Search Results

Search found 35200 results on 1408 pages for 't string'.

Page 427/1408 | < Previous Page | 423 424 425 426 427 428 429 430 431 432 433 434  | Next Page >

  • Caching no .NET Framework 4.0

    - by anobre
    Olá pessoal, como estão? Hoje vou apresentar uma mudança interessante sobre caching, em comparação com versões anteriores. Introdução A versão 4.0 da plataforma .NET trouxe uma mudança estrutural esperada para os recursos de Cache. Nas versão 3.5 (até SP1), a plataforma fornecia uma implementação do Cache através do namespace System.Web.Caching. Nas versões anteriores o cache estava disponível no namespace System.Web, o que criada uma dependência com as classes do ASP.NET. Neste novo framework, o namespace System.Runtime.Caching reúne toda a API necessária para criar todas as tarefas comuns ao ASP.NET Caching de versões anteriores. System.Runtime.Caching e MemoryCache Tudo que precisamos para trabalhar com cache, em aplicações Web ou não, está reunido no namespace System.Runtime.Caching. A unidade básica de trabalho é a classe abstrata ObjectCache, que fornece a base para criar implementações customizadas de cache. E como é de se esperar, a classe MemoryCache é a implementação da classe abstrata ObjectCache para armazenamento das informações em memória. public class MemoryCache : ObjectCache, IEnumerable, IDisposable A utilização do cache é muito simples, bem parecida com o modelo anterior: ObjectCache cache = MemoryCache.Default; string fileContents = cache["filecontents"] as string; if (fileContents == null) { CacheItemPolicy policy = new CacheItemPolicy(); List<string> filePaths = new List<string>(); filePaths.Add("c:\\cache\\example.txt"); policy.ChangeMonitors.Add(new HostFileChangeMonitor(filePaths)); // Fetch the file contents. fileContents = File.ReadAllText("c:\\cache\\example.txt"); cache.Set("filecontents", fileContents, policy); } Label1.Text = fileContents; Extendendo o Cache É possível customizar todo mecanismo de cache através de várias abordagens. ScottGu escreveu sobre isto, que você pode acessar através deste link. Conclusão Algo muito esperado em versões anteriores, finalmente o cache está disponível sem criar relacionamento com assemblies exclusivamente Web. Perfeito para quem desenvolve outros tipos de aplicação, usufruindo deste recurso sem carregar código desnecessário. Abraços!

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Web Application : How to upload multiple images at a time

    - by SAMIR BHOGAYTA
    //First add image control into the web form how many you want to upload images at a time //Add one button //Write the below code into the button_click event if (FileUpload1.HasFile) { string imagefile = FileUpload1.FileName; if (CheckFileType(imagefile) == true) { Random rndob = new Random(); int db = rndob.Next(1, 100); filename = System.IO.Path.GetFileNameWithoutExtension(imagefile) + db.ToString() + System.IO.Path.GetExtension(imagefile); String FilePath = "images/" + filename; FileUpload1.SaveAs(Server.MapPath(FilePath)); objimg.ImageName = filename; Image1(); if (Session["imagecount"].ToString() == "1") { Img1.ImageUrl = FilePath; ViewState["img1"] = FilePath; } else if (Session["imagecount"].ToString() == "2") { Img1.ImageUrl = ViewState["img1"].ToString(); Img2.ImageUrl = FilePath; ViewState["img2"] = FilePath; } else if (Session["imagecount"].ToString() == "3") { Img1.ImageUrl = ViewState["img1"].ToString(); Img2.ImageUrl = ViewState["img2"].ToString(); Img3.ImageUrl = FilePath; ViewState["img3"] = FilePath; } else if (Session["imagecount"].ToString() == "4") { Img1.ImageUrl = ViewState["img1"].ToString(); Img2.ImageUrl = ViewState["img2"].ToString(); Img3.ImageUrl = ViewState["img3"].ToString(); Img4.ImageUrl = FilePath; ViewState["img4"] = FilePath; } else if (Session["imagecount"].ToString() == "5") { Img1.ImageUrl = ViewState["img1"].ToString(); Img2.ImageUrl = ViewState["img2"].ToString(); Img3.ImageUrl = ViewState["img3"].ToString(); Img4.ImageUrl = ViewState["img4"].ToString(); Img5.ImageUrl = FilePath; ViewState["img5"] = FilePath; } } } //execption handling else { lblErrMsg.Visible = true; lblErrMsg.Text = ""; lblErrMsg.Text = "please select a file"; } } //if file extension belongs to these list then only allowed public bool CheckFileType(string filename) { string ext; ext = System.IO.Path.GetExtension(filename); switch (ext.ToLower()) { case ".gif": return true; case ".jpeg": return true; case ".jpg": return true; case ".bmp": return true; case ".png": return true; default: return false; } }

    Read the article

  • ASP.Net MVC - how to post values to the server that are not in an input element

    - by David Carter
    Problem As was mentioned in a previous blog I am building a web page that allows the user to select dates in a calendar and then shows the dates in an unordered list. The problem now is that those dates need to be sent to the server on page submit so that they can be saved to the database. If I was storing the dates in an input element, say a textbox, that wouldn't be an issue but because they are in an html element whose contents are not posted to the server an alternative strategy needs to be developed. Solution The approach that I took to solve this problem is as follows: 1. Place a hidden input field on the form <input id="hiddenDates" name="hiddenDates" type="hidden" value="" /> ASP.Net MVC has an Html helper with a method called Hidden() that will do this for you @Html.Hidden("hiddenDates"). 2. Copy the values from the html element to the hidden input field before submitting the form The following javascript is added to the page:        $(function () {          $('#formCreate').submit(function () {               PopulateHiddenDates();          });        });            function PopulateHiddenDates() {          var dateValues = '';          $($('#dateList').children('li')).each(function(index) {             dateValues += $(this).attr("id") + ",";          });          $('#hiddenDates').val(dateValues);        } I'm using jQuery to bind to the form submit event so that my method to populate the hidden field gets called before the form is submitted. The dateList element is an unordered list and by using the jQuery each function I can itterate through all the <li> items that it contains, get each items id attribute (to which I have assigned the value of the date in millisecs) and write them to the hidden field as a comma delimited string. 3. Process the dates on the server        [HttpPost]         public ActionResult Create(string hiddenDates, string utcOffset)         {            List<DateTime> dates = GetDates(hiddenDates, utcOffset);         }         private List<DateTime> GetDates(string hiddenDates, int utcOffset)         {             List<DateTime> dates = new List<DateTime>();             var values = hiddenDates.Split(",".ToCharArray(),StringSplitOptions.RemoveEmptyEntries);             foreach (var item in values)             {                 DateTime newDate = new DateTime(1970, 1, 1).AddMilliseconds(double.Parse(item)).AddMinutes(utcOffset*-1);                 dates.Add(newDate);                }             return dates;         } By declaring a parameter with the same name as the hidden field ASP.Net will take care of finding the corresponding entry in the form collection posted back to the server and binding it to the hiddenDates parameter! Excellent! I now have my dates the user selected and I can save them to the database. I have also used the same technique to pass back a utcOffset so that I know what timezone the user is in and I can show the dates correctly to users in other timezones if necessary (this isn't strictly necessary at the moment but I plan to introduce times later), Saving multiple dates from an unordered list - DONE!

    Read the article

  • View Clipboard & Copy To Clipboard from NetBeans IDE

    - by Geertjan
    Thanks to this code, I can press Ctrl-Alt-V in NetBeans IDE and then view whatever is in the clipboard: import java.awt.Toolkit; import java.awt.datatransfer.DataFlavor; import java.awt.datatransfer.Transferable; import java.awt.datatransfer.UnsupportedFlavorException; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.io.IOException; import javax.swing.JOptionPane; import org.openide.awt.ActionRegistration; import org.openide.awt.ActionReference; import org.openide.awt.ActionReferences; import org.openide.awt.ActionID; import org.openide.util.NbBundle.Messages; @ActionID( category = "Tools", id = "org.demo.ShowClipboardAction") @ActionRegistration( displayName = "#CTL_ShowClipboardAction") @ActionReferences({ @ActionReference(path = "Menu/Tools", position = 5), @ActionReference(path = "Shortcuts", name = "DA-V") }) @Messages("CTL_ShowClipboardAction=Show Clipboard") public final class ShowClipboardAction implements ActionListener { @Override public void actionPerformed(ActionEvent e) { JOptionPane.showMessageDialog(null, getClipboard(), "Clipboard Content", 1); } public String getClipboard() { String text = null; Transferable t = Toolkit.getDefaultToolkit().getSystemClipboard().getContents(null); try { if (t != null && t.isDataFlavorSupported(DataFlavor.stringFlavor)) { text = (String) t.getTransferData(DataFlavor.stringFlavor); } } catch (UnsupportedFlavorException e) { } catch (IOException e) { } return text; } } And now I can also press Ctrl-Alt-C, which copies the path to the current file to the clipboard: import java.awt.Toolkit; import java.awt.datatransfer.Clipboard; import java.awt.datatransfer.StringSelection; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import org.openide.awt.ActionID; import org.openide.awt.ActionReference; import org.openide.awt.ActionReferences; import org.openide.awt.ActionRegistration; import org.openide.awt.StatusDisplayer; import org.openide.loaders.DataObject; import org.openide.util.NbBundle.Messages; @ActionID( category = "Tools", id = "org.demo.CopyPathToClipboard") @ActionRegistration( displayName = "#CTL_CopyPathToClipboard") @ActionReferences({ @ActionReference(path = "Menu/Tools", position = 0), @ActionReference(path = "Editors/Popup", position = 10), @ActionReference(path = "Shortcuts", name = "DA-C") }) @Messages("CTL_CopyPathToClipboard=Copy Path to Clipboard") public final class CopyPathToClipboardAction implements ActionListener { private final DataObject context; public CopyPathToClipboardAction(DataObject context) { this.context = context; } @Override public void actionPerformed(ActionEvent e) { String path = context.getPrimaryFile().getPath(); StatusDisplayer.getDefault().setStatusText(path); StringSelection ss = new StringSelection(path); Clipboard clipboard = Toolkit.getDefaultToolkit().getSystemClipboard(); clipboard.setContents(ss, null); } }

    Read the article

  • ASP.NET ViewState Tips and Tricks #2

    - by João Angelo
    If you need to store complex types in ViewState DO implement IStateManager to control view state persistence and reduce its size. By default a serializable object will be fully stored in view state using BinaryFormatter. A quick comparison for a complex type with two integers and one string property produces the following results measured using ASP.NET tracing: BinaryFormatter: 328 bytes in view state IStateManager: 28 bytes in view state BinaryFormatter sample code: // DO NOT [Serializable] public class Info { public int Id { get; set; } public string Name { get; set; } public int Age { get; set; } } public class ExampleControl : WebControl { protected override void OnLoad(EventArgs e) { base.OnLoad(e); if (!this.Page.IsPostBack) { this.User = new Info { Id = 1, Name = "John Doe", Age = 27 }; } } public Info User { get { object o = this.ViewState["Example_User"]; if (o == null) return null; return (Info)o; } set { this.ViewState["Example_User"] = value; } } } IStateManager sample code: // DO public class Info : IStateManager { public int Id { get; set; } public string Name { get; set; } public int Age { get; set; } private bool isTrackingViewState; bool IStateManager.IsTrackingViewState { get { return this.isTrackingViewState; } } void IStateManager.LoadViewState(object state) { var triplet = (Triplet)state; this.Id = (int)triplet.First; this.Name = (string)triplet.Second; this.Age = (int)triplet.Third; } object IStateManager.SaveViewState() { return new Triplet(this.Id, this.Name, this.Age); } void IStateManager.TrackViewState() { this.isTrackingViewState = true; } } public class ExampleControl : WebControl { protected override void OnLoad(EventArgs e) { base.OnLoad(e); if (!this.Page.IsPostBack) { this.User = new Info { Id = 1, Name = "John Doe", Age = 27 }; } } public Info User { get; set; } protected override object SaveViewState() { return new Pair( ((IStateManager)this.User).SaveViewState(), base.SaveViewState()); } protected override void LoadViewState(object savedState) { if (savedState != null) { var pair = (Pair)savedState; this.User = new Info(); ((IStateManager)this.User).LoadViewState(pair.First); base.LoadViewState(pair.Second); } } }

