Search Results

Search found 6281 results on 252 pages for 'automated tests'.

Page 43/252 | < Previous Page | 39 40 41 42 43 44 45 46 47 48 49 50  | Next Page >

  • Speed up loading of test results from builds in Visual Studio

    - by Jakob Ehn
    I still see people complaining about the long time it takes to load test results from a TFS build in Visual Studio. And they make a valid point, it does take a very long time to load the test results, even for a small number of tests. The reason for this is that the test results is not just the result of the test run but also all the binaries that were part of the test run. This often also means that the debug symbols (*.pdb) will be downloaded to your local machine. This reason for this behaviour is that it letsyou re-run the tests locally. However, most of the times this is not what the developer will do, they just want to know which tests failed and why. They can then fix the tests and rerun them locally. It turns out there is a way to load only the test results, which is much faster. The only tricky bit is to find the location of the .trx file that is generated during the build. Particularly in TFS 2010 where you often have multiple build agents, which of corse results in different paths to the trx file. Note: To use this you must have read permission to the build folder on the build agent where the build was executed. Open the build result for the build Click View Log Locate the part where MSTest is invoked. When using test containers, it looks like this:   Note: You can actually search in the log window, press Ctrl+F and you will get a little search box at the bottom. Nice! On the MSTest command line call, locate the /resultsfileroot parameter, which points to the folder where the test results are stored Note that this path is local for the build server, so you need to replace the drive letter with the server name: D:\Builds\Project\TestResults to \Project\TestResults">\\<BuildServer>\Project\TestResults Double-click on the .trx file and you will notice that it loads much faster compared to opening it from the build log window

    Read the article

  • Service Testing made easy with SO-Aware Test Workbench

    - by cibrax
    I happy to announce today a new addition to our SO-Aware service repository toolset, SO-Aware Test Workbench, a WPF desktop application for doing functional and load testing against existing WCF Services. This tool is completely integrated to the SO-Aware service repository, which makes configuring new load and functional tests for WCF Soap and REST services a breeze. From now on, the service repository can play a very important role in an organization by facilitating collaboration between developers and testers. Developers can create and register new services in the repository with all the related artifacts like configuration. On the other hand, Testers can just pick one of the existing services in the repository and create functional or load tests from there, with no need to deal with specific details of the service implementation, location or configuration settings. Developers and Testers can later use the result of those tests to modify the services or adjust different settings on the tests or service configuration. Gustavo Machado, one of the developers behind this project, has written an excellent post describing all the functionality that can find today in the tool. You can also see the tool in action in this Endpoint Tv episode with Jesus and Ron Jacobs.

    Read the article

  • How can I reduce the amount of time it takes to fully regression test an application ready for release?

    - by DrLazer
    An app I work on is being developed with a modified version of scrum. If you are not familiar with scrum, it's just an alternative approach to a more traditional watefall model, where a series of features are worked on for a set amount of time known as a sprint. The app is written in C# and makes use of WPF. We use Visual C# 2010 Express edition as an IDE. If we work on a sprint and add in a few new features, but do not plan to release until a further sprint is complete, then regression testing is not an issue as such. We just test the new features and give the app a good once over. However, if a release is planned that our customers can download - a full regression test is factored in. In the past this wasn't a big deal, it took 3 or 4 days and the devs simply fix up any bugs found in the regression phase, but now, as the app is getting larger and larger and incorporating more and more features, the regression is spanning out for weeks. I am interested in any methods that people know of or use that can decrease this time. At the moment the only ideas I have are to either start writing Unit Tests, which I have never fully tried out in a commercial environment, or to research the possibilty of any UI Automation API's or tools that would allow me to write a program to perform a series of batch tests. I know literally nothing about the possibilities of UI automation so any information would be valuable. I don't know that much about Unit testing either, how complicated can the tests be? Is it possible to get Unit tests to use the UI? Are there any other methods I should consider? Thanks for reading, and for any advice in advance. Edit: Thanks for the information. Does anybody know of any alternatives to what has been mentioned so far (NUnit, RhinoMocks and CodedUI)?

    Read the article

  • Unit testing and Test Driven Development questions

    - by Theomax
    I'm working on an ASP.NET MVC website which performs relatively complex calculations as one of its functions. This functionality was developed some time ago (before I started working on the website) and defects have occurred whereby the calculations are not being calculated properly (basically these calculations are applied to each user which has certain flags on their record etc). Note; these defects have only been observed by users thus far, and not yet investigated in code while debugging. My questions are: Because the existing unit tests all pass and therefore do not indicate that the defects that have been reported exist; does this suggest the original code that was implemented is incorrect? i.e either the requirements were incorrect and were coded accordingly or just not coded as they were supposed to be coded? If I use the TDD approach, would I disgregard the existing unit tests as they don't show there are any problems with the calculations functionality - and I start by making some failing unit tests which test/prove there are these problems occuring, and then add code to make them pass? Note; if it's simply a bug that is occurring that can be found while debugging the code, do the unit tests need to be updated since they are already passing?

