Search Results

Search found 1995 results on 80 pages for 'retro computing'.

Page 44/80 | < Previous Page | 40 41 42 43 44 45 46 47 48 49 50 51  | Next Page >

  • matlab on laptop [closed]

    - by bill
    I would to get any opnion regarding which of the two laptop configuration is best for running Matlab with (by running matlab I do not mean graphic simulation): HP EliteBook 8570p - Intel® Core™ i5-3210M (2.50 GHz, 3 MB L3 cache, 2 cores) Chipset Mobile Intel® QM77 Express 4 GB 1600 MHz DDR3 SDRAM OR HP g6-2090ej - 2.1 GHz Intel Core i7-3612QM 6 MB L3 cache 8 GB DDR3 The second one is i7 but the first one is the Elitbook series which is a "workstation". Which will be the best for Matlab computation (no graphic simulation only computing matrix etc.)?

    Read the article

  • Changing MS Project to 20-hour or 30-hour week.

    - by Eric
    I'm working on a project in MS Project and the default is a 40-hour week. I'm putting each individual task in based on a number of hours, not days. I'd like to have the whole thing set up and computing at 40-hour weeks, and then change it to 20 hours and have the project recompute. How do I do this? I think it has something to do with changing the "project calendar" but I can't quite figure it out.

    Read the article

  • GIT not functionnal on Mac OS X Lion?

    - by user1187727
    I am trying to use GIT to manage my computing projects. But all commands using GIT do not respond on my terminal. For example if I try git --version followed by entry keyboard typing, a blank line appear and wait until ever. If I type again the entry key on my keyboard the command line is again available but nothing appear. It's the same for all git function that I type. Do you have any solution or explanation for this ?

    Read the article

  • Stark Expo Needs You

    - by [email protected]
    Train to Become a Master Cloud Operative Can't wait until September to get your Oracle fix? Then come visit us at the Stark Expo now. Marvel Entertainment has turned itself into one of the hottest media companies of the digital age, and at the heart of Marvel's growth and transformation is Oracle technology. Now, this successful collaboration finds its way to the big screen, as Oracle joins forces with Marvel to launch a special showcase Website and movie trailer for the upcoming Iron Man 2. In Iron Man 2, Oracle is a proud sponsor of Stark Expo, a world-class tradeshow that depends on a cloud computing architecture to ensure that systems are free from overload. Starting today, visitors to the showcase Website are invited to become Master Cloud Operatives and keep Stark Expo up and running. Complete your training, test your troubleshooting skills in the Oracle Pavilion, and qualify to receive a free movie poster.

    Read the article

  • Evolution of Apple: A Fan Spliced Mega Tribute to the Apple Product Lineup

    - by Jason Fitzpatrick
    Whether you’re an Apple fan or not, this 3.5 minute tribute to the evolution of Apple products is a neat look back at decades of computing history and iconic design. Put together by Apple fan August Brandels, the video splices together Apple commercials and promotional footage from the last 30 years (remixed against the catchy background tune Silhouettes by Avicii) into a mega tribute to the computer giant. If nothing else they should hire the guy to do motivational videos for annual employee meetings. [via Tech Crunch] HTG Explains: How Antivirus Software Works HTG Explains: Why Deleted Files Can Be Recovered and How You Can Prevent It HTG Explains: What Are the Sys Rq, Scroll Lock, and Pause/Break Keys on My Keyboard?

    Read the article

  • O&rsquo;Reilly Deal of the Day 14/Aug/2014 - RESTful Web APIs

    - by TATWORTH
    Originally posted on: http://geekswithblogs.net/TATWORTH/archive/2014/08/14/orsquoreilly-deal-of-the-day-14aug2014---restful-web-apis.aspxToday’s half-price Deal of the Day from O’Reilly at http://shop.oreilly.com/product/0636920028468.do?code=DEAL is RESTful Web APIs. “The popularity of REST in recent years has led to tremendous growth in almost-RESTful APIs that don’t include many of the architecture’s benefits. With this practical guide, you’ll learn what it takes to design usable REST APIs that evolve over time. By focusing on solutions that cross a variety of domains, this book shows you how to create powerful and secure applications, using the tools designed for the world’s most successful distributed computing system: the World Wide Web.”

    Read the article

  • James Atkinson - New Blog Home

    - by jatkinson
    I'm migrating my blog that is currently hosted over at vbCity.com (which is an outstanding developer community!) to a new home at geekswithblogs.net. I truly appreciate the comradery of Serge B, Ged Mead, and the other team members at the "City". What you can expect to find here (my interests): Most .NET programming topics General computing Language examples in C#, VB.NET, and Boo WCF WPF Mathematical / GPS solutions F# (in progress... if you can say that much) Obsessed with code performance (speed) Some photography My background: Kansas State University Grad (Agriculture Technology Management) From Richmond, VA Self taught programmer (started with C# in VS2002) NOT a professional programmer (enables free thinking?!)  I'm no Jeff Atwood or Beth Massi, but you should expect to see some interesting stuff to follow.

