our case and for any other DI framework you have to extend the Prism appropriately   namespace TaxiClient { public class BootStrapper: UnityBootstrapper { protected override IModuleCatalog CreateModuleCatalog() { return new ConfigurationModuleCatalog(); } protected override DependencyObject CreateShell() { Framework.FrameworkBootStrapper.Run(Container, Application.Current.Dispatcher);   Shell shell = new Shell(); shell.ResizeMode = ResizeMode.NoResize; shell.Show();   return shell; } } } Lets take a look into  FrameworkBootStrapper to check out how to register with unity container. namespace Framework { public class FrameworkBootStrapper { public static void Run(IUnityContainer container, Dispatcher dispatcher) { UIDispatcher uiDispatcher = new UIDispatcher(dispatcher); container.RegisterInstance<IDispatcherService>(uiDispatcher);   container.RegisterType<IInjectSingleViewService, InjectSingleViewService>( new ContainerControlledLifetimeManager());   . . . } } } In the above code we are registering two components with unity container. You shall observe that we are following two different approaches, RegisterInstance and RegisterType.  With RegisterInstance we are registering an existing instance and the same instance will be returned for every request made for IDispatcherService   and with RegisterType we are requesting unity container to create an instance for us when required, i.e., when I request for an instance for IInjectSingleViewService, unity will create/return an instance of InjectSingleViewService class and with RegisterType we can configure the life time of the instance being created. With ContaienrControllerLifetimeManager, the unity container caches the instance and reuses for any subsequent requests, without recreating a new instance. Lets take a look into FareViewModel.cs and it’s constructor. The constructor takes one parameter IEventAggregator and if you try to find all references in your solution for IEventAggregator, you will not find a single location where an instance of EventAggregator is passed directly to the constructor. The compiler still finds an instance and works fine because Prism is already configured when used with Unity container to return an instance of EventAggregator when requested for IEventAggregator and in this particular case it is called constructor injection. public class FareViewModel:ObservableBase, IDataErrorInfo { ... private IEventAggregator _eventAggregator;   public FareViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; InitializePropertyNames(); InitializeModel(); PropertyChanged += OnPropertyChanged; } ... 3. Shell Shells are very similar in operation to Master Pages in asp.net or MDI in Windows Forms. And shells contain regions which display the views, you can have as many regions as you wish in a given view. You can also nest regions. i.e, one region can load a view which in itself may contain other regions. We have to create a shell at the start of the application and are doing it by overriding CreateShell method from BootStrapper From the following Shell.xaml you shall notice that we have two content controls with Region names as ‘MenuRegion’ and ‘MainRegion’.  The idea here is that you can inject any user controls into the regions dynamically, i.e., a Menu User Control for MenuRegion and based on the user action you can load appropriate view into MainRegion.    <Window x:Class="TaxiClient.Shell" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Regions="clr-namespace:Microsoft.Practices.Prism.Regions;assembly=Microsoft.Practices.Prism" Title="Taxi" Height="370" Width="800"> <Grid Margin="2"> <ContentControl Regions:RegionManager.RegionName="MenuRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" />   <ContentControl Grid.Row="1" Regions:RegionManager.RegionName="MainRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" /> <!--<Border Grid.ColumnSpan="2" BorderThickness="2" CornerRadius="3" BorderBrush="LightBlue" />-->   </Grid> </Window> 4. Modules Prism provides the ability to build composite applications and modules play an important role in it. For example if you are building a Mortgage Loan Processor application with 3 components, i.e. customer’s credit history,  existing mortgages, new home/loan information; and consider that the customer’s credit history component involves gathering data about his/her address, background information, job details etc. The idea here using Prism modules is to separate the implementation of these 3 components into their own visual studio projects allowing to build components with no dependency on each other and independently. If we need to add another component to the application, the component can be developed by in house team or some other team in the organization by starting with a new Visual Studio project and adding to the solution at the run time with very little knowledge about the application. Prism modules are defined by implementing the IModule interface and each visual studio project to be considered as a module should implement the IModule interface.  From the BootStrapper.cs you shall observe that we are overriding the method by returning a ConfiguratingModuleCatalog which returns the modules that are registered for the application using the app.config file  and you can also add module using code. Lets take a look into configuration file.   <?xml version="1.0"?> <configuration> <configSections> <section name="modules" type="Microsoft.Practices.Prism.Modularity.ModulesConfigurationSection, Microsoft.Practices.Prism"/> </configSections> <modules> <module assemblyFile="TaxiModules.dll" moduleType="TaxiModules.ModuleInitializer, TaxiModules" moduleName="TaxiModules"/> </modules> </configuration> Here we are adding TaxiModules project to our solution and TaxiModules.ModuleInitializer implements IModule interface   5. Module Mapper With Prism modules you can dynamically add or remove modules from the regions, apart from that Prism also provides API to control adding/removing the views from a region within the same module. Taxi Information Screen: Engage the Taxi Screen: The sample application has two screens, ‘Taxi Information’ and ‘Engage the Taxi’ and they both reside in same module, TaxiModules. ‘Engage the Taxi’ is again made of two user controls, FareView on the left and TotalView on the right. We have created a Shell with two regions, MenuRegion and MainRegion with menu loaded into MenuRegion. We can create a wrapper user control called EngageTheTaxi made of FareView and TotalView and load either TaxiInfo or EngageTheTaxi into MainRegion based on the user action. Though it will work it tightly binds the user controls and for every combination of user controls, we need to create a dummy wrapper control to contain them. Instead we can apply the principles we learned so far from Shell/regions and introduce another template (LeftAndRightRegionView.xaml) made of two regions Region1 (left) and Region2 (right) and load  FareView and TotalView dynamically.  To help with loading of the views dynamically I have introduce an helper an interface, IInjectSingleViewService,  idea suggested by Mike Taulty, a must read blog for .Net developers. using System; using System.Collections.Generic; using System.ComponentModel;   namespace Framework.PresentationUtility.Navigation {   public interface IInjectSingleViewService : INotifyPropertyChanged { IEnumerable<CommandViewDefinition> Commands { get; } IEnumerable<ModuleViewDefinition> Modules { get; }   void RegisterViewForRegion(string commandName, string viewName, string regionName, Type viewType); void ClearViewFromRegion(string viewName, string regionName); void RegisterModule(string moduleName, IList<ModuleMapper> moduleMappers); } } The Interface declares three methods to work with views: RegisterViewForRegion: Registers a view with a particular region. You can register multiple views and their regions under one command.  When this particular command is invoked all the views registered under it will be loaded into their regions. ClearViewFromRegion: To unload a specific view from a region. RegisterModule: The idea is when a command is invoked you can load the UI with set of controls in their default position and based on the user interaction, you can load different contols in to different regions on the fly.  And it is supported ModuleViewDefinition and ModuleMappers as shown below. namespace Framework.PresentationUtility.Navigation { public class ModuleViewDefinition { public string ModuleName { get; set; } public IList<ModuleMapper> ModuleMappers; public ICommand Command { get; set; } }   public class ModuleMapper { public string ViewName { get; set; } public string RegionName { get; set; } public Type ViewType { get; set; } } } 6. Event Aggregator Prism event aggregator enables messaging between components as in Observable pattern, Notifier notifies the Observer which receives notification it is interested in. When it comes to Observable pattern, Observer has to unsubscribes for notifications when it no longer interested in notifications, which allows the Notifier to remove the Observer’s reference from it’s local cache. Though .Net has managed garbage collection it cannot remove inactive the instances referenced by an active instance resulting in memory leak, keeping the Observers in memory as long as Notifier stays in memory.  Developers have to be very careful to unsubscribe when necessary and it often gets overlooked, to overcome these problems Prism Event Aggregator uses weak references to cache the reference (Observer in this case)  and releases the reference (memory) once the instance goes out of scope. Using event aggregator is very simple, declare a generic type of CompositePresenationEvent by inheriting from it. using Microsoft.Practices.Prism.Events; using TaxiCommon.BAO;   namespace TaxiCommon.CompositeEvents { public class TaxiOnMoveEvent:CompositePresentationEvent<TaxiOnMove> { } }   TaxiOnMove.cs includes the properties which we want to exchange between the parties, FareView and TotalView. using System;   namespace TaxiCommon.BAO { public class TaxiOnMove { public TimeSpan MinutesAtTweleveMPH { get; set; } public double MilesAtSixMPH { get; set; } } }   Lets take a look into FareViewodel (Notifier) and how it raises the event.  Here we are raising the event by getting the event through GetEvent<..>() and publishing it with the payload private void OnAddMinutes(object obj) { TaxiOnMove payload = new TaxiOnMove(); if(MilesAtSixMPH != null) payload.MilesAtSixMPH = MilesAtSixMPH.Value; if(MinutesAtTweleveMPH != null) payload.MinutesAtTweleveMPH = new TimeSpan(0,0,MinutesAtTweleveMPH.Value,0);   _eventAggregator.GetEvent<TaxiOnMoveEvent>().Publish(payload); ResetMinutesAndMiles(); } And TotalViewModel(Observer) subscribes to notifications by getting the event through GetEvent<..>() namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { .... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; ... }   private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>() .Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>() .Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>() .Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   ... private void OnTaxiMove(TaxiOnMove taxiOnMove) { OnMoveFare fare = new OnMoveFare(taxiOnMove); Fares.Add(fare); SetTotalFare(new []{fare}); }   .... 7. MVVM through example In this section we are going to look into MVVM implementation through example.  I have all the modules declared in a single project, TaxiModules, again it is not necessary to have them into one project. Once the user logs into the application, will be greeted with the ‘Engage the Taxi’ screen which is made of two user controls, FareView.xaml and TotalView.Xaml. As you can see from the solution explorer, each of them have their own code behind files and  ViewModel classes, FareViewMode.cs, TotalViewModel.cs Lets take a look in to the FareView and how it interacts with FareViewModel using MVVM implementation. FareView.xaml acts as a view and FareViewMode.cs is it’s view model. The FareView code behind class   namespace TaxiModules.Views { /// <summary> /// Interaction logic for FareView.xaml /// </summary> public partial class FareView : UserControl { public FareView(FareViewModel viewModel) { InitializeComponent(); this.Loaded += (s, e) => { this.DataContext = viewModel; }; } } } The FareView is bound to FareViewModel through the data context  and you shall observe that DataContext is of type Object, i.e. the FareView doesn’t really know the type of ViewModel (FareViewModel). This helps separation of View and ViewModel as View and ViewModel are independent of each other, you can bind FareView to FareViewModel2 as well and the application compiles just fine. Lets take a look into FareView xaml file  <UserControl x:Class="TaxiModules.Views.FareView" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Toolkit="clr-namespace:Microsoft.Windows.Controls;assembly=WPFToolkit" xmlns:Commands="clr-namespace:Microsoft.Practices.Prism.Commands;assembly=Microsoft.Practices.Prism"> <Grid Margin="10" > ....   <Border Style="{DynamicResource innerBorder}" Grid.Row="0" Grid.Column="0" Grid.RowSpan="11" Grid.ColumnSpan="2" Panel.ZIndex="1"/>   <Label Grid.Row="0" Content="Engage the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="1" Content="Select the State"/> <ComboBox Grid.Row="1" Grid.Column="1" ItemsSource="{Binding States}" Height="auto"> <ComboBox.ItemTemplate> <DataTemplate> <TextBlock Text="{Binding Name}"/> </DataTemplate> </ComboBox.ItemTemplate> <ComboBox.SelectedItem> <Binding Path="SelectedState" Mode="TwoWay"/> </ComboBox.SelectedItem> </ComboBox> <Label Grid.Row="2" Content="Select the Date of Entry"/> <Toolkit:DatePicker Grid.Row="2" Grid.Column="1" SelectedDate="{Binding DateOfEntry, ValidatesOnDataErrors=true}" /> <Label Grid.Row="3" Content="Enter time 24hr format"/> <TextBox Grid.Row="3" Grid.Column="1" Text="{Binding TimeOfEntry, TargetNullValue=''}"/> <Button Grid.Row="4" Grid.Column="1" Content="Start the Meter" Commands:Click.Command="{Binding StartMeterCommand}" />   <Label Grid.Row="5" Content="Run the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="6" Content="Number of Miles &lt;@6mph"/> <TextBox Grid.Row="6" Grid.Column="1" Text="{Binding MilesAtSixMPH, TargetNullValue='', ValidatesOnDataErrors=true}"/> <Label Grid.Row="7" Content="Number of Minutes @12mph"/> <TextBox Grid.Row="7" Grid.Column="1" Text="{Binding MinutesAtTweleveMPH, TargetNullValue=''}"/> <Button Grid.Row="8" Grid.Column="1" Content="Add Minutes and Miles " Commands:Click.Command="{Binding AddMinutesCommand}"/> <Label Grid.Row="9" Content="Other Operations" Style="{DynamicResource innerHeader}"/> <Button Grid.Row="10" Grid.Column="1" Content="Reset the Meter" Commands:Click.Command="{Binding ResetCommand}"/>   </Grid> </UserControl> The highlighted code from the above code shows data binding, for example ComboBox which displays list of states has it’s ItemsSource bound to States property, with DataTemplate bound to Name and SelectedItem  to SelectedState. You might be wondering what are all these properties and how it is able to bind to them.  The answer lies in data context, i.e., when you bound a control, WPF looks for data context on the root object (Grid in this case) and if it can’t find data context it will look into root’s root, i.e. FareView UserControl and it is bound to FareViewModel.  Each of those properties have be declared on the ViewModel for the View to bind correctly. To put simply, View is bound to ViewModel through data context of type object and every control that is bound on the View actually binds to the public property on the ViewModel. Lets look into the ViewModel code (the following code is not an exact copy of FareViewMode.cs, pasted relevant code for this section)   namespace TaxiModules.ViewModels { public class FareViewModel:ObservableBase, IDataErrorInfo { public List<USState> States { get { return USStates.StateList; } }   public USState SelectedState { get { return _selectedState; } set { _selectedState = value; RaisePropertyChanged(_selectedStatePropertyName); } }   public DateTime? DateOfEntry { get { return _dateOfEntry; } set { _dateOfEntry = value; RaisePropertyChanged(_dateOfEntryPropertyName); } }   public TimeSpan? TimeOfEntry { get { return _timeOfEntry; } set { _timeOfEntry = value; RaisePropertyChanged(_timeOfEntryPropertyName); } }   public double? MilesAtSixMPH { get { return _milesAtSixMPH; } set { _milesAtSixMPH = value; RaisePropertyChanged(_distanceAtSixMPHPropertyName); } }   public int? MinutesAtTweleveMPH { get { return _minutesAtTweleveMPH; } set { _minutesAtTweleveMPH = value; RaisePropertyChanged(_minutesAtTweleveMPHPropertyName); } }   public ICommand StartMeterCommand { get { if(_startMeterCommand == null) { _startMeterCommand = new DelegateCommand<object>(OnStartMeter, CanStartMeter); } return _startMeterCommand; } }   public ICommand AddMinutesCommand { get { if(_addMinutesCommand == null) { _addMinutesCommand = new DelegateCommand<object>(OnAddMinutes, CanAddMinutes); } return _addMinutesCommand; } }   public ICommand ResetCommand { get { if(_resetCommand == null) { _resetCommand = new DelegateCommand<object>(OnResetCommand); } return _resetCommand; } }   } private void OnStartMeter(object obj) { _eventAggregator.GetEvent<TaxiStartedEvent>().Publish( new TaxiStarted() { EngagedOn = DateOfEntry.Value.Date + TimeOfEntry.Value, EngagedState = SelectedState.Value });   _isMeterStarted = true; OnPropertyChanged(this,null); } And views communicate user actions like button clicks, tree view item selections, etc using commands. When user clicks on ‘Start the Meter’ button it invokes the method StartMeterCommand, which calls the method OnStartMeter which publishes the event to TotalViewModel using event aggregator  and TaxiStartedEvent. namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { ... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator;   InitializePropertyNames(); InitializeModel(); SubscribeToEvents(); }   public decimal? TotalFare { get { return _totalFare; } set { _totalFare = value; RaisePropertyChanged(_totalFarePropertyName); } } .... private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>().Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>().Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>().Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   private void OnTaxiStarted(TaxiStarted taxiStarted) { Fares.Add(new EntryFare()); Fares.Add(new StateTaxFare(taxiStarted)); Fares.Add(new NightSurchargeFare(taxiStarted)); Fares.Add(new PeakHourWeekdayFare(taxiStarted));   SetTotalFare(Fares); }   private void SetTotalFare(IEnumerable<IFare> fares) { TotalFare = (_totalFare ?? 0) + TaxiFareHelper.GetTotalFare(fares); } ....   } }   TotalViewModel subscribes to events, TaxiStartedEvent and rest. When TaxiStartedEvent gets invoked it calls the OnTaxiStarted method which sets the total fare which includes entry fee, state tax, nightly surcharge, peak hour weekday fare.   Note that TotalViewModel derives from ObservableBase which implements the method RaisePropertyChanged which we are invoking in Set of TotalFare property, i.e, once we update the TotalFare property it raises an the event that  allows the TotalFare text box to fetch the new value through the data context. ViewModel is communicating with View through data context and it has no knowledge about View, helping in loose coupling of ViewModel and View.   I have attached the source code (.Net 4.0, Prism 4.0, VS 2010) , download and play with it and don’t forget to leave your comments.  