    Read the article

  • How to refactor a myriad of similar classes

    - by TobiMcNamobi
    I'm faced with similar classes A1, A2, ..., A100. Believe it or not but yeah, there are roughly hundred classes that almost look the same. None of these classes are unit tested (of course ;-) ). Each of theses classes is about 50 lines of code which is not too much by itself. Still this is way too much duplicated code. I consider the following options: Writing tests for A1, ..., A100. Then refactor by creating an abstract base class AA. Pro: I'm (near to totally) safe by the tests that nothing goes wrong. Con: Much effort. Duplication of test code. Writing tests for A1, A2. Abstracting the duplicated test code and using the abstraction to create the rest of the tests. Then create AA as in 1. Pro: Less effort than in 1 but maintaining a similar degree of safety. Con: I find generalized test code weird; it often seems ... incoherent (is this the right word?). Normally I prefer specialized test code for specialized classes. But that requires a good design which is my goal of this whole refactoring. Writing AA first, testing it with mock classes. Then inheriting A1, ..., A100 successively. Pro: Fastest way to eliminate duplicates. Con: Most Ax classes look very much the same. But if not, there is the danger of changing the code by inheriting from AA. Other options ... At first I went for 3. because the Ax classes are really very similar to each other. But now I'm a bit unsure if this is the right way (from a unit testing enthusiast's perspective).

    Read the article

  • Is there really anything to gain with complex design? [duplicate]

    - by SB2055
    This question already has an answer here: What is enterprise software, exactly? 8 answers I've been working for a consulting firm for some time, with clients of various sizes, and I've seen web applications ranging in complexity from really simple: MVC Service Layer EF DB To really complex: MVC UoW DI / IoC Repository Service UI Tests Unit Tests Integration Tests But on both ends of the spectrum, the quality requirements are about the same. In simple projects, new devs / consultants can hop on, make changes, and contribute immediately, without having to wade through 6 layers of abstraction to understand what's going on, or risking misunderstanding some complex abstraction and costing down the line. In all cases, there was never a need to actually make code swappable or reusable - and the tests were never actually maintained past the first iteration because requirements changed, it was too time-consuming, deadlines, business pressure, etc etc. So if - in the end - testing and interfaces aren't used rapid development (read: cost-savings) is a priority the project's requirements will be changing a lot while in development ...would it be wrong to recommend a super-simple architecture, even to solve a complex problem, for an enterprise client? Is it complexity that defines enterprise solutions, or is it the reliability, # concurrent users, ease-of-maintenance, or all of the above? I know this is a very vague question, and any answer wouldn't apply to all cases, but I'm interested in hearing from devs / consultants that have been in the business for a while and that have worked with these varying degrees of complexity, to hear if the cool-but-expensive abstractions are worth the overall cost, at least while the project is in development.

    Read the article

  • What is a Coding Dojo?

    - by huwyss
    Recently i found out that there is a thing called "coding dojo". The point behind it is that software developers want to have a space to learn new stuff like processes, methods, coding details, languages, and whatnot in an environment without stress. Just for fun. No competition. No results required. No deadlines.Some days ago I joined the Zurich coding dojo. We were three programmers with different backgrounds.We gave ourselves the task to develop a method that takes an input value and returns its prime factors. We did pair programming and every few minutes we switched positions. We used test driven development. The chosen programming language was Ruby.I haven't really done TDD before. It was pretty interesting to see the algorithm develop following the testcases.We started with the first test input=1 then developed the most simple productive program that passed this very first test. Then we added the next test input=2 and implemented the productive code. We kept adding tests and made sure all tests are passed until we had the general solution.When we improved the performance of our code we saw the value of the tests we wrote before. Of course our first performance improvement broke several tests.It was a very interesting experience to see how other developers think and how they work. I will participate at the dojo again and can warmly recommend it to anyone. There are  coding dojos all over the world.Have fun!

    Read the article

  • How can I reduce the amount of time it takes to fully regression test an application ready for release?

    - by DrLazer
    An app I work on is being developed with a modified version of scrum. If you are not familiar with scrum, it's just an alternative approach to a more traditional watefall model, where a series of features are worked on for a set amount of time known as a sprint. The app is written in C# and makes use of WPF. We use Visual C# 2010 Express edition as an IDE. If we work on a sprint and add in a few new features, but do not plan to release until a further sprint is complete, then regression testing is not an issue as such. We just test the new features and give the app a good once over. However, if a release is planned that our customers can download - a full regression test is factored in. In the past this wasn't a big deal, it took 3 or 4 days and the devs simply fix up any bugs found in the regression phase, but now, as the app is getting larger and larger and incorporating more and more features, the regression is spanning out for weeks. I am interested in any methods that people know of or use that can decrease this time. At the moment the only ideas I have are to either start writing Unit Tests, which I have never fully tried out in a commercial environment, or to research the possibilty of any UI Automation API's or tools that would allow me to write a program to perform a series of batch tests. I know literally nothing about the possibilities of UI automation so any information would be valuable. I don't know that much about Unit testing either, how complicated can the tests be? Is it possible to get Unit tests to use the UI? Are there any other methods I should consider? Thanks for reading, and for any advice in advance.

