Search Results

Search found 23792 results on 952 pages for 'void pointers'.

Page 446/952 | < Previous Page | 442 443 444 445 446 447 448 449 450 451 452 453  | Next Page >

  • Tomcat 7 on Ubuntu 12.04 startup issues

    - by Nico Huysamen
    I am having trouble getting tomcat 7 to start up on my new VPS. I am really scratching my head since I have done this often. So I'm thinking it might be the VPS. I just got a new VPS from CINFU. After a clean install of Ubuntu 12.04 32bit, I install openjdk-6-jdk, update JAVA_HOME to point to: /usr/lib/jvm/java-1.6.0-openjdk-i386 and JRE_HOME to: /usr/lib/jvm/java-1.6.0-openjdk-i386/jre But when I try to run: ./catalina.sh run it simply outputs: Using CATALINA_BASE: /opt/tomcat/apache-tomcat-7.0.29 Using CATALINA_HOME: /opt/tomcat/apache-tomcat-7.0.29 Using CATALINA_TMPDIR: /opt/tomcat/apache-tomcat-7.0.29/temp Using JRE_HOME: /usr/lib/jvm/java-1.6.0-openjdk-i386 Using CLASSPATH: /opt/tomcat/apache-tomcat-7.0.29/bin/bootstrap.jar:/opt/tomcat/apache-tomcat-7.0.29/bin/tomcat-juli.jar and stops. It just hangs there doing nothing. If I run ./startup.sh && tail -f ../logs/catalina.out it gets to: Aug 24, 2012 8:38:36 PM org.apache.coyote.AbstractProtocol init INFO: Initializing ProtocolHandler ["http-bio-8080"] Aug 24, 2012 8:38:36 PM org.apache.coyote.AbstractProtocol init INFO: Initializing ProtocolHandler ["ajp-bio-8009"] Aug 24, 2012 8:38:36 PM org.apache.catalina.startup.Catalina load INFO: Initialization processed in 495 ms Aug 24, 2012 8:38:36 PM org.apache.catalina.core.StandardService startInternal INFO: Starting service Catalina Aug 24, 2012 8:38:36 PM org.apache.catalina.core.StandardEngine startInternal INFO: Starting Servlet Engine: Apache Tomcat/7.0.29 but I am unable to access anything. The request just hangs. I have also tried a few other things like explicitly exporting the paths etc in catalina.sh, and running ./startup.sh rather than catalina.sh, but the furthest I have gotten is that it finishes deploying all the WARs (the default ones that comes with tomcat like the host-manager etc), but then it hangs: Aug 24, 2012 8:47:30 PM org.apache.coyote.AbstractProtocol init INFO: Initializing ProtocolHandler ["http-bio-8080"] and does nothing. Anyone have any pointers that might help? As I said, I must really be missing something stupid since this has worked on all other VPSs that we have. UPDATE I figured out that the problem is actually the fact that they use OpnVZ virtualization and that there are known compatibility problems with Java.