    Read the article

  • Entity Association Mapping with Code First Part 1 : Mapping Complex Types

    - by mortezam
    Last week the CTP5 build of the new Entity Framework Code First has been released by data team at Microsoft. Entity Framework Code-First provides a pretty powerful code-centric way to work with the databases. When it comes to associations, it brings ultimate flexibility. I’m a big fan of the EF Code First approach and am planning to explain association mapping with code first in a series of blog posts and this one is dedicated to Complex Types. If you are new to Code First approach, you can find a great walkthrough here. In order to build a solid foundation for our discussion, we will start by learning about some of the core concepts around the relationship mapping.   What is Mapping?Mapping is the act of determining how objects and their relationships are persisted in permanent data storage, in our case, relational databases. What is Relationship mapping?A mapping that describes how to persist a relationship (association, aggregation, or composition) between two or more objects. Types of RelationshipsThere are two categories of object relationships that we need to be concerned with when mapping associations. The first category is based on multiplicity and it includes three types: One-to-one relationships: This is a relationship where the maximums of each of its multiplicities is one. One-to-many relationships: Also known as a many-to-one relationship, this occurs when the maximum of one multiplicity is one and the other is greater than one. Many-to-many relationships: This is a relationship where the maximum of both multiplicities is greater than one. The second category is based on directionality and it contains two types: Uni-directional relationships: when an object knows about the object(s) it is related to but the other object(s) do not know of the original object. To put this in EF terminology, when a navigation property exists only on one of the association ends and not on the both. Bi-directional relationships: When the objects on both end of the relationship know of each other (i.e. a navigation property defined on both ends). How Object Relationships Are Implemented in POCO domain models?When the multiplicity is one (e.g. 0..1 or 1) the relationship is implemented by defining a navigation property that reference the other object (e.g. an Address property on User class). When the multiplicity is many (e.g. 0..*, 1..*) the relationship is implemented via an ICollection of the type of other object. How Relational Database Relationships Are Implemented? Relationships in relational databases are maintained through the use of Foreign Keys. A foreign key is a data attribute(s) that appears in one table and must be the primary key or other candidate key in another table. With a one-to-one relationship the foreign key needs to be implemented by one of the tables. To implement a one-to-many relationship we implement a foreign key from the “one table” to the “many table”. We could also choose to implement a one-to-many relationship via an associative table (aka Join table), effectively making it a many-to-many relationship. Introducing the ModelNow, let's review the model that we are going to use in order to implement Complex Type with Code First. It's a simple object model which consist of two classes: User and Address. Each user could have one billing address. The Address information of a User is modeled as a separate class as you can see in the UML model below: In object-modeling terms, this association is a kind of aggregation—a part-of relationship. Aggregation is a strong form of association; it has some additional semantics with regard to the lifecycle of objects. In this case, we have an even stronger form, composition, where the lifecycle of the part is fully dependent upon the lifecycle of the whole. Fine-grained domain models The motivation behind this design was to achieve Fine-grained domain models. In crude terms, fine-grained means “more classes than tables”. For example, a user may have both a billing address and a home address. In the database, you may have a single User table with the columns BillingStreet, BillingCity, and BillingPostalCode along with HomeStreet, HomeCity, and HomePostalCode. There are good reasons to use this somewhat denormalized relational model (performance, for one). In our object model, we can use the same approach, representing the two addresses as six string-valued properties of the User class. But it’s much better to model this using an Address class, where User has the BillingAddress and HomeAddress properties. This object model achieves improved cohesion and greater code reuse and is more understandable. Complex Types: Splitting a Table Across Multiple Types Back to our model, there is no difference between this composition and other weaker styles of association when it comes to the actual C# implementation. But in the context of ORM, there is a big difference: A composed class is often a candidate Complex Type. But C# has no concept of composition—a class or property can’t be marked as a composition. The only difference is the object identifier: a complex type has no individual identity (i.e. no AddressId defined on Address class) which make sense because when it comes to the database everything is going to be saved into one single table. How to implement a Complex Types with Code First Code First has a concept of Complex Type Discovery that works based on a set of Conventions. The convention is that if Code First discovers a class where a primary key cannot be inferred, and no primary key is registered through Data Annotations or the fluent API, then the type will be automatically registered as a complex type. Complex type detection also requires that the type does not have properties that reference entity types (i.e. all the properties must be scalar types) and is not referenced from a collection property on another type. Here is the implementation: public class User{    public int UserId { get; set; }    public string FirstName { get; set; }    public string LastName { get; set; }    public string Username { get; set; }    public Address Address { get; set; }} public class Address {     public string Street { get; set; }     public string City { get; set; }            public string PostalCode { get; set; }        }public class EntityMappingContext : DbContext {     public DbSet<User> Users { get; set; }        } With code first, this is all of the code we need to write to create a complex type, we do not need to configure any additional database schema mapping information through Data Annotations or the fluent API. Database SchemaThe mapping result for this object model is as follows: Limitations of this mappingThere are two important limitations to classes mapped as Complex Types: Shared references is not possible: The Address Complex Type doesn’t have its own database identity (primary key) and so can’t be referred to by any object other than the containing instance of User (e.g. a Shipping class that also needs to reference the same User Address). No elegant way to represent a null reference There is no elegant way to represent a null reference to an Address. When reading from database, EF Code First always initialize Address object even if values in all mapped columns of the complex type are null. This means that if you store a complex type object with all null property values, EF Code First returns a initialized complex type when the owning entity object is retrieved from the database. SummaryIn this post we learned about fine-grained domain models which complex type is just one example of it. Fine-grained is fully supported by EF Code First and is known as the most important requirement for a rich domain model. Complex type is usually the simplest way to represent one-to-one relationships and because the lifecycle is almost always dependent in such a case, it’s either an aggregation or a composition in UML. In the next posts we will revisit the same domain model and will learn about other ways to map a one-to-one association that does not have the limitations of the complex types. References ADO.NET team blog Mapping Objects to Relational Databases Java Persistence with Hibernate