    Read the article

  • Trouble compiling MonoDevelop 4 on Ubuntu 12.04

    - by Mehran
    I'm trying to compile the latest version of MonoDevelop (4.0.9) on my Ubuntu 12.04 and I'm facing errors I can not overcome. Here are my machine's configurations: OS: Ubuntu 12.04 64-bit Mono: version 3.0.12 And here are the commands that I ran to download MonoDevelop: $ git clone git://github.com/mono/monodevelop.git $ cd monodevelop $ git submodule init $ git submodule update And afterwards to compile: ./configure --prefix=`pkg-config --variable=prefix mono` --profile=stable make Then I faced the following errors (sorry if it's long): ... Building ./Main.sln xbuild /verbosity:quiet /nologo /property:CodePage=65001 ./Main.sln /property:Configuration=Debug /home/mehran/git/monodevelop/main/Main.sln: warning : Don't know how to handle GlobalSection MonoDevelopProperties.Debug, Ignoring. : warning CS1685: The predefined type `System.Runtime.CompilerServices.ExtensionAttribute' is defined in multiple assemblies. Using definition from `mscorlib' /usr/lib/mono/4.0/Microsoft.CSharp.targets: error : Compiler crashed with code: 1. : warning CS1685: The predefined type `System.Runtime.CompilerServices.ExtensionAttribute' is defined in multiple assemblies. Using definition from `mscorlib' Editor/IDocument.cs(98,30): warning CS0419: Ambiguous reference in cref attribute `GetOffset'. Assuming `ICSharpCode.NRefactory.Editor.IDocument.GetOffset(int, int)' but other overloads including `ICSharpCode.NRefactory.Editor.IDocument.GetOffset(ICSharpCode.NRefactory.TextLocation)' have also matched PatternMatching/INode.cs(51,37): warning CS1574: XML comment on `ICSharpCode.NRefactory.PatternMatching.PatternExtensions.Match(this ICSharpCode.NRefactory.PatternMatching.INode, ICSharpCode.NRefactory.PatternMatching.INode)' has cref attribute `PatternMatching.Match.Success' that could not be resolved TextLocation.cs(35,23): warning CS0419: Ambiguous reference in cref attribute `Editor.IDocument.GetOffset'. Assuming `ICSharpCode.NRefactory.Editor.IDocument.GetOffset(int, int)' but other overloads including `ICSharpCode.NRefactory.Editor.IDocument.GetOffset(ICSharpCode.NRefactory.TextLocation)' have also matched TypeSystem/FullTypeName.cs(87,24): warning CS0419: Ambiguous reference in cref attribute `ReflectionHelper.ParseReflectionName'. Assuming `ICSharpCode.NRefactory.TypeSystem.ReflectionHelper.ParseReflectionName(string)' but other overloads including `ICSharpCode.NRefactory.TypeSystem.ReflectionHelper.ParseReflectionName(string, ref int)' have also matched TypeSystem/INamedElement.cs(59,24): warning CS0419: Ambiguous reference in cref attribute `ReflectionHelper.ParseReflectionName'. Assuming `ICSharpCode.NRefactory.TypeSystem.ReflectionHelper.ParseReflectionName(string)' but other overloads including `ICSharpCode.NRefactory.TypeSystem.ReflectionHelper.ParseReflectionName(string, ref int)' have also matched TypeSystem/IType.cs(50,26): warning CS1584: XML comment on `ICSharpCode.NRefactory.TypeSystem.IType' has syntactically incorrect cref attribute `IEquatable{IType}.Equals(IType)' TypeSystem/IType.cs(319,38): warning CS1580: Invalid type for parameter `1' in XML comment cref attribute `GetMethods(Predicate{IUnresolvedMethod}, GetMemberOptions)' TypeSystem/TypeKind.cs(61,17): warning CS1580: Invalid type for parameter `1' in XML comment cref attribute `IType.GetNestedTypes(Predicate{ITypeDefinition}, GetMemberOptions)' TypeSystem/SpecialType.cs(50,52): warning CS1580: Invalid type for parameter `1' in XML comment cref attribute `IType.GetNestedTypes(Predicate{ITypeDefinition}, GetMemberOptions)' /usr/lib/mono/4.0/Microsoft.CSharp.targets: error : Compiler crashed with code: 1.

    Read the article

  • Issue with Godaddy DNS manager

    - by Fischer
    I'm using domains.live.com to setup an email to a domain registered on Godaddy. The domains.live.com configuration page says: Godaddy's DNS manager isn't accepting this string Value: v=spf1 include:hotmail.com ~all it gives an error, something is wrong, either with the string or with the DNS manager and I would like to know how to fix it. Notes: The more information link is dead, Godaddy no longer gives support by email, no Microsoft support

    Read the article

  • Prevent your Silverlight XAP file from caching in your browser.

    - by mbcrump
    If you work with Silverlight daily then you have run into this problem. Your XAP file has been cached in your browser and you have to empty your browser cache to resolve it. If your using Google Chrome then you typically do the following: Go to Options –> Clear Browsing History –> Empty the Cache and finally click Clear Browsing data. As you can see, this is a lot of unnecessary steps. It is even worse when you have a customer that says, “I can’t see the new features you just implemented!” and you realize it’s a cached xap problem.  I have been struggling with a way to prevent my XAP file from caching inside of a browser for a while now and decided to implement the following solution. If the Visual Studio Debugger is attached then add a unique query string to the source param to force the XAP file to be refreshed. If the Visual Studio Debugger is not attached then add the source param as Visual Studio generates it. This is also in case I forget to remove the above code in my production environment. I want the ASP.NET code to be inline with my .ASPX page. (I do not want a separate code behind .cs page or .vb page attached to the .aspx page.) Below is an example of the hosting code generated when you create a new Silverlight project. As a quick refresher, the hard coded param name = “source” specifies the location of your XAP file.  <form id="form1" runat="server" style="height:100%"> <div id="silverlightControlHost"> <object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%"> <param name="source" value="ClientBin/SilverlightApplication2.xap"/> <param name="onError" value="onSilverlightError" /> <param name="background" value="white" /> <param name="minRuntimeVersion" value="4.0.50826.0" /> <param name="autoUpgrade" value="true" /> <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0" style="text-decoration:none"> <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft Silverlight" style="border-style:none"/> </a> </object><iframe id="_sl_historyFrame" style="visibility:hidden;height:0px;width:0px;border:0px"></iframe></div> </form> We are going to use a little bit of inline ASP.NET to generate the param name = source dynamically to prevent the XAP file from caching. Lets look at the completed solution: <form id="form1" runat="server" style="height:100%"> <div id="silverlightControlHost"> <object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%"> <% string strSourceFile = @"ClientBin/SilverlightApplication2.xap"; string param; if (System.Diagnostics.Debugger.IsAttached) //Debugger Attached - Refresh the XAP file. param = "<param name=\"source\" value=\"" + strSourceFile + "?" + DateTime.Now.Ticks + "\" />"; else { //Production Mode param = "<param name=\"source\" value=\"" + strSourceFile + "\" />"; } Response.Write(param); %> <param name="onError" value="onSilverlightError" /> <param name="background" value="white" /> <param name="minRuntimeVersion" value="4.0.50826.0" /> <param name="autoUpgrade" value="true" /> <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0" style="text-decoration:none"> <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft Silverlight" style="border-style:none"/> </a> </object><iframe id="_sl_historyFrame" style="visibility:hidden;height:0px;width:0px;border:0px"></iframe></div> </form> We add the location to our XAP file to strSourceFile and if the debugger is attached then it will append DateTime.Now.Ticks to the XAP file source and force the browser to download the .XAP. If you view the page source of your Silverlight Application then you can verify it worked properly by looking at the param name = “source” tag as shown below. <param name="source" value="ClientBin/SilverlightApplication2.xap?634299001187160148" /> If the debugger is not attached then it will use the standard source tag as shown below. <param name="source" value="ClientBin/SilverlightApplication2.xap"/> At this point you may be asking, How do I prevent my XAP file from being cached on my production app? Well, you have two easy options: 1) I really don’t recommend this approach but you can force the XAP to be refreshed everytime with the following code snippet.  <param name="source" value="ClientBin/SilverlightApplication2.xap?<%=Guid.NewGuid().ToString() %>"/> NOTE: You could also substitute the “Guid.NewGuid().ToString() for anything that create a random field. (I used DateTime.Now.Ticks earlier). 2) Another solution that I like even better involves checking the XAP Creation Date and appending it to the param name = source. This method was described by Lars Holm Jenson. <% string strSourceFile = @"ClientBin/SilverlightApplication2.xap"; string param; if (System.Diagnostics.Debugger.IsAttached) param = "<param name=\"source\" value=\"" + strSourceFile + "\" />"; else { string xappath = HttpContext.Current.Server.MapPath(@"") + @"\" + strSourceFile; DateTime xapCreationDate = System.IO.File.GetLastWriteTime(xappath); param = "<param name=\"source\" value=\"" + strSourceFile + "?ignore=" + xapCreationDate.ToString() + "\" />"; } Response.Write(param); %> As you can see, this problem has been solved. It will work with all web browsers and stubborn proxy servers that are caching your .XAP. If you enjoyed this article then check out my blog for others like this. You may also want to subscribe to my blog or follow me on Twitter.   Subscribe to my feed