    Read the article

  • Ask How-To Geek: Clone a Disk, Resize Static Windows, and Create System Function Shortcuts

    - by Jason Fitzpatrick
    This week we take a look at how to clone a hard disk for easy backup or duplication, resize stubbornly static windows, and create shortcuts for dozens of Windows functions. Once a week we dip into our reader mailbag and help readers solve their problems, sharing the useful solutions with you in the process. Read on to see our fixes for this week’s reader dilemmas. Latest Features How-To Geek ETC HTG Projects: How to Create Your Own Custom Papercraft Toy How to Combine Rescue Disks to Create the Ultimate Windows Repair Disk What is Camera Raw, and Why Would a Professional Prefer it to JPG? The How-To Geek Guide to Audio Editing: The Basics How To Boot 10 Different Live CDs From 1 USB Flash Drive The 20 Best How-To Geek Linux Articles of 2010 ShapeShifter: What Are Dreams? [Video] This Computer Runs on Geek Power Wallpaper Bones, Clocks, and Counters; A Look at the First 35,000 Years of Computing Arctic Theme for Windows 7 Gives Your Desktop an Icy Touch Install LibreOffice via PPA and Receive Auto-Updates in Ubuntu Creative Portraits Peek Inside the Guts of Modern Electronics

    Read the article

  • juju spends bootstrap-timeout with a final message it cannot find /var/lib/juju/nonce.txt

    - by user285199
    I build two VMware's machines. First one with MAAS, second one with a fresh installation from MAAS. Region controller was installed with Ubuntu 12.04 distribution, and upgraded (. Node computing was installed from MAAS with Quantal 12.10. Juju was installed and upgraded to 1.18 (from ppa:juju/stable repository). MAAS was upgraded from cloud-archive:tools repository. In debug mode, I got how Juju connects to node. Then I run the same instruction: ssh -o "StrictHostKeyChecking no" -o "PasswordAuthentication no" -i /home/lliurex/.juju/ssh/juju_id_rsa -i /home/lliurex/.ssh/id_rsa [email protected] /bin/bash It worked (with and without /bin/bash). When Juju spends all bootstrap-timeout tells it has not found /var/lib/juju/nonce.txt file. It's true, it doesn't exist. It doesn't mind if you put a timeout of 1800, 3600 or 72000, it always finishes the same.

    Read the article

  • Visual Studio 2010 released!

    Visual Studio 2010 releases to the word today. Get the full story from Soma's blog post (inc. links for buy, try etc). Our team is very proud of what we have contributed to this release and you can learn more about it through our content on the Parallel Computing MSDN home. Comments about this post welcome at the original blog. ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Real Life Pixar Lamp Can’t Get Enough Of Human Interaction

    - by Jason Fitzpatrick
    This curious lamp, powered by an Arduino board and servo motors, is just as playful as the on-screen counterpart that inspired its creation. The New Zealand Herald reports on the creation of the lamp, seen in action in the video above: The project is a collaborative effort by Victoria University students Shanshan Zhou, Adam Ben-Gur and Joss Doggett, who met in a Physical Computing class. The lamp’s movements are informed by a webcam with an algorithm working behind it. Robotics and facial recognition technology enable the lamp to search for faces in the images from its webcam. When it spots a face, it follows as if trying to maintain eye contact. How to Access Your Router If You Forget the Password Secure Yourself by Using Two-Step Verification on These 16 Web Services How to Fix a Stuck Pixel on an LCD Monitor

    Read the article

  • Implementing algorithms via compute shaders vs. pipeline shaders

    - by TravisG
    With the availability of compute shaders for both DirectX and OpenGL it's now possible to implement many algorithms without going through the rasterization pipeline and instead use general purpose computing on the GPU to solve the problem. For some algorithms this seems to become the intuitive canonical solution because they're inherently not rasterization based, and rasterization-based shaders seemed to be a workaround to harness GPU power (simple example: creating a noise texture. No quad needs to be rasterized here). Given an algorithm that can be implemented both ways, are there general (potential) performance benefits over using compute shaders vs. going the normal route? Are there drawbacks that we should watch out for (for example, is there some kind of unusual overhead to switching from/to compute shaders at runtime)? Are there perhaps other benefits or drawbacks to consider when choosing between the two?

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • The big dude : server cost € , and the what 'i must look for' question .

    - by Angelus
    Hi again and sorry for the bad title . This time I'm thinking in a big project , and I have a big hole of acknowledge about servers and cost of them (economic cost). The big project consist in a new table game for playing online with bets. Think in it like a poker server that must have a good response to thousands of people at the same time. Then i have the big question , what type of server must i look for? , what features must i see in them? . ¿Must I think in cloud computing? thank you in advance.