    Read the article

  • ASP.NET GZip Encoding Caveats

    - by Rick Strahl
    GZip encoding in ASP.NET is pretty easy to accomplish using the built-in GZipStream and DeflateStream classes and applying them to the Response.Filter property.  While applying GZip and Deflate behavior is pretty easy there are a few caveats that you have watch out for as I found out today for myself with an application that was throwing up some garbage data. But before looking at caveats let’s review GZip implementation for ASP.NET. ASP.NET GZip/Deflate Basics Response filters basically are applied to the Response.OutputStream and transform it as data is written to it through the ASP.NET Response object. So a Response.Write eventually gets written into the output stream which if a filter is also written through the filter stream’s interface. To perform the actual GZip (and Deflate) encoding typically used by Web pages .NET includes the GZipStream and DeflateStream stream classes which can be readily assigned to the Repsonse.OutputStream. With these two stream classes in place it’s almost trivially easy to create a couple of reusable methods that allow you to compress your HTTP output. In my standard WebUtils utility class (from the West Wind West Wind Web Toolkit) created two static utility methods – IsGZipSupported and GZipEncodePage – that check whether the client supports GZip encoding and then actually encodes the current output (note that although the method includes ‘Page’ in its name this code will work with any ASP.NET output). /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } /// <summary> /// Sets up the current page or handler to use GZip through a Response.Filter /// IMPORTANT: /// You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() { HttpResponse Response = HttpContext.Current.Response; if (IsGZipSupported()) { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (AcceptEncoding.Contains("deflate")) { Response.Filter = new System.IO.Compression.DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "deflate"); } else { Response.Filter = new System.IO.Compression.GZipStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "gzip"); } } } As you can see the actual assignment of the Filter is as simple as: Response.Filter = new DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); which applies the filter to the OutputStream. You also need to ensure that your response reflects the new GZip or Deflate encoding and ensure that any pages that are cached in Proxy servers can differentiate between pages that were encoded with the various different encodings (or no encoding). To use this utility function now is trivially easy: In any ASP.NET code that wants to compress its Response output you simply use: protected void Page_Load(object sender, EventArgs e) { WebUtils.GZipEncodePage(); Entry = WebLogFactory.GetEntry(); var entries = Entry.GetLastEntries(App.Configuration.ShowEntryCount, "pk,Title,SafeTitle,Body,Entered,Feedback,Location,ShowTopAd", "TEntries"); if (entries == null) throw new ApplicationException("Couldn't load WebLog Entries: " + Entry.ErrorMessage); this.repEntries.DataSource = entries; this.repEntries.DataBind(); } Here I use an ASP.NET page, but the above WebUtils.GZipEncode() method call will work in any ASP.NET application type including HTTP Handlers. The only requirement is that the filter needs to be applied before any other output is sent to the OutputStream. For example, in my CallbackHandler service implementation by default output over a certain size is GZip encoded. The output that is generated is JSON or XML and if the output is over 5k in size I apply WebUtils.GZipEncode(): if (sbOutput.Length > GZIP_ENCODE_TRESHOLD) WebUtils.GZipEncodePage(); Response.ContentType = ControlResources.STR_JsonContentType; HttpContext.Current.Response.Write(sbOutput.ToString()); Ok, so you probably get the idea: Encoding GZip/Deflate content is pretty easy. Hold on there Hoss –Watch your Caching Or is it? There are a few caveats that you need to watch out for when dealing with GZip content. The fist issue is that you need to deal with the fact that some clients don’t support GZip or Deflate content. Most modern browsers support it, but if you have a programmatic Http client accessing your content GZip/Deflate support is by no means guaranteed. For example, WinInet Http clients don’t support GZip out of the box – it has to be explicitly implemented. Other low level HTTP clients on other platforms too don’t support GZip out of the box. The problem is that your application, your Web Server and Proxy Servers on the Internet might be caching your generated content. If you return content with GZip once and then again without, either caching is not applied or worse the wrong type of content is returned back to the client from a cache or proxy. The result is an unreadable response for *some clients* which is also very hard to debug and fix once in production. You already saw the issue of Proxy servers addressed in the GZipEncodePage() function: // Allow proxy servers to cache encoded and unencoded versions separately Response.AppendHeader("Vary", "Content-Encoding"); This ensures that any Proxy servers also check for the Content-Encoding HTTP Header to cache their content – not just the URL. The same thing applies if you do OutputCaching in your own ASP.NET code. If you generate output for GZip on an OutputCached page the GZipped content will be cached (either by ASP.NET’s cache or in some cases by the IIS Kernel Cache). But what if the next client doesn’t support GZip? She’ll get served a cached GZip page that won’t decode and she’ll get a page full of garbage. Wholly undesirable. To fix this you need to add some custom OutputCache rules by way of the GetVaryByCustom() HttpApplication method in your global_ASAX file: public override string GetVaryByCustomString(HttpContext context, string custom) { // Override Caching for compression if (custom == "GZIP") { string acceptEncoding = HttpContext.Current.Response.Headers["Content-Encoding"]; if (string.IsNullOrEmpty(acceptEncoding)) return ""; else if (acceptEncoding.Contains("gzip")) return "GZIP"; else if (acceptEncoding.Contains("deflate")) return "DEFLATE"; return ""; } return base.GetVaryByCustomString(context, custom); } In a page that use Output caching you then specify: <%@ OutputCache Duration="180" VaryByParam="none" VaryByCustom="GZIP" %> To use that custom rule. It’s all Fun and Games until ASP.NET throws an Error Ok, so you’re up and running with GZip, you have your caching squared away and your pages that you are applying it to are jamming along. Then BOOM, something strange happens and you get a lovely garbled page that look like this: Lovely isn’t it? What’s happened here is that I have WebUtils.GZipEncode() applied to my page, but there’s an error in the page. The error falls back to the ASP.NET error handler and the error handler removes all existing output (good) and removes all the custom HTTP headers I’ve set manually (usually good, but very bad here). Since I applied the Response.Filter (via GZipEncode) the output is now GZip encoded, but ASP.NET has removed my Content-Encoding header, so the browser receives the GZip encoded content without a notification that it is encoded as GZip. The result is binary output. Here’s what Fiddler says about the raw HTTP header output when an error occurs when GZip encoding was applied: HTTP/1.1 500 Internal Server Error Cache-Control: private Content-Type: text/html; charset=utf-8 Date: Sat, 30 Apr 2011 22:21:08 GMT Content-Length: 2138 Connection: close ?`I?%&/m?{J?J??t??` … binary output striped here Notice: no Content-Encoding header and that’s why we’re seeing this garbage. ASP.NET has stripped the Content-Encoding header but left our filter intact. So how do we fix this? In my applications I typically have a global Application_Error handler set up and in this case I’ve been using that. One thing that you can do in the Application_Error handler is explicitly clear out the Response.Filter and set it to null at the top: protected void Application_Error(object sender, EventArgs e) { // Remove any special filtering especially GZip filtering Response.Filter = null; … } And voila I get my Yellow Screen of Death or my custom generated error output back via uncompressed content. BTW, the same is true for Page level errors handled in Page_Error or ASP.NET MVC Error handling methods in a controller. Another and possibly even better solution is to check whether a filter is attached just before the headers are sent to the client as pointed out by Adam Schroeder in the comments: protected void Application_PreSendRequestHeaders() { // ensure that if GZip/Deflate Encoding is applied that headers are set // also works when error occurs if filters are still active HttpResponse response = HttpContext.Current.Response; if (response.Filter is GZipStream && response.Headers["Content-encoding"] != "gzip") response.AppendHeader("Content-encoding", "gzip"); else if (response.Filter is DeflateStream && response.Headers["Content-encoding"] != "deflate") response.AppendHeader("Content-encoding", "deflate"); } This uses the Application_PreSendRequestHeaders() pipeline event to check for compression encoding in a filter and adjusts the content accordingly. This is actually a better solution since this is generic – it’ll work regardless of how the content is cleaned up. For example, an error Response.Redirect() or short error display might get changed and the filter not cleared and this code actually handles that. Sweet, thanks Adam. It’s unfortunate that ASP.NET doesn’t natively clear out Response.Filters when an error occurs just as it clears the Response and Headers. I can’t see where leaving a Filter in place in an error situation would make any sense, but hey - this is what it is and it’s easy enough to fix as long as you know where to look. Riiiight! IIS and GZip I should also mention that IIS 7 includes good support for compression natively. If you can defer encoding to let IIS perform it for you rather than doing it in your code by all means you should do it! Especially any static or semi-dynamic content that can be made static should be using IIS built-in compression. Dynamic caching is also supported but is a bit more tricky to judge in terms of performance and footprint. John Forsyth has a great article on the benefits and drawbacks of IIS 7 compression which gives some detailed performance comparisons and impact reviews. I’ll post another entry next with some more info on IIS compression since information on it seems to be a bit hard to come by. Related Content Built-in GZip/Deflate Compression in IIS 7.x HttpWebRequest and GZip Responses © Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET   IIS7  

    Read the article

  • Video Recording Not Working in ICS

    - by Nirav Ranpara
    I have implement code Record video in Android Phone . This code is working in 2.2 , 2.3 . not in ICS But when I checked in ICS code is not working ? here I posted code and xml file. videorecord.java import java.io.File; import java.io.IOException; import android.app.Activity; import android.app.AlertDialog; import android.content.Context; import android.content.DialogInterface; import android.content.Intent; import android.content.SharedPreferences; import android.hardware.Camera; import android.media.CamcorderProfile; import android.media.MediaRecorder; import android.os.Bundle; import android.os.CountDownTimer; import android.os.Environment; import android.util.Log; import android.view.Display; import android.view.KeyEvent; import android.view.SurfaceHolder; import android.view.SurfaceView; import android.view.View; import android.widget.EditText; import android.widget.FrameLayout; import android.widget.ImageView; import android.widget.LinearLayout; import android.widget.TextView; import android.widget.Toast; public class videorecord extends Activity{ SharedPreferences.Editor pre; String filename; CountDownTimer t; private Camera myCamera; private MyCameraSurfaceView myCameraSurfaceView; private MediaRecorder mediaRecorder; Integer cnt=0; LinearLayout myButton; TextView myButton1; SurfaceHolder surfaceHolder; boolean recording; private TextView txtcount; private ImageView btnplay; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); recording = false; setContentView(R.layout.videorecord); init(); myCamera = getCameraInstance(); if(myCamera == null){ } myCameraSurfaceView = new MyCameraSurfaceView(this, myCamera); FrameLayout myCameraPreview = (FrameLayout)findViewById(R.id.videoview); Display display = getWindowManager().getDefaultDisplay(); int width = display.getWidth(); int height = display.getHeight(); myCameraSurfaceView.setLayoutParams(new LinearLayout.LayoutParams(width, height-60)); myCameraPreview.addView(myCameraSurfaceView); myButton = (LinearLayout)findViewById(R.id.mybutton); btnplay.setOnClickListener(myButtonOnClickListener); } private void init() { txtcount = (TextView) findViewById(R.id.txtcounter); //myButton1 = (TextView) findViewById(R.id.mybutton1); btnplay = (ImageView)findViewById(R.id.btnplay); t = new CountDownTimer( Long.MAX_VALUE , 1000) { @Override public void onTick(long millisUntilFinished) { cnt++; String time = new Integer(cnt).toString(); long millis = cnt; int seconds = (int) (millis / 60); int minutes = seconds / 60; seconds = seconds % 60; txtcount.setText(String.format("%d:%02d:%02d", minutes, seconds,millis)); } @Override public void onFinish() { } }; } @Override public boolean onKeyDown(int keyCode, KeyEvent event) { if ((keyCode == KeyEvent.KEYCODE_BACK)) { if(recording) { new AlertDialog.Builder(videorecord.this).setTitle("Do you want to save Video ?") .setPositiveButton("OK", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int which) { filename(); //finish(); } }).setNegativeButton("Cancle", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int which) { // TODO Auto-generated method stub } }).show(); } else { if ((keyCode == KeyEvent.KEYCODE_BACK)) { //Intent homeIntent= new Intent(Intent.ACTION_MAIN); //homeIntent.addCategory(Intent.CATEGORY_HOME); //homeIntent.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP); //startActivity(homeIntent); //this.finishActivity(1); finish(); } //moveTaskToBack(true); // finish(); return super.onKeyDown(keyCode, event); } } else { // Toast.makeText(getApplicationContext(), "asd", Toast.LENGTH_LONG).show(); android.os.Process.killProcess(android.os.Process.myPid()) ; } return super.onKeyDown(keyCode, event); } ImageView.OnClickListener myButtonOnClickListener = new ImageView.OnClickListener(){ public void onClick(View v) { if(recording){ Log.e("Record error", "error in recording ."); mediaRecorder.stop(); t.cancel(); filename(); releaseMediaRecorder(); }else{ releaseCamera(); Log.e("Record Stop error", "error in recording ."); // if(!prepareMediaRecorder()){ prepareMediaRecorder(); finish(); } mediaRecorder.start(); recording = true; // myButton1.setText("STOP Recording"); // btnplay.setImageResource(android.R.drawable.ic_media_pause); btnplay.setImageResource(R.drawable.stoprec); t.start(); } }}; private Camera getCameraInstance(){ Camera c = null; try { c = Camera.open(); } catch (Exception e){ } return c; } private void filename() { AlertDialog.Builder alert = new AlertDialog.Builder(this); alert.setTitle("Save Video"); alert.setMessage("Enter File Name"); final EditText input = new EditText(this); alert.setView(input); alert.setPositiveButton("Ok", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int whichButton) { if(input.getText().length()>=1) { filename = input.getText().toString(); File sdcard = new File(Environment.getExternalStorageDirectory() + "/VideoRecord"); File from = new File(sdcard,"null.mp4"); File to = new File(sdcard,filename+".mp4"); from.renameTo(to); SharedPreferences sp = videorecord.this.getSharedPreferences("data", MODE_WORLD_WRITEABLE); pre = sp.edit(); pre.clear(); pre.commit(); pre.putString("lastvideo", filename+".mp4"); pre.commit(); //btnplay.setImageResource(android.R.drawable.ic_media_play); btnplay.setImageResource(R.drawable.startrec); // Intent intent = new Intent(videorecord.this,StopVidoWatch_Activity.class); // startActivity(intent); Intent myIntent = new Intent(getApplicationContext(), StopVidoWatch_Activity.class).setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP); startActivity(myIntent); } else { filename(); } } }); alert.setNegativeButton("Cancel", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int whichButton) { // Intent intent = new Intent(videorecord.this,StopVidoWatch_Activity.class); // startActivity(intent); File file = new File(Environment.getExternalStorageDirectory() + "/VideoRecord/null.mp4"); //boolean deleted = file.delete(); file.delete(); finish(); } }); alert.show(); } private boolean prepareMediaRecorder(){ myCamera = getCameraInstance(); mediaRecorder = new MediaRecorder(); myCamera.unlock(); mediaRecorder.setCamera(myCamera); mediaRecorder.setAudioSource(MediaRecorder.AudioSource.CAMCORDER); mediaRecorder.setVideoSource(MediaRecorder.VideoSource.CAMERA); mediaRecorder.setProfile(CamcorderProfile.get(CamcorderProfile.QUALITY_HIGH)); File folder = new File(Environment.getExternalStorageDirectory() + "/VideoRecord"); boolean success = false; if (!folder.exists()) { success = folder.mkdir(); } if (!success) { } else { } mediaRecorder.setOutputFile("/sdcard/VideoRecord/"+filename+".mp4"); mediaRecorder.setMaxDuration(60000); mediaRecorder.setMaxFileSize(5000000); Display display = getWindowManager().getDefaultDisplay(); int width = display.getHeight(); int height = display.getWidth(); String s = new String(); s= s.valueOf(width); String s1 = new String(); s1= s1.valueOf(height); // Toast.makeText(videorecord.this, "Width : " + s , Toast.LENGTH_LONG).show(); // Toast.makeText(videorecord.this, "Height : " + s1 , Toast.LENGTH_LONG).show(); mediaRecorder.setVideoSize(height, width); mediaRecorder.setPreviewDisplay(myCameraSurfaceView.getHolder().getSurface()); try { mediaRecorder.prepare(); } catch (IllegalStateException e) { releaseMediaRecorder(); return false; } catch (IOException e) { releaseMediaRecorder(); return false; } return true; } @Override protected void onPause() { super.onPause(); releaseMediaRecorder(); releaseCamera(); } private void releaseMediaRecorder() { if (mediaRecorder != null) { mediaRecorder.reset(); mediaRecorder.release(); mediaRecorder = null; myCamera.lock(); } } private void releaseCamera(){ if (myCamera != null){ myCamera.release(); myCamera = null; } } public class MyCameraSurfaceView extends SurfaceView implements SurfaceHolder.Callback{ private SurfaceHolder mHolder; private Camera mCamera; public MyCameraSurfaceView(Context context, Camera camera) { super(context); mCamera = camera; mHolder = getHolder(); mHolder.addCallback(this); mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS); } public void surfaceChanged(SurfaceHolder holder, int format, int weight, int height) { if (mHolder.getSurface() == null){ return; } try { mCamera.stopPreview(); } catch (Exception e){ } try { mCamera.setPreviewDisplay(mHolder); mCamera.startPreview(); } catch (Exception e){ } } public void surfaceCreated(SurfaceHolder holder) { try { mCamera.setPreviewDisplay(holder); mCamera.startPreview(); } catch (IOException e) { } } public void surfaceDestroyed(SurfaceHolder holder) { } } } videorecord.xml <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:orientation="vertical" android:layout_width="fill_parent" android:layout_height="fill_parent" > <FrameLayout android:layout_width="fill_parent" android:layout_height="fill_parent" > <FrameLayout android:id="@+id/videoview" android:layout_width="fill_parent" android:layout_height="fill_parent"></FrameLayout> <LinearLayout android:id="@+id/mybutton" android:layout_width="fill_parent" android:layout_marginBottom="0dip" android:layout_height="wrap_content" android:orientation="horizontal" android:layout_weight="0" > <!-- <TextView android:text="START Recording" android:id="@+id/mybutton1" android:layout_height="wrap_content" android:layout_width="wrap_content" style="@style/savestyle" android:layout_weight="1" android:gravity="left" > </TextView> --> <ImageView android:layout_height="wrap_content" android:id="@+id/btnplay" android:padding="5dip" android:background="#A0000000" android:textColor="#ffffffff" android:layout_width="wrap_content" android:src="@drawable/startrec" /> </LinearLayout> <TextView android:text="00:00:00" android:id="@+id/txtcounter" android:layout_width="wrap_content" android:layout_height="wrap_content" android:layout_gravity="right|bottom" android:padding="5dip" android:background="#A0000000" android:textColor="#ffffffff" /> </FrameLayout> <RelativeLayout android:layout_width="fill_parent" android:layout_height="fill_parent" android:background="@color/bgcolor" > <LinearLayout android:layout_above="@+id/mybutton" android:orientation="horizontal" android:layout_width="fill_parent" android:layout_height="fill_parent" > </LinearLayout> </RelativeLayout> </LinearLayout>