    Read the article

  • SSIS: Deploying OLAP cubes using C# script tasks and AMO

    - by DrJohn
    As part of the continuing series on Building dynamic OLAP data marts on-the-fly, this blog entry will focus on how to automate the deployment of OLAP cubes using SQL Server Integration Services (SSIS) and Analysis Services Management Objects (AMO). OLAP cube deployment is usually done using the Analysis Services Deployment Wizard. However, this option was dismissed for a variety of reasons. Firstly, invoking external processes from SSIS is fraught with problems as (a) it is not always possible to ensure SSIS waits for the external program to terminate; (b) we cannot log the outcome properly and (c) it is not always possible to control the server's configuration to ensure the executable works correctly. Another reason for rejecting the Deployment Wizard is that it requires the 'answers' to be written into four XML files. These XML files record the three things we need to change: the name of the server, the name of the OLAP database and the connection string to the data mart. Although it would be reasonably straight forward to change the content of the XML files programmatically, this adds another set of complication and level of obscurity to the overall process. When I first investigated the possibility of using C# to deploy a cube, I was surprised to find that there are no other blog entries about the topic. I can only assume everyone else is happy with the Deployment Wizard! SSIS "forgets" assembly references If you build your script task from scratch, you will have to remember how to overcome one of the major annoyances of working with SSIS script tasks: the forgetful nature of SSIS when it comes to assembly references. Basically, you can go through the process of adding an assembly reference using the Add Reference dialog, but when you close the script window, SSIS "forgets" the assembly reference so the script will not compile. After repeating the operation several times, you will find that SSIS only remembers the assembly reference when you specifically press the Save All icon in the script window. This problem is not unique to the AMO assembly and has certainly been a "feature" since SQL Server 2005, so I am not amazed it is still present in SQL Server 2008 R2! Sample Package So let's take a look at the sample SSIS package I have provided which can be downloaded from here: DeployOlapCubeExample.zip  Below is a screenshot after a successful run. Connection Managers The package has three connection managers: AsDatabaseDefinitionFile is a file connection manager pointing to the .asdatabase file you wish to deploy. Note that this can be found in the bin directory of you OLAP database project once you have clicked the "Build" button in Visual Studio TargetOlapServerCS is an Analysis Services connection manager which identifies both the deployment server and the target database name. SourceDataMart is an OLEDB connection manager pointing to the data mart which is to act as the source of data for your cube. This will be used to replace the connection string found in your .asdatabase file Once you have configured the connection managers, the sample should run and deploy your OLAP database in a few seconds. Of course, in a production environment, these connection managers would be associated with package configurations or set at runtime. When you run the sample, you should see that the script logs its activity to the output screen (see screenshot above). If you configure logging for the package, then these messages will also appear in your SSIS logging. Sample Code Walkthrough Next let's walk through the code. The first step is to parse the connection string provided by the TargetOlapServerCS connection manager and obtain the name of both the target OLAP server and also the name of the OLAP database. Note that the target database does not have to exist to be referenced in an AS connection manager, so I am using this as a convenient way to define both properties. We now connect to the server and check for the existence of the OLAP database. If it exists, we drop the database so we can re-deploy. svr.Connect(olapServerName); if (svr.Connected) { // Drop the OLAP database if it already exists Database db = svr.Databases.FindByName(olapDatabaseName); if (db != null) { db.Drop(); } // rest of script } Next we start building the XMLA command that will actually perform the deployment. Basically this is a small chuck of XML which we need to wrap around the large .asdatabase file generated by the Visual Studio build process. // Start generating the main part of the XMLA command XmlDocument xmlaCommand = new XmlDocument(); xmlaCommand.LoadXml(string.Format("<Batch Transaction='false' xmlns='http://schemas.microsoft.com/analysisservices/2003/engine'><Alter AllowCreate='true' ObjectExpansion='ExpandFull'><Object><DatabaseID>{0}</DatabaseID></Object><ObjectDefinition/></Alter></Batch>", olapDatabaseName));  Next we need to merge two XML files which we can do by simply using setting the InnerXml property of the ObjectDefinition node as follows: // load OLAP Database definition from .asdatabase file identified by connection manager XmlDocument olapCubeDef = new XmlDocument(); olapCubeDef.Load(Dts.Connections["AsDatabaseDefinitionFile"].ConnectionString); // merge the two XML files by obtain a reference to the ObjectDefinition node oaRootNode.InnerXml = olapCubeDef.InnerXml;   One hurdle I had to overcome was removing detritus from the .asdabase file left by the Visual Studio build. Through an iterative process, I found I needed to remove several nodes as they caused the deployment to fail. The XMLA error message read "Cannot set read-only node: CreatedTimestamp" or similar. In comparing the XMLA generated with by the Deployment Wizard with that generated by my code, these read-only nodes were missing, so clearly I just needed to strip them out. This was easily achieved using XPath to find the relevant XML nodes, of which I show one example below: foreach (XmlNode node in rootNode.SelectNodes("//ns1:CreatedTimestamp", nsManager)) { node.ParentNode.RemoveChild(node); } Now we need to change the database name in both the ID and Name nodes using code such as: XmlNode databaseID = xmlaCommand.SelectSingleNode("//ns1:Database/ns1:ID", nsManager); if (databaseID != null) databaseID.InnerText = olapDatabaseName; Finally we need to change the connection string to point at the relevant data mart. Again this is easily achieved using XPath to search for the relevant nodes and then replace the content of the node with the new name or connection string. XmlNode connectionStringNode = xmlaCommand.SelectSingleNode("//ns1:DataSources/ns1:DataSource/ns1:ConnectionString", nsManager); if (connectionStringNode != null) { connectionStringNode.InnerText = Dts.Connections["SourceDataMart"].ConnectionString; } Finally we need to perform the deployment using the Execute XMLA command and check the returned XmlaResultCollection for errors before setting the Dts.TaskResult. XmlaResultCollection oResults = svr.Execute(xmlaCommand.InnerXml);  // check for errors during deployment foreach (Microsoft.AnalysisServices.XmlaResult oResult in oResults) { foreach (Microsoft.AnalysisServices.XmlaMessage oMessage in oResult.Messages) { if ((oMessage.GetType().Name == "XmlaError")) { FireError(oMessage.Description); HadError = true; } } } If you are not familiar with XML programming, all this may all seem a bit daunting, but perceiver as the sample code is pretty short. If you would like the script to process the OLAP database, simply uncomment the lines in the vicinity of Process method. Of course, you can extend the script to perform your own custom processing and to even synchronize the database to a front-end server. Personally, I like to keep the deployment and processing separate as the code can become overly complex for support staff.If you want to know more, come see my session at the forthcoming SQLBits conference.

    Read the article

  • Adding Attributes to Generated Classes

    ASP.NET MVC 2 adds support for data annotations, implemented via attributes on your model classes.  Depending on your design, you may be using an OR/M tool like Entity Framework or LINQ-to-SQL to generate your entity classes, and you may further be using these entities directly as your Model.  This is fairly common, and alleviates the need to do mapping between POCO domain objects and such entities (though there are certainly pros and cons to using such entities directly). As an example, the current version of the NerdDinner application (available on CodePlex at nerddinner.codeplex.com) uses Entity Framework for its model.  Thus, there is a NerdDinner.edmx file in the project, and a generated NerdDinner.Models.Dinner class.  Fortunately, these generated classes are marked as partial, so you can extend their behavior via your own partial class in a separate file.  However, if for instance the generated Dinner class has a property Title of type string, you cant then add your own Title of type string for the purpose of adding data annotations to it, like this: public partial class Dinner { [Required] public string Title { get;set; } } This will result in a compilation error, because the generated Dinner class already contains a definition of Title.  How then can we add attributes to this generated code?  Do we need to go into the T4 template and add a special case that says if were generated a Dinner class and it has a Title property, add this attribute?  Ick. MetadataType to the Rescue The MetadataType attribute can be used to define a type which contains attributes (metadata) for a given class.  It is applied to the class you want to add metadata to (Dinner), and it refers to a totally separate class to which youre free to add whatever methods and properties you like.  Using this attribute, our partial Dinner class might look like this: [MetadataType(typeof(Dinner_Validation))] public partial class Dinner {}   public class Dinner_Validation { [Required] public string Title { get; set; } } In this case the Dinner_Validation class is public, but if you were concerned about muddying your API with such classes, it could instead have been created as a private class within Dinner.  Having the validation attributes specified in their own class (with no other responsibilities) complies with the Single Responsibility Principle and makes it easy for you to test that the validation rules you expect are in place via these annotations/attributes. Thanks to Julie Lerman for her help with this.  Right after she showed me how to do this, I realized it was also already being done in the project I was working on. Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Bash Printing, how to

    - by Uncle Leo
    Wrote a script in bash. Now im need to bring information into a text file,for example in PostScript, but there is one problem. I need to have a certain length of string in characters, and stretch or shrink the string on the entire width of the page layout. I have tried a2ps and enscript, but there is no such option. Please tell me the solution to this problem, maybe in Ghostscript. Thanks in advance!