    Read the article

  • Prepare For Oracle Certification Exams With Confidence

    - by Brandye Barrington
    Empower yourself to put your best foot forward on exam day! Oracle Certification Exam Candidates, test with confidence using preparation tools created by Oracle and Oracle's only Authorized Practice Test Provider, Kaplan SelfTest. Oracle wants to help protect your investment of time and money by offering tools to help you be as prepared as possible for your certification exam as well as your future job role. Use these valuable tools to get the most out of your exam preparation: Online Exam Preparation Seminars, Online Practice Tests and the new free Online Demos from Kaplan SelfTest. FREE ONLINE DEMOS Choose from 1Z0-851 Java 6 Programmer Certified Professional or 1Z0-047 Oracle Database SQL Expert. Get a feel for the type and difficulty of questions on the Oracle Certification exams and determine if you are ready for the exam or if you need more preparation. This is a powerful tool that will help you plan your preparation and make the most of your investment. Access Free Online Demos Now ONLINE EXAM PREPARATION SEMINARS These one-day self-paced streaming video seminars are 100% focused on exam preparation. The streaming video format lets you fast forward, rewind, and replay at your own pace so that you can identify and close any knowledge gaps before taking the exam. The Exam Prep Seminar structures your studying - so you don't have to. Access Online Exam Preparation Seminars ONLINE PRACTICE TESTS Test your knowledge with Kaplan SelfTest Practice Exams. These practice tests are one of the most effective ways to prepare for your Oracle Certification exam by helping you self-assess your knowledge using realistic exam simulations. You can purchase practice exams from Oracle with 30-day or 12-month access. Access Online Practice Tests Approach exam day with confidence using the tools above.

    Read the article

  • Resurrecting a 5,000 line test plan that is a decade old

    - by ale
    I am currently building a test plan for the system I am working on. The plan is 5,000 lines long and about 10 years old. The structure is like this: 1. test title precondition: some W needs to be set up, X needs to be completed action: do some Y postcondition: message saying Z is displayed 2. ... What is this type of testing called ? Is it useful ? It isn't automated.. the tests would have to be handed to some unlucky person to run through and then the results would have to be given to development. It doesn't seem efficient. Is it worth modernising this method of testing (removing tests for removed features, updating tests where different postconditions happen, ...) or would a whole different approach be more appropriate ? We plan to start unit tests but the software requires so much work to actually get 'units' to test - there are no units at present ! Thank you.

    Read the article

  • How does process of updating code with Continous Integration work?

    - by BleakCabalist
    I want to draw a model of process of updating the source code with the use of Continous Integration. The main issue is I don't really understand how it works when there are several programmers working on various aspects of the code at the same time. I can't visualize it in my mind. Here's what I know but I might be wrong: New code is sent to repository. Continous Integration server asks Version Control System if there is a new code in repository. If there is than CIS executes tests on the code. If tests show there are problems than CIS orders VCS to revert back to working wersion of the code and communicates it to programmer. If tests are passed positively it compiles the repository code and makes new build of a game? New build is made not after ever single change, but at the end of the day I believe? Are my assumptions above correct? If yes, does it also work when there are several programmers updating repository at once? Is this enough to draw a model of the process in your opinions or did I miss something? Also, what software would I need for above process? Can you guys give examples for CIS software and VCS software and whatever else I need? Does CIS software perform code tests or do I need another tool for that and integrate it with CIS? Is there a repository software?

