Search Results

Search found 32375 results on 1295 pages for 'dnn module development'.

Page 431/1295 | < Previous Page | 427 428 429 430 431 432 433 434 435 436 437 438  | Next Page >

  • How to store a shmup level?

    - by pek
    I am developing a 2D shmup (i.e. Aero Fighters) and I was wondering what are the various ways to store a level. Assuming that enemies are defined in their own xml file, how would you define when an enemy spawns in the level? Would it be based on time? Updates? Distance? Currently I do this based on "level time" (the amount of time the level is running - pausing doesn't update the time). Here is an example (the serialization was done by XNA): <?xml version="1.0" encoding="utf-8"?> <XnaContent xmlns:level="pekalicious.xanor.XanorContentShared.content.level"> <Asset Type="level:Level"> <Enemies> <Enemy> <EnemyType>data/enemies/smallenemy</EnemyType> <SpawnTime>PT0S</SpawnTime> <NumberOfSpawns>60</NumberOfSpawns> <SpawnOffset>PT0.2S</SpawnOffset> </Enemy> <Enemy> <EnemyType>data/enemies/secondenemy</EnemyType> <SpawnTime>PT0S</SpawnTime> <NumberOfSpawns>10</NumberOfSpawns> <SpawnOffset>PT0.5S</SpawnOffset> </Enemy> <Enemy> <EnemyType>data/enemies/secondenemy</EnemyType> <SpawnTime>PT20S</SpawnTime> <NumberOfSpawns>10</NumberOfSpawns> <SpawnOffset>PT0.5S</SpawnOffset> </Enemy> <Enemy> <EnemyType>data/enemies/boss1</EnemyType> <SpawnTime>PT30S</SpawnTime> <NumberOfSpawns>1</NumberOfSpawns> <SpawnOffset>PT0S</SpawnOffset> </Enemy> </Enemies> </Asset> </XnaContent> Each Enemy element is basically a wave of specific enemy types. The type is defined in EnemyType while SpawnTime is the "level time" this wave should appear. NumberOfSpawns and SpawnOffset is the number of enemies that will show up and the time it takes between each spawn respectively. This could be a good idea or there could be better ones out there. I'm not sure. I would like to see some opinions and ideas. I have two problems with this: spawning an enemy correctly and creating a level editor. The level editor thing is an entirely different problem (which I will probably post in the future :P). As for spawning correctly, the problem lies in the fact that I have a variable update time and so I need to make sure I don't miss an enemy spawn because the spawn offset is too small, or because the update took a little more time. I kinda fixed it for the most part, but it seems to me that the problem is with how I store the level. So, any ideas? Comments? Thank you in advance.

    Read the article

  • How do I consistently re-size my game window and elements?

    - by Milo
    In my 2D game, I have a flow layout. Inside the flow layout are tables. I have a slider that lets the user make the tables larger or smaller. This makes the background larger or smaller too. Everything should scale proportionally which means the background should stay at the same position when I make things larger, and it almost does. When the scrollbar is at 0, it does exactly this. As the scrollbar gets further down problems arise. I'll toggle the slider maybe 3 times and on the fourth time, the background jumps a little lower on the Y axis. In order to be efficient, I only start rendering the background near the parent of the flow layout. Here it is: void LobbyTableManager::renderBG( GraphicsContext* g, agui::Rectangle& absRect, agui::Rectangle& childRect ) { int cx, cy, cw, ch; g->getClippingRect(cx,cy,cw,ch); g->setClippingRect(absRect.getX(),absRect.getY(),absRect.getWidth(),absRect.getHeight()); float scale = 0.35f; int w = m_bgSprite->getWidth() * getTableScale() * scale; int h = m_bgSprite->getHeight() * getTableScale() * scale; int numX = ceil(absRect.getWidth() / (float)w) + 2; int numY = ceil(absRect.getHeight() / (float)h) + 2; float offsetX = m_activeTables[0]->getLocation().getX() - w; float offsetY = m_activeTables[0]->getLocation().getY() - h; int startY = childRect.getY(); if(moo) { std::cout << "S=" << startY << ","; } int numAttempts = 0; while(startY + h < absRect.getY() && numAttempts < 1000) { startY += h; if(moo) { std::cout << startY << ","; } numAttempts++; } if(moo) { std::cout << "\n"; moo = false; } g->holdDrawing(); for(int i = 0; i < numX; ++i) { for(int j = 0; j < numY; ++j) { g->drawScaledSprite(m_bgSprite,0,0,m_bgSprite->getWidth(),m_bgSprite->getHeight(), absRect.getX() + (i * w) + (offsetX),absRect.getY() + (j * h) + startY,w,h,0); } } g->unholdDrawing(); g->setClippingRect(cx,cy,cw,ch); } The numeric problem seems to be in the value of startY. I outputted startY figuring out its value: As you can see here, this is me only zooming in, pay attention to the final number before the next s=. You'll notice that, what should happen is, the numbers should be linear, ex: -40, -38, -36, -34, -32, -30, etc. As you'll notice, the start numbers linearly correlate ex: 62k, 64k, 66k, 68k, 70k etc.. but the end result is wrong every third or 4th time. Here is most of the resize code: void LobbyTableManager::setTableScale( float scale ) { scale += 0.3f; scale *= 2.0f; agui::Gui* gotGui = getGui(); float scrollRel = m_vScroll->getRelativeValue(); setScale(scale); rescaleTables(); resizeFlow(); if(gotGui) { gotGui->toggleWidgetLocationChanged(false); } updateScrollBars(); float newVal = scrollRel * m_vScroll->getMaxValue(); if((int)(newVal + 0.5f) > (int)newVal) { newVal++; } m_vScroll->setValue(newVal); static int x = 0; x++; moo = true; //std::cout << m_vScroll->getValue() << std::endl; if(gotGui) { gotGui->toggleWidgetLocationChanged(true); } if(gotGui) { gotGui->_widgetLocationChanged(); } } void LobbyTableManager::valueChanged( agui::VScrollBar* source,int val ) { if(getGui()) { getGui()->toggleWidgetLocationChanged(false); } m_flow->setLocation(0,-val); if(getGui()) { getGui()->toggleWidgetLocationChanged(true); getGui()->_widgetLocationChanged(); } }