    Read the article

  • 2d movement solution

    - by Phil
    Hi! I'm making a simple top-down tank game on the ipad where the user controls the movement of the tank with the left "joystick" and the rotation of the turret with the right one. I've spent several hours just trying to get it to work decently but now I turn to the pros :) I have two referencial objects, one for the movement and one for the rotation. The referencial objects always stay max two units away from the tank and I use them to tell the tank in what direction to move. I chose this approach to decouple movement and rotational behaviour from the raw input of the joysticks, I believe this will make it simpler to implement whatever behaviour I want for the tank. My problem is 1; the turret rotates the long way to the target. With this I mean that the target can be -5 degrees away in rotation and still it rotates 355 degrees instead of -5 degrees. I can't figure out why. The other problem is with the movement. It just doesn't feel right to have the tank turn while moving. I'd like to have a solution that would work as well for the AI as for the player. A blackbox function for the movement where the player only specifies in what direction it should move and it moves there under the constraints that are imposed on it. I am using the standard joystick class found in the Unity iPhone package. This is the code I'm using for the movement: public class TankFollow : MonoBehaviour { //Check angle difference and turn accordingly public GameObject followPoint; public float speed; public float turningSpeed; void Update() { transform.position = Vector3.Slerp(transform.position, followPoint.transform.position, speed * Time.deltaTime); //Calculate angle var forwardA = transform.forward; var forwardB = (followPoint.transform.position - transform.position); var angleA = Mathf.Atan2(forwardA.x, forwardA.z) * Mathf.Rad2Deg; var angleB = Mathf.Atan2(forwardB.x, forwardB.z) * Mathf.Rad2Deg; var angleDiff = Mathf.DeltaAngle(angleA, angleB); //print(angleDiff.ToString()); if (angleDiff > 5) { //Rotate to transform.Rotate(new Vector3(0, (-turningSpeed * Time.deltaTime),0)); //transform.rotation = new Quaternion(transform.rotation.x, transform.rotation.y + adjustment, transform.rotation.z, transform.rotation.w); } else if (angleDiff < 5) { transform.Rotate(new Vector3(0, (turningSpeed * Time.deltaTime),0)); //transform.rotation = new Quaternion(transform.rotation.x, transform.rotation.y + adjustment, transform.rotation.z, transform.rotation.w); } else { } transform.position = new Vector3(transform.position.x, 0, transform.position.z); } } And this is the code I'm using to rotate the turret: void LookAt() { var forwardA = -transform.right; var forwardB = (toLookAt.transform.position - transform.position); var angleA = Mathf.Atan2(forwardA.x, forwardA.z) * Mathf.Rad2Deg; var angleB = Mathf.Atan2(forwardB.x, forwardB.z) * Mathf.Rad2Deg; var angleDiff = Mathf.DeltaAngle(angleA, angleB); //print(angleDiff.ToString()); if (angleDiff - 180 > 1) { //Rotate to transform.Rotate(new Vector3(0, (turretSpeed * Time.deltaTime),0)); //transform.rotation = new Quaternion(transform.rotation.x, transform.rotation.y + adjustment, transform.rotation.z, transform.rotation.w); } else if (angleDiff - 180 < -1) { transform.Rotate(new Vector3(0, (-turretSpeed * Time.deltaTime),0)); //transform.rotation = new Quaternion(transform.rotation.x, transform.rotation.y + adjustment, transform.rotation.z, transform.rotation.w); print((angleDiff - 180).ToString()); } else { } } Since I want the turret reference point to turn in relation to the tank (when you rotate the body, the turret should follow and not stay locked on since it makes it impossible to control when you've got two thumbs to work with), I've made the TurretFollowPoint a child of the Turret object, which in turn is a child of the body. I'm thinking that I'm making it too difficult for myself with the reference points but I'm imagining that it's a good idea. Please be honest about this point. So I'll be grateful for any help I can get! I'm using Unity3d iPhone. Thanks!

    Read the article

  • COM+/Desktop Heap errors in IIS affecting sites at random?

    - by tresstylez
    We have a Win2K3 server that is hosting 30+ sites. Each site is configured to have its own unique application pool -- so that we can manually recycle specific sites if needed and not kill sessions for the others. From what I've read, the consequence of this type of setup is that each application pool worker process gets allocated a Desktop Heap (normally 512 kb's) and we limit the number of app pools we can serve. http://blogs.msdn.com/b/david.wang/archive/2006/01/25/security-considerations-of-usesharedwpdesktop-on-iis6.aspx PROBLEM: What we're seeing is that occasionally COM+ errors get triggered, presumably by hitting our 512 kb limit of the desktop heap -- and certain sites become unresponsive (or have errors) until we manually recycle that specific app pool. I know that I can increase the desktop heap limit to 1024, and make other tweaks/tunes, but I've been tasked with finding out what exactly causes one site's heap to max out as opposed to another. It seems that when we start seeing COM+ errors, the sites it affects are random -- small sites or big sites (heavier used). Is it based on process id? Traffic? Any pointers on understanding this a little more would be excellent. Thanks! jg

    Read the article

  • MVC : Does Code to save data in cache or session belongs in controller?