    Read the article

  • Calling Web Service Functions Asynchronously from a Web Page

    - by SGWellens
    Over on the Asp.Net forums where I moderate, a user had a problem calling a Web Service from a web page asynchronously. I tried his code on my machine and was able to reproduce the problem. I was able to solve his problem, but only after taking the long scenic route through some of the more perplexing nuances of Web Services and Proxies. Here is the fascinating story of that journey. Start with a simple Web Service     public class Service1 : System.Web.Services.WebService    {        [WebMethod]        public string HelloWorld()        {            // sleep 10 seconds            System.Threading.Thread.Sleep(10 * 1000);            return "Hello World";        }    } The 10 second delay is added to make calling an asynchronous function more apparent. If you don't call the function asynchronously, it takes about 10 seconds for the page to be rendered back to the client. If the call is made from a Windows Forms application, the application freezes for about 10 seconds. Add the web service to a web site. Right-click the project and select "Add Web Reference…" Next, create a web page to call the Web Service. Note: An asp.net web page that calls an 'Async' method must have the Async property set to true in the page's header: <%@ Page Language="C#"          AutoEventWireup="true"          CodeFile="Default.aspx.cs"          Inherits="_Default"           Async='true'  %> Here is the code to create the Web Service proxy and connect the event handler. Shrewdly, we make the proxy object a member of the Page class so it remains instantiated between the various events. public partial class _Default : System.Web.UI.Page {    localhost.Service1 MyService;  // web service proxy     // ---- Page_Load ---------------------------------     protected void Page_Load(object sender, EventArgs e)    {        MyService = new localhost.Service1();        MyService.HelloWorldCompleted += EventHandler;          } Here is the code to invoke the web service and handle the event:     // ---- Async and EventHandler (delayed render) --------------------------     protected void ButtonHelloWorldAsync_Click(object sender, EventArgs e)    {        // blocks        ODS("Pre HelloWorldAsync...");        MyService.HelloWorldAsync();        ODS("Post HelloWorldAsync");    }    public void EventHandler(object sender, localhost.HelloWorldCompletedEventArgs e)    {        ODS("EventHandler");        ODS("    " + e.Result);    }     // ---- ODS ------------------------------------------------    //    // Helper function: Output Debug String     public static void ODS(string Msg)    {        String Out = String.Format("{0}  {1}", DateTime.Now.ToString("hh:mm:ss.ff"), Msg);        System.Diagnostics.Debug.WriteLine(Out);    } I added a utility function I use a lot: ODS (Output Debug String). Rather than include the library it is part of, I included it in the source file to keep this example simple. Fire up the project, open up a debug output window, press the button and we get this in the debug output window: 11:29:37.94 Pre HelloWorldAsync... 11:29:37.94 Post HelloWorldAsync 11:29:48.94 EventHandler 11:29:48.94 Hello World   Sweet. The asynchronous call was made and returned immediately. About 10 seconds later, the event handler fires and we get the result. Perfect….right? Not so fast cowboy. Watch the browser during the call: What the heck? The page is waiting for 10 seconds. Even though the asynchronous call returned immediately, Asp.Net is waiting for the event to fire before it renders the page. This is NOT what we wanted. I experimented with several techniques to work around this issue. Some may erroneously describe my behavior as 'hacking' but, since no ingesting of Twinkies was involved, I do not believe hacking is the appropriate term. If you examine the proxy that was automatically created, you will find a synchronous call to HelloWorld along with an additional set of methods to make asynchronous calls. I tried the other asynchronous method supplied in the proxy:     // ---- Begin and CallBack ----------------------------------     protected void ButtonBeginHelloWorld_Click(object sender, EventArgs e)    {        ODS("Pre BeginHelloWorld...");        MyService.BeginHelloWorld(AsyncCallback, null);        ODS("Post BeginHelloWorld");    }    public void AsyncCallback(IAsyncResult ar)    {        String Result = MyService.EndHelloWorld(ar);         ODS("AsyncCallback");        ODS("    " + Result);    } The BeginHelloWorld function in the proxy requires a callback function as a parameter. I tested it and the debug output window looked like this: 04:40:58.57 Pre BeginHelloWorld... 04:40:58.57 Post BeginHelloWorld 04:41:08.58 AsyncCallback 04:41:08.58 Hello World It works the same as before except for one critical difference: The page rendered immediately after the function call. I was worried the page object would be disposed after rendering the page but the system was smart enough to keep the page object in memory to handle the callback. Both techniques have a use: Delayed Render: Say you want to verify a credit card, look up shipping costs and confirm if an item is in stock. You could have three web service calls running in parallel and not render the page until all were finished. Nice. You can send information back to the client as part of the rendered page when all the services are finished. Immediate Render: Say you just want to start a service running and return to the client. You can do that too. However, the page gets sent to the client before the service has finished running so you will not be able to update parts of the page when the service finishes running. Summary: YourFunctionAsync() and an EventHandler will not render the page until the handler fires. BeginYourFunction() and a CallBack function will render the page as soon as possible. I found all this to be quite interesting and did a lot of searching and researching for documentation on this subject….but there isn't a lot out there. The biggest clues are the parameters that can be sent to the WSDL.exe program: http://msdn.microsoft.com/en-us/library/7h3ystb6(VS.100).aspx Two parameters are oldAsync and newAsync. OldAsync will create the Begin/End functions; newAsync will create the Async/Event functions. Caveat: I haven't tried this but it was stated in this article. I'll leave confirming this as an exercise for the student J. Included Code: I'm including the complete test project I created to verify the findings. The project was created with VS 2008 SP1. There is a solution file with 3 projects, the 3 projects are: Web Service Asp.Net Application Windows Forms Application To decide which program runs, you right-click a project and select "Set as Startup Project". I created and played with the Windows Forms application to see if it would reveal any secrets. I found that in the Windows Forms application, the generated proxy did NOT include the Begin/Callback functions. Those functions are only generated for Asp.Net pages. Probably for the reasons discussed earlier. Maybe those Microsoft boys and girls know what they are doing. I hope someone finds this useful. Steve Wellens