    Read the article

  • Curing the Database-Application mismatch

    - by Phil Factor
    If an application requires access to a database, then you have to be able to deploy it so as to be version-compatible with the database, in phase. If you can deploy both together, then the application and database must normally be deployed at the same version in which they, together, passed integration and functional testing.  When a single database supports more than one application, then the problem gets more interesting. I’ll need to be more precise here. It is actually the application-interface definition of the database that needs to be in a compatible ‘version’.  Most databases that get into production have no separate application-interface; in other words they are ‘close-coupled’.  For this vast majority, the whole database is the application-interface, and applications are free to wander through the bowels of the database scot-free.  If you’ve spurned the perceived wisdom of application architects to have a defined application-interface within the database that is based on views and stored procedures, any version-mismatch will be as sensitive as a kitten.  A team that creates an application that makes direct access to base tables in a database will have to put a lot of energy into keeping Database and Application in sync, to say nothing of having to tackle issues such as security and audit. It is not the obvious route to development nirvana. I’ve been in countless tense meetings with application developers who initially bridle instinctively at the apparent restrictions of being ‘banned’ from the base tables or routines of a database.  There is no good technical reason for needing that sort of access that I’ve ever come across.  Everything that the application wants can be delivered via a set of views and procedures, and with far less pain for all concerned: This is the application-interface.  If more than zero developers are creating a database-driven application, then the project will benefit from the loose-coupling that an application interface brings. What is important here is that the database development role is separated from the application development role, even if it is the same developer performing both roles. The idea of an application-interface with a database is as old as I can remember. The big corporate or government databases generally supported several applications, and there was little option. When a new application wanted access to an existing corporate database, the developers, and myself as technical architect, would have to meet with hatchet-faced DBAs and production staff to work out an interface. Sure, they would talk up the effort involved for budgetary reasons, but it was routine work, because it decoupled the database from its supporting applications. We’d be given our own stored procedures. One of them, I still remember, had ninety-two parameters. All database access was encapsulated in one application-module. If you have a stable defined application-interface with the database (Yes, one for each application usually) you need to keep the external definitions of the components of this interface in version control, linked with the application source,  and carefully track and negotiate any changes between database developers and application developers.  Essentially, the application development team owns the interface definition, and the onus is on the Database developers to implement it and maintain it, in conformance.  Internally, the database can then make all sorts of changes and refactoring, as long as source control is maintained.  If the application interface passes all the comprehensive integration and functional tests for the particular version they were designed for, nothing is broken. Your performance-testing can ‘hang’ on the same interface, since databases are judged on the performance of the application, not an ‘internal’ database process. The database developers have responsibility for maintaining the application-interface, but not its definition,  as they refactor the database. This is easily tested on a daily basis since the tests are normally automated. In this setting, the deployment can proceed if the more stable application-interface, rather than the continuously-changing database, passes all tests for the version of the application. Normally, if all goes well, a database with a well-designed application interface can evolve gracefully without changing the external appearance of the interface, and this is confirmed by integration tests that check the interface, and which hopefully don’t need to be altered at all often.  If the application is rapidly changing its ‘domain model’  in the light of an increased understanding of the application domain, then it can change the interface definitions and the database developers need only implement the interface rather than refactor the underlying database.  The test team will also have to redo the functional and integration tests which are, of course ‘written to’ the definition.  The Database developers will find it easier if these tests are done before their re-wiring  job to implement the new interface. If, at the other extreme, an application receives no further development work but survives unchanged, the database can continue to change and develop to keep pace with the requirements of the other applications it supports, and needs only to take care that the application interface is never broken. Testing is easy since your automated scripts to test the interface do not need to change. The database developers will, of course, maintain their own source control for the database, and will be likely to maintain versions for all major releases. However, this will not need to be shared with the applications that the database servers. On the other hand, the definition of the application interfaces should be within the application source. Changes in it have to be subject to change-control procedures, as they will require a chain of tests. Once you allow, instead of an application-interface, an intimate relationship between application and database, we are in the realms of impedance mismatch, over and above the obvious security problems.  Part of this impedance problem is a difference in development practices. Whereas the application has to be regularly built and integrated, this isn’t necessarily the case with the database.  An RDBMS is inherently multi-user and self-integrating. If the developers work together on the database, then a subsequent integration of the database on a staging server doesn’t often bring nasty surprises. A separate database-integration process is only needed if the database is deliberately built in a way that mimics the application development process, but which hampers the normal database-development techniques.  This process is like demanding a official walking with a red flag in front of a motor car.  In order to closely coordinate databases with applications, entire databases have to be ‘versioned’, so that an application version can be matched with a database version to produce a working build without errors.  There is no natural process to ‘version’ databases.  Each development project will have to define a system for maintaining the version level. A curious paradox occurs in development when there is no formal application-interface. When the strains and cracks happen, the extra meetings, bureaucracy, and activity required to maintain accurate deployments looks to IT management like work. They see activity, and it looks good. Work means progress.  Management then smile on the design choices made. In IT, good design work doesn’t necessarily look good, and vice versa.