    Read the article

  • Scaling-out Your Services by Message Bus based WCF Transport Extension &ndash; Part 1 &ndash; Background

    - by Shaun
    Cloud computing gives us more flexibility on the computing resource, we can provision and deploy an application or service with multiple instances over multiple machines. With the increment of the service instances, how to balance the incoming message and workload would become a new challenge. Currently there are two approaches we can use to pass the incoming messages to the service instances, I would like call them dispatcher mode and pulling mode.   Dispatcher Mode The dispatcher mode introduces a role which takes the responsible to find the best service instance to process the request. The image below describes the sharp of this mode. There are four clients communicate with the service through the underlying transportation. For example, if we are using HTTP the clients might be connecting to the same service URL. On the server side there’s a dispatcher listening on this URL and try to retrieve all messages. When a message came in, the dispatcher will find a proper service instance to process it. There are three mechanism to find the instance: Round-robin: Dispatcher will always send the message to the next instance. For example, if the dispatcher sent the message to instance 2, then the next message will be sent to instance 3, regardless if instance 3 is busy or not at that moment. Random: Dispatcher will find a service instance randomly, and same as the round-robin mode it regardless if the instance is busy or not. Sticky: Dispatcher will send all related messages to the same service instance. This approach always being used if the service methods are state-ful or session-ful. But as you can see, all of these approaches are not really load balanced. The clients will send messages at any time, and each message might take different process duration on the server side. This means in some cases, some of the service instances are very busy while others are almost idle. For example, if we were using round-robin mode, it could be happened that most of the simple task messages were passed to instance 1 while the complex ones were sent to instance 3, even though instance 1 should be idle. This brings some problem in our architecture. The first one is that, the response to the clients might be longer than it should be. As it’s shown in the figure above, message 6 and 9 can be processed by instance 1 or instance 2, but in reality they were dispatched to the busy instance 3 since the dispatcher and round-robin mode. Secondly, if there are many requests came from the clients in a very short period, service instances might be filled by tons of pending tasks and some instances might be crashed. Third, if we are using some cloud platform to host our service instances, for example the Windows Azure, the computing resource is billed by service deployment period instead of the actual CPU usage. This means if any service instance is idle it is wasting our money! Last one, the dispatcher would be the bottleneck of our system since all incoming messages must be routed by the dispatcher. If we are using HTTP or TCP as the transport, the dispatcher would be a network load balance. If we wants more capacity, we have to scale-up, or buy a hardware load balance which is very expensive, as well as scaling-out the service instances. Pulling Mode Pulling mode doesn’t need a dispatcher to route the messages. All service instances are listening to the same transport and try to retrieve the next proper message to process if they are idle. Since there is no dispatcher in pulling mode, it requires some features on the transportation. The transportation must support multiple client connection and server listening. HTTP and TCP doesn’t allow multiple clients are listening on the same address and port, so it cannot be used in pulling mode directly. All messages in the transportation must be FIFO, which means the old message must be received before the new one. Message selection would be a plus on the transportation. This means both service and client can specify some selection criteria and just receive some specified kinds of messages. This feature is not mandatory but would be very useful when implementing the request reply and duplex WCF channel modes. Otherwise we must have a memory dictionary to store the reply messages. I will explain more about this in the following articles. Message bus, or the message queue would be best candidate as the transportation when using the pulling mode. First, it allows multiple application to listen on the same queue, and it’s FIFO. Some of the message bus also support the message selection, such as TIBCO EMS, RabbitMQ. Some others provide in memory dictionary which can store the reply messages, for example the Redis. The principle of pulling mode is to let the service instances self-managed. This means each instance will try to retrieve the next pending incoming message if they finished the current task. This gives us more benefit and can solve the problems we met with in the dispatcher mode. The incoming message will be received to the best instance to process, which means this will be very balanced. And it will not happen that some instances are busy while other are idle, since the idle one will retrieve more tasks to make them busy. Since all instances are try their best to be busy we can use less instances than dispatcher mode, which more cost effective. Since there’s no dispatcher in the system, there is no bottleneck. When we introduced more service instances, in dispatcher mode we have to change