    Read the article

  • Microsoft Introduces WebMatrix

    - by Rick Strahl
    originally published in CoDe Magazine Editorial Microsoft recently released the first CTP of a new development environment called WebMatrix, which along with some of its supporting technologies are squarely aimed at making the Microsoft Web Platform more approachable for first-time developers and hobbyists. But in the process, it also provides some updated technologies that can make life easier for existing .NET developers. Let’s face it: ASP.NET development isn’t exactly trivial unless you already have a fair bit of familiarity with sophisticated development practices. Stick a non-developer in front of Visual Studio .NET or even the Visual Web Developer Express edition and it’s not likely that the person in front of the screen will be very productive or feel inspired. Yet other technologies like PHP and even classic ASP did provide the ability for non-developers and hobbyists to become reasonably proficient in creating basic web content quickly and efficiently. WebMatrix appears to be Microsoft’s attempt to bring back some of that simplicity with a number of technologies and tools. The key is to provide a friendly and fully self-contained development environment that provides all the tools needed to build an application in one place, as well as tools that allow publishing of content and databases easily to the web server. WebMatrix is made up of several components and technologies: IIS Developer Express IIS Developer Express is a new, self-contained development web server that is fully compatible with IIS 7.5 and based on the same codebase that IIS 7.5 uses. This new development server replaces the much less compatible Cassini web server that’s been used in Visual Studio and the Express editions. IIS Express addresses a few shortcomings of the Cassini server such as the inability to serve custom ISAPI extensions (i.e., things like PHP or ASP classic for example), as well as not supporting advanced authentication. IIS Developer Express provides most of the IIS 7.5 feature set providing much better compatibility between development and live deployment scenarios. SQL Server Compact 4.0 Database access is a key component for most web-driven applications, but on the Microsoft stack this has mostly meant you have to use SQL Server or SQL Server Express. SQL Server Compact is not new-it’s been around for a few years, but it’s been severely hobbled in the past by terrible tool support and the inability to support more than a single connection in Microsoft’s attempt to avoid losing SQL Server licensing. The new release of SQL Server Compact 4.0 supports multiple connections and you can run it in ASP.NET web applications simply by installing an assembly into the bin folder of the web application. In effect, you don’t have to install a special system configuration to run SQL Compact as it is a drop-in database engine: Copy the small assembly into your BIN folder (or from the GAC if installed fully), create a connection string against a local file-based database file, and then start firing SQL requests. Additionally WebMatrix includes nice tools to edit the database tables and files, along with tools to easily upsize (and hopefully downsize in the future) to full SQL Server. This is a big win, pending compatibility and performance limits. In my simple testing the data engine performed well enough for small data sets. This is not only useful for web applications, but also for desktop applications for which a fully installed SQL engine like SQL Server would be overkill. Having a local data store in those applications that can potentially be accessed by multiple users is a welcome feature. ASP.NET Razor View Engine What? Yet another native ASP.NET view engine? We already have Web Forms and various different flavors of using that view engine with Web Forms and MVC. Do we really need another? Microsoft thinks so, and Razor is an implementation of a lightweight, script-only view engine. Unlike the Web Forms view engine, Razor works only with inline code, snippets, and markup; therefore, it is more in line with current thinking of what a view engine should represent. There’s no support for a “page model” or any of the other Web Forms features of the full-page framework, but just a lightweight scripting engine that works with plain markup plus embedded expressions and code. The markup syntax for Razor is geared for minimal typing, plus some progressive detection of where a script block/expression starts and ends. This results in a much leaner syntax than the typical ASP.NET Web Forms alligator (<% %>) tags. Razor uses the @ sign plus standard C# (or Visual Basic) block syntax to delineate code snippets and expressions. Here’s a very simple example of what Razor markup looks like along with some comment annotations: <!DOCTYPE html> <html>     <head>         <title></title>     </head>     <body>     <h1>Razor Test</h1>          <!-- simple expressions -->     @DateTime.Now     <hr />     <!-- method expressions -->     @DateTime.Now.ToString("T")          <!-- code blocks -->     @{         List<string> names = new List<string>();         names.Add("Rick");         names.Add("Markus");         names.Add("Claudio");         names.Add("Kevin");     }          <!-- structured block statements -->     <ul>     @foreach(string name in names){             <li>@name</li>     }     </ul>           <!-- Conditional code -->        @if(true) {                        <!-- Literal Text embedding in code -->        <text>         true        </text>;    }    else    {        <!-- Literal Text embedding in code -->       <text>       false       </text>;    }    </body> </html> Like the Web Forms view engine, Razor parses pages into code, and then executes that run-time compiled code. Effectively a “page” becomes a code file with markup becoming literal text written into the Response stream, code snippets becoming raw code, and expressions being written out with Response.Write(). The code generated from Razor doesn’t look much different from similar Web Forms code that only uses script tags; so although the syntax may look different, the operational model is fairly similar to the Web Forms engine minus the overhead of the large Page object model. However, there are differences: -Razor pages are based on a new base class, Microsoft.WebPages.WebPage, which is hosted in the Microsoft.WebPages assembly that houses all the Razor engine parsing and processing logic. Browsing through the assembly (in the generated ASP.NET Temporary Files folder or GAC) will give you a good idea of the functionality that Razor provides. If you look closely, a lot of the feature set matches ASP.NET MVC’s view implementation as well as many of the helper classes found in MVC. It’s not hard to guess the motivation for this sort of view engine: For beginning developers the simple markup syntax is easier to work with, although you obviously still need to have some understanding of the .NET Framework in order to create dynamic content. The syntax is easier to read and grok and much shorter to type than ASP.NET alligator tags (<% %>) and also easier to understand aesthetically what’s happening in the markup code. Razor also is a better fit for Microsoft’s vision of ASP.NET MVC: It’s a new view engine without the baggage of Web Forms attached to it. The engine is more lightweight since it doesn’t carry all the features and object model of Web Forms with it and it can be instantiated directly outside of the HTTP environment, which has been rather tricky to do for the Web Forms view engine. Having a standalone script parser is a huge win for other applications as well – it makes it much easier to create script or meta driven output generators for many types of applications from code/screen generators, to simple form letters to data merging applications with user customizability. For me personally this is very useful side effect and who knows maybe Microsoft will actually standardize they’re scripting engines (die T4 die!) on this engine. Razor also better fits the “view-based” approach where the view is supposed to be mostly a visual representation that doesn’t hold much, if any, code. While you can still use code, the code you do write has to be self-contained. Overall I wouldn’t be surprised if Razor will become the new standard view engine for MVC in the future – and in fact there have been announcements recently that Razor will become the default script engine in ASP.NET MVC 3.0. Razor can also be used in existing Web Forms and MVC applications, although that’s not working currently unless you manually configure the script mappings and add the appropriate assemblies. It’s possible to do it, but it’s probably better to wait until Microsoft releases official support for Razor scripts in Visual Studio. Once that happens, you can simply drop .cshtml and .vbhtml pages into an existing ASP.NET project and they will work side by side with classic ASP.NET pages. WebMatrix Development Environment To tie all of these three technologies together, Microsoft is shipping WebMatrix with an integrated development environment. An integrated gallery manager makes it easy to download and load existing projects, and then extend them with custom functionality. It seems to be a prominent goal to provide community-oriented content that can act as a starting point, be it via a custom templates or a complete standard application. The IDE includes a project manager that works with a single project and provides an integrated IDE/editor for editing the .cshtml and .vbhtml pages. A run button allows you to quickly run pages in the project manager in a variety of browsers. There’s no debugging support for code at this time. Note that Razor pages don’t require explicit compilation, so making a change, saving, and then refreshing your page in the browser is all that’s needed to see changes while testing an application locally. It’s essentially using the auto-compiling Web Project that was introduced with .NET 2.0. All code is compiled during run time into dynamically created assemblies in the ASP.NET temp folder. WebMatrix also has PHP Editing support with syntax highlighting. You can load various PHP-based applications from the WebMatrix Web Gallery directly into the IDE. Most of the Web Gallery applications are ready to install and run without further configuration, with Wizards taking you through installation of tools, dependencies, and configuration of the database as needed. WebMatrix leverages the Web Platform installer to pull the pieces down from websites in a tight integration of tools that worked nicely for the four or five applications I tried this out on. Click a couple of check boxes and fill in a few simple configuration options and you end up with a running application that’s ready to be customized. Nice! You can easily deploy completed applications via WebDeploy (to an IIS server) or FTP directly from within the development environment. The deploy tool also can handle automatically uploading and installing the database and all related assemblies required, making deployment a simple one-click install step. Simplified Database Access The IDE contains a database editor that can edit SQL Compact and SQL Server databases. There is also a Database helper class that facilitates database access by providing easy-to-use, high-level query execution and iteration methods: @{       var db = Database.OpenFile("FirstApp.sdf");     string sql = "select * from customers where Id > @0"; } <ul> @foreach(var row in db.Query(sql,1)){         <li>@row.FirstName @row.LastName</li> } </ul> The query function takes a SQL statement plus any number of positional (@0,@1 etc.) SQL parameters by simple values. The result is returned as a collection of rows which in turn have a row object with dynamic properties for each of the columns giving easy (though untyped) access to each of the fields. Likewise Execute and ExecuteNonQuery allow execution of more complex queries using similar parameter passing schemes. Note these queries use string-based queries rather than LINQ or Entity Framework’s strongly typed LINQ queries. While this may seem like a step back, it’s also in line with the expectations of non .NET script developers who are quite used to writing and using SQL strings in code rather than using OR/M frameworks. The only question is why was something not included from the beginning in .NET and Microsoft made developers build custom implementations of these basic building blocks. The implementation looks a lot like a DataTable-style data access mechanism, but to be fair, this is a common approach in scripting languages. This type of syntax that uses simple, static, data object methods to perform simple data tasks with one line of code are common in scripting languages and are a good match for folks working in PHP/Python, etc. Seems like Microsoft has taken great advantage of .NET 4.0’s dynamic typing to provide this sort of interface for row iteration where each row has properties for each field. FWIW, all the examples demonstrate using local SQL Compact files - I was unable to get a SQL Server connection string to work with the Database class (the connection string wasn’t accepted). However, since the code in the page is still plain old .NET, you can easily use standard ADO.NET code or even LINQ or Entity Framework models that are created outside of WebMatrix in separate assemblies as required. The good the bad the obnoxious - It’s still .NET The beauty (or curse depending on how you look at it :)) of Razor and the compilation model is that, behind it all, it’s still .NET. Although the syntax may look foreign, it’s still all .NET behind the scenes. You can easily access existing tools, helpers, and utilities simply by adding them to the project as references or to the bin folder. Razor automatically recognizes any assembly reference from assemblies in the bin folder. In the default configuration, Microsoft provides a host of helper functions in a Microsoft.WebPages assembly (check it out in the ASP.NET temp folder for your application), which includes a host of HTML Helpers. If you’ve used ASP.NET MVC before, a lot of the helpers should look familiar. Documentation at the moment is sketchy-there’s a very rough API reference you can check out here: http://www.asp.net/webmatrix/tutorials/asp-net-web-pages-api-reference Who needs WebMatrix? Uhm… good Question Clearly Microsoft is trying hard to create an environment with WebMatrix that is easy to use for newbie developers. The goal seems to be simplicity in providing a minimal development environment and an easy-to-use script engine/language that makes it easy to get started with. There’s also some focus on community features that can be used as starting points, such as Web Gallery applications and templates. The community features in particular are very nice and something that would be nice to eventually see in Visual Studio as well. The question is whether this is too little too late. Developers who have been clamoring for a simpler development environment on the .NET stack have mostly left for other simpler platforms like PHP or Python which are catering to the down and dirty developer. Microsoft will be hard pressed to win those folks-and other hardcore PHP developers-back. Regardless of how much you dress up a script engine fronted by the .NET Framework, it’s still the .NET Framework and all the complexity that drives it. While .NET is a fine solution in its breadth and features once you get a basic handle on the core features, the bar of entry to being productive with the .NET Framework is still pretty high. The MVC style helpers Microsoft provides are a good step in the right direction, but I suspect it’s not enough to shield new developers from having to delve much deeper into the Framework to get even basic applications built. Razor and its helpers is trying to make .NET more accessible but the reality is that in order to do useful stuff that goes beyond the handful of simple helpers you still are going to have to write some C# or VB or other .NET code. If the target is a hobby/amateur/non-programmer the learning curve isn’t made any easier by WebMatrix it’s just been shifted a tad bit further along in your development endeavor when you run out of canned components that are supplied either by Microsoft or the community. The database helpers are interesting and actually I’ve heard a lot of discussion from various developers who’ve been resisting .NET for a really long time perking up at the prospect of easier data access in .NET than the ridiculous amount of code it takes to do even simple data access with raw ADO.NET. It seems sad that such a simple concept and implementation should trigger this sort of response (especially since it’s practically trivial to create helpers like these or pick them up from countless libraries available), but there it is. It also shows that there are plenty of developers out there who are more interested in ‘getting stuff done’ easily than necessarily following the latest and greatest practices which are overkill for many development scenarios. Sometimes it seems that all of .NET is focused on the big life changing issues of development, rather than the bread and butter scenarios that many developers are interested in to get their work accomplished. And that in the end may be WebMatrix’s main raison d'être: To bring some focus back at Microsoft that simpler and more high level solutions are actually needed to appeal to the non-high end developers as well as providing the necessary tools for the high end developers who want to follow the latest and greatest trends. The current version of WebMatrix hits many sweet spots, but it also feels like it has a long way to go before it really can be a tool that a beginning developer or an accomplished developer can feel comfortable with. Although there are some really good ideas in the environment (like the gallery for downloading apps and components) which would be a great addition for Visual Studio as well, the rest of the development environment just feels like crippleware with required functionality missing especially debugging and Intellisense, but also general editor support. It’s not clear whether these are because the product is still in an early alpha release or whether it’s simply designed that way to be a really limited development environment. While simple can be good, nobody wants to feel left out when it comes to necessary tool support and WebMatrix just has that left out feeling to it. If anything WebMatrix’s technology pieces (which are really independent of the WebMatrix product) are what are interesting to developers in general. The compact IIS implementation is a nice improvement for development scenarios and SQL Compact 4.0 seems to address a lot of concerns that people have had and have complained about for some time with previous SQL Compact implementations. By far the most interesting and useful technology though seems to be the Razor view engine for its light weight implementation and it’s decoupling from the ASP.NET/HTTP pipeline to provide a standalone scripting/view engine that is pluggable. The first winner of this is going to be ASP.NET MVC which can now have a cleaner view model that isn’t inconsistent due to the baggage of non-implemented WebForms features that don’t work in MVC. But I expect that Razor will end up in many other applications as a scripting and code generation engine eventually. Visual Studio integration for Razor is currently missing, but is promised for a later release. The ASP.NET MVC team has already mentioned that Razor will eventually become the default MVC view engine, which will guarantee continued growth and development of this tool along those lines. And the Razor engine and support tools actually inherit many of the features that MVC pioneered, so there’s some synergy flowing both ways between Razor and MVC. As an existing ASP.NET developer who’s already familiar with Visual Studio and ASP.NET development, the WebMatrix IDE doesn’t give you anything that you want. The tools provided are minimal and provide nothing that you can’t get in Visual Studio today, except the minimal Razor syntax highlighting, so there’s little need to take a step back. With Visual Studio integration coming later there’s little reason to look at WebMatrix for tooling. It’s good to see that Microsoft is giving some thought about the ease of use of .NET as a platform For so many years, we’ve been piling on more and more new features without trying to take a step back and see how complicated the development/configuration/deployment process has become. Sometimes it’s good to take a step - or several steps - back and take another look and realize just how far we’ve come. WebMatrix is one of those reminders and one that likely will result in some positive changes on the platform as a whole. © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET   IIS7  