    Read the article

  • External File Upload Optimizations for Windows Azure

    - by rgillen
    [Cross posted from here: http://rob.gillenfamily.net/post/External-File-Upload-Optimizations-for-Windows-Azure.aspx] I’m wrapping up a bit of the work we’ve been doing on data movement optimizations for cloud computing and the latest set of data yielded some interesting points I thought I’d share. The work done here is not really rocket science but may, in some ways, be slightly counter-intuitive and therefore seemed worthy of posting. Summary: for those who don’t like to read detailed posts or don’t have time, the synopsis is that if you are uploading data to Azure, block your data (even down to 1MB) and upload in parallel. Set your block size based on your source file size, but if you must choose a fixed value, use 1MB. Following the above will result in significant performance gains… upwards of 10x-24x and a reduction in overall file transfer time of upwards of 90% (eg, uploading a 1GB file averaged 46.37 minutes prior to optimizations and averaged 1.86 minutes afterwards). Detail: For those of you who want more detail, or think that the claims at the end of the preceding paragraph are over-reaching, what follows is information and code supporting these claims. As the title would indicate, these tests were run from our research facility pointing to the Azure cloud (specifically US North Central as it is physically closest to us) and do not represent intra-cloud results… we have performed intra-cloud tests and the overall results are similar in notion but the data rates are significantly different as well as the tipping points for the various block sizes… this will be detailed separately). We started by building a very simple console application that would loop through a directory and upload each file to Azure storage. This application used the shipping storage client library from the 1.1 version of the azure tools. The only real variation from the client library is that we added code to collect and record the duration (in ms) and size (in bytes) for each file transferred. The code is available here. We then created a directory that had a collection of files for the following sizes: 2KB, 32KB, 64KB, 128KB, 512KB, 1MB, 5MB, 10MB, 25MB, 50MB, 100MB, 250MB, 500MB, 750MB, and 1GB (50 files for each size listed). These files contained randomly-generated binary data and do not benefit from compression (a separate discussion topic). Our file generation tool is available here. The baseline was established by running the application described above against the directory containing all of the data files. This application uploads the files in a random order so as to avoid transferring all of the files of a given size sequentially and thereby spreading the affects of periodic Internet delays across the collection of results.  We then ran some scripts to split the resulting data and generate some reports. The raw data collected for our non-optimized tests is available via the links in the Related Resources section at the bottom of this post. For each file size, we calculated the average upload time (and standard deviation) and the average transfer rate (and standard deviation). As you likely are aware, transferring data across the Internet is susceptible to many transient delays which can cause anomalies in the resulting data. It is for this reason that we randomized the order of source file processing as well as executed the tests 50x for each file size. We expect that these steps will yield a sufficiently balanced set of results. Once the baseline was collected and analyzed, we updated the test harness application with some methods to split the source file into user-defined block sizes and then to upload those blocks in parallel (using the PutBlock() method of Azure storage). The parallelization was handled by simply relying on the Parallel Extensions to .NET to provide a Parallel.For loop (see linked source for specific implementation details in Program.cs, line 173 and following… less than 100 lines total). Once all of the blocks were uploaded, we called PutBlockList() to assemble/commit the file in Azure storage. For each block transferred, the MD5 was calculated and sent ensuring that the bits that arrived matched was was intended. The timer for the blocked/parallelized transfer method wraps the entire process (source file splitting, block transfer, MD5 validation, file committal). A diagram of the process is as follows: We then tested the affects of blocking & parallelizing the transfers by running the updated application against the same source set and did a parameter sweep on the block size including 256KB, 512KB, 1MB, 2MB, and 4MB (our assumption was that anything lower than 256KB wasn’t worth the trouble and 4MB is the maximum size of a block supported by Azure). The raw data for the parallel tests is available via the links in the Related Resources section at the bottom of this post. This data was processed and then compared against the single-threaded / non-optimized transfer numbers and the results were encouraging. The Excel version of the results is available here. Two semi-obvious points need to be made prior to reviewing the data. The first is that if the block size is larger than the source file size you will end up with a “negative optimization” due to the overhead of attempting to block and parallelize. The second is that as the files get smaller, the clock-time cost of blocking and parallelizing (overhead) is more apparent and can tend towards negative optimizations. For this reason (and is supported in the raw data provided in the linked worksheet) the charts and dialog below ignore source file sizes less than 1MB. (click chart for full size image) The chart above illustrates some interesting points about the results: When the block size is smaller than the source file, performance increases but as the block size approaches and then passes the source file size, you see decreasing benefit to the point of negative gains (see the values for the 1MB file size) For some of the moderately-sized source files, small blocks (256KB) are best As the size of the source file gets larger (see values for 50MB and up), the smallest block size is not the most efficient (presumably due, at least in part, to the increased number of blocks, increased number of individual transfer requests, and reassembly/committal costs). Once you pass the 250MB source file size, the difference in rate for 1MB to 4MB blocks is more-or-less constant The 1MB block size gives the best average improvement (~16x) but the optimal approach would be to vary the block size based on the size of the source file.    (click chart for full size image) The above is another view of the same data as the prior chart just with the axis changed (x-axis represents file size and plotted data shows improvement by block size). It again highlights the fact that the 1MB block size is probably the best overall size but highlights the benefits of some of the other block sizes at different source file sizes. This last chart shows the change in total duration of the file uploads based on different block sizes for the source file sizes. Nothing really new here other than this view of the data highlights the negative affects of poorly choosing a block size for smaller files.   Summary What we have found so far is that blocking your file uploads and uploading them in parallel results in significant performance improvements. Further, utilizing extension methods and the Task Parallel Library (.NET 4.0) make short work of altering the shipping client library to provide this functionality while minimizing the amount of change to existing applications that might be using the client library for other interactions.   Related Resources Source code for upload test application Source code for random file generator ODatas feed of raw data from non-optimized transfer tests Experiment Metadata Experiment Datasets 2KB Uploads 32KB Uploads 64KB Uploads 128KB Uploads 256KB Uploads 512KB Uploads 1MB Uploads 5MB Uploads 10MB Uploads 25MB Uploads 50MB Uploads 100MB Uploads 250MB Uploads 500MB Uploads 750MB Uploads 1GB Uploads Raw Data OData feeds of raw data from blocked/parallelized transfer tests Experiment Metadata Experiment Datasets Raw Data 256KB Blocks 512KB Blocks 1MB Blocks 2MB Blocks 4MB Blocks Excel worksheet showing summarizations and comparisons

    Read the article

  • Oracle Solaris 11 ?????????:?Oracle Solaris 11 ?????·????·??? ?2????