something to let the dispatcher know the new instances. But in pulling mode since all service instance are self-managed, there no extra change at all. If there are many incoming messages, since the message bus can queue them in the transportation, service instances would not be crashed. All above are the benefits using the pulling mode, but it will introduce some problem as well. The process tracking and debugging become more difficult. Since the service instances are self-managed, we cannot know which instance will process the message. So we need more information to support debug and track. Real-time response may not be supported. All service instances will process the next message after the current one has done, if we have some real-time request this may not be a good solution. Compare with the Pros and Cons above, the pulling mode would a better solution for the distributed system architecture. Because what we need more is the scalability, cost-effect and the self-management.   WCF and WCF Transport Extensibility Windows Communication Foundation (WCF) is a framework for building service-oriented applications. In the .NET world WCF is the best way to implement the service. In this series I’m going to demonstrate how to implement the pulling mode on top of a message bus by extending the WCF. I don’t want to deep into every related field in WCF but will highlight its transport extensibility. When we implemented an RPC foundation there are many aspects we need to deal with, for example the message encoding, encryption, authentication and message sending and receiving. In WCF, each aspect is represented by a channel. A message will be passed through all necessary channels and finally send to the underlying transportation. And on the other side the message will be received from the transport and though the same channels until the business logic. This mode is called “Channel Stack” in WCF, and the last channel in the channel stack must always be a transport channel, which takes the responsible for sending and receiving the messages. As we are going to implement the WCF over message bus and implement the pulling mode scaling-out solution, we need to create our own transport channel so that the client and service can exchange messages over our bus. Before we deep into the transport channel, let’s have a look on the message exchange patterns that WCF defines. Message exchange pattern (MEP) defines how client and service exchange the messages over the transportation. WCF defines 3 basic MEPs which are datagram, Request-Reply and Duplex. Datagram: Also known as one-way, or fire-forgot mode. The message sent from the client to the service, and no need any reply from the service. The client doesn’t care about the message result at all. Request-Reply: Very common used pattern. The client send the request message to the service and wait until the reply message comes from the service. Duplex: The client sent message to the service, when the service processing the message it can callback to the client. When callback the service would be like a client while the client would be like a service. In WCF, each MEP represent some channels associated. MEP Channels Datagram IInputChannel, IOutputChannel Request-Reply IRequestChannel, IReplyChannel Duplex IDuplexChannel And the channels are created by ChannelListener on the server side, and ChannelFactory on the client side. The ChannelListener and ChannelFactory are created by the TransportBindingElement. The TransportBindingElement is created by the Binding, which can be defined as a new binding or from a custom binding. For more information about the transport channel mode, please refer to the MSDN document. The figure below shows the transport channel objects when using the request-reply MEP. And this is the datagram MEP. And this is the duplex MEP. After investigated the WCF transport architecture, channel mode and MEP, we finally identified what we should do to extend our message bus based transport layer. They are: Binding: (Optional) Defines the channel elements in the channel stack and added our transport binding element at the bottom of the stack. But we can use the build-in CustomBinding as well. TransportBindingElement: Defines which MEP is supported in our transport and create the related ChannelListener and ChannelFactory. This also defines the scheme of the endpoint if using this transport. ChannelListener: Create the server side channel based on the MEP it’s. We can have one ChannelListener to create channels for all supported MEPs, or we can have ChannelListener for each MEP. In this series I will use the second approach. ChannelFactory: Create the client side channel based on the MEP it’s. We can have one ChannelFactory to create channels for all supported MEPs, or we can have ChannelFactory for each MEP. In this series I will use the second approach. Channels: Based on the MEPs we want to support, we need to implement the channels accordingly. For example, if we want our transport support Request-Reply mode we should implement IRequestChannel and IReplyChannel. In this series I will implement all 3 MEPs listed above one by one. Scaffold: In order to make our transport extension works we also need to implement some scaffold stuff. For example we need some classes to send and receive message though out message bus. We also need some codes to read and write the WCF message, etc.. These are not necessary but would be very useful in our example.   