    Read the article

  • Making an AI walk on a NavigationMesh (2D/Top-Down game)

    - by Lennard Fonteijn
    For some time I have been working on a framework which should make it possible to generate 2D levels based on a set of rules specified by level designers. You can read more about it here as I won't go into details: http://www.jorisdormans.nl/article.php?ref=engineering_emergence Anyway, I'm now at the point of putting the framework to use and have trouble coming up with a solution for AI. I decided to implement a NavigationMesh in the generated levels as I already have that information to start with. Consider the following image (borrowed from http://www.david-gouveia.com/pathfinding-on-a-2d-polygonal-map/): When I run A* on the NavigationMesh, the red path would be suggested when I want to go from point A to B (either direction). However, I don't want my AI to walk that path directly and clipping corners, I'd rather want them to follow the more logical black path. How would I go about going from the Red path to the Black path, are there any algorithms for this. Which steps do I take? Is A* the proper solution for this at all? For some additional information: The proof-of-concept game is a 2D top-down game written in C#, but examples/references in any language are welcome!

    Read the article

  • Extract derived 3D scaling from a 3D Sprite to set to a 2D billboard

    - by Bill Kotsias
    I am trying to get the derived position and scaling of a 3D Sprite and set them to a 2D Sprite. I have managed to do the first part like this: var p:Point = sprite3d.local3DToGlobal(new Vector3D(0,0,0)); billboard.x = p.x; billboard.y = p.y; But I can't get the scaling part correctly. I am trying this: var mat:Matrix3D = sprite3d.transform.getRelativeMatrix3D(stage); // get derived matrix(?) var scaleV:Vector3D = mat.decompose()[2]; // get scaling vector from derived matrix var scale:Number = scaleV.length; billboard.scaleX = scale; billboard.scaleY = scale; ...but the result is apparently wrong. PS. One might ask what I am trying to achieve. I am trying to create "billboard" 3D sprites, i.e. sprites which are affected by all 3D transformations except rotations, thus they always face the "camera".

    Read the article

  • How to fix OpenGL Co-ordinate System in SFML?

    - by Marc Alexander Reed
    My OpenGL setup is somehow configured to work like so: (-1, 1) (0, 1) (1, 1) (-1, 0) (0, 0) (1, 0) (-1, -1) (0, -1) (1, -1) How do I configure it so that it works like so: (0, 0) (SW/2, 0) (SW, 0) (0, SH/2) (SW/2, SH/2) (SW, SH/2) (0, SH) (SW/2, SH) (SW/2, SH) SW as Screen Width. SH as Screen Height. This solution would have to fix the problem of I can't translate significantly(1) on the Z axis. Depth doesn't seem to be working either. The Perspective code I'm using is that of my WORKING GLUT OpenGL code which has a cool 3d grid and camera system etc. But my OpenGL setup doesn't seem to work with SFML. Help me guys. :( Thanks in advance. :) #include <SFML/Window.hpp> #include <SFML/Graphics.hpp> #include <SFML/Audio.hpp> #include <SFML/Network.hpp> #include <SFML/OpenGL.hpp> #include "ResourcePath.hpp" //Mac-only #define _USE_MATH_DEFINES #include <cmath> double screen_width = 640.f; double screen_height = 480.f; int main (int argc, const char **argv) { sf::ContextSettings settings; settings.depthBits = 24; settings.stencilBits = 8; settings.antialiasingLevel = 2; sf::Window window(sf::VideoMode(screen_width, screen_height, 32), "SFML OpenGL", sf::Style::Close, settings); window.setActive(); glEnable(GL_DEPTH_TEST); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glEnable(GL_NORMALIZE); glEnable(GL_COLOR_MATERIAL); glShadeModel(GL_SMOOTH); glViewport(0, 0, screen_width, screen_height); glMatrixMode(GL_PROJECTION); glLoadIdentity(); //glOrtho(0.0f, screen_width, screen_height, 0.0f, -100.0f, 100.0f); gluPerspective(45.0f, (double) screen_width / (double) screen_height , 0.f, 100.f); glClearColor(0.f, 0.f, 1.f, 0.f); //blue while (window.isOpen()) { sf::Event event; while (window.pollEvent(event)) { switch (event.type) { case sf::Event::Closed: window.close(); break; } switch (event.key.code) { case sf::Keyboard::Escape: window.close(); break; case 'W': break; case 'S': break; case 'A': break; case 'D': break; } } glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glTranslatef(0.f, 0.f, 0.f); glPushMatrix(); glBegin(GL_QUADS); glColor3f(1.f, 0.f, 0.f); glVertex3f(-1.f, 1.f, 0.f); glColor3f(0.f, 1.f, 0.f); glVertex3f(1.f, 1.f, 0.f); glColor3f(1.f, 0.f, 1.f); glVertex3f(1.f, -1.f, 0.f); glColor3f(0.f, 0.f, 1.f); glVertex3f(-1.f, -1.f, 0.f); glEnd(); glPopMatrix(); window.display(); } return EXIT_SUCCESS; }

    Read the article

  • How can we view 3d objects from top down view in TD game

    - by Syed
    I am making a tower defense game. I am working in x and y axis only. I have made a grid, snapped towers and made a pathfinding algo to run enemy. Initially I have worked with cubes and spheres in place of towers and enemies. Now I am going to place real towers (3D). Note that I haven't used z axis up till now. The user will analyze the game from top down view. I want the user to see towers placement with a little bit of 3d view but I have made my all code in 2d thing. Is there any solution to my problem that somewhat tower placement would view a 3D touch or you can say 2.5D ?? (like fieldrunners) or should I have to involve z axis and ignoring y axis ?

    Read the article

  • Normal maps red in OpenGL?