    - by kazun
    2012?2?20???????????? ??13F????????????Oracle Solaris 11???????????Oracle Solaris 11 ?????·????·????????????????????????2??????????Automated Installer(AI)???Distribution Constructor??????????????????????????????50????????????????????????????????? Oracle Solaris 11 ????????? - ?????????????????? - ???????????????????????? - 2????????????????? ???? Oracle 11 ??????? ?Oracle Solaris 11 ??????????????·??????????(???????? ??????????? ????????????? ??? ??? ??:???)???Oracle Solaris 11????????????????????????? Oracle Solaris 11 ???Oracle Solaris 10 ??????????????????????????2?????????????????(????????GUI???)???????????????????????????????????????????????????????????????????????????????????????????????????????????? ?????????? ???????????????:Automated Installer ????????"hands-free"??????????? Automated Installer?(?? ???????????? ??????????? ?????????????? ??????????????:???)???Oracle Solaris 11 ???????Automated Installer (AI)????????? AI????????????????????Solaris Zones ???????????????????????????????????????????????????????????????????????????????????????Jumpstart ?????????????????? AI?Image Packaging System (IPS)????????????????????????????????????OS???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????AI??????(XML?????????????)?SC???????????????????????????????????????????????????????????????????????? ??????????????????????????????????AI ???????????DHCP ????????????????????????????? VirtualBox ??????????????? ?:Oracle Solaris Studio ??? AI??????????????????????? ?????????? ???????????????????:Distribution Constructor ?????????????????????????????????????????????? Distribution Constructor?(?? ???????????? ??????????? ????????????? ??????????????:???)???? ?????????Oracle Solaris 11 ????????????????????????????????????? "Distribution Constructor" ?????????????"Distribution Constructor" ???????????????????????????????????????????????????????????????????????????"Distribution Constructor"???LiveCD/USB???????????????ISO?????3???OS?????????????????????Distribution Constructor?????????????????????????????????????????????????????????????????????Distribution Constructor??Solaris ?ZFS???????????AI??????????????????????????XML??????????? ?????????3??????????????????????????????????????????????????????IPS??????????????custom-script????????????????????????????????????????????????????????????????????????? ???????????????????????????????? ?????????? Oracle Solaris ??????? ??????????Installer Disk(3??DVD)????????????????????????Oracle Solaris Live CD(x86)??1???Oracle Solaris 11 Interactive Text Installer??SPARC??x86?????1???????????Live CD??????????Solaris 11 ?????????????????????Interactive Text Installer ??????????????(???????????????????????????????)?Interactive Text Installer ???????????????????????????????????? ???Solaris 11 VM???? for Oracle VM VirtualBox ?????????????????????(?Solaris 11 VM ???? for Oracle VM VirtualBox ???????Oracle VM for x86 ????????)? Oracle VM VirtualBox??????? Solaris 11 VM???? for Oracle VM VirtualBox??????? Oracle Solaris 11?????????????????????????? ?????? Oracle Solaris 10 JumpStart ?? Oracle Solaris 11 ???????????? ???? Oracle Solaris 11 ????????????? Oracle Solaris 11 ???????????

    Read the article

  • The Challenge with HTML5 – In Pictures

    - by dwahlin
    I love working with Web technologies and am looking forward to the new functionality that HTML5 will ultimately bring to the table (some of which can be used today). Having been through the div versus layer battle back in the IE4 and Netscape 4 days I think we’re headed down that road again as a result of browsers implementing features differently. I’ve been spending a lot of time researching and playing around with HTML5 samples and features (mainly because we’re already seeing demand for training on HTML5) and there’s a lot of great stuff there that will truly revolutionize web applications as we know them. However, browsers just aren’t there yet and many people outside of the development world don’t really feel a need to upgrade their browser if it’s working reasonably well (Mom and Dad come to mind) so it’s going to be awhile. There’s a nice test site at http://www.HTML5Test.com that runs through different HTML5 features and scores how well they’re supported. They don’t test for everything and are very clear about that on the site: “The HTML5 test score is only an indication of how well your browser supports the upcoming HTML5 standard and related specifications. It does not try to test all of the new features offered by HTML5, nor does it try to test the functionality of each feature it does detect. Despite these shortcomings we hope that by quantifying the level of support users and web developers will get an idea of how hard the browser manufacturers work on improving their browsers and the web as a development platform. The score is calculated by testing for the many new features of HTML5. Each feature is worth one or more points. Apart from the main HTML5 specification and other specifications created the W3C HTML Working Group, this test also awards points for supporting related drafts and specifications. Some of these specifications were initially part of HTML5, but are now further developed by other W3C working groups. WebGL is also part of this test despite not being developed by the W3C, because it extends the HTML5 canvas element with a 3d context. The test also awards bonus points for supporting audio and video codecs and supporting SVG or MathML embedding in a plain HTML document. These test do not count towards the total score because HTML5 does not specify any required audio or video codec. Also SVG and MathML are not required by HTML5, the specification only specifies rules for how such content should be embedded inside a plain HTML file. Please be aware that the specifications that are being tested are still in development and could change before receiving an official status. In the future new tests will be added for the pieces of the specification that are currently still missing. The maximum number of points that can be scored is 300 at this moment, but this is a moving goalpost.” It looks like their tests haven’t been updated since June, but the numbers are pretty scary as a developer because it means I’m going to have to do a lot of browser sniffing before assuming a particular feature is available to use. Not that much different from what we do today as far as browser sniffing you say? I’d have to disagree since HTML5 takes it to a whole new level. In today’s world we have script libraries such as jQuery (my personal favorite), Prototype, script.aculo.us, YUI Library, MooTools, etc. that handle the heavy lifting for us. Until those libraries handle all of the key HTML5 features available it’s going to be a challenge. Certain features such as Canvas are supported fairly well across most of the major browsers while other features such as audio and video are hit or miss depending upon what codec you want to use. Run the tests yourself to see what passes and what fails for different browsers. You can also view the HTML5 Test Suite Conformance Results at http://test.w3.org/html/tests/reporting/report.htm (a work in progress). The table below lists the scores that the HTML5Test site returned for different browsers I have installed on my desktop PC and laptop. A specific list of tests run and features supported are given when you go to the site. Note that I went ahead and tested the IE9 beta and it didn’t do nearly as good as I expected it would, but it’s not officially out yet so I expect that number will change a lot. Am I opposed to HTML5 as a result of these tests? Of course not - I’m actually really excited about what it offers.  However, I’m trying to be realistic and feel it'll definitely add a new level of headache to the Web application development process having been through something like this many years ago. On the flipside, developers that are able to target a specific browser (typically Intranet apps) or master the cross-browser issues are going to release some pretty sweet applications. Check out http://html5gallery.com/ for a look at some of the more cutting-edge sites out there that use HTML5. Also check out the http://www.beautyoftheweb.com site that Microsoft put together to showcase IE9. Chrome 8 Safari 5 for Windows     Opera 10 Firefox 3.6     Internet Explorer 9 Beta (Note that it’s still beta) Internet Explorer 8