    - by newbie
    I'm a bit confused if saving the information to session code below, belongs in the controller action as shown below or should it be part of my Model? I would add that I have other controller methods that will read this session value later. public ActionResult AddFriend(FriendsContext viewModel) { if (!ModelState.IsValid) { return View(viewModel); } // Start - Confused if the code block below belongs in Controller? Friend friend = new Friend(); friend.FirstName = viewModel.FirstName; friend.LastName = viewModel.LastName; friend.Email = viewModel.UserEmail; httpContext.Session["latest-friend"] = friend; // End Confusion return RedirectToAction("Home"); } I thought about adding a static utility class in my Model which does something like below, but it just seems stupid to add 2 lines of code in another file. public static void SaveLatestFriend(Friend friend, HttpContextBase httpContext) { httpContext.Session["latest-friend"] = friend; } public static Friend GetLatestFriend(HttpContextBase httpContext) { return httpContext.Session["latest-friend"] as Friend; }

    Read the article

  • E_FAIL: An undetermined error occurred (-2147467259) when loading a cube texture

    - by Boreal
    I'm trying to implement a skybox into my engine, and I'm having some trouble loading the image as a cube map. Everything works (but it doesn't look right) if I don't load using an ImageLoadInformation struct in the ShaderResourceView.FromFile() method, but it breaks if I do. I need to, of course, because I need to tell SlimDX to load it as a cubemap. How can I fix this? Here is my new loading code after the "fix": public static void LoadCubeTexture(string filename) { ImageLoadInformation loadInfo = new ImageLoadInformation() { BindFlags = BindFlags.ShaderResource, CpuAccessFlags = CpuAccessFlags.None, Depth = 32, FilterFlags = FilterFlags.None, FirstMipLevel = 0, Format = SlimDX.DXGI.Format.B8G8R8A8_UNorm, Height = 512, MipFilterFlags = FilterFlags.Linear, MipLevels = 1, OptionFlags = ResourceOptionFlags.TextureCube, Usage = ResourceUsage.Default, Width = 512 }; textures.Add(filename, ShaderResourceView.FromFile(Graphics.device, "Resources/" + filename, loadInfo)); } Each of the faces of my cube texture are 512x512.

    Read the article

  • ESXi Server with 12 physical cores maxed out with only 8 cores assigned in virtual machines

    - by Sam
    I have an ESXi 5 server running on a 2-processor, 12-core system with hyperthreading enabled. So: 12 physical cores, 24 logical ones. On this server are 4 Windows 7 VMs, each configured for 2 processors, each running VMware Tools. Looking at my stats in vSphere, my "core utilization" is constantly maxed out. Yes, these machines are working hard, but only 8 cores have been allocated. How is this possible? Should I look into reducing the processor count per machine as in this post: VMware ESX server? I checked to ensure that hardware virtualization is enabled in the BIOS of the machine (a DELL R410). I've also started reading up on configuration, but being a newbie there's a lot of material to catch up on. It also seems I should only bother with advanced settings and pools if I'm really pushing the load, and I don't think that I should be pushing it with so few VMs. I suspect that I have some basic, incorrect configuration setting, but it's also possible that I have some giant misconceptions about virtualization. Any pointers? EDIT: Given the responses I've gotten so far, it seems that this is a measurement problem and not a configuration problem, making this less critical. Perhaps the real question is: How does the core utilization of the server reach a higher percentage than all individual cores' core utilization, and given that this possibility makes the metric useless for overall server load, what is the best global metric for measuring CPU load on hyper-threaded systems?

    Read the article

  • Using Lazy<T> and abstract wrapper class to lazy-load complex system parameters