    - by KaiserJohaan
    I am using Assimp to import 3d models, and FreeImage to parse textures. The problem I am having is that the normal maps are actually red rather than blue when I try to render them as normal diffuse textures. http://i42.tinypic.com/289ing3.png When I open the images in a image-viewing program they do indeed show up as blue. Heres when I create the texture; OpenGLTexture::OpenGLTexture(const std::vector<uint8_t>& textureData, uint32_t textureWidth, uint32_t textureHeight, TextureType textureType, Logger& logger) : mLogger(logger), mTextureID(gNextTextureID++), mTextureType(textureType) { glGenTextures(1, &mTexture); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, mTexture); CHECK_GL_ERROR(mLogger); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, textureWidth, textureHeight, 0, glTextureFormat, GL_UNSIGNED_BYTE, &textureData[0]); CHECK_GL_ERROR(mLogger); glGenerateMipmap(GL_TEXTURE_2D); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, 0); CHECK_GL_ERROR(mLogger); } Here is my fragment shader. You can see I just commented out the normal-map parsing and treated the normal map texture as the diffuse texture to display it and illustrate the problem. As for the rest of the code it interacts as expected with the diffuse textures so I dont see a obvious problem there. "#version 330 \n \ \n \ layout(std140) uniform; \n \ \n \ const int MAX_LIGHTS = 8; \n \ \n \ struct Light \n \ { \n \ vec4 mLightColor; \n \ vec4 mLightPosition; \n \ vec4 mLightDirection; \n \ \n \ int mLightType; \n \ float mLightIntensity; \n \ float mLightRadius; \n \ float mMaxDistance; \n \ }; \n \ \n \ uniform UnifLighting \n \ { \n \ vec4 mGamma; \n \ vec3 mViewDirection; \n \ int mNumLights; \n \ \n \ Light mLights[MAX_LIGHTS]; \n \ } Lighting; \n \ \n \ uniform UnifMaterial \n \ { \n \ vec4 mDiffuseColor; \n \ vec4 mAmbientColor; \n \ vec4 mSpecularColor; \n \ vec4 mEmissiveColor; \n \ \n \ bool mHasDiffuseTexture; \n \ bool mHasNormalTexture; \n \ bool mLightingEnabled; \n \ float mSpecularShininess; \n \ } Material; \n \ \n \ uniform sampler2D unifDiffuseTexture; \n \ uniform sampler2D unifNormalTexture; \n \ \n \ in vec3 frag_position; \n \ in vec3 frag_normal; \n \ in vec2 frag_texcoord; \n \ in vec3 frag_tangent; \n \ in vec3 frag_bitangent; \n \ \n \ out vec4 finalColor; " " \n \ \n \ void CalcGaussianSpecular(in vec3 dirToLight, in vec3 normal, out float gaussianTerm) \n \ { \n \ vec3 viewDirection = normalize(Lighting.mViewDirection); \n \ vec3 halfAngle = normalize(dirToLight + viewDirection); \n \ \n \ float angleNormalHalf = acos(dot(halfAngle, normalize(normal))); \n \ float exponent = angleNormalHalf / Material.mSpecularShininess; \n \ exponent = -(exponent * exponent); \n \ \n \ gaussianTerm = exp(exponent); \n \ } \n \ \n \ vec4 CalculateLighting(in Light light, in vec4 diffuseTexture, in vec3 normal) \n \ { \n \ if (light.mLightType == 1) // point light \n \ { \n \ vec3 positionDiff = light.mLightPosition.xyz - frag_position; \n \ float dist = max(length(positionDiff) - light.mLightRadius, 0); \n \ \n \ float attenuation = 1 / ((dist/light.mLightRadius + 1) * (dist/light.mLightRadius + 1)); \n \ attenuation = max((attenuation - light.mMaxDistance) / (1 - light.mMaxDistance), 0); \n \ \n \ vec3 dirToLight = normalize(positionDiff); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (attenuation * angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (attenuation * gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 2) // directional light \n \ { \n \ vec3 dirToLight = normalize(light.mLightDirection.xyz); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 4) // ambient light \n \ return diffuseTexture * Material.mAmbientColor * light.mLightIntensity * light.mLightColor; \n \ else \n \ return vec4(0.0); \n \ } \n \ \n \ void main() \n \ { \n \ vec4 diffuseTexture = vec4(1.0); \n \ if (Material.mHasDiffuseTexture) \n \ diffuseTexture = texture(unifDiffuseTexture, frag_texcoord); \n \ \n \ vec3 normal = frag_normal; \n \ if (Material.mHasNormalTexture) \n \ { \n \ diffuseTexture = vec4(normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0), 1.0); \n \ // vec3 normalTangentSpace = normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0); \n \ //mat3 tangentToWorldSpace = mat3(normalize(frag_tangent), normalize(frag_bitangent), normalize(frag_normal)); \n \ \n \ // normal = tangentToWorldSpace * normalTangentSpace; \n \ } \n \ \n \ if (Material.mLightingEnabled) \n \ { \n \ vec4 accumLighting = vec4(0.0); \n \ \n \ for (int lightIndex = 0; lightIndex < Lighting.mNumLights; lightIndex++) \n \ accumLighting += Material.mEmissiveColor * diffuseTexture + \n \ CalculateLighting(Lighting.mLights[lightIndex], diffuseTexture, normal); \n \ \n \ finalColor = pow(accumLighting, Lighting.mGamma); \n \ } \n \ else { \n \ finalColor = pow(diffuseTexture, Lighting.mGamma); \n \ } \n \ } \n"; Why is this? does normal-map textures need some sort of special treatment in opengl?

    Read the article

  • 3D rotation tool. How can I add simple extrusion?

    - by Gerve
    The 3D rotation tool is excellent but it only lets you rotate 2D objects, this means my object is wafer thin. Is there any way to add simple extrusion or depth to a symbol? I don't really want to use any 3rd party libraries like Away3D or Papervision, this is overkill for my simple 2D game. I only want to do this creating a couple motion tweens if possible. More Details: Below is what my symbol looks like (just with a bit more color). The symbol does a little 3D rotation and then flies away, it's just for something like a scoreboard within the app.

    Read the article

  • How can I support objects larger than a single tile in a 2D tile engine?