    Read the article

  • Anti-Forgery Request Recipes For ASP.NET MVC And AJAX

    - by Dixin
    Background To secure websites from cross-site request forgery (CSRF, or XSRF) attack, ASP.NET MVC provides an excellent mechanism: The server prints tokens to cookie and inside the form; When the form is submitted to server, token in cookie and token inside the form are sent in the HTTP request; Server validates the tokens. To print tokens to browser, just invoke HtmlHelper.AntiForgeryToken():<% using (Html.BeginForm()) { %> <%: this.Html.AntiForgeryToken(Constants.AntiForgeryTokenSalt)%> <%-- Other fields. --%> <input type="submit" value="Submit" /> <% } %> This invocation generates a token then writes inside the form:<form action="..." method="post"> <input name="__RequestVerificationToken" type="hidden" value="J56khgCvbE3bVcsCSZkNVuH9Cclm9SSIT/ywruFsXEgmV8CL2eW5C/gGsQUf/YuP" /> <!-- Other fields. --> <input type="submit" value="Submit" /> </form> and also writes into the cookie: __RequestVerificationToken_Lw__= J56khgCvbE3bVcsCSZkNVuH9Cclm9SSIT/ywruFsXEgmV8CL2eW5C/gGsQUf/YuP When the above form is submitted, they are both sent to server. In the server side, [ValidateAntiForgeryToken] attribute is used to specify the controllers or actions to validate them:[HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult Action(/* ... */) { // ... } This is very productive for form scenarios. But recently, when resolving security vulnerabilities for Web products, some problems are encountered. Specify validation on controller (not on each action) The server side problem is, It is expected to declare [ValidateAntiForgeryToken] on controller, but actually it has be to declared on each POST actions. Because POST actions are usually much more then controllers, the work would be a little crazy. Problem Usually a controller contains actions for HTTP GET and actions for HTTP POST requests, and usually validations are expected for HTTP POST requests. So, if the [ValidateAntiForgeryToken] is declared on the controller, the HTTP GET requests become invalid:[ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public class SomeController : Controller // One [ValidateAntiForgeryToken] attribute. { [HttpGet] public ActionResult Index() // Index() cannot work. { // ... } [HttpPost] public ActionResult PostAction1(/* ... */) { // ... } [HttpPost] public ActionResult PostAction2(/* ... */) { // ... } // ... } If browser sends an HTTP GET request by clicking a link: http://Site/Some/Index, validation definitely fails, because no token is provided. So the result is, [ValidateAntiForgeryToken] attribute must be distributed to each POST action:public class SomeController : Controller // Many [ValidateAntiForgeryToken] attributes. { [HttpGet] public ActionResult Index() // Works. { // ... } [HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult PostAction1(/* ... */) { // ... } [HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult PostAction2(/* ... */) { // ... } // ... } This is a little bit crazy, because one application can have a lot of POST actions. Solution To avoid a large number of [ValidateAntiForgeryToken] attributes (one for each POST action), the following ValidateAntiForgeryTokenWrapperAttribute wrapper class can be helpful, where HTTP verbs can be specified:[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method, AllowMultiple = false, Inherited = true)] public class ValidateAntiForgeryTokenWrapperAttribute : FilterAttribute, IAuthorizationFilter { private readonly ValidateAntiForgeryTokenAttribute _validator; private readonly AcceptVerbsAttribute _verbs; public ValidateAntiForgeryTokenWrapperAttribute(HttpVerbs verbs) : this(verbs, null) { } public ValidateAntiForgeryTokenWrapperAttribute(HttpVerbs verbs, string salt) { this._verbs = new AcceptVerbsAttribute(verbs); this._validator = new ValidateAntiForgeryTokenAttribute() { Salt = salt }; } public void OnAuthorization(AuthorizationContext filterContext) { string httpMethodOverride = filterContext.HttpContext.Request.GetHttpMethodOverride(); if (this._verbs.Verbs.Contains(httpMethodOverride, StringComparer.OrdinalIgnoreCase)) { this._validator.OnAuthorization(filterContext); } } } When this attribute is declared on controller, only HTTP requests with the specified verbs are validated:[ValidateAntiForgeryTokenWrapper(HttpVerbs.Post, Constants.AntiForgeryTokenSalt)] public class SomeController : Controller { // GET actions are not affected. // Only HTTP POST requests are validated. } Now one single attribute on controller turns on validation for all POST actions. Maybe it would be nice if HTTP verbs can be specified on the built-in [ValidateAntiForgeryToken] attribute, which is easy to implemented. Specify Non-constant salt in runtime By default, the salt should be a compile time constant, so it can be used for the [ValidateAntiForgeryToken] or [ValidateAntiForgeryTokenWrapper] attribute. Problem One Web product might be sold to many clients. If a constant salt is evaluated in compile time, after the product is built and deployed to many clients, they all have the same salt. Of course, clients do not like this. Even some clients might want to specify a custom salt in configuration. In these scenarios, salt is required to be a runtime value. Solution In the above [ValidateAntiForgeryToken] and [ValidateAntiForgeryTokenWrapper] attribute, the salt is passed through constructor. So one solution is to remove this parameter:public class ValidateAntiForgeryTokenWrapperAttribute : FilterAttribute, IAuthorizationFilter { public ValidateAntiForgeryTokenWrapperAttribute(HttpVerbs verbs) { this._verbs = new AcceptVerbsAttribute(verbs); this._validator = new ValidateAntiForgeryTokenAttribute() { Salt = AntiForgeryToken.Value }; } // Other members. } But here the injected dependency becomes a hard dependency. So the other solution is moving validation code into controller to work around the limitation of attributes:public abstract class AntiForgeryControllerBase : Controller { private readonly ValidateAntiForgeryTokenAttribute _validator; private readonly AcceptVerbsAttribute _verbs; protected AntiForgeryControllerBase(HttpVerbs verbs, string salt) { this._verbs = new AcceptVerbsAttribute(verbs); this._validator = new ValidateAntiForgeryTokenAttribute() { Salt = salt }; } protected override void OnAuthorization(AuthorizationContext filterContext) { base.OnAuthorization(filterContext); string httpMethodOverride = filterContext.HttpContext.Request.GetHttpMethodOverride(); if (this._verbs.Verbs.Contains(httpMethodOverride, StringComparer.OrdinalIgnoreCase)) { this._validator.OnAuthorization(filterContext); } } } Then make controller classes inheriting from this AntiForgeryControllerBase class. Now the salt is no long required to be a compile time constant. Submit token via AJAX For browser side, once server side turns on anti-forgery validation for HTTP POST, all AJAX POST requests will fail by default. Problem In AJAX scenarios, the HTTP POST request is not sent by form. Take jQuery as an example:$.post(url, { productName: "Tofu", categoryId: 1 // Token is not posted. }, callback); This kind of AJAX POST requests will always be invalid, because server side code cannot see the token in the posted data. Solution Basically, the tokens must be printed to browser then sent back to server. So first of all, HtmlHelper.AntiForgeryToken() need to be called somewhere. Now the browser has token in both HTML and cookie. Then jQuery must find the printed token in the HTML, and append token to the data before sending:$.post(url, { productName: "Tofu", categoryId: 1, __RequestVerificationToken: getToken() // Token is posted. }, callback); To be reusable, this can be encapsulated into a tiny jQuery plugin:/// <reference path="jquery-1.4.2.js" /> (function ($) { $.getAntiForgeryToken = function (tokenWindow, appPath) { // HtmlHelper.AntiForgeryToken() must be invoked to print the token. tokenWindow = tokenWindow && typeof tokenWindow === typeof window ? tokenWindow : window; appPath = appPath && typeof appPath === "string" ? "_" + appPath.toString() : ""; // The name attribute is either __RequestVerificationToken, // or __RequestVerificationToken_{appPath}. tokenName = "__RequestVerificationToken" + appPath; // Finds the <input type="hidden" name={tokenName} value="..." /> from the specified. // var inputElements = $("input[type='hidden'][name='__RequestVerificationToken" + appPath + "']"); var inputElements = tokenWindow.document.getElementsByTagName("input"); for (var i = 0; i < inputElements.length; i++) { var inputElement = inputElements[i]; if (inputElement.type === "hidden" && inputElement.name === tokenName) { return { name: tokenName, value: inputElement.value }; } } return null; }; $.appendAntiForgeryToken = function (data, token) { // Converts data if not already a string. if (data && typeof data !== "string") { data = $.param(data); } // Gets token from current window by default. token = token ? token : $.getAntiForgeryToken(); // $.getAntiForgeryToken(window). data = data ? data + "&" : ""; // If token exists, appends {token.name}={token.value} to data. return token ? data + encodeURIComponent(token.name) + "=" + encodeURIComponent(token.value) : data; }; // Wraps $.post(url, data, callback, type). $.postAntiForgery = function (url, data, callback, type) { return $.post(url, $.appendAntiForgeryToken(data), callback, type); }; // Wraps $.ajax(settings). $.ajaxAntiForgery = function (settings) { settings.data = $.appendAntiForgeryToken(settings.data); return $.ajax(settings); }; })(jQuery); In most of the scenarios, it is Ok to just replace $.post() invocation with $.postAntiForgery(), and replace $.ajax() with $.ajaxAntiForgery():$.postAntiForgery(url, { productName: "Tofu", categoryId: 1 }, callback); // Token is posted. There might be some scenarios of custom token, where $.appendAntiForgeryToken() is useful:data = $.appendAntiForgeryToken(data, token); // Token is already in data. No need to invoke $.postAntiForgery(). $.post(url, data, callback); And there are scenarios that the token is not in the current window. For example, an HTTP POST request can be sent by an iframe, while the token is in the parent window. Here, token's container window can be specified for $.getAntiForgeryToken():data = $.appendAntiForgeryToken(data, $.getAntiForgeryToken(window.parent)); // Token is already in data. No need to invoke $.postAntiForgery(). $.post(url, data, callback); If you have better solution, please do tell me.

    Read the article

  • Revisiting ANTS Performance Profiler 7.4

    - by James Michael Hare
    Last year, I did a small review on the ANTS Performance Profiler 6.3, now that it’s a year later and a major version number higher, I thought I’d revisit the review and revise my last post. This post will take the same examples as the original post and update them to show what’s new in version 7.4 of the profiler. Background A performance profiler’s main job is to keep track of how much time is typically spent in each unit of code. This helps when we have a program that is not running at the performance we expect, and we want to know where the program is experiencing issues. There are many profilers out there of varying capabilities. Red Gate’s typically seem to be the very easy to “jump in” and get started with very little training required. So let’s dig into the Performance Profiler. I’ve constructed a very crude program with some obvious inefficiencies. It’s a simple program that generates random order numbers (or really could be any unique identifier), adds it to a list, sorts the list, then finds the max and min number in the list. Ignore the fact it’s very contrived and obviously inefficient, we just want to use it as an example to show off the tool: 1: // our test program 2: public static class Program 3: { 4: // the number of iterations to perform 5: private static int _iterations = 1000000; 6: 7: // The main method that controls it all 8: public static void Main() 9: { 10: var list = new List<string>(); 11: 12: for (int i = 0; i < _iterations; i++) 13: { 14: var x = GetNextId(); 15: 16: AddToList(list, x); 17: 18: var highLow = GetHighLow(list); 19: 20: if ((i % 1000) == 0) 21: { 22: Console.WriteLine("{0} - High: {1}, Low: {2}", i, highLow.Item1, highLow.Item2); 23: Console.Out.Flush(); 24: } 25: } 26: } 27: 28: // gets the next order id to process (random for us) 29: public static string GetNextId() 30: { 31: var random = new Random(); 32: var num = random.Next(1000000, 9999999); 33: return num.ToString(); 34: } 35: 36: // add it to our list - very inefficiently! 37: public static void AddToList(List<string> list, string item) 38: { 39: list.Add(item); 40: list.Sort(); 41: } 42: 43: // get high and low of order id range - very inefficiently! 44: public static Tuple<int,int> GetHighLow(List<string> list) 45: { 46: return Tuple.Create(list.Max(s => Convert.ToInt32(s)), list.Min(s => Convert.ToInt32(s))); 47: } 48: } So let’s run it through the profiler and see what happens! Visual Studio Integration First, let’s look at how the ANTS profilers integrate with Visual Studio’s menu system. Once you install the ANTS profilers, you will get an ANTS menu item with several options: Notice that you can either Profile Performance or Launch ANTS Performance Profiler. These sound similar but achieve two slightly different actions: Profile Performance: this immediately launches the profiler with all defaults selected to profile the active project in Visual Studio. Launch ANTS Performance Profiler: this launches the profiler much the same way as starting it from the Start Menu. The profiler will pre-populate the application and path information, but allow you to change the settings before beginning the profile run. So really, the main difference is that Profile Performance immediately begins profiling with the default selections, where Launch ANTS Performance Profiler allows you to change the defaults and attach to an already-running application. Let’s Fire it Up! So when you fire up ANTS either via Start Menu or Launch ANTS Performance Profiler menu in Visual Studio, you are presented with a very simple dialog to get you started: Notice you can choose from many different options for application type. You can profile executables, services, web applications, or just attach to a running process. In fact, in version 7.4 we see two new options added: ASP.NET Web Application (IIS Express) SharePoint web application (IIS) So this gives us an additional way to profile ASP.NET applications and the ability to profile SharePoint applications as well. You can also choose your level of detail in the Profiling Mode drop down. If you choose Line-Level and method-level timings detail, you will get a lot more detail on the method durations, but this will also slow down profiling somewhat. If you really need the profiler to be as unintrusive as possible, you can change it to Sample method-level timings. This is performing very light profiling, where basically the profiler collects timings of a method by examining the call-stack at given intervals. Which method you choose depends a lot on how much detail you need to find the issue and how sensitive your program issues are to timing. So for our example, let’s just go with the line and method timing detail. So, we check that all the options are correct (if you launch from VS2010, the executable and path are filled in already), and fire it up by clicking the [Start Profiling] button. Profiling the Application Once you start profiling the application, you will see a real-time graph of CPU usage that will indicate how much your application is using the CPU(s) on your system. During this time, you can select segments of the graph and bookmark them, giving them mnemonic names. This can be useful if you want to compare performance in one part of the run to another part of the run. Notice that once you select a block, it will give you the call tree breakdown for that selection only, and the relative performance of those calls. Once you feel you have collected enough information, you can click [Stop Profiling] to stop the application run and information collection and begin a more thorough analysis. Analyzing Method Timings So now that we’ve halted the run, we can look around the GUI and see what we can see. By default, the times are shown in terms of percentage of time of the total run of the application, though you can change it in the View menu item to milliseconds, ticks, or seconds as well. This won’t affect the percentages of methods, it only affects what units the times are shown. Notice also that the major hotspot seems to be in a method without source, ANTS Profiler will filter these out by default, but you can right-click on the line and remove the filter to see more detail. This proves especially handy when a bottleneck is due to a method in the BCL. So now that we’ve removed the filter, we see a bit more detail: In addition, ANTS Performance Profiler gives you the ability to decompile the methods without source so that you can dive even deeper, though typically this isn’t necessary for our purposes. When looking at timings, there are generally two types of timings for each method call: Time: This is the time spent ONLY in this method, not including calls this method makes to other methods. Time With Children: This is the total of time spent in both this method AND including calls this method makes to other methods. In other words, the Time tells you how much work is being done exclusively in this method, and the Time With Children tells you how much work is being done inclusively in this method and everything it calls. You can also choose to display the methods in a tree or in a grid. The tree view is the default and it shows the method calls arranged in terms of the tree representing all method calls and the parent method that called them, etc. This is useful for when you find a hot-spot method, you can see who is calling it to determine if the problem is the method itself, or if it is being called too many times. The grid method represents each method only once with its totals and is useful for quickly seeing what method is the trouble spot. In addition, you can choose to display Methods with source which are generally the methods you wrote (as opposed to native or BCL code), or Any Method which shows not only your methods, but also native calls, JIT overhead, synchronization waits, etc. So these are just two ways of viewing the same data, and you’re free to choose the organization that best suits what information you are after. Analyzing Method Source If we look at the timings above, we see that our AddToList() method (and in particular, it’s call to the List<T>.Sort() method in the BCL) is the hot-spot in this analysis. If ANTS sees a method that is consuming the most time, it will flag it as a hot-spot to help call out potential areas of concern. This doesn’t mean the other statistics aren’t meaningful, but that the hot-spot is most likely going to be your biggest bang-for-the-buck to concentrate on. So let’s select the AddToList() method, and see what it shows in the source window below: Notice the source breakout in the bottom pane when you select a method (from either tree or grid view). This shows you the timings in this method per line of code. This gives you a major indicator of where the trouble-spot in this method is. So in this case, we see that performing a Sort() on the List<T> after every Add() is killing our performance! Of course, this was a very contrived, duh moment, but you’d be surprised how many performance issues become duh moments. Note that this one line is taking up 86% of the execution time of this application! If we eliminate this bottleneck, we should see drastic improvement in the performance. So to fix this, if we still wanted to maintain the List<T> we’d have many options, including: delay Sort() until after all Add() methods, using a SortedSet, SortedList, or SortedDictionary depending on which is most appropriate, or forgoing the sorting all together and using a Dictionary. Rinse, Repeat! So let’s just change all instances of List<string> to SortedSet<string> and run this again through the profiler: Now we see the AddToList() method is no longer our hot-spot, but now the Max() and Min() calls are! This is good because we’ve eliminated one hot-spot and now we can try to correct this one as well. As before, we can then optimize this part of the code (possibly by taking advantage of the fact the list is now sorted and returning the first and last elements). We can then rinse and repeat this process until we have eliminated as many bottlenecks as possible. Calls by Web Request Another feature that was added recently is the ability to view .NET methods grouped by the HTTP requests that caused them to run. This can be helpful in determining which pages, web services, etc. are causing hot spots in your web applications. Summary If you like the other ANTS tools, you’ll like the ANTS Performance Profiler as well. It is extremely easy to use with very little product knowledge required to get up and running. There are profilers built into the higher product lines of Visual Studio, of course, which are also powerful and easy to use. But for quickly jumping in and finding hot spots rapidly, Red Gate’s Performance Profiler 7.4 is an excellent choice. Technorati Tags: Influencers,ANTS,Performance Profiler,Profiler