    Read the article

  • Changing CSS with jQuery syntax in Silverlight using jLight

    - by Timmy Kokke
    Lately I’ve ran into situations where I had to change elements or had to request a value in the DOM from Silverlight. jLight, which was introduced in an earlier article, can help with that. jQuery offers great ways to change CSS during runtime. Silverlight can access the DOM, but it isn’t as easy as jQuery. All examples shown in this article can be looked at in this online demo. The code can be downloaded here.   Part 1: The easy stuff Selecting and changing properties is pretty straight forward. Setting the text color in all <B> </B> elements can be done using the following code:   jQuery.Select("b").Css("color", "red");   The Css() method is an extension method on jQueryObject which is return by the jQuery.Select() method. The Css() method takes to parameters. The first is the Css style property. All properties used in Css can be entered in this string. The second parameter is the value you want to give the property. In this case the property is “color” and it is changed to “red”. To specify which element you want to select you can add a :selector parameter to the Select() method as shown in the next example.   jQuery.Select("b:first").Css("font-family", "sans-serif");   The “:first” pseudo-class selector selects only the first element. This example changes the “font-family” property of the first <B></B> element to “sans-serif”. To make use of intellisense in Visual Studio I’ve added a extension methods to help with the pseudo-classes. In the example below the “font-weight” of every “Even” <LI></LI> is set to “bold”.   jQuery.Select("li".Even()).Css("font-weight", "bold");   Because the Css() extension method returns a jQueryObject it is possible to chain calls to Css(). The following example show setting the “color”, “background-color” and the “font-size” of all headers in one go.   jQuery.Select(":header").Css("color", "#12FF70") .Css("background-color", "yellow") .Css("font-size", "25px");   Part 2: More complex stuff In only a few cases you need to change only one style property. More often you want to change an entire set op style properties all in one go.  You could chain a lot of Css() methods together. A better way is to add a class to a stylesheet and define all properties in there. With the AddClass() method you can set a style class to a set of elements. This example shows how to add the “demostyle” class to all <B></B> in the document.   jQuery.Select("b").AddClass("demostyle");   Removing the class works in the same way:   jQuery.Select("b").RemoveClass("demostyle");   jLight is build for interacting with to the DOM from Silverlight using jQuery. A jQueryObjectCss object can be used to define different sets of style properties in Silverlight. The over 60 most common Css style properties are defined in the jQueryObjectCss class. A string indexer can be used to access all style properties ( CssObject1[“background-color”] equals CssObject1.BackgroundColor). In the code below, two jQueryObjectCss objects are defined and instantiated.   private jQueryObjectCss CssObject1; private jQueryObjectCss CssObject2;   public Demo2() { CssObject1 = new jQueryObjectCss { BackgroundColor = "Lime", Color="Black", FontSize = "12pt", FontFamily = "sans-serif", FontWeight = "bold", MarginLeft = 150, LineHeight = "28px", Border = "Solid 1px #880000" }; CssObject2 = new jQueryObjectCss { FontStyle = "Italic", FontSize = "48", Color = "#225522" }; InitializeComponent(); }   Now instead of chaining to set all different properties you can just pass one of the jQueryObjectCss objects to the Css() method. In this case all <LI></LI> elements are set to match this object.   jQuery.Select("li").Css(CssObject1); When using the jQueryObjectCss objects chaining is still possible. In the following example all headers are given a blue backgroundcolor and the last is set to match CssObject2.   jQuery.Select(":header").Css(new jQueryObjectCss{BackgroundColor = "Blue"}) .Eq(-1).Css(CssObject2);   Part 3: The fun stuff Having Silverlight call JavaScript and than having JavaScript to call Silverlight requires a lot of plumbing code. Everything has to be registered and strings are passed back and forth to execute the JavaScript. jLight makes this kind of stuff so easy, it becomes fun to use. In a lot of situations jQuery can call a function to decide what to do, setting a style class based on complex expressions for example. jLight can do the same, but the callback methods are defined in Silverlight. This example calls the function() method for each <LI></LI> element. The callback method has to take a jQueryObject, an integer and a string as parameters. In this case jLight differs a bit from the actual jQuery implementation. jQuery uses only the index and the className parameters. A jQueryObject is added to make it simpler to access the attributes and properties of the element. If the text of the listitem starts with a ‘D’ or an ‘M’ the class is set. Otherwise null is returned and nothing happens.   private void button1_Click(object sender, RoutedEventArgs e) { jQuery.Select("li").AddClass(function); }   private string function(jQueryObject obj, int index, string className) { if (obj.Text[0] == 'D' || obj.Text[0] == 'M') return "demostyle"; return null; }   The last thing I would like to demonstrate uses even more Silverlight and less jLight, but demonstrates the power of the combination. Animating a style property using a Storyboard with easing functions. First a dependency property is defined. In this case it is a double named Intensity. By handling the changed event the color is set using jQuery.   public double Intensity { get { return (double)GetValue(IntensityProperty); } set { SetValue(IntensityProperty, value); } }   public static readonly DependencyProperty IntensityProperty = DependencyProperty.Register("Intensity", typeof(double), typeof(Demo3), new PropertyMetadata(0.0, IntensityChanged));   private static void IntensityChanged(DependencyObject d, DependencyPropertyChangedEventArgs e) { var i = (byte)(double)e.NewValue; jQuery.Select("span").Css("color", string.Format("#{0:X2}{0:X2}{0:X2}", i)); }   An animation has to be created. This code defines a Storyboard with one keyframe that uses a bounce ease as an easing function. The animation is set to target the Intensity dependency property defined earlier.   private Storyboard CreateAnimation(double value) { Storyboard storyboard = new Storyboard(); var da = new DoubleAnimationUsingKeyFrames(); var d = new EasingDoubleKeyFrame { EasingFunction = new BounceEase(), KeyTime = KeyTime.FromTimeSpan(TimeSpan.FromSeconds(1.0)), Value = value }; da.KeyFrames.Add(d); Storyboard.SetTarget(da, this); Storyboard.SetTargetProperty(da, new PropertyPath(Demo3.IntensityProperty)); storyboard.Children.Add(da); return storyboard; }   Initially the Intensity is set to 128 which results in a gray color. When one of the buttons is pressed, a new animation is created an played. One to animate to black, and one to animate to white.   public Demo3() { InitializeComponent(); Intensity = 128; }   private void button2_Click(object sender, RoutedEventArgs e) { CreateAnimation(255).Begin(); }   private void button3_Click(object sender, RoutedEventArgs e) { CreateAnimation(0).Begin(); }   Conclusion As you can see jLight can make the life of a Silverlight developer a lot easier when accessing the DOM. Almost all jQuery functions that are defined in jLight use the same constructions as described above. I’ve tried to stay as close as possible to the real jQuery. Having JavaScript perform callbacks to Silverlight using jLight will be described in more detail in a future tutorial about AJAX or eventing.

    Read the article

  • Poner aplicaci&oacute;n Asp.Net en modo OFFLINE

    - by Jason Ulloa
    Una de las opciones que todo aplicación debería tener es el poder ponerse en modo OFFLINE para evitar el acceso de usuarios. Esto es completamente necesario cuando queremos realizar cambios a nuestra aplicación (cambiar algo, poner una actualización, etc) o a nuestra base de datos y evitarnos problemas con los usuarios que se encuentren logueados dentro de la aplicación en ese momento. Muchos ejemplos a través de la Web exponen la forma de realizar esta tarea utilizando dos técnicas: 1. La primera de ellas es utilizar el archivo App_Offline.htm sin embargo, esta técnica tiene un inconveniente. Y es que, una vez que hemos subido el archivo a nuestra aplicación esta se bloquea completamente y no tenemos forma de volver a ponerla ONLINE a menos que eliminemos el archivo. Es decir no podemos controlarla. 2. La segunda de ellas es el utilizar la etiqueta httpRuntime, pero nuevamente tenemos el mismo problema. Al habilitar el modo OFFLINE mediante esta etiqueta, tampoco podremos acceder a un modo de administración para cambiarla. Un ejemplo de la etiqueta httpRuntime <configuration> <system.web> <httpRuntime enable="false" /> </system.web> </configuration>   Tomando en cuenta lo anterior, lo mas optimo seria que podamos por medio de alguna pagina de administración colocar nuestro sitio en modo OFFLINE, pero manteniendo el acceso a la pagina de administración para poder volver a cambiar el valor que pondrá nuestra aplicación nuevamente en modo ONLINE. Para ello, utilizaremos el web.config de nuestra aplicación y una pequeña clase que se encargara de Leer y escribir los valores. Lo primero será, abrir nuestro web.config y definir dentro del appSettings dos nuevas KEY que contendrán los valores para el modo OFFLINE de nuestra aplicación: <appSettings> <add key="IsOffline" value="false" /> <add key="IsOfflineMessage" value="Sistema temporalmente no disponible por tareas de mantenimiento." /> </appSettings>   En las KEY anteriores tenemos el IsOffLine con value de false, esto es para indicarle a nuestra aplicación que actualmente su modo de funcionamiento es ONLINE, este valor será el que posteriormente cambiemos a TRUE para volver al modo OFFLINE. Nuestra segunda KEY (IsOfflineMessage) posee el value (Sistema temporalmente….) que será mostrado al usuario como un mensaje cuando el sitio este en modo OFFLINE. Una vez definidas nuestras dos KEY en el web.config, escribiremos una clase personalizada para leer y escribir los valores. Así que, agregamos un nuevo elemento de tipo clase al proyecto llamado SettingsRules y la definimos como Public. Está clase contendrá dos métodos, el primero será para leer los valores: public string readIsOnlineSettings(string sectionToRead) { Configuration cfg = WebConfigurationManager.OpenWebConfiguration(System.Web.Hosting.HostingEnvironment.ApplicationVirtualPath); KeyValueConfigurationElement isOnlineSettings = (KeyValueConfigurationElement)cfg.AppSettings.Settings[sectionToRead]; return isOnlineSettings.Value; }   El segundo método, será el encargado de escribir los nuevos valores al web.config public bool saveIsOnlineSettings(string sectionToWrite, string value) { bool succesFullySaved;   try { Configuration cfg = WebConfigurationManager.OpenWebConfiguration(System.Web.Hosting.HostingEnvironment.ApplicationVirtualPath); KeyValueConfigurationElement repositorySettings = (KeyValueConfigurationElement)cfg.AppSettings.Settings[sectionToWrite];   if (repositorySettings != null) { repositorySettings.Value = value; cfg.Save(ConfigurationSaveMode.Modified); } succesFullySaved = true; } catch (Exception) { succesFullySaved = false; } return succesFullySaved; }   Por último, definiremos en nuestra clase una región llamada instance, que contendrá un método encargado de devolver una instancia de la clase (esto para no tener que hacerlo luego) #region instance   private static SettingsRules m_instance;   // Properties public static SettingsRules Instance { get { if (m_instance == null) { m_instance = new SettingsRules(); } return m_instance; } }   #endregion instance   Con esto, nuestra clase principal esta completa. Así que pasaremos a la implementación de las páginas y el resto de código que completará la funcionalidad.   Para complementar la tarea del web.config utilizaremos el fabuloso GLOBAL.ASAX, este contendrá el código encargado de detectar si nuestra aplicación tiene el valor de ONLINE o OFFLINE y además de bloquear todas las paginas y directorios excepto el que le hayamos definido como administrador, esto para luego poder volver a configurar el sitio.   El evento del Global.Asax que utilizaremos será el Application_BeginRequest   protected void Application_BeginRequest(Object sender, EventArgs e) {   if (Convert.ToBoolean(SettingsRules.Instance.readIsOnlineSettings("IsOffline"))) {   string Virtual = Request.Path.Substring(0, Request.Path.LastIndexOf("/") + 1);   if (Virtual.ToLower().IndexOf("/admin/") == -1) { //We don't makes action, is admin section Server.Transfer("~/TemporarilyOfflineMessage.aspx"); }   } } La primer Línea del IF, verifica si el atributo del web.config es True o False, si es true toma la dirección WEB que se ha solicitado y la incluimos en un IF para verificar si corresponde a la Sección admin (está sección no es mas que un folder en nuestra aplicación llamado admin y puede ser cambiado a cualquier otro). Si el resultado de ese if es –1 quiere decir que no coincide, entonces, esa será la bandera que nos permitirá bloquear inmediatamente la pagina actual, transfiriendo al usuario a una pagina de mantenimiento. Ahora, en nuestra carpeta Admin crearemos una nueva pagina asp.net llamada OnlineSettings.aspx para actualizar y leer los datos del web.config y una pagina Default.aspx para pruebas. Nuestra página OnlineSettings tendrá dos pasos importantes: 1. Leer los datos actuales de configuración protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { IsOffline.Checked = Convert.ToBoolean(mySettings.readIsOnlineSettings("IsOffline")); OfflineMessage.Text = mySettings.readIsOnlineSettings("IsOfflineMessage"); } }   2. Actualizar los datos con los nuevos valores. protected void UpdateButton_Click(object sender, EventArgs e) { string htmlMessage = OfflineMessage.Text.Replace(Environment.NewLine, "<br />");   // Update the Application variables Application.Lock(); if (IsOffline.Checked) { mySettings.saveIsOnlineSettings("IsOffline", "True"); mySettings.saveIsOnlineSettings("IsOfflineMessage", htmlMessage); } else { mySettings.saveIsOnlineSettings("IsOffline", "false"); mySettings.saveIsOnlineSettings("IsOfflineMessage", htmlMessage); }   Application.UnLock(); }   Por último en la raíz de la aplicación, crearemos una nueva página aspx llamada TemporarilyOfflineMessage.aspx que será la que se muestre cuando se bloquee la aplicación. Al final nuestra aplicación se vería algo así Página bloqueada Configuración del Bloqueo Y para terminar la aplicación de ejemplo