Message Bus There is only one thing remained before we can begin to implement our scaling-out support WCF transport, which is the message bus. As I mentioned above, the message bus must have some features to fulfill all the WCF MEPs. In my company we will be using TIBCO EMS, which is an enterprise message bus product. And I have said before we can use any message bus production if it’s satisfied with our requests. Here I would like to introduce an interface to separate the message bus from the WCF. This allows us to implement the bus operations by any kinds bus we are going to use. The interface would be like this. 1: public interface IBus : IDisposable 2: { 3: string SendRequest(string message, bool fromClient, string from, string to = null); 4:  5: void SendReply(string message, bool fromClient, string replyTo); 6:  7: BusMessage Receive(bool fromClient, string replyTo); 8: } There are only three methods for the bus interface. Let me explain one by one. The SendRequest method takes the responsible for sending the request message into the bus. The parameters description are: message: The WCF message content. fromClient: Indicates if this message was came from the client. from: The channel ID that this message was sent from. The channel ID will be generated when any kinds of channel was created, which will be explained in the following articles. to: The channel ID that this message should be received. In Request-Reply and Duplex MEP this is necessary since the reply message must be received by the channel which sent the related request message. The SendReply method takes the responsible for sending the reply message. It’s very similar as the previous one but no “from” parameter. This is because it’s no need to reply a reply message again in any MEPs. The Receive method takes the responsible for waiting for a incoming message, includes the request message and specified reply message. It returned a BusMessage object, which contains some information about the channel information. The code of the BusMessage class is 1: public class BusMessage 2: { 3: public string MessageID { get; private set; } 4: public string From { get; private set; } 5: public string ReplyTo { get; private set; } 6: public string Content { get; private set; } 7:  8: public BusMessage(string messageId, string fromChannelId, string replyToChannelId, string content) 9: { 10: MessageID = messageId; 11: From = fromChannelId; 12: ReplyTo = replyToChannelId; 13: Content = content; 14: } 15: } Now let’s implement a message bus based on the IBus interface. Since I don’t want you to buy and install the TIBCO EMS or any other message bus products, I will implement an in process memory bus. This bus is only for test and sample purpose. It can only be used if the service and client are in the same process. Very straightforward. 1: public class InProcMessageBus : IBus 2: { 3: private readonly ConcurrentDictionary<Guid, InProcMessageEntity> _queue; 4: private readonly object _lock; 5:  6: public InProcMessageBus() 7: { 8: _queue = new ConcurrentDictionary<Guid, InProcMessageEntity>(); 9: _lock = new object(); 10: } 11:  12: public string SendRequest(string message, bool fromClient, string from, string to = null) 13: { 14: var entity = new InProcMessageEntity(message, fromClient, from, to); 15: _queue.TryAdd(entity.ID, entity); 16: return entity.ID.ToString(); 17: } 18:  19: public void SendReply(string message, bool fromClient, string replyTo) 20: { 21: var entity = new InProcMessageEntity(message, fromClient, null, replyTo); 22: _queue.TryAdd(entity.ID, entity); 23: } 24:  25: public BusMessage Receive(bool fromClient, string replyTo) 26: { 27: InProcMessageEntity e = null; 28: while (true) 29: { 30: lock (_lock) 31: { 32: var entity = _queue 33: .Where(kvp => kvp.Value.FromClient == fromClient && (kvp.Value.To == replyTo || string.IsNullOrWhiteSpace(kvp.Value.To))) 34: .FirstOrDefault(); 35: if (entity.Key != Guid.Empty && entity.Value != null) 36: { 37: _queue.TryRemove(entity.Key, out e); 38: } 39: } 40: if (e == null) 41: { 42: Thread.Sleep(100); 43: } 44: else 45: { 46: return new BusMessage(e.ID.ToString(), e.From, e.To, e.Content); 47: } 48: } 49: } 50:  51: public void Dispose() 52: { 53: } 54: } The InProcMessageBus stores the messages in the objects of InProcMessageEntity, which can take some extra information beside the WCF message itself. 1: public class InProcMessageEntity 2: { 3: public Guid ID { get; set; } 4: public string Content { get; set; } 5: public bool FromClient { get; set; } 6: public string From { get; set; } 7: public string To { get; set; } 8:  9: public InProcMessageEntity() 10: : this(string.Empty, false, string.Empty, string.Empty) 11: { 12: } 13:  14: public InProcMessageEntity(string content, bool fromClient, string from, string to) 15: { 16: ID = Guid.NewGuid(); 17: Content = content; 18: FromClient = fromClient; 19: From = from; 20: To = to; 21: } 22: }   Summary OK, now I have all necessary stuff ready. The next step would be implementing our WCF message bus transport extension. In this post I described two scaling-out approaches on the service side especially if we are using the cloud platform: dispatcher mode and pulling mode. And I compared the Pros and Cons of them. Then I introduced the WCF channel stack, channel mode and the transport extension part, and identified what we should do to create our own WCF transport extension, to let our WCF services using pulling mode based on a message bus. And finally I provided some classes that need to be used in the future posts that working against an in process memory message bus, for the demonstration purpose only. In the next post I will begin to implement the transport extension step by step.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • who are software design engineers?