    Read the article

  • Entity Framework v1 &ndash; tips and Tricks Part 3

    - by Rohit Gupta
    General Tips on Entity Framework v1 & Linq to Entities: ToTraceString() If you need to know the underlying SQL that the EF generates for a Linq To Entities query, then use the ToTraceString() method of the ObjectQuery class. (or use LINQPAD) Note that you need to cast the LINQToEntities query to ObjectQuery before calling TotraceString() as follows: 1: string efSQL = ((ObjectQuery)from c in ctx.Contact 2: where c.Address.Any(a => a.CountryRegion == "US") 3: select c.ContactID).ToTraceString(); ================================================================================ MARS or MultipleActiveResultSet When you create a EDM Model (EDMX file) from the database using Visual Studio, it generates a connection string with the same name as the name of the EntityContainer in CSDL. In the ConnectionString so generated it sets the MultipleActiveResultSet attribute to true by default. So if you are running the following query then it streams multiple readers over the same connection: 1: using (BAEntities context = new BAEntities()) 2: { 3: var cons = 4: from con in context.Contacts 5: where con.FirstName == "Jose" 6: select con; 7: foreach (var c in cons) 8: { 9: if (c.AddDate < new System.DateTime(2007, 1, 1)) 10: { 11: c.Addresses.Load(); 12: } 13: } 14: } ================================================================================= Explicitly opening and closing EntityConnection When you call ToList() or foreach on a LINQToEntities query the EF automatically closes the connection after all the records from the query have been consumed. Thus if you need to run many LINQToEntities queries over the same connection then explicitly open and close the connection as follows: 1: using (BAEntities context = new BAEntities()) 2: { 3: context.Connection.Open(); 4: var cons = from con in context.Contacts where con.FirstName == "Jose" 5: select con; 6: var conList = cons.ToList(); 7: var allCustomers = from con in context.Contacts.OfType<Customer>() 8: select con; 9: var allcustList = allCustomers.ToList(); 10: context.Connection.Close(); 11: } ====================================================================== Dispose ObjectContext only if required After you retrieve entities using the ObjectContext and you are not explicitly disposing the ObjectContext then insure that your code does consume all the records from the LinqToEntities query by calling .ToList() or foreach statement, otherwise the the database connection will remain open and will be closed by the garbage collector when it gets to dispose the ObjectContext. Secondly if you are making updates to the entities retrieved using LinqToEntities then insure that you dont inadverdently dispose of the ObjectContext after the entities are retrieved and before calling .SaveChanges() since you need the SAME ObjectContext to keep track of changes made to the Entities (by using ObjectStateEntry objects). So if you do need to explicitly dispose of the ObjectContext do so only after calling SaveChanges() and only if you dont need to change track the entities retrieved any further. ======================================================================= SQL InjectionAttacks under control with EFv1 LinqToEntities and LinqToSQL queries are parameterized before they are sent to the DB hence they are not vulnerable to SQL Injection attacks. EntitySQL may be slightly vulnerable to attacks since it does not use parameterized queries. However since the EntitySQL demands that the query be valid Entity SQL syntax and valid native SQL syntax at the same time. So the only way one can do a SQLInjection Attack is by knowing the SSDL of the EDM Model and be able to write the correct EntitySQL (note one cannot append regular SQL since then the query wont be a valid EntitySQL syntax) and append it to a parameter. ====================================================================== Improving Performance You can convert the EntitySets and AssociationSets in a EDM Model into precompiled Views using the edmgen utility. for e.g. the Customer Entity can be converted into a precompiled view using edmgen and all LinqToEntities query against the contaxt.Customer EntitySet will use the precompiled View instead of the EntitySet itself (the same being true for relationships (EntityReference & EntityCollections of a Entity)). The advantage being that when using precompiled views the performance will be much better. The syntax for generating precompiled views for a existing EF project is : edmgen /mode:ViewGeneration /inssdl:BAModel.ssdl /incsdl:BAModel.csdl /inmsl:BAModel.msl /p:Chap14.csproj Note that this will only generate precompiled views for EntitySets and Associations and not for existing LinqToEntities queries in the project.(for that use CompiledQuery.Compile<>) Secondly if you have a LinqToEntities query that you need to run multiple times, then one should precompile the query using CompiledQuery.Compile method. The CompiledQuery.Compile<> method accepts a lamda expression as a parameter, which denotes the LinqToEntities query  that you need to precompile. The following is a example of a lamda that we can pass into the CompiledQuery.Compile() method 1: Expression<Func<BAEntities, string, IQueryable<Customer>>> expr = (BAEntities ctx1, string loc) => 2: from c in ctx1.Contacts.OfType<Customer>() 3: where c.Reservations.Any(r => r.Trip.Destination.DestinationName == loc) 4: select c; Then we call the Compile Query as follows: 1: var query = CompiledQuery.Compile<BAEntities, string, IQueryable<Customer>>(expr); 2:  3: using (BAEntities ctx = new BAEntities()) 4: { 5: var loc = "Malta"; 6: IQueryable<Customer> custs = query.Invoke(ctx, loc); 7: var custlist = custs.ToList(); 8: foreach (var item in custlist) 9: { 10: Console.WriteLine(item.FullName); 11: } 12: } Note that if you created a ObjectQuery or a Enitity SQL query instead of the LINQToEntities query, you dont need precompilation for e.g. 1: An Example of EntitySQL query : 2: string esql = "SELECT VALUE c from Contacts AS c where c is of(BAGA.Customer) and c.LastName = 'Gupta'"; 3: ObjectQuery<Customer> custs = CreateQuery<Customer>(esql); 1: An Example of ObjectQuery built using ObjectBuilder methods: 2: from c in Contacts.OfType<Customer>().Where("it.LastName == 'Gupta'") 3: select c This is since the Query plan is cached and thus the performance improves a bit, however since the ObjectQuery or EntitySQL query still needs to materialize the results into Entities hence it will take the same amount of performance hit as with LinqToEntities. However note that not ALL EntitySQL based or QueryBuilder based ObjectQuery plans are cached. So if you are in doubt always create a LinqToEntities compiled query and use that instead ============================================================ GetObjectStateEntry Versus GetObjectByKey We can get to the Entity being referenced by the ObjectStateEntry via its Entity property and there are helper methods in the ObjectStateManager (osm.TryGetObjectStateEntry) to get the ObjectStateEntry for a entity (for which we know the EntityKey). Similarly The ObjectContext has helper methods to get an Entity i.e. TryGetObjectByKey(). TryGetObjectByKey() uses GetObjectStateEntry method under the covers to find the object, however One important difference between these 2 methods is that TryGetObjectByKey queries the database if it is unable to find the object in the context, whereas TryGetObjectStateEntry only looks in the context for existing entries. It will not make a trip to the database ============================================================= POCO objects with EFv1: To create POCO objects that can be used with EFv1. We need to implement 3 key interfaces: IEntityWithKey IEntityWithRelationships IEntityWithChangeTracker Implementing IEntityWithKey is not mandatory, but if you dont then we need to explicitly provide values for the EntityKey for various functions (for e.g. the functions needed to implement IEntityWithChangeTracker and IEntityWithRelationships). Implementation of IEntityWithKey involves exposing a property named EntityKey which returns a EntityKey object. Implementation of IEntityWithChangeTracker involves implementing a method named SetChangeTracker since there can be multiple changetrackers (Object Contexts) existing in memory at the same time. 1: public void SetChangeTracker(IEntityChangeTracker changeTracker) 2: { 3: _changeTracker = changeTracker; 4: } Additionally each property in the POCO object needs to notify the changetracker (objContext) that it is updating itself by calling the EntityMemberChanged and EntityMemberChanging methods on the changeTracker. for e.g.: 1: public EntityKey EntityKey 2: { 3: get { return _entityKey; } 4: set 5: { 6: if (_changeTracker != null) 7: { 8: _changeTracker.EntityMemberChanging("EntityKey"); 9: _entityKey = value; 10: _changeTracker.EntityMemberChanged("EntityKey"); 11: } 12: else 13: _entityKey = value; 14: } 15: } 16: ===================== Custom Property ==================================== 17:  18: [EdmScalarPropertyAttribute(IsNullable = false)] 19: public System.DateTime OrderDate 20: { 21: get { return _orderDate; } 22: set 23: { 24: if (_changeTracker != null) 25: { 26: _changeTracker.EntityMemberChanging("OrderDate"); 27: _orderDate = value; 28: _changeTracker.EntityMemberChanged("OrderDate"); 29: } 30: else 31: _orderDate = value; 32: } 33: } Finally you also need to create the EntityState property as follows: 1: public EntityState EntityState 2: { 3: get { return _changeTracker.EntityState; } 4: } The IEntityWithRelationships involves creating a property that returns RelationshipManager object: 1: public RelationshipManager RelationshipManager 2: { 3: get 4: { 5: if (_relManager == null) 6: _relManager = RelationshipManager.Create(this); 7: return _relManager; 8: } 9: } ============================================================ Tip : ProviderManifestToken – change EDMX File to use SQL 2008 instead of SQL 2005 To use with SQL Server 2008, edit the EDMX file (the raw XML) changing the ProviderManifestToken in the SSDL attributes from "2005" to "2008" ============================================================= With EFv1 we cannot use Structs to replace a anonymous Type while doing projections in a LINQ to Entities query. While the same is supported with LINQToSQL, it is not with LinqToEntities. For e.g. the following is not supported with LinqToEntities since only parameterless constructors and initializers are supported in LINQ to Entities. (the same works with LINQToSQL) 1: public struct CompanyInfo 2: { 3: public int ID { get; set; } 4: public string Name { get; set; } 5: } 6: var companies = (from c in dc.Companies 7: where c.CompanyIcon == null 8: select new CompanyInfo { Name = c.CompanyName, ID = c.CompanyId }).ToList(); ;