    - by DigiMortal
    .NET Framework 4.0 introduced new class called Lazy<T> and I wrote blog post about it: .Net Framework 4.0: Using System.Lazy<T>. One thing is annoying for me – we have to keep lazy loaded value and its value loader as separate things. In this posting I will introduce you my Lazy<T> wrapper for complex to get system parameters that uses template method to keep lazy value loader in parameter class. Problem with original implementation Here’s the sample code that shows you how Lazy<T> is usually used. This is just sample code, don’t focus on the fact that this is dummy console application. class Program {     static void Main(string[] args)     {         var temperature = new Lazy<int>(LoadMinimalTemperature);           Console.WriteLine("Minimal room temperature: " + temperature.Value);         Console.ReadLine();     }       protected static int LoadMinimalTemperature()     {         var returnValue = 0;           // Do complex stuff here           return true;     } } The problem is that our class with many lazy loaded properties will grow messy if it has all value loading code inside it. This code may be complex for more than one parameter and in this case it is better to use separate class for this parameter. Defining base class for parameters As a first step I will define base class for all lazy-loaded parameters. This class is wrapper around Lazy<T> and it also offers one template method that parameter classes have to override to provide loaded data. public abstract class LazyParameter<T> {     private Lazy<T> _lazyParam;       public LazyParameter()     {         _lazyParam = new Lazy<T>(Load);     }       protected abstract T Load();       public T Value     {         get { return _lazyParam.Value; }     } } It is also possible to extend Lazy<T> but I don’t prefer to do it as Lazy<T> has six constructors we have to take care of. Also I don’t like to expose Lazy<T> public interface to users of my parameter classes. Creating parameter class Now it’s time to create our first parameter class. Notice how few stuff we have in this class besides overridden Load() method. public class MinimalRoomTemperature : LazyParameter<int> {     protected override int Load()     {         var returnValue = 0;           // Do complex stuff here           return returnValue;     } } Using parameter class is simple. Here’s my test code. class Program {     static void Main(string[] args)     {         var parameter = new MinimalRoomTemperature();         Console.WriteLine("Minimal room temperature: " + parameter.Value);         Console.ReadLine();     } } Conclusion Lazy<T> is useful class that you usually don’t want to use outside from API-s. I like this class but I don’t like when people are using this class directly in application code. In this posting I showed you how to use Lazy<T> with wrapper class to get complex parameter loading code out from classes that use this parameter. We ended up with generic base class for parameters that you can also use as base for other similar classes (you have to find better name to base class in this case).

    Read the article

  • Scaling-out Your Services by Message Bus based WCF Transport Extension &ndash; Part 1 &ndash; Background