    - by Yheeky
    I´m currently working on a 2D Engine containing an isometric tile map. It´s running quite well but I'm not sure if I´ve chosen the best approach for that kind of engine. To give you an idea what I´m thinking about right now, let's have a look at a basic object for a tile map and its objects: public class TileMap { public List<MapRow> Rows = new List<MapRow>(); public int MapWidth = 50; public int MapHeight = 50; } public class MapRow { public List<MapCell> Columns = new List<MapCell>(); } public class MapCell { public int TileID { get; set; } } Having those objects it's just possible to assign a tile to a single MapCell. What I want my engine to support is like having groups of MapCells since I would like to add objects to my tile map (e.g. a house with a size of 2x2 tiles). How should I do that? Should I edit my MapCell object that it may has a reference to other related tiles and how can I find an object while clicking on single MapCells? Or should I do another approach using a global container with all objects in it?

    Read the article

  • Visualization tools for physical simulations

    - by Nick
    I'm interested in starting some physics simulations and I'm getting hung up on the visualization side of things. I have lots of resources for reading how to implement the simulation itself but I'd rather not learn two things at once - the simulation part and a new complex visualization API. Are there any high-level visualization tools that are language independent? I understand that I'll have to learn some new code for visualization but I'd like to start at a high level, OpenGL is my long-term goal and not my prototype goal.

    Read the article

  • Thread safe double buffering

    - by kdavis8
    I am trying to implement a draw map method that will draw the tiled image across the surface of the component. I'm having issue with this code. The double buffering does not seem to be working, because the sprite flickers like crazy; my source code: package myPackage; import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Toolkit; import java.awt.image.BufferStrategy; import java.awt.image.BufferedImage; import javax.swing.JFrame; public class GameView extends JFrame implements Runnable { public BufferedImage backbuffer; public Graphics2D g2d; public Image img; Thread gameloop; Scene scene; public GameView() { super("Game View"); setSize(600, 600); setVisible(true); setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); backbuffer = new BufferedImage(getWidth(), getHeight(), BufferedImage.TYPE_INT_RGB); g2d = backbuffer.createGraphics(); Toolkit tk = Toolkit.getDefaultToolkit(); img = tk.getImage(this.getClass().getResource("cage.png")); scene = new Scene(g2d, this); gameloop = new Thread(this); gameloop.start(); } public static void main(String args[]) { new GameView(); } public void paint(Graphics g) { g.drawImage(backbuffer, 0, 0, this); repaint(); } @Override public void run() { // TODO Auto-generated method stub Thread t = Thread.currentThread(); while (t == gameloop) { scene.getScene("dirtmap"); g2d.drawImage(img, 80, 80,this![enter image description here][1]); } } private void drawScene(String string) { // TODO Auto-generated method stub // g2d.setColor(Color.white); // g2d.fillRect(0, 0, getWidth(), getHeight()); scene.getScene(string); } } package myPackage; import java.awt.Color; import java.awt.Component; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Toolkit; public class Scene { Graphics g2d; Component c; boolean loaded = false; public Scene(Graphics2D gr, Component co) { g2d = gr; c = co; } public void getScene(String mapName) { Toolkit tk = Toolkit.getDefaultToolkit(); Image tile = tk.getImage(this.getClass().getResource("dirt.png")); // g2d.setColor(Color.red); for (int y = 0; y <= 18; y++) { for (int x = 0; x <= 18; x += 1) { g2d.drawImage(tile, x * 32, y * 32, c); } } loaded = true; } }

    Read the article

  • Taking fixed direction on hemisphere and project to normal (openGL)

    - by Maik Xhani
    I am trying to perform sampling using hemisphere around a surface normal. I want to experiment with fixed directions (and maybe jitter slightly between frames). So I have those directions: vec3 sampleDirections[6] = {vec3(0.0f, 1.0f, 0.0f), vec3(0.0f, 0.5f, 0.866025f), vec3(0.823639f, 0.5f, 0.267617f), vec3(0.509037f, 0.5f, -0.700629f), vec3(-0.509037f, 0.5f, -0.700629), vec3(-0.823639f, 0.5f, 0.267617f)}; now I want the first direction to be projected on the normal and the others accordingly. I tried these 2 codes, both failing. This is what I used for random sampling (it doesn't seem to work well, the samples seem to be biased towards a certain direction) and I just used one of the fixed directions instead of s (here is the code of the random sample, when i used it with the fixed direction i didn't use theta and phi). vec3 CosWeightedRandomHemisphereDirection( vec3 n, float rand1, float rand2 ) float theta = acos(sqrt(1.0f-rand1)); float phi = 6.283185f * rand2; vec3 s = vec3(sin(theta) * cos(phi), sin(theta) * sin(phi), cos(theta)); vec3 v = normalize(cross(n,vec3(0.0072, 1.0, 0.0034))); vec3 u = cross(v, n); u = s.x*u; v = s.y*v; vec3 w = s.z*n; vec3 direction = u+v+w; return normalize(direction); } ** EDIT ** This is the new code vec3 FixedHemisphereDirection( vec3 n, vec3 sampleDir) { vec3 x; vec3 z; if(abs(n.x) < abs(n.y)){ if(abs(n.x) < abs(n.z)){ x = vec3(1.0f,0.0f,0.0f); }else{ x = vec3(0.0f,0.0f,1.0f); } }else{ if(abs(n.y) < abs(n.z)){ x = vec3(0.0f,1.0f,0.0f); }else{ x = vec3(0.0f,0.0f,1.0f); } } z = normalize(cross(x,n)); x = cross(n,z); mat3 M = mat3( x.x, n.x, z.x, x.y, n.y, z.y, x.z, n.z, z.z); return M*sampleDir; } So if my n = (0,0,1); and my sampleDir = (0,1,0); shouldn't the M*sampleDir be (0,0,1)? Cause that is what I was expecting.