    - by Sepala
    My question is, who are software design engineers? And, what is the meaning of the following statement (from a software design engineer job ad)? "Application domain knowledge is essential and....." What is application domain? SDLC? My hope is to become a software engineer one day (OK, to be honest, more than that. I need to be a legend), that who do programming (They say this job has no programming). I am following final year of my Bsc(Hons) in computing and I have completed a foreign diploma, majoring software engineering - Java technologies. Will this job experience help me out to get a job in my desired position, which is mentioned above, after the degree? Wikipedia and google never gave a clear straight forward answer!! Please help!

    Read the article

  • JavaOne Afterglow by Simon Ritter

    - by JuergenKress
    Last week was the eighteenth JavaOne conference and I thought it would be a good idea to write up my thoughts about how things went. Firstly thanks to Yoshio Terada for the photos, I didn't bother bringing a camera with me so it's good to have some pictures to add to the words. Things kicked off full-throttle on Sunday.  We had the Java Champions and JUG leaders breakfast, which was a great way to meet up with a lot of familiar faces and start talking all things Java.  At midday the show really started with the Strategy and Technical Keynotes.  This was always going to be tougher job than some years because there was no big shiny ball to reveal to the audience.  With the Java EE 7 spec being finalised a few months ago and Java SE 8, Java ME 8 and JDK8 not due until the start of next year there was not going to be any big announcement.  I thought both keynotes worked really well each focusing on the things most important to Java developers: Strategy One of the things that is becoming more and more prominent in many companies marketing is the Internet of Things (IoT).  We've moved from the conventional desktop/laptop environment to much more mobile connected computing with smart phones and tablets.  The next wave of the internet is not just billions of people connected, but 10s or 100s of billions of devices connected to the network, all generating data and providing much more precise control of almost any process you can imagine.  This ties into the ideas of Big Data and Cloud Computing, but implementation is certainly not without its challenges.  As Peter Utzschneider explained it's about three Vs: Volume, Velocity and Value.  All these devices will create huge volumes of data at very high speed; to avoid being overloaded these devices will need some sort of processing capabilities that can filter the useful data from the redundant.  The raw data then needs to be turned into useful information that has value.  To make this happen will require applications on devices, at gateways and on the back-end servers, all very tightly integrated.  This is where Java plays a pivotal role, write once, run everywhere becomes essential, having nine million developers fluent in the language makes it the defacto lingua franca of IoT.  There will be lots more information on how this will become a reality, so watch this space. Technical How do we make the IoT a reality, technically?  Using the game of chess Mark Reinhold, with the help of people like John Ceccarelli, Jasper Potts and Richard Bair, showed what you could do.  Using Java EE on the back end, Java SE and JavaFX on the desktop and Java ME Embedded and JavaFX on devices they showed a complete end-to-end demo. This was really impressive, using 3D features from JavaFX 8 (that's included with JDK8) to make a 3D animated Duke chess board.  Jasper also unveiled the "DukePad" a home made tablet using a Raspberry Pi, touch screen and accelerometer. Although the Raspberry Pi doesn't have earth shattering CPU performance (about the same level as a mid 1990s Pentium), it does have really quite good GPU performance so the GUI works really well.  The plans are all open sourced and available here.  One small, but very significant announcement was that Java SE will now be included with the NOOB and Raspbian Linux distros provided by the Raspberry Pi foundation (these can be found here).  No more hassle having to download and install the JDK after you've flashed your SD card OS image.  The finale was the Raspberry Pi powered chess playing robot.  Really very, very cool.  I talked to Jasper about this and he told me each of the chess pieces had been 3D printed and then he had to use acetone to give them a glossy finish (not sure what his wife thought of him spending hours in the kitchen in a gas mask!)  The way the robot arm worked was very impressive as it did not have any positioning data (like a potentiometer connected to each motor), but relied purely on carefully calibrated timings to get the arm to the right place.  Having done things like this myself in the past I know how easy it is to find a small error gets magnified into very big mistakes. Here's some pictures from the keynote: The "Dukepad" architecture Nice clear perspex case so you can see the innards. The very nice 3D chess set.  Maya's obviously a great tool. Read the full article here. WebLogic Partner Community For regular information become a member in the WebLogic Partner Community please visit: http://www.oracle.com/partners/goto/wls-emea ( OPN account required). If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Wiki Technorati Tags: Simon Ritter,Java One,OOW,Oracle OpenWorld,WebLogic,WebLogic Community,Oracle,OPN,Jürgen Kress

    Read the article

  • Oracle Technology Fórum május 5-én

    - by Lajos Sárecz
    Május 11-én rendezzük a tavaszi Oracle Technology Fórumot, melyen 3 szekcióban fogjuk bemutatni az Oracle technológiai újdonságokat. A félnapos rendezvény témái szkeciónként az alábbiak lesznek: Management Track: - Üzemeltetés Oracle Enterprise Manager-rel az alkalmazástól a háttértárig - Az Oracle hackelés mítosza - Változtasson kockázatok nélkül Architecture Track - Adatbázis a felhoben - Extrém nagy teljesítményu adattárházak és tranzakciós rendszerek - Oracle Maximális rendelkezésre állású architektúra Development Track - Élet a Forms után - lehetoségek, megoldások, ajánlott irányok - ADF üzleti folyamatokban, integrációs környezetben - Tartalomkezelés beágyazása ADF fejlesztési környezetbe - Oracle UCM integráció Illetve lesz két egymással párhuzamosan futó keynote eloadás a nap elején: - IT költségek csökkentése - A megkerülhetetlen ADF - Átfogó és egységes Oracle fejlesztési keretrendszer Mint látható, a rendezvény fókuszában az Oracle Database 11gR2, valamint az Oracle fejleszto eszközök lesznek. Szó fog esni a Sun Oracle Database Machine-rol és az Oracle Cloud Computing stratégiájáról is. Szeretettel várunk mindenkit, aki valamilyen szinten foglalkozik Oracle adatbázis-kezelovel és Oracle fejleszto eszközökkel. A regisztráció már elindult.