    - by Shaun
    Cloud computing gives us more flexibility on the computing resource, we can provision and deploy an application or service with multiple instances over multiple machines. With the increment of the service instances, how to balance the incoming message and workload would become a new challenge. Currently there are two approaches we can use to pass the incoming messages to the service instances, I would like call them dispatcher mode and pulling mode.   Dispatcher Mode The dispatcher mode introduces a role which takes the responsible to find the best service instance to process the request. The image below describes the sharp of this mode. There are four clients communicate with the service through the underlying transportation. For example, if we are using HTTP the clients might be connecting to the same service URL. On the server side there’s a dispatcher listening on this URL and try to retrieve all messages. When a message came in, the dispatcher will find a proper service instance to process it. There are three mechanism to find the instance: Round-robin: Dispatcher will always send the message to the next instance. For example, if the dispatcher sent the message to instance 2, then the next message will be sent to instance 3, regardless if instance 3 is busy or not at that moment. Random: Dispatcher will find a service instance randomly, and same as the round-robin mode it regardless if the instance is busy or not. Sticky: Dispatcher will send all related messages to the same service instance. This approach always being used if the service methods are state-ful or session-ful. But as you can see, all of these approaches are not really load balanced. The clients will send messages at any time, and each message might take different process duration on the server side. This means in some cases, some of the service instances are very busy while others are almost idle. For example, if we were using round-robin mode, it could be happened that most of the simple task messages were passed to instance 1 while the complex ones were sent to instance 3, even though instance 1 should be idle. This brings some problem in our architecture. The first one is that, the response to the clients might be longer than it should be. As it’s shown in the figure above, message 6 and 9 can be processed by instance 1 or instance 2, but in reality they were dispatched to the busy instance 3 since the dispatcher and round-robin mode. Secondly, if there are many requests came from the clients in a very short period, service instances might be filled by tons of pending tasks and some instances might be crashed. Third, if we are using some cloud platform to host our service instances, for example the Windows Azure, the computing resource is billed by service deployment period instead of the actual CPU usage. This means if any service instance is idle it is wasting our money! Last one, the dispatcher would be the bottleneck of our system since all incoming messages must be routed by the dispatcher. If we are using HTTP or TCP as the transport, the dispatcher would be a network load balance. If we wants more capacity, we have to scale-up, or buy a hardware load balance which is very expensive, as well as scaling-out the service instances. Pulling Mode Pulling mode doesn’t need a dispatcher to route the messages. All service instances are listening to the same transport and try to retrieve the next proper message to process if they are idle. Since there is no dispatcher in pulling mode, it requires some features on the transportation. The transportation must support multiple client connection and server listening. HTTP and TCP doesn’t allow multiple clients are listening on the same address and port, so it cannot be used in pulling mode directly. All messages in the transportation must be FIFO, which means the old message must be received before the new one. Message selection would be a plus on the transportation. This means both service and client can specify some selection criteria and just receive some specified kinds of messages. This feature is not mandatory but would be very useful when implementing the request reply and duplex WCF channel modes. Otherwise we must have a memory dictionary to store the reply messages. I will explain more about this in the following articles. Message bus, or the message queue would be best candidate as the transportation when using the pulling mode. First, it allows multiple application to listen on the same queue, and it’s FIFO. Some of the message bus also support the message selection, such as TIBCO EMS, RabbitMQ. Some others provide in memory dictionary which can store the reply messages, for example the Redis. The principle of pulling mode is to let the service instances self-managed. This means each instance will try to retrieve the next pending incoming message if they finished the current task. This gives us more benefit and can solve the problems we met with in the dispatcher mode. The incoming message will be received to the best instance to process, which means this will be very balanced. And it will not happen that some instances are busy while other are idle, since the idle one will retrieve more tasks to make them busy. Since all instances are try their best to be busy we can use less instances than dispatcher mode, which more cost effective. Since there’s no dispatcher in the system, there is no bottleneck. When we introduced more service instances, in dispatcher mode we have to change something to let the dispatcher know the new instances. But in pulling mode since all service instance are self-managed, there no extra change at all. If there are many incoming messages, since the message bus can queue them in the transportation, service instances would not be crashed. All above are the benefits using the pulling mode, but it will introduce some problem as well. The process tracking and debugging become more difficult. Since the service instances are self-managed, we cannot know which instance will process the message. So we need more information to support debug and track. Real-time response may not be supported. All service instances will process the next message after the current one has done, if we have some real-time request this may not be a good solution. Compare with the Pros and Cons above, the pulling mode would a better solution for the distributed system architecture. Because what we need more is the scalability, cost-effect and the self-management.   WCF and WCF Transport Extensibility Windows Communication Foundation (WCF) is a framework for building service-oriented applications. In the .NET world WCF is the best way to implement the service. In this series I’m going to demonstrate how to implement the pulling mode on top of a message bus by extending the WCF. I don’t want to deep into every related field in WCF but will highlight its transport extensibility. When we implemented an RPC foundation there are many aspects we need to deal with, for example the message encoding, encryption, authentication and message sending and receiving. In WCF, each aspect is represented by a channel. A message will be passed through all necessary channels and finally send to the underlying transportation. And on the other side the message will be received from the transport and though the same channels until the business logic. This mode is called “Channel Stack” in WCF, and the last channel in the channel stack must always be a transport channel, which takes the responsible for sending and receiving the messages. As we are going to implement the WCF over message bus and implement the pulling mode scaling-out solution, we need to create our own transport channel so that the client and service can exchange messages over our bus. Before we deep into the transport channel, let’s have a look on the message exchange patterns that WCF defines. Message exchange pattern (MEP) defines how client and service exchange the messages over the transportation. WCF defines 3 basic MEPs which are datagram, Request-Reply and Duplex. Datagram: Also known as one-way, or fire-forgot mode. The message sent from the client to the service, and no need any reply from the service. The client doesn’t care about the message result at all. Request-Reply: Very common used pattern. The client send the request message to the service and wait until the reply message comes from