    Read the article

  • How I understood monads, part 1/2: sleepless and self-loathing in Seattle

    - by Bertrand Le Roy
    For some time now, I had been noticing some interest for monads, mostly in the form of unintelligible (to me) blog posts and comments saying “oh, yeah, that’s a monad” about random stuff as if it were absolutely obvious and if I didn’t know what they were talking about, I was probably an uneducated idiot, ignorant about the simplest and most fundamental concepts of functional programming. Fair enough, I am pretty much exactly that. Being the kind of guy who can spend eight years in college just to understand a few interesting concepts about the universe, I had to check it out and try to understand monads so that I too can say “oh, yeah, that’s a monad”. Man, was I hit hard in the face with the limitations of my own abstract thinking abilities. All the articles I could find about the subject seemed to be vaguely understandable at first but very quickly overloaded the very few concept slots I have available in my brain. They also seemed to be consistently using arcane notation that I was entirely unfamiliar with. It finally all clicked together one Friday afternoon during the team’s beer symposium when Louis was patient enough to break it down for me in a language I could understand (C#). I don’t know if being intoxicated helped. Feel free to read this with or without a drink in hand. So here it is in a nutshell: a monad allows you to manipulate stuff in interesting ways. Oh, OK, you might say. Yeah. Exactly. Let’s start with a trivial case: public static class Trivial { public static TResult Execute<T, TResult>( this T argument, Func<T, TResult> operation) { return operation(argument); } } This is not a monad. I removed most concepts here to start with something very simple. There is only one concept here: the idea of executing an operation on an object. This is of course trivial and it would actually be simpler to just apply that operation directly on the object. But please bear with me, this is our first baby step. Here’s how you use that thing: "some string" .Execute(s => s + " processed by trivial proto-monad.") .Execute(s => s + " And it's chainable!"); What we’re doing here is analogous to having an assembly chain in a factory: you can feed it raw material (the string here) and a number of machines that each implement a step in the manufacturing process and you can start building stuff. The Trivial class here represents the empty assembly chain, the conveyor belt if you will, but it doesn’t care what kind of raw material gets in, what gets out or what each machine is doing. It is pure process. A real monad will need a couple of additional concepts. Let’s say the conveyor belt needs the material to be processed to be contained in standardized boxes, just so that it can safely and efficiently be transported from machine to machine or so that tracking information can be attached to it. Each machine knows how to treat raw material or partly processed material, but it doesn’t know how to treat the boxes so the conveyor belt will have to extract the material from the box before feeding it into each machine, and it will have to box it back afterwards. This conveyor belt with boxes is essentially what a monad is. It has one method to box stuff, one to extract stuff from its box and one to feed stuff into a machine. So let’s reformulate the previous example but this time with the boxes, which will do nothing for the moment except containing stuff. public class Identity<T> { public Identity(T value) { Value = value; } public T Value { get; private set;} public static Identity<T> Unit(T value) { return new Identity<T>(value); } public static Identity<U> Bind<U>( Identity<T> argument, Func<T, Identity<U>> operation) { return operation(argument.Value); } } Now this is a true to the definition Monad, including the weird naming of the methods. It is the simplest monad, called the identity monad and of course it does nothing useful. Here’s how you use it: Identity<string>.Bind( Identity<string>.Unit("some string"), s => Identity<string>.Unit( s + " was processed by identity monad.")).Value That of course is seriously ugly. Note that the operation is responsible for re-boxing its result. That is a part of strict monads that I don’t quite get and I’ll take the liberty to lift that strange constraint in the next examples. To make this more readable and easier to use, let’s build a few extension methods: public static class IdentityExtensions { public static Identity<T> ToIdentity<T>(this T value) { return new Identity<T>(value); } public static Identity<U> Bind<T, U>( this Identity<T> argument, Func<T, U> operation) { return operation(argument.Value).ToIdentity(); } } With those, we can rewrite our code as follows: "some string".ToIdentity() .Bind(s => s + " was processed by monad extensions.") .Bind(s => s + " And it's chainable...") .Value; This is considerably simpler but still retains the qualities of a monad. But it is still pointless. Let’s look at a more useful example, the state monad, which is basically a monad where the boxes have a label. It’s useful to perform operations on arbitrary objects that have been enriched with an attached state object. public class Stateful<TValue, TState> { public Stateful(TValue value, TState state) { Value = value; State = state; } public TValue Value { get; private set; } public TState State { get; set; } } public static class StateExtensions { public static Stateful<TValue, TState> ToStateful<TValue, TState>( this TValue value, TState state) { return new Stateful<TValue, TState>(value, state); } public static Stateful<TResult, TState> Execute<TValue, TState, TResult>( this Stateful<TValue, TState> argument, Func<TValue, TResult> operation) { return operation(argument.Value) .ToStateful(argument.State); } } You can get a stateful version of any object by calling the ToStateful extension method, passing the state object in. You can then execute ordinary operations on the values while retaining the state: var statefulInt = 3.ToStateful("This is the state"); var processedStatefulInt = statefulInt .Execute(i => ++i) .Execute(i => i * 10) .Execute(i => i + 2); Console.WriteLine("Value: {0}; state: {1}", processedStatefulInt.Value, processedStatefulInt.State); This monad differs from the identity by enriching the boxes. There is another way to give value to the monad, which is to enrich the processing. An example of that is the writer monad, which can be typically used to log the operations that are being performed by the monad. Of course, the richest monads enrich both the boxes and the processing. That’s all for today. I hope with this you won’t have to go through the same process that I did to understand monads and that you haven’t gone into concept overload like I did. Next time, we’ll examine some examples that you already know but we will shine the monadic light, hopefully illuminating them in a whole new way. Realizing that this pattern is actually in many places but mostly unnoticed is what will enable the truly casual “oh, yes, that’s a monad” comments. Here’s the code for this article: http://weblogs.asp.net/blogs/bleroy/Samples/Monads.zip The Wikipedia article on monads: http://en.wikipedia.org/wiki/Monads_in_functional_programming This article was invaluable for me in understanding how to express the canonical monads in C# (interesting Linq stuff in there): http://blogs.msdn.com/b/wesdyer/archive/2008/01/11/the-marvels-of-monads.aspx

    Read the article

  • CodePlex Daily Summary for Monday, November 22, 2010

    CodePlex Daily Summary for Monday, November 22, 2010Popular ReleasesSQL Monitor: SQLMon 1.1: changes: 1.added sql job monitoring; 2.added settings save/loadASP.NET MVC Project Awesome (jQuery Ajax helpers): 1.3.1 and demos: A rich set of helpers (controls) that you can use to build highly responsive and interactive Ajax-enabled Web applications. These helpers include Autocomplete, AjaxDropdown, Lookup, Confirm Dialog, Popup Form and Pager tested on mozilla, safari, chrome, opera, ie 9b/8/7/6DotSpatial: DotSpatial 11-21-2010: This release introduces the following Fixed bugs related to dispose, which caused issues when reordering layers in the legend Fixed bugs related to assigning categories where NULL values are in the fields New fast-acting resize using a bitmap "prediction" of what the final resize content will look like. ImageData.ReadBlock, ImageData.WriteBlock These allow direct file access for reading or writing a rectangular window. Bitmaps are used for holding the values. Removed the need to stor...Minemapper - dynamic mapping for Windows: Minemapper v0.1.0: Pan by: dragging the mouse using the buttons Zoom by: scrolling the mouse wheel using the buttons using the slider Night support Biome support Skylight support Direction support: East West Height slicingMDownloader: MDownloader-0.15.24.6966: Fixed Updater; Fixed minor bugs;WPF Application Framework (WAF): WPF Application Framework (WAF) 2.0.0.1: Version: 2.0.0.1 (Milestone 1): This release contains the source code of the WPF Application Framework (WAF) and the sample applications. Requirements .NET Framework 4.0 (The package contains a solution file for Visual Studio 2010) The unit test projects require Visual Studio 2010 Professional Remark The sample applications are using Microsoft’s IoC container MEF. However, the WPF Application Framework (WAF) doesn’t force you to use the same IoC container in your application. You can use ...Smith Html Editor: Smith Html Editor V0.75: The first public release.MiniTwitter: 1.59: MiniTwitter 1.59 ???? ?? User Streams ????????????????? ?? ?????????????? ???????? ?????????????.NET Extensions - Extension Methods Library for C# and VB.NET: Release 2011.01: Added new extensions for - object.CountLoopsToNull Added new extensions for DateTime: - DateTime.IsWeekend - DateTime.AddWeeks Added new extensions for string: - string.Repeat - string.IsNumeric - string.ExtractDigits - string.ConcatWith - string.ToGuid - string.ToGuidSave Added new extensions for Exception: - Exception.GetOriginalException Added new extensions for Stream: - Stream.Write (overload) And other new methods ... Release as of dotnetpro 01/2011Code Sample from Microsoft: Visual Studio 2010 Code Samples 2010-11-19: Code samples for Visual Studio 2010Prism Training Kit: Prism Training Kit 4.0: Release NotesThis is an updated version of the Prism training Kit that targets Prism 4.0 and added labs for some of the new features of Prism 4.0. This release consists of a Training Kit with Labs on the following topics Modularity Dependency Injection Bootstrapper UI Composition Communication MEF Navigation Note: Take into account that this is a Beta version. If you find any bugs please report them in the Issue Tracker PrerequisitesVisual Studio 2010 Microsoft Word 2...Free language translator and file converter: Free Language Translator 2.2: Starting with version 2.0, the translator encountered a major redesign that uses MEF based plugins and .net 4.0. I've also fixed some bugs and added support for translating subtitles that can show up in video media players. Version 2.1 shows the context menu 'Translate' in Windows Explorer on right click. Version 2.2 has links to start the media file with its associated subtitle. Download the zip file and expand it in a temporary location on your local disk. At a minimum , you should uninstal...Free Silverlight & WPF Chart Control - Visifire: Visifire SL and WPF Charts v3.6.4 Released: Hi, Today we are releasing Visifire 3.6.4 with few bug fixes: * Multi-line Labels were getting clipped while exploding last DataPoint in Funnel and Pyramid chart. * ClosestPlotDistance property in Axis was not behaving as expected. * In DateTime Axis, Chart threw exception on mouse click over PlotArea if there were no DataPoints present in Chart. * ToolTip was not disappearing while changing the DataSource property of the DataSeries at real-time. * Chart threw exception ...Microsoft SQL Server Product Samples: Database: AdventureWorks 2008R2 SR1: Sample Databases for Microsoft SQL Server 2008R2 (SR1)This release is dedicated to the sample databases that ship for Microsoft SQL Server 2008R2. See Database Prerequisites for SQL Server 2008R2 for feature configurations required for installing the sample databases. See Installing SQL Server 2008R2 Databases for step by step installation instructions. The SR1 release contains minor bug fixes to the installer used to create the sample databases. There are no changes to the databases them...VidCoder: 0.7.2: Fixed duplicated subtitles when running multiple encodes off of the same title.Craig's Utility Library: Craig's Utility Library Code 2.0: This update contains a number of changes, added functionality, and bug fixes: Added transaction support to SQLHelper. Added linked/embedded resource ability to EmailSender. Updated List to take into account new functions. Added better support for MAC address in WMI classes. Fixed Parsing in Reflection class when dealing with sub classes. Fixed bug in SQLHelper when replacing the Command that is a select after doing a select. Fixed issue in SQL Server helper with regard to generati...MFCMAPI: November 2010 Release: Build: 6.0.0.1023 Full release notes at SGriffin's blog. If you just want to run the tool, get the executable. If you want to debug it, get the symbol file and the source. The 64 bit build will only work on a machine with Outlook 2010 64 bit installed. All other machines should use the 32 bit build, regardless of the operating system. Facebook BadgeDotNetNuke® Community Edition: 05.06.00: Major HighlightsAdded automatic portal alias creation for single portal installs Updated the file manager upload page to allow user to upload multiple files without returning to the file manager page. Fixed issue with Event Log Email Notifications. Fixed issue where Telerik HTML Editor was unable to upload files to secure or database folder. Fixed issue where registration page is not set correctly during an upgrade. Fixed issue where Sendmail stripped HTML and Links from emails...mVu Mobile Viewer: mVu Mobile Viewer 0.7.10.0: Tube8 fix.EPPlus-Create advanced Excel 2007 spreadsheets on the server: EPPlus 2.8.0.1: EPPlus-Create advanced Excel 2007 spreadsheets on the serverNew Features Improved chart support Different chart-types series on the same chart Support for secondary axis and a lot of new properties Better styling Encryption and Workbook protection Table support Import csv files Array formulas ...and a lot of bugfixesNew Projects.NET 4 Workflow Activities for Citrix: .NET 4 based workflow activities targeting the Citrix infrastructure.Age calculator: It calculates the age of a person in days on specification of date of birth.Another Azure Demo Project: An Azure demo project - based on the one we (Johan Danforth and Dag König) showed on the Swedish Azure Summit.ASP.NET Layered Web Application: N-Layered Web Applications with ASP.NET based on the article by Imar Spaanjaars.Binzlog: Donet ????。Build Solution: Buid Visual Studio applications with .Net code.CondominioOnline: Projeto para o desenvolvimento colaborativo dos diagramas de desenvolvimento.Create Dynamic UI with WPF: Create Dynamic UI with WPFDNN Fanbox: dot net nuke plugin facebook fanboxDNN Tweet: DNN Tweet is a twitter plugin for DotnetNuke DotNetNuke Notes: dnnNotes allows you to create simple notes that are stored on your DotNetNuke site.Easy Login PHP Script: Give your site a professional looking Members Area with this completely FREE and easy-to-use PHP script! Developed in PHP and uses MySQL as a database backend. Go on, click here, you know you want to! :DFind Nigerian Traditional Fashion Styles: NaijaTradStyles is a social network for Nigerians all over the world to promote the Nigerian economy, designs and cultures, fashion designers and individuals. This site allows users to share fashion ideas, activities, events, and interests within their individual networks. The GreenArrow: Just a simple mark-locate-click automation tool by comparing graphic pieces. GreenArrow makes it easier for automation script writer to handle UI elements which cannot be located by normal methods, like keyword or classid. Libero API for Fusion Charts in ASP.Net: Libero.FusionChartsAPI is made for Asp.Net (Webforms and MVC) developers to make easier to implement Fusion Charts in their projects. It is developed in framework .Net 4 (but supports framework 3.5) to target ASP.Net projects. Minemapper - dynamic mapping for Windows: Minemapper is an interactive, dynamic mapper for Minecraft. It uses mcmap to generate small map image tiles, then lets you pan and zoom around, quickly generating new tiles as needed.MoodleAzure: Enable Moodle 1.9.9 to run on Windows Azure and SQL AzureOpalis Active Directory Extension: A Opalis Integration Pack Project for Active Directory Integration. Done with C# Directory Services.Quick Finger SDK: Quick Finger SDK helps you to build a wide range of applications to use fingerprint recognition. Quick Finger SDK makes it easier for developers to integrate fingerprint recognition into their software. It's developed in Visual C++. Regex Batch Replacer (Multi-File): Regex Batch Replacer uses regular expression to find and replace text in multiple files.RiverRaid X: A clone of the classic Atari 2600 arcade game, River Raid. Uses XNA 4.0 and Neat game engine (http://neat.codeplex.com)SharePoint Commander: SharePoint 2010 administrative tool for developers and administrators.StreamerMatch: A tool for streamers, focused at Starcraft II at the moment.Tab Web Part: This solution is used to present the WebParts in a tab like user interface. It is tested on a SharePoint 2010 sandboxed solution. With this solution, all the WebParts added in a particular zone will appear in a tab kind of interface in the design mode. The javascript transformsTomato: XNA-based rendering middleware.UnicornObjects: todoVina: VinaWPF Photo/Image Manager: A WPF playground for many projects, including an image viewer, filters, image modification, photo organization, etc.WXQCW: wxqcw news platformYobbo Guitar: Yobbo guitar is a web application developed in ASP.NET that allows users to share guitar songs and chord progressions.