    Read the article

  • const vs. readonly for a singleton

    - by GlenH7
    First off, I understand there are folk who oppose the use of singletons. I think it's an appropriate use in this case as it's constant state information, but I'm open to differing opinions / solutions. (See The singleton pattern and When should the singleton pattern not be used?) Second, for a broader audience: C++/CLI has a similar keyword to readonly with initonly, so this isn't strictly a C# type question. (Literal field versus constant variable in C++/CLI) Sidenote: A discussion of some of the nuances on using const or readonly. My Question: I have a singleton that anchors together some different data structures. Part of what I expose through that singleton are some lists and other objects, which represent the necessary keys or columns in order to connect the linked data structures. I doubt that anyone would try to change these objects through a different module, but I want to explicitly protect them from that risk. So I'm currently using a "readonly" modifier on those objects*. I'm using readonly instead of const with the lists as I read that using const will embed those items in the referencing assemblies and will therefore trigger a rebuild of those referencing assemblies if / when the list(s) is/are modified. This seems like a tighter coupling than I would want between the modules, but I wonder if I'm obsessing over a moot point. (This is question #2 below) The alternative I see to using "readonly" is to make the variables private and then wrap them with a public get. I'm struggling to see the advantage of this approach as it seems like wrapper code that doesn't provide much additional benefit. (This is question #1 below) It's highly unlikely that we'll change the contents or format of the lists - they're a compilation of things to avoid using magic strings all over the place. Unfortunately, not all the code has converted over to using this singleton's presentation of those strings. Likewise, I don't know that we'd change the containers / classes for the lists. So while I normally argue for the encapsulations advantages a get wrapper provides, I'm just not feeling it in this case. A representative sample of my singleton public sealed class mySingl { private static volatile mySingl sngl; private static object lockObject = new Object(); public readonly Dictionary<string, string> myDict = new Dictionary<string, string>() { {"I", "index"}, {"D", "display"}, }; public enum parms { ABC = 10, DEF = 20, FGH = 30 }; public readonly List<parms> specParms = new List<parms>() { parms.ABC, parms.FGH }; public static mySingl Instance { get { if(sngl == null) { lock(lockObject) { if(sngl == null) sngl = new mySingl(); } } return sngl; } } private mySingl() { doSomething(); } } Questions: Am I taking the most reasonable approach in this case? Should I be worrying about const vs. readonly? is there a better way of providing this information?

    Read the article

  • Get Application Title from Windows Phone

    - by psheriff
    In a Windows Phone application that I am currently developing I needed to be able to retrieve the Application Title of the phone application. You can set the Deployment Title in the Properties of your Windows Phone Application, however getting to this value programmatically can be a little tricky. This article assumes that you have Visual Studio 2010 and the Windows Phone tools installed along with it. The Windows Phone tools must be downloaded separately and installed with Visual Studio2010. You may also download the free Visual Studio2010 Express for Windows Phone developer environment. The WMAppManifest.xml File First off you need to understand that when you set the Deployment Title in the Properties windows of your Windows Phone application, this title actually gets stored into an XML file located under the \Properties folder of your application. This XML file is named WMAppManifest.xml. A portion of this file is shown in the following listing. <?xml version="1.0" encoding="utf-8"?><Deployment  http://schemas.microsoft.com/windowsphone/2009/deployment"http://schemas.microsoft.com/windowsphone/2009/deployment"  AppPlatformVersion="7.0">  <App xmlns=""       ProductID="{71d20842-9acc-4f2f-b0e0-8ef79842ea53}"       Title="Mobile Time Track"       RuntimeType="Silverlight"       Version="1.0.0.0"       Genre="apps.normal"       Author="PDSA, Inc."       Description="Mobile Time Track"       Publisher="PDSA, Inc."> ... ...  </App></Deployment> Notice the “Title” attribute in the <App> element in the above XML document. This is the value that gets set when you modify the Deployment Title in your Properties Window of your Phone project. The only value you can set from the Properties Window is the Title. All of the other attributes you see here must be set by going into the XML file and modifying them directly. Note that this information duplicates some of the information that you can also set from the Assembly Information… button in the Properties Window. Why Microsoft did not just use that information, I don’t know. Reading Attributes from WMAppManifest I searched all over the namespaces and classes within the Windows Phone DLLs and could not find a way to read the attributes within the <App> element. Thus, I had to resort to good old fashioned XML processing. First off I created a WinPhoneCommon class and added two static methods as shown in the snippet below: public class WinPhoneCommon{  /// <summary>  /// Returns the Application Title   /// from the WMAppManifest.xml file  /// </summary>  /// <returns>The application title</returns>  public static string GetApplicationTitle()  {    return GetWinPhoneAttribute("Title");  }   /// <summary>  /// Returns the Application Description   /// from the WMAppManifest.xml file  /// </summary>  /// <returns>The application description</returns>  public static string GetApplicationDescription()  {    return GetWinPhoneAttribute("Description");  }   ... GetWinPhoneAttribute method here ...} In your Windows Phone application you can now simply call WinPhoneCommon.GetApplicationTitle() or WinPhone.GetApplicationDescription() to retrieve the Title or Description properties from the WMAppManifest.xml file respectively. You notice that each of these methods makes a call to the GetWinPhoneAttribute method. This method is shown in the following code snippet: /// <summary>/// Gets an attribute from the Windows Phone WMAppManifest.xml file/// To use this method, add a reference to the System.Xml.Linq DLL/// </summary>/// <param name="attributeName">The attribute to read</param>/// <returns>The Attribute's Value</returns>private static string GetWinPhoneAttribute(string attributeName){  string ret = string.Empty;   try  {    XElement xe = XElement.Load("WMAppManifest.xml");    var attr = (from manifest in xe.Descendants("App")                select manifest).SingleOrDefault();    if (attr != null)      ret = attr.Attribute(attributeName).Value;  }  catch  {    // Ignore errors in case this method is called    // from design time in VS.NET  }   return ret;} I love using the new LINQ to XML classes contained in the System.Xml.Linq.dll. When I did a Bing search the only samples I found for reading attribute information from WMAppManifest.xml used either an XmlReader or XmlReaderSettings objects. These are fine and work, but involve a little extra code. Instead of using these, I added a reference to the System.Xml.Linq.dll, then added two using statements to the top of the WinPhoneCommon class: using System.Linq;using System.Xml.Linq; Now, with just a few lines of LINQ to XML code you can read to the App element and extract the appropriate attribute that you pass into the GetWinPhoneAttribute method. Notice that I added a little bit of exception handling code in this method. I ignore the exception in case you call this method in the Loaded event of a user control. In design-time you cannot access the WMAppManifest file and thus an exception would be thrown. Summary In this article you learned how to retrieve the attributes from the WMAppManifest.xml file. I use this technique to grab information that I would otherwise have to hard-code in my application. Getting the Title or Description for your Windows Phone application is easy with just a little bit of LINQ to XML code. NOTE: You can download the complete sample code at my website. http://www.pdsa.com/downloads. Choose Tips & Tricks, then "Get Application Title from Windows Phone" from the drop-down. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **Visit http://www.pdsa.com/Event/Blog for a free video on Silverlight entitled Silverlight XAML for the Complete Novice - Part 1.  

    Read the article

  • Non-Unicode strings in VB.NET? (7 replies)

    I've been reading the MSDN documentation on the System.Char and System.String types and they mention Unicode throughout without even mentioning non Unicode versions. How do I get a gool 'ol one byte char and non Unicode string in .NET? Thanks, Alain

    Read the article

  • Non-Unicode strings in VB.NET? (7 replies)

    I've been reading the MSDN documentation on the System.Char and System.String types and they mention Unicode throughout without even mentioning non Unicode versions. How do I get a gool 'ol one byte char and non Unicode string in .NET? Thanks, Alain

    Read the article

  • BizTalk 2009 - Custom Functoid Categories

    - by StuartBrierley
    I recently had cause to code a number of custom functoids to aid with some maps that I was writing. Once these were developed and deployed to C:\Program Files\Microsoft BizTalk Server 2009\Developer Tools\Mapper Extensions a quick refresh allowed them to appear in toolbox.  After dropping these on a map and configuring the appropriate inputs I tested the map to check that they worked as expected.  All but one of the functoids worked as expecetd, but the final functoid appeared not to be firing at all. I had already tested the code used in a simple test harness application, so I was confident in the code used, but I still needed to figure out what the problem might be. Debugging the map helped me on the way; for some reason the functoid in question was not shown correctly - the functoid definition was wrong. After some investigations I found that the functoid type you assign when coding a custom functoid affects more than just the category it appears in; different functoid types have different capabilities, including what they can link too.  For example, a logical functoid can not provide content for an output element, it can only say whether the element exists.  Map this via a Value Mapping functoid and the value of true or false can be seen in the output element. The functoid I was having problems with was one whare I had used the XPath functoid type, this had seemed to be a good fit as I was looking up content in a config file using xpath and I wanted it to appear the advanced area.  From the table below you can see that this functoid type is marked as "Internal Only", preventing it from being used for custom functoids.  Changing my type to String allowed the functoid to function as expected. Category Description Toolbox Group Assert Internal Use Only Advanced Conversion Converts characters to and from numerics and converts numbers from one base to another. Conversion Count Internal Use Only Advanced Cumulative Performs accumulations of the value of a field that occurs multiple times in a source document and outputs a single output. Cumulative DatabaseExtract Internal Use Only Database DatabaseLookup Internal Use Only Database DateTime Adds date, time, date and time, or add days to a specified date, in output data. Date/Time ExistenceLooping Internal Use Only Advanced Index Internal Use Only Advanced Iteration Internal Use Only Advanced Keymatch Internal Use Only Advanced Logical Controls conditional behavior of other functoids to determine whether particular output data is created. Logical Looping Internal Use Only Advanced MassCopy Internal Use Only Advanced Math Performs specific numeric calculations such as addition, multiplication, and division. Mathematical NilValue Internal Use Only Advanced Scientific Performs specific scientific calculations such as logarithmic, exponential, and trigonometric functions. Scientific Scripter Internal Use Only Advanced String Manipulates data strings by using well-known string functions such as concatenation, length, find, and trim. String TableExtractor Internal Use Only Advanced TableLooping Internal Use Only Advanced Unknown Internal Use Only Advanced ValueMapping Internal Use Only Advanced XPath Internal Use Only Advanced Links http://msdn.microsoft.com/en-us/library/microsoft.biztalk.basefunctoids.functoidcategory(BTS.20).aspx http://blog.eliasen.dk/CommentView,guid,d33b686b-b059-4381-a0e7-1c56e808f7f0.aspx

    Read the article

  • Dual Monitor (Monitor and TV)