    Read the article

  • how to create 2D collision detection

    - by Aidan Mueller
    I would like to know the best or most effective way to test for 2D collision. I also can do AABBs but when you have a line, for example, that is rotated 45º, and it is really long. it will be hitting things when it shouldn't. I might be able to go through the pixels to see if they are touching others, but that might be slow if I had a big picture. and it might add some complications if I had a movie clip made of several images. How do I check collision between two Images? How would I do circle to box? Please help : ) PS: I do know java so you can write with java syntax and then use a made up GL

    Read the article

  • OpenGL camera moves faster than player

    - by opiop65
    I have a side scroller game made in OpenGL, and I'm trying to center the player in the viewport when he moves. I know how to do it: cameraX = Width / 2 / TileSize - playerPosX cameraY = Height / 2 / TileSize - playerPosY However, I have a problem. The player and "camera" move, but the player moves faster than the "camera" scrolls. So, the player can actually move out of the screen. Some code, this is how I translate the camera: public Camera(){ } public void update(Player p){ glTranslatef(-p.getPos().x - Main.WIDTH / 64 / 2, -p.getPos().y - Main.HEIGHT / 64 / 2, 1); } Here's how I move the player: public void update(){ if(Keyboard.isKeyDown(Keyboard.KEY_D)){ this.move(MOVESPEED, 0); } if(Keyboard.isKeyDown(Keyboard.KEY_A)){ this.move(-MOVESPEED, 0); } } The move method: public void move(float x, float y){ this.getPos().set(this.getPos().x + x, this.getPos().y + y); } And then after I move the player, I update the player's geometry, which shouldn't matter. What am I doing wrong here, this seems like such a simple problem, yet it doesn't work!

    Read the article

  • Clientside anticheating in multiplayer game 1vs1

    - by garnav
    I'm developing a simple card game, where there will be a matchmaking system that will put you against another human player. This will be the only game mode available, a 1vs1 against another human, no AI. I want to prevent cheating as much as possible. I have already read a lot of similar questions here and I already know that I cannot trust the client and I have to make all verifications server side. I intend to have a server (need one for the matchmaking anyway) and I intend to make some verifications server side but if I want to check everything server side this makes my server to be able to keep track of the state of all current games and check every action, and I don't have the money/infrastructure to support that server. My idea is to make clients check and verify some of the actions made by their opponent* and if they find some illegal action notify the possible cheating to the server and make the server verify it. This will still require my server to keep track of all current games, but it will save resources only checking some things that cannot be checked at client side(like card order in the deck) and only checking other things when they are actually wrong. *(only those they can check with out allowing themselves cheating! for example:they can't check if the played card was in hand cos that will need them to know all cards in hand) Summing up, my questions are: is this a viable approach? will I actually save resources doing this or the extra complexity in the server and client for exchanging this messages is not worth it? do you know any game that has successfully or unsuccessfully tried a similar approach? Thanks all for reading and answering

    Read the article

  • Decal implementation

    - by dreta
    I had issues finding information about decals, so maybe this question will help others. The implementation is for a forward renderer. Could somebody confirm if i got decal implementation right? You define a cube of any dimension that'll define the projection volume in common space. You check for triangle intersection with the defined cube to recieve triangles that the projection will affect. You clip these triangles and save them. You then use matrix tricks to calculate UV coordinates for the saved triangles that'll reference the texture you're projecting. To do this you take the vectors representing height, width and depth of the cube in common space, so that f.e. the bottom left corner is the origin. You put that in a matrix as the i, j, k unit vectors, set the translation for the cube, then you inverse this matrix. You multiply the vertices of the saved triangles by this matrix, that way you get their coordinates inside of a 0 to 1 size cube that you use as the UV coordinates. This way you have the original triangles you're projecting onto and you have UV coordinates for them (the UV coordinates are referencing the texture you're projecting). Then you rerender the saved triangles onto the scene and they overwrite the area of projection with the projected image. Now the questions that i couldn't find answers for. Is the last point right? I've never done software clipping, but it seems error prone enough, due to limited precision, that the'll be some z fighting occuring for the projected texture. Also is the way of getting UV coordinates correct?

    Read the article

  • Good baseline size for an A* Search grid?

    - by Jo-Herman Haugholt
    I'm working on a grid based game/prototype with a continuous open map, and are currently considering what size to make each segment. I've seen some articles mention different sizes, but most of them is really old, so I'm unsure how well they map to the various platforms and performance demands common today. As for the project, it's a hybrid of 2D and 3D, but for path-finding purposes, the majority of searches would be approximately 2D. From a graphics perspective, the minimum segment size would be 64x64 in the XZ plane to minimize loaded segments while ensuring full screen coverage. I figure pathfinding would be an important indicator of maximum practical size.

    Read the article

  • How to create a fountain in UDK

    - by user36425
    I'm trying to make a fountain in my level in UDK, I made the base of the fountain by using a Cylinder build and now I'm trying to put water in it. I went to use the fluidSurfaceActor but I notice that this is square but my fountain is a cylinder. Is there a way that I can change the shape of the fluidSurfaceActor to fit the builder brush shape or is there another way to do this? Or is it hopeless and I have to make my fountain into a cube? Here is a link/picture to the screenprint of what I'm talking about:

    Read the article

  • Blending textures together, texture fade over / fade in

    - by Deukalion
    What is the best way to render a texture overlapping effect? Like in this example: I want either the grass to fade in to the snow texture, or the other way around. No rough edges. Somehow make them blend over. So the grass has a bit of snow or the snow has a bit of grass How is this possible during runtime? If that's possible. I don't render this by using the SpriteBatch, since the ground isn't rectangles (they can be moved). This is the way I render each shape (each one of those squares): // LoadTexture // Apply EffectPass device.DrawUserIndexedPrimitives<VertexPositionNormalTexture> ( PrimitiveType.TriangleList, render.Item.Points, // Array of VertexPositionNormalTexture 0, render.Item.Points.Length, render.Item.Indexes, // Array of int indexes (triangulation) 0, render.Item.Indexes.Length / 3, VertexPositionNormalTexture.VertexDeclaration );