the service. Duplex: The client sent message to the service, when the service processing the message it can callback to the client. When callback the service would be like a client while the client would be like a service. In WCF, each MEP represent some channels associated. MEP Channels Datagram IInputChannel, IOutputChannel Request-Reply IRequestChannel, IReplyChannel Duplex IDuplexChannel And the channels are created by ChannelListener on the server side, and ChannelFactory on the client side. The ChannelListener and ChannelFactory are created by the TransportBindingElement. The TransportBindingElement is created by the Binding, which can be defined as a new binding or from a custom binding. For more information about the transport channel mode, please refer to the MSDN document. The figure below shows the transport channel objects when using the request-reply MEP. And this is the datagram MEP. And this is the duplex MEP. After investigated the WCF transport architecture, channel mode and MEP, we finally identified what we should do to extend our message bus based transport layer. They are: Binding: (Optional) Defines the channel elements in the channel stack and added our transport binding element at the bottom of the stack. But we can use the build-in CustomBinding as well. TransportBindingElement: Defines which MEP is supported in our transport and create the related ChannelListener and ChannelFactory. This also defines the scheme of the endpoint if using this transport. ChannelListener: Create the server side channel based on the MEP it’s. We can have one ChannelListener to create channels for all supported MEPs, or we can have ChannelListener for each MEP. In this series I will use the second approach. ChannelFactory: Create the client side channel based on the MEP it’s. We can have one ChannelFactory to create channels for all supported MEPs, or we can have ChannelFactory for each MEP. In this series I will use the second approach. Channels: Based on the MEPs we want to support, we need to implement the channels accordingly. For example, if we want our transport support Request-Reply mode we should implement IRequestChannel and IReplyChannel. In this series I will implement all 3 MEPs listed above one by one. Scaffold: In order to make our transport extension works we also need to implement some scaffold stuff. For example we need some classes to send and receive message though out message bus. We also need some codes to read and write the WCF message, etc.. These are not necessary but would be very useful in our example.   Message Bus There is only one thing remained before we can begin to implement our scaling-out support WCF transport, which is the message bus. As I mentioned above, the message bus must have some features to fulfill all the WCF MEPs. In my company we will be using TIBCO EMS, which is an enterprise message bus product. And I have said before we can use any message bus production if it’s satisfied with our requests. Here I would like to introduce an interface to separate the message bus from the WCF. This allows us to implement the bus operations by any kinds bus we are going to use. The interface would be like this. 1: public interface IBus : IDisposable 2: { 3: string SendRequest(string message, bool fromClient, string from, string to = null); 4:  5: void SendReply(string message, bool fromClient, string replyTo); 6:  7: BusMessage Receive(bool fromClient, string replyTo); 8: } There are only three methods for the bus interface. Let me explain one by one. The SendRequest method takes the responsible for sending the request message into the bus. The parameters description are: message: The WCF message content. fromClient: Indicates if this message was came from the client. from: The channel ID that this message was sent from. The channel ID will be generated when any kinds of channel was created, which will be explained in the following articles. to: The channel ID that this message should be received. In Request-Reply and Duplex MEP this is necessary since the reply message must be received by the channel which sent the related request message. The SendReply method takes the responsible for sending the reply message. It’s very similar as the previous one but no “from” parameter. This is because it’s no need to reply a reply message again in any MEPs. The Receive method takes the responsible for waiting for a incoming message, includes the request message and specified reply message. It returned a BusMessage object, which contains some information about the channel information. The code of the BusMessage class is 1: public class BusMessage 2: { 3: public string MessageID { get; private set; } 4: public string From { get; private set; } 5: public string ReplyTo { get; private set; } 6: public string Content { get; private set; } 7:  8: public BusMessage(string messageId, string fromChannelId, string replyToChannelId, string content) 9: { 10: MessageID = messageId; 11: From = fromChannelId; 12: ReplyTo = replyToChannelId; 13: Content = content; 14: } 15: } Now let’s implement a message bus based on the IBus interface. Since I don’t want you to buy and install the TIBCO EMS or any other message bus products, I will implement an in process memory bus. This bus is only for test and sample purpose. It can only be used if the service and client are in the same process. Very straightforward. 1: public class InProcMessageBus : IBus 2: { 3: private readonly ConcurrentDictionary<Guid, InProcMessageEntity> _queue; 4: private readonly object _lock; 5:  6: public InProcMessageBus() 7: { 8: _queue = new ConcurrentDictionary<Guid, InProcMessageEntity>(); 9: _lock = new object(); 10: } 11:  12: public string SendRequest(string message, bool fromClient, string from, string to = null) 13: { 14: var entity = new InProcMessageEntity(message, fromClient, from, to); 15: _queue.TryAdd(entity.ID, entity); 16: return entity.ID.ToString(); 17: } 18:  19: public void SendReply(string message, bool fromClient, string replyTo) 20: { 21: var entity = new InProcMessageEntity(message, fromClient, null, replyTo); 22: _queue.TryAdd(entity.ID, entity); 23: } 24:  25: public BusMessage Receive(bool fromClient, string replyTo) 26: { 27: InProcMessageEntity e = null; 28: while (true) 29: { 30: lock (_lock) 31: { 32: var entity = _queue 33: .Where(kvp => kvp.Value.FromClient == fromClient && (kvp.Value.To == replyTo || string.IsNullOrWhiteSpace(kvp.Value.To))) 34: .FirstOrDefault(); 35: if (entity.Key != Guid.Empty && entity.Value != null) 36: { 37: _queue.TryRemove(entity.Key, out e); 38: } 39: } 40: if (e == null) 41: { 42: Thread.Sleep(100); 43: } 44: else 45: { 46: return new BusMessage(e.ID.ToString(), e.From, e.To, e.Content); 47: } 48: } 49: } 50:  51: public void Dispose() 52: { 53: } 54: } The InProcMessageBus stores the messages in the objects of InProcMessageEntity, which can take some extra information beside the WCF message itself. 1: public class InProcMessageEntity 2: { 3: public Guid ID { get; set; } 4: public string Content { get; set; } 5: public bool FromClient { get; set; } 6: public string From { get; set; } 7: public string To { get; set; } 8:  9: public InProcMessageEntity() 10: : this(string.Empty, false, string.Empty, string.Empty) 11: { 12: } 13:  14: public InProcMessageEntity(string content, bool fromClient, string from, string to) 15: { 16: ID = Guid.NewGuid(); 17: Content = content; 18: FromClient = fromClient; 19: From = from; 20: To = to; 21: } 22: }   Summary OK, now I have all necessary stuff ready. The next step would be implementing our WCF message bus transport extension. In this post I described two scaling-out approaches on the service side especially if we are using the cloud platform: dispatcher mode and pulling mode. And I compared the Pros and Cons of them. Then I introduced the WCF channel stack, channel mode and the transport extension part, and identified what we should do to create our own WCF transport extension, to let our WCF services using pulling mode based on a message bus. And finally I provided some classes that need to be used in the future posts that working against an in process memory message bus, for the demonstration purpose only. In the next post I will begin to implement the transport extension step by step.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • NullReferenceException when accessing variables in a 2D array in Unity