    - by umpirsky
    I connected TV to my computer, and trying to set dual display. Whatever resolution I choose for my second display (TV) I get message like this: The selected configuration for displays could not be applied required virtual size does not fit available size: requested=(2704, 1050), minimum=(320, 200), maximum=(1680, 1680) How can I fix this? Also, while I was experimenting system went to deadlock, I restarted and after boot monitor just turns off once system is up. I boot in recovery mode and after several retries fixed it somehow, I don't know how, probably by changing display config from display manager. now I found xorg.conf.new file in my home dir: Section "ServerLayout" Identifier "X.org Configured" Screen 0 "Screen0" 0 0 Screen 1 "Screen1" RightOf "Screen0" Screen 2 "Screen2" RightOf "Screen1" InputDevice "Mouse0" "CorePointer" InputDevice "Keyboard0" "CoreKeyboard" EndSection Section "Files" ModulePath "/usr/lib/xorg/modules" FontPath "/usr/share/fonts/X11/misc" FontPath "/usr/share/fonts/X11/cyrillic" FontPath "/usr/share/fonts/X11/100dpi/:unscaled" FontPath "/usr/share/fonts/X11/75dpi/:unscaled" FontPath "/usr/share/fonts/X11/Type1" FontPath "/usr/share/fonts/X11/100dpi" FontPath "/usr/share/fonts/X11/75dpi" FontPath "/var/lib/defoma/x-ttcidfont-conf.d/dirs/TrueType" FontPath "built-ins" EndSection Section "Module" Load "extmod" Load "dbe" Load "glx" Load "dri" Load "dri2" Load "record" EndSection Section "InputDevice" Identifier "Keyboard0" Driver "kbd" EndSection Section "InputDevice" Identifier "Mouse0" Driver "mouse" Option "Protocol" "auto" Option "Device" "/dev/input/mice" Option "ZAxisMapping" "4 5 6 7" EndSection Section "Monitor" Identifier "Monitor0" VendorName "Monitor Vendor" ModelName "Monitor Model" EndSection Section "Monitor" Identifier "Monitor1" VendorName "Monitor Vendor" ModelName "Monitor Model" EndSection Section "Monitor" Identifier "Monitor2" VendorName "Monitor Vendor" ModelName "Monitor Model" EndSection Section "Device" ### Available Driver options are:- ### Values: <i>: integer, <f>: float, <bool>: "True"/"False", ### <string>: "String", <freq>: "<f> Hz/kHz/MHz", ### <percent>: "<f>%" ### [arg]: arg optional #Option "NoAccel" # [<bool>] #Option "SWcursor" # [<bool>] #Option "Dac6Bit" # [<bool>] #Option "Dac8Bit" # [<bool>] #Option "BusType" # [<str>] #Option "CPPIOMode" # [<bool>] #Option "CPusecTimeout" # <i> #Option "AGPMode" # <i> #Option "AGPFastWrite" # [<bool>] #Option "AGPSize" # <i> #Option "GARTSize" # <i> #Option "RingSize" # <i> #Option "BufferSize" # <i> #Option "EnableDepthMoves" # [<bool>] #Option "EnablePageFlip" # [<bool>] #Option "NoBackBuffer" # [<bool>] #Option "DMAForXv" # [<bool>] #Option "FBTexPercent" # <i> #Option "DepthBits" # <i> #Option "PCIAPERSize" # <i> #Option "AccelDFS" # [<bool>] #Option "IgnoreEDID" # [<bool>] #Option "CustomEDID" # [<str>] #Option "DisplayPriority" # [<str>] #Option "PanelSize" # [<str>] #Option "ForceMinDotClock" # <freq> #Option "ColorTiling" # [<bool>] #Option "VideoKey" # <i> #Option "RageTheatreCrystal" # <i> #Option "RageTheatreTunerPort" # <i> #Option "RageTheatreCompositePort" # <i> #Option "RageTheatreSVideoPort" # <i> #Option "TunerType" # <i> #Option "RageTheatreMicrocPath" # <str> #Option "RageTheatreMicrocType" # <str> #Option "ScalerWidth" # <i> #Option "RenderAccel" # [<bool>] #Option "SubPixelOrder" # [<str>] #Option "ClockGating" # [<bool>] #Option "VGAAccess" # [<bool>] #Option "ReverseDDC" # [<bool>] #Option "LVDSProbePLL" # [<bool>] #Option "AccelMethod" # <str> #Option "DRI" # [<bool>] #Option "ConnectorTable" # <str> #Option "DefaultConnectorTable" # [<bool>] #Option "DefaultTMDSPLL" # [<bool>] #Option "TVDACLoadDetect" # [<bool>] #Option "ForceTVOut" # [<bool>] #Option "TVStandard" # <str> #Option "IgnoreLidStatus" # [<bool>] #Option "DefaultTVDACAdj" # [<bool>] #Option "Int10" # [<bool>] #Option "EXAVSync" # [<bool>] #Option "ATOMTVOut" # [<bool>] #Option "R4xxATOM" # [<bool>] #Option "ForceLowPowerMode" # [<bool>] #Option "DynamicPM" # [<bool>] #Option "NewPLL" # [<bool>] #Option "ZaphodHeads" # <str> Identifier "Card0" Driver "radeon" BusID "PCI:2:0:0" EndSection Section "Device" ### Available Driver options are:- ### Values: <i>: integer, <f>: float, <bool>: "True"/"False", ### <string>: "String", <freq>: "<f> Hz/kHz/MHz", ### <percent>: "<f>%" ### [arg]: arg optional #Option "ShadowFB" # [<bool>] #Option "Rotate" # <str> #Option "fbdev" # <str> #Option "debug" # [<bool>] Identifier "Card1" Driver "fbdev" BusID "PCI:2:0:0" EndSection Section "Device" ### Available Driver options are:- ### Values: <i>: integer, <f>: float, <bool>: "True"/"False", ### <string>: "String", <freq>: "<f> Hz/kHz/MHz", ### <percent>: "<f>%" ### [arg]: arg optional #Option "ShadowFB" # [<bool>] #Option "DefaultRefresh" # [<bool>] #Option "ModeSetClearScreen" # [<bool>] Identifier "Card2" Driver "vesa" BusID "PCI:2:0:0" EndSection Section "Screen" Identifier "Screen0" Device "Card0" Monitor "Monitor0" SubSection "Display" Viewport 0 0 Depth 1 EndSubSection SubSection "Display" Viewport 0 0 Depth 4 EndSubSection SubSection "Display" Viewport 0 0 Depth 8 EndSubSection SubSection "Display" Viewport 0 0 Depth 15 EndSubSection SubSection "Display" Viewport 0 0 Depth 16 EndSubSection SubSection "Display" Viewport 0 0 Depth 24 EndSubSection EndSection Section "Screen" Identifier "Screen1" Device "Card1" Monitor "Monitor1" SubSection "Display" Viewport 0 0 Depth 1 EndSubSection SubSection "Display" Viewport 0 0 Depth 4 EndSubSection SubSection "Display" Viewport 0 0 Depth 8 EndSubSection SubSection "Display" Viewport 0 0 Depth 15 EndSubSection SubSection "Display" Viewport 0 0 Depth 16 EndSubSection SubSection "Display" Viewport 0 0 Depth 24 EndSubSection EndSection Section "Screen" Identifier "Screen2" Device "Card2" Monitor "Monitor2" SubSection "Display" Viewport 0 0 Depth 1 EndSubSection SubSection "Display" Viewport 0 0 Depth 4 EndSubSection SubSection "Display" Viewport 0 0 Depth 8 EndSubSection SubSection "Display" Viewport 0 0 Depth 15 EndSubSection SubSection "Display" Viewport 0 0 Depth 16 EndSubSection SubSection "Display" Viewport 0 0 Depth 24 EndSubSection EndSection Can I delete it? Second display (TV) only works when I check Mirror displays option.

    Read the article

  • Accessing Repositories from Domain

    - by Paul T Davies
    Say we have a task logging system, when a task is logged, the user specifies a category and the task defaults to a status of 'Outstanding'. Assume in this instance that Category and Status have to be implemented as entities. Normally I would do this: Application Layer: public class TaskService { //... public void Add(Guid categoryId, string description) { var category = _categoryRepository.GetById(categoryId); var status = _statusRepository.GetById(Constants.Status.OutstandingId); var task = Task.Create(category, status, description); _taskRepository.Save(task); } } Entity: public class Task { //... public static void Create(Category category, Status status, string description) { return new Task { Category = category, Status = status, Description = descrtiption }; } } I do it like this because I am consistently told that entities should not access the repositories, but it would make much more sense to me if I did this: Entity: public class Task { //... public static void Create(Category category, string description) { return new Task { Category = category, Status = _statusRepository.GetById(Constants.Status.OutstandingId), Description = descrtiption }; } } The status repository is dependecy injected anyway, so there is no real dependency, and this feels more to me thike it is the domain that is making thedecision that a task defaults to outstanding. The previous version feels like it is the application layeer making that decision. Any why are repository contracts often in the domain if this should not be a posibility? Here is a more extreme example, here the domain decides urgency: Entity: public class Task { //... public static void Create(Category category, string description) { var task = new Task { Category = category, Status = _statusRepository.GetById(Constants.Status.OutstandingId), Description = descrtiption }; if(someCondition) { if(someValue > anotherValue) { task.Urgency = _urgencyRepository.GetById (Constants.Urgency.UrgentId); } else { task.Urgency = _urgencyRepository.GetById (Constants.Urgency.SemiUrgentId); } } else { task.Urgency = _urgencyRepository.GetById (Constants.Urgency.NotId); } return task; } } There is no way you would want to pass in all possible versions of Urgency, and no way you would want to calculate this business logic in the application layer, so surely this would be the most appropriate way? So is this a valid reason to access repositories from the domain?

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5: Part 2 – Table per Type (TPT)

    - by mortezam
    In the previous blog post you saw that there are three different approaches to representing an inheritance hierarchy and I explained Table per Hierarchy (TPH) as the default mapping strategy in EF Code First. We argued that the disadvantages of TPH may be too serious for our design since it results in denormalized schemas that can become a major burden in the long run. In today’s blog post we are going to learn about Table per Type (TPT) as another inheritance mapping strategy and we'll see that TPT doesn’t expose us to this problem. Table per Type (TPT)Table per Type is about representing inheritance relationships as relational foreign key associations. Every class/subclass that declares persistent properties—including abstract classes—has its own table. The table for subclasses contains columns only for each noninherited property (each property declared by the subclass itself) along with a primary key that is also a foreign key of the base class table. This approach is shown in the following figure: For example, if an instance of the CreditCard subclass is made persistent, the values of properties declared by the BillingDetail base class are persisted to a new row of the BillingDetails table. Only the values of properties declared by the subclass (i.e. CreditCard) are persisted to a new row of the CreditCards table. The two rows are linked together by their shared primary key value. Later, the subclass instance may be retrieved from the database by joining the subclass table with the base class table. TPT Advantages The primary advantage of this strategy is that the SQL schema is normalized. In addition, schema evolution is straightforward (modifying the base class or adding a new subclass is just a matter of modify/add one table). Integrity constraint definition are also straightforward (note how CardType in CreditCards table is now a non-nullable column). Another much more important advantage is the ability to handle polymorphic associations (a polymorphic association is an association to a base class, hence to all classes in the hierarchy with dynamic resolution of the concrete class at runtime). A polymorphic association to a particular subclass may be represented as a foreign key referencing the table of that particular subclass. Implement TPT in EF Code First We can create a TPT mapping simply by placing Table attribute on the subclasses to specify the mapped table name (Table attribute is a new data annotation and has been added to System.ComponentModel.DataAnnotations namespace in CTP5): public abstract class BillingDetail {     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } } [Table("BankAccounts")] public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } } [Table("CreditCards")] public class CreditCard : BillingDetail {     public int CardType { get; set; }     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } } public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; } } If you prefer fluent API, then you can create a TPT mapping by using ToTable() method: protected override void OnModelCreating(ModelBuilder modelBuilder) {     modelBuilder.Entity<BankAccount>().ToTable("BankAccounts");     modelBuilder.Entity<CreditCard>().ToTable("CreditCards"); } Generated SQL For QueriesLet’s take an example of a simple non-polymorphic query that returns a list of all the BankAccounts: var query = from b in context.BillingDetails.OfType<BankAccount>() select b; Executing this query (by invoking ToList() method) results in the following SQL statements being sent to the database (on the bottom, you can also see the result of executing the generated query in SQL Server Management Studio): Now, let’s take an example of a very simple polymorphic query that requests all the BillingDetails which includes both BankAccount and CreditCard types: projects some properties out of the base class BillingDetail, without querying for anything from any of the subclasses: var query = from b in context.BillingDetails             select new { b.BillingDetailId, b.Number, b.Owner }; -- var query = from b in context.BillingDetails select b; This LINQ query seems even more simple than the previous one but the resulting SQL query is not as simple as you might expect: -- As you can see, EF Code First relies on an INNER JOIN to detect the existence (or absence) of rows in the subclass tables CreditCards and BankAccounts so it can determine the concrete subclass for a particular row of the BillingDetails table. Also the SQL CASE statements that you see in the beginning of the query is just to ensure columns that are irrelevant for a particular row have NULL values in the returning flattened table. (e.g. BankName for a row that represents a CreditCard type) TPT ConsiderationsEven though this mapping strategy is deceptively simple, the experience shows that performance can be unacceptable for complex class hierarchies because queries always require a join across many tables. In addition, this mapping strategy is more difficult to implement by hand— even ad-hoc reporting is more complex. This is an important consideration if you plan to use handwritten SQL in your application (For ad hoc reporting, database views provide a way to offset the complexity of the TPT strategy. A view may be used to transform the table-per-type model into the much simpler table-per-hierarchy model.) SummaryIn this post we learned about Table per Type as the second inheritance mapping in our series. So far, the strategies we’ve discussed require extra consideration with regard to the SQL schema (e.g. in TPT, foreign keys are needed). This situation changes with the Table per Concrete Type (TPC) that we will discuss in the next post. References ADO.NET team blog Java Persistence with Hibernate book a { text-decoration: none; } a:visited { color: Blue; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } p.MsoNormal { margin-top: 0in; margin-right: 0in; margin-bottom: 10.0pt; margin-left: 0in; line-height: 115%; font-size: 11.0pt; font-family: "Calibri" , "sans-serif"; }