    Read the article

  • Synching folders other than the default Ubuntu One folder doesn't seem to work on Windows

    - by Gordon
    I have installed Ubuntu One on two machines - one Windows 7 and one Windows XP. I have added a folder from the computer using the "Add Folder" button on the Windows 7 machine. The Ubuntu One dialog box tells me that file synch is finished and up to date. I now have two problems. If I log on to my Ubuntu One account on the web, I can see what appears to be a LINK to the synched folder - I cannot open the folder and see the contents. This is what I see in the Files page of my Ubuntu one account: ~/Documents/Computing/Test On the second machine, after synching is complete, I see the folder but NOT the contents. The folder is EMPTY. Can anyone provide a solution as to a) what is happening and b) how do I get this folder to synch properly on the other locations?

    Read the article

  • Azure Boot Camp

    - by Brian Schroer
    Belated thanks to Perficient for sponsoring (and providing lunch, which was a nice unadvertised surprise) and to Avichal Jain and Brian Blanchard for presenting at the St. Louis Azure Boot Camp May 13-14. There was a little more upfront discussion of “What is Cloud Computing and Why is it important?” than I thought necessary (I would think that people signing up for a two-day Azure event would already be convinced that it’s a worthwhile thing), but we put on our boots and fired up Visual Studio soon enough. The good news for developers, as with most of Microsoft’s recent initiatives (e.g Silverlight and Windows Phone 7 development), is that you can leverage the skills you already have. If you’ve developed service-oriented applications, you’ve got a big head start. If a free Azure Boot Camp event is coming to your area (here’s the schedule), be sure to check it out. If not, you can download the slides and labs from their web site and “throw your own”.

    Read the article

  • GDD-BR 2010 [2E] Building Business Apps using Google Web Toolkit and Spring Roo

    GDD-BR 2010 [2E] Building Business Apps using Google Web Toolkit and Spring Roo Speaker: Chris Ramsdale Track: Cloud Computing Time: 14:40 - 15:25 Room: sala[2] Level: 201 Who says you can't build rich web apps for your business? Follow along in this session to learn how you can use the latest integrated set of tools from Google and VMware to take your internal business apps into the cloud. We'll cover how to get started using GWT with Spring Roo and SpringSource Tool Suite (STS), as well as the new data presentation widgets and MVP framework that will be available in the 2.1 release of GWT. From: GoogleDevelopers Views: 69 0 ratings Time: 45:56 More in Science & Technology

    Read the article

  • March 24 VTSQL Meeting: BI with SQL Server guru Rushabh Mehta

    When: March 24th, 6PM Where: Competitive Computing, Colchester Vermont (www.competitive.com) From Zero to BI in 10 Minutes or less By Rushabh Mehta Finally a technology that the Information Worker can use to take raw data and turn it into valuable information in a matter of minutes from the comfort of their own desktop! In this very exciting and interactive session full of exciting demos, we will walk you through taking raw information from a variety of sources and building a powerful analytical...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Profit's COLLABORATE 10 Session Selections