    Read the article

  • SlimDX and Parsing .X Files

    - by P. Avery
    I'm trying to parse a .x file using SlimDX. I can create the XFile object and register templates but I'm having problems with the enumeration object. The enumeration object has a child count of 0 for a file I know to have valid data. Here is code to create file, enumeration, and data objects: public void Parse(string filename, string templates, ref Frame aParam) { XFile xfile = null; XFileEnumerationObject enumObj = null; XFileData dataObj = null; // create file object xfile = new XFile(); // register templates if (xfile.RegisterTemplates(XFile.DefaultTemplates).IsFailure) { Console.WriteLine(Result.Last); xfile.Dispose(); return; } // create enumeration object enumObj = xfile.CreateEnumerationObject(filename, System.Runtime.InteropServices.CharSet.Auto); if (enumObj == null) { xfile.Dispose(); return; } // get child count( returns 0 here ) long ncElements = enumObj.ChildCount; for (int i = 0; i < ncElements; ++i) { // never reached... dataObj = enumObj.GetChild(i); if (dataObj.IsReference) continue; try { Parse(dataObj, ref aParam); } catch (Exception e) { e.Write(); } finally { dataObj.Dispose(); } } enumObj.Dispose(); xfile.Dispose(); } ...There are no exceptions thrown by this function...the child count is 0 so the conditional loop breaks right away, the file objects are disposed of and the function returns... Here is .x file...a simple cube: xof 0303txt 0032 Frame Root { FrameTransformMatrix { 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000;; } Frame Cube { FrameTransformMatrix { 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000;; } Mesh Cube{ //Cube Mesh 36; -1.000000; 1.000000; 1.000000;, -1.000000;-1.000000; 1.000000;, 0.999999;-1.000001; 1.000000;, -1.000000;-1.000000;-1.000000;, 1.000000;-1.000000;-1.000000;, 0.999999;-1.000001; 1.000000;, 1.000000; 0.999999; 1.000000;, -1.000000; 1.000000; 1.000000;, 0.999999;-1.000001; 1.000000;, -1.000000; 1.000000;-1.000000;, -1.000000;-1.000000;-1.000000;, -1.000000; 1.000000; 1.000000;, -1.000000; 1.000000; 1.000000;, 1.000000; 0.999999; 1.000000;, 1.000000; 1.000000;-1.000000;, 1.000000; 0.999999; 1.000000;, 0.999999;-1.000001; 1.000000;, 1.000000;-1.000000;-1.000000;, -1.000000;-1.000000;-1.000000;, -1.000000;-1.000000; 1.000000;, -1.000000; 1.000000; 1.000000;, 1.000000; 1.000000;-1.000000;, 1.000000;-1.000000;-1.000000;, -1.000000; 1.000000;-1.000000;, 1.000000; 1.000000;-1.000000;, 1.000000; 0.999999; 1.000000;, 1.000000;-1.000000;-1.000000;, -1.000000; 1.000000;-1.000000;, -1.000000; 1.000000; 1.000000;, 1.000000; 1.000000;-1.000000;, -1.000000;-1.000000; 1.000000;, -1.000000;-1.000000;-1.000000;, 0.999999;-1.000001; 1.000000;, 1.000000;-1.000000;-1.000000;, -1.000000;-1.000000;-1.000000;, -1.000000; 1.000000;-1.000000;; 12; 3;0;1;2;, 3;3;4;5;, 3;6;7;8;, 3;9;10;11;, 3;12;13;14;, 3;15;16;17;, 3;18;19;20;, 3;21;22;23;, 3;24;25;26;, 3;27;28;29;, 3;30;31;32;, 3;33;34;35;; MeshNormals { //Mesh Normals 36; 0.000000;-0.000000; 1.000000;, 0.000000;-0.000000; 1.000000;, 0.000000;-0.000000; 1.000000;, -0.000000;-1.000000;-0.000000;, -0.000000;-1.000000;-0.000000;, -0.000000;-1.000000;-0.000000;, -0.000000;-0.000000; 1.000000;, -0.000000;-0.000000; 1.000000;, -0.000000;-0.000000; 1.000000;, -1.000000; 0.000000;-0.000000;, -1.000000; 0.000000;-0.000000;, -1.000000; 0.000000;-0.000000;, 0.000000; 1.000000; 0.000000;, 0.000000; 1.000000; 0.000000;, 0.000000; 1.000000; 0.000000;, 1.000000;-0.000001; 0.000000;, 1.000000;-0.000001; 0.000000;, 1.000000;-0.000001; 0.000000;, -1.000000; 0.000000;-0.000000;, -1.000000; 0.000000;-0.000000;, -1.000000; 0.000000;-0.000000;, 0.000000; 0.000000;-1.000000;, 0.000000; 0.000000;-1.000000;, 0.000000; 0.000000;-1.000000;, 1.000000; 0.000000;-0.000000;, 1.000000; 0.000000;-0.000000;, 1.000000; 0.000000;-0.000000;, 0.000000; 1.000000; 0.000000;, 0.000000; 1.000000; 0.000000;, 0.000000; 1.000000; 0.000000;, -0.000000;-1.000000; 0.000000;, -0.000000;-1.000000; 0.000000;, -0.000000;-1.000000; 0.000000;, 0.000000;-0.000000;-1.000000;, 0.000000;-0.000000;-1.000000;, 0.000000;-0.000000;-1.000000;; 12; 3;0;1;2;, 3;3;4;5;, 3;6;7;8;, 3;9;10;11;, 3;12;13;14;, 3;15;16;17;, 3;18;19;20;, 3;21;22;23;, 3;24;25;26;, 3;27;28;29;, 3;30;31;32;, 3;33;34;35;; } //End of Mesh Normals MeshMaterialList { //Mesh Material List 1; 12; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;; Material Material { 0.640000; 0.640000; 0.640000; 1.000000;; 96.078431; 0.500000; 0.500000; 0.500000;; 0.000000; 0.000000; 0.000000;; TextureFilename {"Yellow.jpg";} } } //End of Mesh Material List MeshTextureCoords UVMap{ //Mesh UV Coordinates 36; 0.000000; 1.000000;, 1.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 1.000000;, 0.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 1.000000;, 1.000000; 0.000000;, 1.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 0.000000;, 0.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 1.000000;, 1.000000; 0.000000;; } //End of Mesh UV Coordinates } //End of Mesh Mesh } //End of Cube } //End of Root Frame

    Read the article

  • AS3 Stage3D Mouse click problem?