    - by Syed
    I have made a class including variables in Monodevelop which is: public class GridInfo : MonoBehaviour { public float initPosX; public float initPosY; public bool inUse; public int f; public int g; public int h; public GridInfo parent; public int y,x; } Now I am using its class variable in another class, Map.cs which is: public class Map : MonoBehaviour { public static GridInfo[,] Tile = new GridInfo[17, 23]; void Start() { Tile[0,0].initPosX = initPosX; //Line 49 } } I am not getting any error on runtime, but when I play in unity it is giving me error NullReferenceException: Object reference not set to an instance of an object Map.Start () (at Assets/Scripts/Map.cs:49) I am not inserting this script in any gameobject, as Map.cs will make a GridInfo type array, I have also tried using variables using GetComponent, where is the problem ?

    Read the article

  • BitLocker with Windows DPAPI Encryption Key Management

    - by bigmac
    We have a need to enforce resting encryption on an iSCSI LUN that is accessible from within a Hyper-V virtual machine. We have implementing a working solution using BitLocker, using Windows Server 2012 on a Hyper-V Virtual Server which has iSCSI access to a LUN on our SAN. We were able to successfully do this by using the "floppy disk key storage" hack as defined in THIS POST. However, this method seems "hokey" to me. In my continued research, I found out that the Amazon Corporate IT team published a WHITEPAPER that outlined exactly what I was looking for in a more elegant solution, without the "floppy disk hack". On page 7 of this white paper, they state that they implemented Windows DPAPI Encryption Key Management to securely manage their BitLocker keys. This is exactly what I am looking to do, but they stated that they had to write a script to do this, yet they don't provide the script or even any pointers on how to create one. Does anyone have details on how to create a "script in conjunction with a service and a key-store file protected by the server’s machine account DPAPI key" (as they state in the whitepaper) to manage and auto-unlock BitLocker volumes? Any advice is appreciated.