    - by Aaron Lazenby
    COLLABORATE 2010 is a mere 11 days away (thanks for the reminder @ocp_advisor). Every year I publish my a list of the sessions I think reflect some of the more interesting people/trends in enterprise IT. I should be at all of these sessions, so drop by for a chat--I'll be the guy tapping out emails on my iPad... Monday, April 19 9:15 a.m. - Keynote: Transforming Customer Value, Delivering Highest Customer Service Location: Keynote Hall I never miss Charles Phillips when he speaks--it's one of the best opportunities to get an update on Oracle product developments and strategy. And there's certainly occasion for an update: this will be Phillips' first big presentation since the Oracle + Sun Strategy Update in late January. Phillips is appearing with Oracle Executive Vice President of Development Thomas Kurian which means there should be some excellent information about how customers are using Oracle's complete software and hardware stack to address enterprise IT challenges. The session should provide some excellent context for the rest of the week's session...don't miss it. 10:45 a.m. - Oracle Fusion Applications: Functional Overview Location: South Seas FI met Basheer Khan at COLLABORATE 08 in Denver and have followed his work ever since. He's a former member of the OAUG Board of Directors, an Oracle ACE, and a charismatic enterprise IT expert. Having worked with the Oracle Usability Advisory Board, Basheer should have some fascinating insights to share about the features and interface of Oracle's Fusine Applications. This session, along with Nadia Bendjedou's "10 Things You Can Do Today to Prepare for the Next Generation Applications" (on Tuesday, April 20 8:00 a.m. in room 3662) should give attendees the update they need about Oracle's next-generation applications.   1:15p.m. - E-Business Suite in the Amazon Cloud Location: South Seas HI did my first full-fledged cloud computing coverage at last year's COLLABORATE show (check out my interview with Oracle's Bill Hodak), where I first learned about Amazon's EC2 offering. I've since talked with several people who have provisioned server space on Amazon's cloud with great results. So I'm looking forward to watching the audience configure an instance of the Oracle E-Business Suite release 12 on the cloud while Chuck Edwards from Blue Gecko drives. This session should take some of the mist and vapor out of the cloud conversation.2:30 p.m. - "Zero Sign-on" to EBS - Enabling 96000 Users to Login to EBS Without User Maintenance Location: South Seas HI'll be sitting tight in South Seas H for the next session on Monday where Doug Pepka, a ten-year veteran of communications giant Comcast, will be walking attendees through a massive single sign-on (SSO) project across the enterprise. I'm working on a story about SSO for the August issue of Profit, so this session has real practical value to me. Plus the proliferation of user account logins--both personal and professional--makes this a critical usability/change management issue for IT leaders planning for successful long-term IT implementations.   Tuesday 8:00 am  - Information Architecture for Men in Kilts Location: SURF AGetting to a 8:00 a.m. presentation is a tall order in Las Vegas, but presenter Billy Cripe will make it worth your effort. Not only is the title of this session great, but the content should appeal to any IT strategist looking to push the limits of Web 2.0 technologies in the enterprise. Cripe is a product management director of Enterprise 2.0 and Enterprise Content Management at Oracle, author of Reshaping Your Business with Web 2.0, and a prolific blogger--he knows how information architecture is critical to and enterprise 2.0 implementation.    10:30a.m. - Oracle Virtualization: From Desktop to Data Center Location: REEF FData center virtualization is still one of the best ways to reduce the cost of running enterprise IT. With the addition of Sun products, Oracle has the industry's most comprehensive virtualization portfolio. I must admit, I'm no expert in this subject. So I'm looking forward to Monica Kumar's presentation so I can get up to speed.   Wednesday 8:00 a.m. - The Art of the Steal Location: Mandalay Bay Ballroom JMany will know Frank Abagnale from Steven Spielberg's 2002 film "Catch Me if You Can." The one-time con man and international fugitive who swindled $2.5 million in forged checks went on to help U.S. federal officials investigate fraud cases. Now the CEO of Abagnale and Associates, he has become an invaluable source to the business world on the subject of fraud and fraud protection. With identity theft and digital fraud still on the rise, this session should be an entertaining, and sobering, education on the threats facing businesses and customers around the world. A great way to start Wednesday.1:00 p.m. - Google Wave: Will it replace e-mail as we know it today? Location: SURF EBy many assessments (my own included), Google Wave is a bit of an open collaboration failure. It may seem like an odd reason for me to be excited about this session, but I'm looking forward to the chance to revisit the technology. Also, this is a great case study in connecting free, available Internet tools to existing enterprise computing environments--an issue that IT strategists must contend with as workers spreads out and choose their own productivity tools.  

    Read the article

  • Citrix rachète l'entreprise allemande de SaaS Netviewer AG, pour renforcer ses offres virtuelles et en ligne

    Citrix rachète l'entreprise allemande de SaaS Netviewer AG, pour renforcer ses offres virtuelles et en ligne Le spécialiste de la virtualisation des postes de travail Citrix vient d'annoncer avoir racheté Netviewer AG, éditeur allemand de services et d'outils collaboratifs en ligne de type SaaS, pour l'inclure à sa division Citrix Online. La compagnie ainsi assimilée apportera ses compétences de modèle à la demande et ses 18.000 clients en Europe. Cette transaction devrait permettre d'étoffer le catalogue de services IT en ligne de Citrix, par exemple en vidéoconférence. ; ainsi que ses offres en virtual computing. « La collaboration et les services IT en mode SaaS ont été la clé de notre croissance h...

    Read the article

  • GDD-BR 2010 [2F] Storage, Bigquery and Prediction APIs

    GDD-BR 2010 [2F] Storage, Bigquery and Prediction APIs Speaker: Patrick Chanezon Track: Cloud Computing Time slot: F [15:30 - 16:15] Room: 2 Level: 101 Google is expanding our storage products by introducing Google Storage for Developers. It offers a RESTful API for storing and accessing data at Google. Developers can take advantage of the performance and reliability of Google's storage infrastructure, as well as the advanced security and sharing capabilities. We will demonstrate key functionality of the product as well as customer use cases. Google relies heavily on data analysis and has developed many tools to understand large datasets. Two of these tools are now available on a limited sign-up basis to developers: (1) BigQuery: interactive analysis of very large data sets and (2) Prediction API: make informed predictions from your data. We will demonstrate their use and give instructions on how to get access. From: GoogleDevelopers Views: 1 0 ratings Time: 39:27 More in Science & Technology

    Read the article

< Previous Page | 40 41 42 43 44 45 46 47 48 49 50 51  | Next Page >