    - by Martin K
    I have a problem with Mouse interaction and Stage3D. The only way I found to register to listen to mouse clicks and interact with Stage3D, is to add a mouse eventListener directly to the .stage. However this will result in any time i click anywhere in the flash application the mouse click will fire, even if there is an overlaid 2D menu where the user intended to click. IE I have a 3D application running in the background, which listens to clicks, and I have some floating User Interface elements in the foreground, and ideally if I clicked a button in the foreground, then that would NOT fire a click event that the Stage3D would register. Any idea how to solve this problem?

    Read the article

  • UDK game Prisoners/Guards

    - by RR_1990
    For school I need to make a little game with UDK, the concept of the game is: The player is the headguard, he will have some other guard (bots) who will follow him. Between the other guards and the player are some prisoners who need to evade the other guards. It needs to look like this My idea was to let the guard bots follow the player at a certain distance and let the prisoners bots in the middle try to evade the guard bots. Now is the problem i'm new to Unreal Script and the school doesn't support me that well. Untill now I have only was able to make the guard bots follow me. I hope you guys can help me or make me something that will make this game work. Here is the class i'm using to let te bots follow me: class ChaseControllerAI extends AIController; var Pawn player; var float minimalDistance; var float speed; var float distanceToPlayer; var vector selfToPlayer; auto state Idle { function BeginState(Name PreviousStateName) { Super.BeginState(PreviousStateName); } event SeePlayer(Pawn p) { player = p; GotoState('Chase'); } Begin: player = none; self.Pawn.Velocity.x = 0.0; self.Pawn.Velocity.Y = 0.0; self.Pawn.Velocity.Z = 0.0; } state Chase { function BeginState(Name PreviousStateName) { Super.BeginState(PreviousStateName); } event PlayerOutOfReach() { `Log("ChaseControllerAI CHASE Player out of reach."); GotoState('Idle'); } // class ChaseController extends AIController; CONTINUED // State Chase (continued) event Tick(float deltaTime) { `Log("ChaseControllerAI in Event Tick."); selfToPlayer = self.player.Location - self.Pawn.Location; distanceToPlayer = Abs(VSize(selfToPlayer)); if (distanceToPlayer > minimalDistance) { PlayerOutOfReach(); } else { self.Pawn.Velocity = Normal(selfToPlayer) * speed; //self.Pawn.Acceleration = Normal(selfToPlayer) * speed; self.Pawn.SetRotation(rotator(selfToPlayer)); self.Pawn.Move(self.Pawn.Velocity*0.001); // or *deltaTime } } Begin: `Log("Current state Chase:Begin: " @GetStateName()@""); } defaultproperties { bAdjustFromWalls=true; bIsPlayer= true; minimalDistance = 1024; //org 1024 speed = 500; }