    Read the article

  • CodePlex Daily Summary for Friday, September 14, 2012

    CodePlex Daily Summary for Friday, September 14, 2012Popular ReleasesSOAP Test Application (with EWS Tools): v0.60: Template modifications (to delete blank fields where they are not required). Bugfix for listener form where it wouldn't allow the program to be closed under certain conditions.BizTalk Zombie Management: BizTalkZombieManagement V0.1.0: First version Function supported : Listener on zombie event Dump the zombie message in folderTumblen3: tumblen3 Version14Sep2012: added 'proxy-getter' of tumblr's OAuth Access TokenIBR.StringResourceBuilder: V1.3 Release 2 Build 13: Fixed: "Making" a string resource left the table of string literals blank (due to "improvement" in Build 11). Improved: Sped up inserting resource call when "making" a string resource. from Build 12 New: Option to store all string resources in one resource file global to the project.Fruit Juice: Fruit Juice v1.0: First versionPDF Viewer Web part: PDF Viewer Web Part: PDF Viewer Web PartMicrosoft Ajax Minifier: Microsoft Ajax Minifier 4.67: Fix issue #18629 - incorrectly handling null characters in string literals and not throwing an error when outside string literals. update for Issue #18600 - forgot to make the ///#DEBUG= directive also set a known-global for the given debug namespace. removed the kill-switch for disregarding preprocessor define-comments (///#IF and the like) and created a separate CodeSettings.IgnorePreprocessorDefines property for those who really need to turn that off. Some people had been setting -kil...Active Forums for DotNetNuke CMS: Active Forums 05.00.00 RC3: Active Forums 05.00.00 RC3Lakana - WPF Framework: Lakana V2: Lakana V2 contains : - Lakana WPF Forms (with sample project) - Lakana WPF Navigation (with sample project)Microsoft SQL Server Product Samples: Database: OData QueryFeed workflow activity: The OData QueryFeed sample activity shows how to create a workflow activity that consumes an OData resource, and renders entity properties in a Microsoft Excel 2010 worksheet or Microsoft Word 2010 document. Using the sample QueryFeed activity, you can consume any OData resource. The sample activity uses LINQ to project OData metadata into activity designer expression items. By setting activity expressions, a fully qualified OData query string is constructed consisting of Resource, Filter, Or...Arduino for Visual Studio: Arduino 1.x for Visual Studio 2012, 2010 and 2008: Register for the visualmicro.com forum for more news and updates Version 1209.10 includes support for VS2012 and minor fixes for the Arduino debugger beta test team. Version 1208.19 is considered stable for visual studio 2010 and 2008. If you are upgrading from an older release of Visual Micro and encounter a problem then uninstall "Visual Micro for Arduino" using "Control Panel>Add and Remove Programs" and then run the install again. Key Features of 1209.10 Support for Visual Studio 2...Social Network Importer for NodeXL: SocialNetImporter(v.1.5): This new version includes: - Fixed the "resource limit" bug caused by Facebook - Bug fixes To use the new graph data provider, do the following: Unzip the Zip file into the "PlugIns" folder that can be found in the NodeXL installation folder (i.e "C:\Program Files\Social Media Research Foundation\NodeXL Excel Template\PlugIns") Open NodeXL template and you can access the new importer from the "Import" menuAcDown????? - AcDown Downloader Framework: AcDown????? v4.1: ??●AcDown??????????、??、??、???????。????,????,?????????????????????????。???????????Acfun、????(Bilibili)、??、??、YouTube、??、???、??????、SF????、????????????。 ●??????AcPlay?????,??????、????????????????。 ● AcDown??????????????????,????????????????????????????。 ● AcDown???????C#??,????.NET Framework 2.0??。?????"Acfun?????"。 ????32??64? Windows XP/Vista/7/8 ???? 32??64? ???Linux ????(1)????????Windows XP???,?????????.NET Framework 2.0???(x86),?????"?????????"??? (2)???????????Linux???,????????Mono?? ??...Move Mouse: Move Mouse 2.5.2: FIXED - Minor fixes and improvements.MVC Controls Toolkit: Mvc Controls Toolkit 2.3: Added The new release is compatible with Mvc4 RTM. Support for handling Time Zones in dates. Specifically added helper methods to convert to UTC or local time all DateTimes contained in a model received by a controller, and helper methods to handle date only fileds. This together with a detailed documentation on how TimeZones are handled in all situations by the Asp.net Mvc framework, will contribute to mitigate the nightmare of dates and timezones. Multiple Templates, and more options to...DNN Metro7 style Skin package: Metro7 style Skin for DotNetNuke 06.02.00: Maintenance Release Changes on Metro7 06.02.00 Fixed width and height on the jQuery popup for the Editor. Navigation Provider changed to DDR menu Added menu files and scripts Changed skins to Doctype HTML Changed manifest to dnn6 manifest file Changed License to HTML view Fixed issue on Metro7/PinkTitle.ascx with double registering of the Actions Changed source folder structure and start folder, so the project works with the default DNN structure on developing Added VS 20...Xenta Framework - extensible enterprise n-tier application framework: Xenta Framework 1.9.0: Release Notes Imporved framework architecture Improved the framework security More import/export formats and operations New WebPortal application which includes forum, new, blog, catalog, etc. UIs Improved WebAdmin app. Reports, navigation and search Perfomance optimization Improve Xenta.Catalog domain More plugin interfaces and plugin implementations Refactoring Windows Azure support and much more... Package Guide Source Code - package contains the source code Binaries...Json.NET: Json.NET 4.5 Release 9: New feature - Added JsonValueConverter New feature - Set a property's DefaultValueHandling to Ignore when EmitDefaultValue from DataMemberAttribute is false Fix - Fixed DefaultValueHandling.Ignore not igoring default values of non-nullable properties Fix - Fixed DefaultValueHandling.Populate error with non-nullable properties Fix - Fixed error when writing JSON for a JProperty with no value Fix - Fixed error when calling ToList on empty JObjects and JArrays Fix - Fixed losing deci...DotNetNuke® Community Edition CMS: 07.00.00 CTP (Not for Production Use): NOTE: New Minimum Requirementshttp://www.dotnetnuke.com/Portals/25/Blog/Files/1/3418/Windows-Live-Writer-1426fd8a58ef_902C-MinimumVersionSupport_2.png Simplified InstallerThe first thing you will notice is that the installer has been updated. Not only have we updated the look and feel, but we also simplified the overall install process. You shouldn’t have to click through a series of screens in order to just get your website running. With the 7.0 installer we have taken an approach that a...WinRT XAML Toolkit: WinRT XAML Toolkit - 1.2.2: WinRT XAML Toolkit based on the Windows 8 RTM SDK. Download the latest source from the SOURCE CODE page. For compiled version use NuGet. You can add it to your project in Visual Studio by going to View/Other Windows/Package Manager Console and entering: PM> Install-Package winrtxamltoolkit Features AsyncUI extensions Controls and control extensions Converters Debugging helpers Imaging IO helpers VisualTree helpers Samples Recent changes NOTE: Namespace changes DebugConsol...New Projects$linq - A Javascript LINQ library: $linq is a Javascript version of .NET's Linq to Objects, with some query operations inspired by MoreLinq (an extension to Linq to Objects).AIlin: Some math operations with sparse and full matrices, elliptic curves and big numbersCapMvcHospital: Proyecto Hospital MVC para ABM de consultas clínicas y DoctoresChris on SharePoint Solutions: A collection of handy SharePoint solutions to make life easier for Site and Farm administrators.COTFACIL: O projeto visa estudar a integração web, mysql e visual studio 2010, para o estudo e conhecimento geral.Custom People Picker: The custom control which inherits the property of the "People Picker" control to display the items from the list.Data Sampler: The library allows the developer to quickly create dummy data or it can also be used to save a set of data that was originally retrieved from the database.DevelopEnvironment: ????????DotNetNuke Search Engine Sitemaps Provider: The iFinity DotNetNuke Search Engine Sitemaps Provider project generates Search Engine Sitemaps for DotNetNuke installs.Gapper Game: This is a recreation of the GAPPER DOS game that was released in 1986. The original has been abandon, so the Eastern Idaho .Net Users Group is remaking it.GestAdh45: Logiciel de gestion d'une association sportive : - gestion des adhérents/inscriptions - gestion des équipements (inventaire/vérifications)HP Printer Display Hack: A simple application that periodically checks the current price of a selected stock and sends it to the display of networked HP (and compatible) printers.INTELSI SAC: INICIOKnowledge Board Race: FATEC-SP - Engenharia de Software III KBR - Knowledge Board Race Desenvolvimento de um jogo educativo de tabuleiro on-line baseado em perguntas e respostas.MEDICALD PROJ: En este proyecto que lo haremos en equipo cada quien aportara su parte y luego la publicará aca.MVVM for Windows 8: Simple MVVM library for Windows 8.MyProjects: myprojectsNibbleOilWeb: Web Projectntcms: htcms system codingPowerConverter: PowerConverter allows you to change the old PE format to the new Power format for your PowerExtension programs.Primer Proyecto: dfrProject91404: pappapruebacodeplex: FooQuizz: D? án này là m?t ph?n c?a d? án t?t nghi?p. Vui lòng không s? d?ng vào m?c dích thuong m?i khi chua du?c s? d?ng ý c?a tác gi?.Runtime Dynamic Data Model Builder: Runtime Dynamic Data Model Builder lets you to have a Data Access Layer without writing code. It creates the database context and POCO based on Entity FrameworkSchoolProjectShitXD: Just a bunch of crap I am creating in my School,Scripture Reference Parser: Scripture Reference Parser is a library to parse data, including book, chapter, verse, and index, from references from various scriptures.Shadow: Shadow?????WCF??Remoting?ORM??,????????????????????。SharePoint Archive Tweets: Using REST, JSON and OAuth, SharePoint Archive Tweets (SPAT) was born. SPAT is a Microsoft SharePoint 2010 timer application that downloads Twitter timelines.Softech Portal - Vietnamese Portal: Gi?i pháp c?ng thông tin di?n t? thu?n Vi?t cho co quan hành chính Nhà Nu?c testdd09132012git01: sdtestdd09132012git02: ntestdd09132012hg01: dtestdd09132012tfs01: dteste tfs: testeTestRepository: Project Testing repository onlinetesttfs09132012tfs02: nThesis: This is my thesis project. It is about EDAs and Kernel classifiers. The source code is in Matlab.Tiny Contact Manager: Tiny Contact Manager manages collecting customer birthday and registration details and also sending out birthday vouchers.User Group Labs: My Groups: This is one of a series of social modules in the DotNetNuke User Group Labs project. This module allows you to easily lists the groups that a user is a part ofVatConnect: This is a Microsoft Flight Simulator add-on to connect it to the Vatsim network.Web Minesweeper with MVVM and Knockout: This is a common minesweeper game, that is implemented with mvvm in the web, only with html and javascipts libraries...Windows 8 - Using Roaming Storage in a Casual Game: This application demonstrates a simple game written for Windows 8 that illustrates how to utilize the Roaming Data Store for game data synchronization.xamlShow: This project is a demonstration of how to accomplish common tasks using WinRT XAML on Windows 8. This project is, basically, sample code used by Jerry Nixon.YTNet: YT Net is a small library which provides features for searching and downloading YouTube videos.

    Read the article

< Previous Page | 421 422 423 424 425 426 427 428 429 430 431 432  | Next Page >