    Read the article

  • Instructions on how to configure a WebLogic Cluster and use it with Oracle Http Server

    - by Laurent Goldsztejn
    On October 17th I delivered a webcast on WebLogic Clustering that included a demo with Apache as the proxy server.  I realized that many steps are needed to set up the configuration I used during the demo.  The purpose of this article is to go through these steps to show how quickly and easily one can define a new cluster and then proxy requests via an Oracle Http Server (OHS). The domain configuration wizard offers the option to create a cluster.  The administration console or WLST, the Weblogic scripting tool can also be used to define a new cluster.  It can be created at any time but the servers that will participate in it cannot be in a running state. Cluster Creation using the configuration wizard Network and architecture requirements need to be considered while choosing between unicast and multicast. Multicast Vs. Unicast with WebLogic Clustering is of great help to make the best decision between the two messaging modes.  In addition, Configure Cluster offers details on each single field displayed above. After this initial configuration page, individual servers could be assigned to this newly created cluster although servers can be added later to the cluster.  What is not recommended is for the Admin server to participate in a cluster as the main purpose of the Admin server is to perform the bulk of the processing for the domain.  Servers need to stop before being assigned to a cluster.  There is also no minimum number of servers that have to participate in the cluster. At this point the configuration should be done and the cluster created successfully.  This can easily be verified from the console. Each clustered managed server can be launched to join the cluster.   At startup the following messages should be logged for each clustered managed server: <Notice> <WeblogicServer> <BEA-000365> <Server state changed to STARTING> <Notice> <Cluster> <BEA-000197> <Listening for announcements from cluster using messaging_mode cluster messaging> <Notice> <Cluster> <BEA-000133> <Waiting to synchronize with other running members of cluster_name>  It's time to try sending requests to the cluster and we will do this with the help of Oracle Http Server to play the role of a proxy server to demonstrate load balancing.  Proxy Server configuration  The first step is to download Weblogic Server Web Server Plugin that will enhance the web server by handling requests aimed at being sent to the Weblogic cluster.  For our test Oracle Http Server (OHS) will be used.  However plug-ins are also available for Apache Http server, Microsoft Internet Information Server (IIS), Oracle iPlanet Webserver or even WebLogic Server with the HttpClusterServlet. Once OHS is installed on the system, the configuration file, mod_wl_ohs.conf, will need to be altered to include Weblogic proxy specifics. First of all, add the following directive to instruct Apache to load the Weblogic shared object module extracted from the plugins file just downloaded. LoadModule weblogic_module modules/mod_wl_ohs.so and then create an IfModule directive to encapsulate the following location block so that proxy will be enabled by path (each request including /wls will be directed directly to the WebLogic Cluster).  You could also proxy requests by MIME type using MatchExpression in the Location block. <IfModule weblogic_module> <Location /wls>    SetHandler weblogic-handler    PathTrim /wls    WebLogicCluster MS1_URL:port,MS2_URL:port    Debug ON    WLLogFile        c:/tmp/global_proxy.log     WLTempDir        "c:/myTemp"    DebugConfigInfo  On </Location> </IfModule> SetHandler specifies the handler for the plug-in module  PathTrim will instruct the plug-in to trim /w ls from the URL before forwarding the request to the cluster. The list of WebLogic Servers defined in WeblogicCluster could contain a mixed set of clustered and single servers.  However, the dynamic list returned for this parameter will only contain valid clustered servers and may contain more servers if not all clustered servers are listed in WeblogicCluster. Testing proxy and load balancing It's time to start OHS web server which should at this point be configured correctly to proxy requests to the clustered servers.  By default round-robin is the load balancing strategy set by WebLogic. Testing the load balancing can be easily done by disabling cookies on your browser given that a request containing a cookie attempts to connect to the primary server. If that attempt fails, the plug-in attempts to make a connection to the next available server in the list in a round-robin fashion.  With cookies enabled, you could use two different browsers to test the load balancing with a JSP page that contains the following: <%@ page contentType="text/html; charset=iso-8859-1" language="java"  %>  <%  String path = request.getContextPath();   String getProtocol=request.getScheme();   String getDomain=request.getServerName();   String getPort=Integer.toString(request.getLocalPort());   String getPath = getProtocol+"://"+getDomain+":"+getPort+path+"/"; %> <html> <body> Receiving Server <%=getPath%> </body> </html>  Assuming that you name the JSP page Test.jsp and the webapp that contains it TestApp, your browsers should open the following URL: http://localhost/wls/TestApp/Test.jsp  Each browser should connect to a different clustered server and this simple JSP should confirm that.  The webapp that contains the JSP needs to be deployed to the cluster. You can also verify that the load is correctly balanced by looking at the proxy log file.  Each request generates a set of log entries that starts with : timestamp ================New Request: Each request is associated with a primary server and a secondary server if one is available.  For our test request, the following entries should appear in the log as well:Using Uri /wls/TestApp/Test.jsp After trimming path: '/TestApp/Test.jsp' The final request string is '/TestApp/Test.jsp' If an exception occurs, it should also be logged in the proxy log file with the prefix:timestamp *******Exception type   WeblogicBridgeConfig DebugConfigInfo enables runtime statistics and the production of configuration information.  For security purposes, this parameter should be turned off in production. http://webserver_host:port/path/xyz.jsp?__WebLogicBridgeConfig will display a proxy bridge page detailing the plugin configuration followed by runtime statistics which could help in diagnosing issues along with the analyzing of the proxy log file.  In our example the url would be: http://localhost/wls/TestApp/Test.jsp?__WebLogicBridgeConfig  Here is how the top section of the screen can look like: The bottom part of the page contains runtime statistics, here is a snippet of it (unrelated with the previous JSP example).   This entire plugin configuration should be very similar with other web servers, what varies is the name of the proxy server configuration file. So, as you can see, it only takes a few minutes to configure a Weblogic cluster and get servers to join it. 

    Read the article

  • Azure Service Bus - Authorization failure

    - by Michael Stephenson
    I fell into this trap earlier in the week with a mistake I made when configuring a service to send and listen on the azure service bus and I thought it would be worth a little note for future reference as I didnt find anything online about it.  After configuring everything when I ran my code sample I was getting the below error. WebHost failed to process a request.Sender Information: System.ServiceModel.ServiceHostingEnvironment+HostingManager/28316044Exception: System.ServiceModel.ServiceActivationException: The service '/-------/BrokeredMessageService.svc' cannot be activated due to an exception during compilation.  The exception message is: Generic: There was an authorization failure. Make sure you have specified the correct SharedSecret, SimpleWebToken or Saml transport client credentials.. ---> Microsoft.ServiceBus.AuthorizationFailedException: Generic: There was an authorization failure. Make sure you have specified the correct SharedSecret, SimpleWebToken or Saml transport client credentials.   at Microsoft.ServiceBus.RelayedOnewayTcpClient.ConnectRequestReplyContext.Send(Message message, TimeSpan timeout, IDuplexChannel& channel)   at Microsoft.ServiceBus.RelayedOnewayTcpListener.RelayedOnewayTcpListenerClient.Connect(TimeSpan timeout)   at Microsoft.ServiceBus.RelayedOnewayTcpClient.EnsureConnected(TimeSpan timeout)   at Microsoft.ServiceBus.Channels.CommunicationObject.Open(TimeSpan timeout)   at Microsoft.ServiceBus.Channels.RefcountedCommunicationObject.Open(TimeSpan timeout)   at Microsoft.ServiceBus.RelayedOnewayChannelListener.OnOpen(TimeSpan timeout)   at Microsoft.ServiceBus.Channels.CommunicationObject.Open(TimeSpan timeout)   at System.ServiceModel.Dispatcher.ChannelDispatcher.OnOpen(TimeSpan timeout)   at System.ServiceModel.Channels.CommunicationObject.Open(TimeSpan timeout)   at System.ServiceModel.ServiceHostBase.OnOpen(TimeSpan timeout)   at System.ServiceModel.Channels.CommunicationObject.Open(TimeSpan timeout)   at Microsoft.ServiceBus.SocketConnectionTransportManager.OnOpen(TimeSpan timeout)   at Microsoft.ServiceBus.Channels.TransportManager.Open(TimeSpan timeout, TransportChannelListener channelListener)   at Microsoft.ServiceBus.Channels.TransportManagerContainer.Open(TimeSpan timeout, SelectTransportManagersCallback selectTransportManagerCallback)   at Microsoft.ServiceBus.SocketConnectionChannelListener`2.OnOpen(TimeSpan timeout)   at Microsoft.ServiceBus.Channels.CommunicationObject.Open(TimeSpan timeout)   at Microsoft.ServiceBus.Channels.CommunicationObject.Open(TimeSpan timeout)   at System.ServiceModel.Dispatcher.ChannelDispatcher.OnOpen(TimeSpan timeout)   at System.ServiceModel.Channels.CommunicationObject.Open(TimeSpan timeout)   at System.ServiceModel.ServiceHostBase.OnOpen(TimeSpan timeout)   at System.ServiceModel.Channels.CommunicationObject.Open(TimeSpan timeout)   at System.ServiceModel.ServiceHostingEnvironment.HostingManager.ActivateService(String normalizedVirtualPath)   at System.ServiceModel.ServiceHostingEnvironment.HostingManager.EnsureServiceAvailable(String normalizedVirtualPath)   --- End of inner exception stack trace ---   at System.ServiceModel.ServiceHostingEnvironment.HostingManager.EnsureServiceAvailable(String normalizedVirtualPath)   at System.ServiceModel.ServiceHostingEnvironment.EnsureServiceAvailableFast(String relativeVirtualPath)Process Name: w3wpProcess ID: 8056As recommended by the error message I checked everything about the application configuration and also the keys and eventually I found the problem.When I set the permissions in the ACS rule group I had copied and pasted the claim name for net.windows.servicebus.action from the Azure portal and hadnt spotted the <space> character on the end of it like you sometimes pick up when copying text in the browser.  This meant that the listen and send permissions were not setup correctly which is why (as you would expect) my two applications could not connect to the service bus.So lesson learnt here, if you do copy and paste into the ACS rules just be careful you dont leave a space on the end of anything otherwise it will be difficult to spot that its configured incorrectly

    Read the article

< Previous Page | 423 424 425 426 427 428 429 430 431 432 433 434  | Next Page >