    Read the article

  • What should be tested in Javascript?

    - by Nathan Hoad
    At work, we've just started on a heavily Javascript based application (actually using Coffeescript, but still), of which I've been implementing an automated test system using JsTestDriver and fabric. We've never written something with this much Javascript, so up until now we've never done any Javascript testing. I'm unsure what exactly we should be testing in our unit tests. We've written JQuery plugins for various things, so it's quite obvious that they should be verified for correctness as much as possible with JsTestDriver, but everyone else in my team seems to think that we should be testing the page level Javascript as well. I don't think we should be testing page level Javascript as unit tests, but instead using a system like Selenium to verify everything works as expected. My main reasoning for this is that at the moment, page level Javascript tests are guaranteed to fail through JsTestDriver, because they're trying to access elements on the DOM that can't possibly exist. So, what should be unit tested in Javascript?

    Read the article

  • Unit test and Code Coverage of Ant build scripts

    - by pablaasmo
    In our development environment We have more and more build scripts for ant to perform the build tasks for several different build jobs. These build scripts sometimes become large and do a lot of things and basically is source code in and of itself. So in a "TDD-world" we should have unit tests and coverage reports for the source code. I found AntUnit and BuildFileTest.java for doing unit tests. But it would also be interesting to know the code coverage of those unit tests. I have been searching google, but have not found anything. Does anyone know of a code coverage tool for Ant build scripts?

    Read the article

  • Assign multiple test categories using TestCategoryAttribute

    - by Michael Freidgeim
    I am using TestCategoryAttribute to filter which tests to run during builds and wandered, how to -how to assign multiple test categories.According to constructor documentation only single category can be specified.  However TestCategories Property (plural!)can return multiple categories.Grouping Tests into Test Categories: You can add an automated test to one or multiple test categories using a test attribute. Each test can belong to multiple test categories.The recommended approach from MSDN How to: Group and Run Automated Tests Using Test Categories is to specify multiple TestCategory attributes like the following[TestCategory("Nightly"), TestCategory("Weekly"), TestCategory("ShoppingCart"), TestMethod()]public Void DebitTest() { }Article http://toddmeinershagen.blogspot.com.au/2010/09/create-custom-test-category-attributes.htmlshows how enums can be used instead of strings.It also explains, that TestCategories Property can be used in derived custom attributes.v

    Read the article

  • How does TDD address interaction between objects?

    - by Gigi
    TDD proponents claim that it results in better design and decoupled objects. I can understand that writing tests first enforces the use of things like dependency injection, resulting in loosely coupled objects. However, TDD is based on unit tests - which test individual methods and not the integration between objects. And yet, TDD expects design to evolve from the tests themselves. So how can TDD possibly result in a better design at the integration (i.e. inter-object) level when the granularity it addresses is finer than that (individual methods)?

    Read the article

  • How abstract should you get with BDD

    - by Newton
    I was writing some tests in Gherkin (using Cucumber/Specflow). I was wondering how abstract should I get with my tests. In order to not make this open-ended, which of the following statements is better for BDD: Given I am logged in with email [email protected] and password 12345 When I do something Then something happens as opposed to Given I am logged in as the Administrator When I do something Then something happens The reason I am confused is because 1 is more based on the behaviour (filing in email and password) and 2 is easier to process and write the tests.

    Read the article

  • Online Launch of 3 new Telerik products JustMock, TeamPulse and WebUI Test Studio

    As you probably already know we have introduced 3 new products in the last 10 days, two of them at DevConnections in Las Vegas alone. If you didnt get a chance to attend DevConnections, we have organized an online launch so you get to see our new products first hand. Here is the schedule: Introduction to Telerik JustMock Tuesday, April 20 @11am ET Join the online launch of JustMock - a new developer productivity tool from Telerik designed to make it easy to create unit tests. In this webinar you will find out what is in the current release and learn about JustMocks future. JustMock cuts your development time and helps you create better unit tests without requiring you to change your code. It allows you to perform fast and controlled tests that are independent of external dependencies like databases, web services, or proprietary code. With JustMock, there are ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • How do you handle measuring Code Coverage in JavaScript

    - by Dancrumb
    In order to measure Code Coverage for JavaScript unit tests, one needs to instrument the code, run the tests and then perform post-processing. My concern is that, as a result, you are unit testing code that will never be run in production. Since JavaScript isn't compiled, what you test should be precisely what you execute. So here's my question, how do you handle this? One thought I had was to run Unit Testing on the production code and use that for my pass fail. I would then create a shadow of my production code, with instrumentation and run my unit tests again; this would give me my code coverage stats. Has anyone come across a method that is a little more graceful than this?