    Read the article

  • Sliding collision response

    - by dbostream
    I have been reading plenty of tutorials about sliding collision responses yet I am not able to implement it properly in my project. What I want to do is make a puck slide along the rounded corner boards of a hockey rink. In my latest attempt the puck does slide along the boards but there are some strange velocity behaviors. First of all the puck slows down a lot pretty much right away and then it slides for awhile and stops before exiting the corner. Even if I double the speed I get a similar behavior and the puck does not make it out of the corner. I used some ideas from this document http://www.peroxide.dk/papers/collision/collision.pdf. This is what I have: Update method called from the game loop when it is time to update the puck (I removed some irrelevant parts). I use two states (current, previous) which are used to interpolate the position during rendering. public override void Update(double fixedTimeStep) { /* Acceleration is set to 0 for now. */ Acceleration.Zero(); PreviousState = CurrentState; _collisionRecursionDepth = 0; CurrentState.Position = SlidingCollision(CurrentState.Position, CurrentState.Velocity * fixedTimeStep + 0.5 * Acceleration * fixedTimeStep * fixedTimeStep); /* Should not this be affected by a sliding collision? and not only the position. */ CurrentState.Velocity = CurrentState.Velocity + Acceleration * fixedTimeStep; Heading = Vector2.NormalizeRet(CurrentState.Velocity); } private Vector2 SlidingCollision(Vector2 position, Vector2 velocity) { if(_collisionRecursionDepth > 5) return position; bool collisionFound = false; Vector2 futurePosition = position + velocity; Vector2 intersectionPoint = new Vector2(); Vector2 intersectionPointNormal = new Vector2(); /* I did not include the collision detection code, if a collision is detected the intersection point and normal in that point is returned. */ if(!collisionFound) return futurePosition; /* If no collision was detected it is safe to move to the future position. */ /* It is not exactly the intersection point, but slightly before. */ Vector2 newPosition = intersectionPoint; /* oldVelocity is set to the distance from the newPosition(intersection point) to the position it had moved to had it not collided. */ Vector2 oldVelocity = futurePosition - newPosition; /* Project the distance left to move along the intersection normal. */ Vector2 newVelocity = oldVelocity - intersectionPointNormal * oldVelocity.DotProduct(intersectionPointNormal); if(newVelocity.LengthSq() < 0.001) return newPosition; /* If almost no speed, no need to continue. */ _collisionRecursionDepth++; return SlidingCollision(newPosition, newVelocity); } What am I doing wrong with the velocity? I have been staring at this for very long so I have gone blind. I have tried different values of recursion depth but it does not seem to make it better. Let me know if you need more information. I appreciate any help. EDIT: A combination of Patrick Hughes' and teodron's answers solved the velocity problem (I think), thanks a lot! This is the new code: I decided to use a separate recursion method now too since I don't want to recalculate the acceleration in each recursion. public override void Update(double fixedTimeStep) { Acceleration.Zero();// = CalculateAcceleration(fixedTimeStep); PreviousState = new MovingEntityState(CurrentState.Position, CurrentState.Velocity); CurrentState = SlidingCollision(CurrentState, fixedTimeStep); Heading = Vector2.NormalizeRet(CurrentState.Velocity); } private MovingEntityState SlidingCollision(MovingEntityState state, double timeStep) { bool collisionFound = false; /* Calculate the next position given no detected collision. */ Vector2 futurePosition = state.Position + state.Velocity * timeStep; Vector2 intersectionPoint = new Vector2(); Vector2 intersectionPointNormal = new Vector2(); /* I did not include the collision detection code, if a collision is detected the intersection point and normal in that point is returned. */ /* If no collision was detected it is safe to move to the future position. */ if (!collisionFound) return new MovingEntityState(futurePosition, state.Velocity); /* Set new position to the intersection point (slightly before). */ Vector2 newPosition = intersectionPoint; /* Project the new velocity along the intersection normal. */ Vector2 newVelocity = state.Velocity - 1.90 * intersectionPointNormal * state.Velocity.DotProduct(intersectionPointNormal); /* Calculate the time of collision. */ double timeOfCollision = Math.Sqrt((newPosition - state.Position).LengthSq() / (futurePosition - state.Position).LengthSq()); /* Calculate new time step, remaining time of full step after the collision * current time step. */ double newTimeStep = timeStep * (1 - timeOfCollision); return SlidingCollision(new MovingEntityState(newPosition, newVelocity), newTimeStep); } Even though the code above seems to slide the puck correctly please have a look at it. I have a few questions, if I don't multiply by 1.90 in the newVelocity calculation it doesn't work (I get a stack overflow when the puck enters the corner because the timeStep decreases very slowly - a collision is found early in every recursion), why is that? what does 1.90 really do and why 1.90? Also I have a new problem, the puck does not move parallell to the short side after exiting the curve; to be more exact it moves outside the rink (I am not checking for any collisions with the short side at the moment). When I perform the collision detection I first check that the puck is in the correct quadrant. For example bottom-right corner is quadrant four i.e. circleCenter.X < puck.X && circleCenter.Y puck.Y is this a problem? or should the short side of the rink be the one to make the puck go parallell to it and not the last collision in the corner? EDIT2: This is the code I use for collision detection, maybe it has something to do with the fact that I can't make the puck slide (-1.0) but only reflect (-2.0): /* Point is the current position (not the predicted one) and quadrant is 4 for the bottom-right corner for example. */ if (GeometryHelper.PointInCircleQuadrant(circleCenter, circleRadius, state.Position, quadrant)) { /* The line is: from = state.Position, to = futurePosition. So a collision is detected when from is inside the circle and to is outside. */ if (GeometryHelper.LineCircleIntersection2d(state.Position, futurePosition, circleCenter, circleRadius, intersectionPoint, quadrant)) { collisionFound = true; /* Set the intersection point to slightly before the real intersection point (I read somewhere this was good to do because of floting point precision, not sure exactly how much though). */ intersectionPoint = intersectionPoint - Vector2.NormalizeRet(state.Velocity) * 0.001; /* Normal at the intersection point. */ intersectionPointNormal = Vector2.NormalizeRet(circleCenter - intersectionPoint) } } When I set the intersection point, if I for example use 0.1 instead of 0.001 the puck travels further before it gets stuck, but for all values I have tried (including 0 - the real intersection point) it gets stuck somewhere (but I necessarily not get a stack overflow). Can something in this part be the cause of my problem? I can see why I get the stack overflow when using -1.0 when calculating the new velocity vector; but not how to solve it. I traced the time steps used in the recursion (initial time step is always 1/60 ~ 0.01666): Recursion depth Time step next recursive call [Start recursion, time step ~ 0.016666] 0 0,000985806527246773 [No collision, stop recursion] [Start recursion, time step ~ 0.016666] 0 0,0149596704364629 1 0,0144883449376379 2 0,0143155612984837 3 0,014224925727213 4 0,0141673917461608 5 0,0141265435314026 6 0,0140953966184117 7 0,0140704653746625 ...and so on. As you can see the collision is detected early in every recursive call which means the next time step decreases very slowly thus the recursion depth gets very big - stack overflow.

    Read the article

  • Calculate the Intersection of Two Volumes

    - by igrad
    If you've ever played The Swapper, you'll have a good idea of what I'm asking about. I need to check for, and isolate, areas of a rectangle that may intersect with either a circle or another rectangle. These selected areas will receive special properties, and the areas will be non-static, since the intersecting shapes themselves will also be dynamic. My first thought was to use raycasting detection, though I've only seen that in use with circles, or even ellipses. I'm curious if there's a method of using raycasting with a more rectangular approach, or if there's a totally different method already in use to accomplish this task. I would like something more exact than checking in large chunks, and since I'm using SDL2 with a logical renderer size of 1920x1080, checking if each pixel is intersecting is out of the question, as it would slow things down past a playable speed. I already have a multi-shape collision function-template in place, and I could use that, though it only checks if sides or corners are intersecting; it does not compute the overlapping area, or even find the circle's secant line, though I can't imagine it would be overly complex to implement. TL;DR: I need to find and isolate areas of a rectangle that may intersect with a circle or another rectangle without checking every single pixel on-screen.

    Read the article

  • State of the art Culling and Batching techniques in rendering

    - by Kristian Skarseth
    I'm currently working with upgrading and restructuring an OpenGL render engine. The engine is used for visualising large scenes of architectural data (buildings with interior), and the amount of objects can become rather large. As is the case with any building, there is a lot of occluded objects within walls, and you naturally only see the objects that are in the same room as you, or the exterior if you are on the outside. This leaves a large number of objects that should be occluded through occlusion culling and frustum culling. At the same time there is a lot of repetative geometry that can be batched in renderbatches, and also a lot of objects that can be rendered with instanced rendering. The way I see it, it can be difficult to combine renderbatching and culling in an optimal fashion. If you batch too many objects in the same VBO it's difficult to cull the objects on the CPU in order to skip rendering that batch. At the same time if you skip the culling on the cpu, a lot of objects will be processed by the GPU while they are not visible. If you skip batching copletely in order to more easily cull on the CPU, there will be an unwanted high amount of render calls. I have done some research into existing techniques and theories as to how these problems are solved in modern graphics, but I have not been able to find any concrete solution. An idea a colleague and me came up with was restricting batches to objects relatively close to eachother e.g all chairs in a room or within a radius of n meeters. This could be simplified and optimized through use of oct-trees. Does anyone have any pointers to techniques used for scene managment, culling, batching etc in state of the art modern graphics engines?

    Read the article

< Previous Page | 427 428 429 430 431 432 433 434 435 436 437 438  | Next Page >