    Read the article

  • SQLIO Writes

    - by Grant Fritchey
    SQLIO is a fantastic utility for testing the abilities of the disks in your system. It has a very unfortunate name though, since it's not really a SQL Server testing utility at all. It really is a disk utility. They ought to call it DiskIO because they'd get more people using I think. Anyway, branding is not the point of this blog post. Writes are the point of this blog post. SQLIO works by slamming your disk. It performs as mean reads as it can or it performs as many writes as it can depending on how you've configured your tests. There are much smarter people than me who will get into all the various types of tests you should run. I'd suggest reading a bit of what Jonathan Kehayias (blog|twitter) has to say or wade into Denny Cherry's (blog|twitter) work. They're going to do a better job than I can describing all the benefits and mechanisms around using this excellent piece of software. My concerns are very focused. I needed to set up a series of tests to see how well our product SQL Storage Compress worked. I wanted to know the effects it would have on a system, the disk for sure, but also memory and CPU. How to stress the system? SQLIO of course. But when I set it up and ran it, following the documentation that comes with it, I was seeing better than 99% compression on the files. Don't get me wrong. Our product is magnificent, wonderful, all things great and beautiful, gets you coffee in the morning and is made mostly from bacon. But 99% compression. No, it's not that good. So what's up? Well, it's the configuration. The default mechanism is to load up a file, something large that will overwhelm your disk cache. You're instructed to load the file with a character 0x0. I never got a computer science degree. I went to film school. Because of this, I didn't memorize ASCII tables so when I saw this, I thought it was zero's or something. Nope. It's NULL. That's right, you're making a very large file, but you're filling it with NULL values. That's actually ok when all you're testing is the disk sub-system. But, when you want to test a compression and decompression, that can be an issue. I got around this fairly quickly. Instead of generating a file filled with NULL values, I just copied a database file for my tests. And to test it with SQL Storage Compress, I used a database file that had already been run through compression (about 40% compression on that file if you're interested). Now the reads were taken care of. I am seeing very realistic performance from decompressing the information for reads through SQLIO. But what about writes? Well, the issue is, what does SQLIO write? I don't have access to the code. But I do have access to the results. I did two different tests, just to be sure of what I was seeing. First test, use the .DAT file as described in the documentation. I opened the .DAT file after I was done with SQLIO, using WordPad. Guess what? It's a giant file full of air. SQLIO writes NULL values. What does that do to compression? I did the test again on a copy of an uncompressed database file. Then I ran the original and the SQLIO modified copy through ZIP to see what happened. I got better than 99% compression out of the SQLIO modified file (original file of 624,896kb went to 275,871kb compressed, after SQLIO it went to 608kb compressed). So, what does SQLIO write? It writes air. If you're trying to test it with compression or maybe some other type of file storage mechanism like dedupe, you need to know this because your tests really won't be valid. Should I find some other mechanism for testing? Yeah, if all I'm interested in is establishing performance to my own satisfaction, yes. But, I want to be able to compare my results with other people's results and we all need to be using the same tool in order for that to happen. SQLIO is the common mechanism that most people I know use to establish disk performance behavior. It'd be better if we could get SQLIO to do writes in some other fashion. Oh, and before I go, I get to brag a bit. Measuring IOPS, SQL Storage Compress outperforms my disk alone by about 30%.

    Read the article

  • How to organize unit/integration test in BDD

    - by whatf
    So finally after reading a lot, I have understood that the difference between BDD and TDD is between T & B. But coming from basic TDD background, what I used to was, first write unittest for database models write test for views (at this point start with integration test as well, along with unittests) write more integration tests for testing UI stuff. What would be a correct way to approach BDD. Say I have a simple blog application. Given : When a user logs in. He should be shown list of all his posts. But for this, I need a model with a row user, another row blog posts. So how do we go about writing tests? when do we create fixtures? When do we write integration (selenium) tests?

    Read the article

  • Where should I store and verify files manipulated by an app

    - by Alan W. Smith
    I'm working on a little Ruby script to move screenshots while renaming them based on a specific convention. I'll be writing tests to confirm the behavior. Ruby has lots of conventions for where to store files (e.g. the "spec" and "features" directories for RSpec and Cucumber, respectively), but I'm not finding best practices for storing files that will be acted upon by the tests. The same goes for a destination for the final copies of the files. So, the question in two parts is: Where should I store files that the test cases will use for a source input. Where should tests that need to write output files send them to.

    Read the article

< Previous Page | 39 40 41 42 43 44 45 46 47 48 49 50  | Next Page >