    Read the article

  • Sending Big Files with WCF

    - by Sean Feldman
    I had to look into a project that submits large files to WCF service. Implementation is based on data chunking. This is a good approach when your client and server are not both based on WCF, bud different technologies. The problem with something like this is that chunking (either you wish it or not) complicates the overall solution. Alternative would be streaming. In WCF to WCF scenario, this is a piece of cake. When client is Java, it becomes a bit more challenging (has anyone implemented Java client streaming data to WCF service?). What I really liked about .NET implementation with WCF, is that sending header info along with stream was dead simple, and from the developer point of view looked like it’s all a part of the DTO passed into the service. [ServiceContract] public interface IFileUpload { [OperationContract] void UploadFile(SendFileMessage message); } Where SendFileMessage is [MessageContract] public class SendFileMessage { [MessageBodyMember(Order = 1)] public Stream FileData; [MessageHeader(MustUnderstand = true)] public FileTransferInfo FileTransferInfo; }

    Read the article

  • bind9 "error sending response: host unreachable"

    - by wolfgangsz
    of course), I have a number of DNS servers, all running bind9 (9.5.1, to be specific) under fedora. 4 of them are slaves, fed by a common master for our public DNS. These are all located on the public gateways of our various offices. One of them has tons of messages in its log files similar to these: Jul 21 17:26:18 gateway named[3487]: client 10.171.3.8#52500: view internal: error sending response: host unreachable I wonder where that comes from. The firewall is open on port 53 between the two machines (10.171.3.8 is an internal DNS server located on a Windows Domain Controller). The internal domains do NOT list the gateway as a name server (so there should not be any attempts of replicating the domains), and the gateway does not handle any internal DNS. The clients in these messages vary between the two domain controllers on the internal network and a third internal name server (running bind9 on debian in a different segment of the network). Any pointers are highly welcome. In response to the first reply: The issue with this really is that tcpdump doesn't show any problems. Here is an extract from "tcpdump -i any port 53" 09:13:38.283308 IP valine.aminocom.com.61815 ns-pri.ripe.net.domain: 14075 PTR? 166.225.58.95.in-addr.arpa. (44) 09:13:42.007410 IP gateway-eng.aminocom.com.37047 alanine.aminocom.com.domain: 35410+ PTR? 12.3.172.10.in-addr.arpa. (42) At the same time, the DNS log shows: Jul 22 09:13:38 gateway named[3487]: client 10.171.3.6#61300: view internal: error sending response: host unreachable Jul 22 09:13:40 gateway named[3487]: client 10.172.3.12#56230: view internal: error sending response: host unreachable Jul 22 09:13:40 gateway named[3487]: client 10.171.3.8#55221: view internal: error sending response: host unreachable Jul 22 09:13:49 gateway named[3487]: client 10.171.3.8#51342: view internal: error sending response: host unreachable So clearly at 09:13:40 there were two unsuccessful attempts to connect to internal machines (10.172.3.12 and 10.171.3.8, both are DNS servers), but nothing in the tcpdump output.

    Read the article

  • switchless Infiniband between two servers on RHEL 6.3

    - by exfizik
    I have 2 servers running RHEL 6.3 which have 2 port Infiniband cards >lspci | grep -i infini 07:00.0 InfiniBand: QLogic Corp. IBA7322 QDR InfiniBand HCA (rev 02) I'm interested in connecting them directly to each other bypassing an Infiniband switch (which I don't have). Quick googling showed that at least in some configurations it's possible. I installed all RedHat Infiniband packages with yum groupinstall "Infiniband Support". However, ibv_devinfo shows that both ports in each card are down, which indicates that cables are not connected. But the cable is connected, although the LEDs are off on the cards (not a good sign). Another source of confusion for me is that according to this, RedHat doesn't come with OFED packages and I'm slightly hesitant to install them from source due to the lack of RedHat support for them... So where am I going with this? The questions I have are: is it possible to have a switchless/direct Infiniband connection between two servers the way I described above? If it's possible, do I have to use the OFED packages or can I configure everything with just the packages coming with RHEL. Why are the LEDs off on my servers even though the cable is connected? Any additional input/advice/pointers would be appreciated. P.S. I followed this guide for installation instructions. The Infiniband cards are clearly recognized by my OS and the rdma service is running. Update: I have opensm installed. When I run it it says: OpenSM 3.3.13 Command Line Arguments: Log File: /var/log/opensm.log ------------------------------------------------- OpenSM 3.3.13 Entering DISCOVERING state Using default GUID 0x1175000076e4c8 SM port is down and stays at that point.

    Read the article

  • Clicking a link in IE6 doesn't load page (internal DNS entry on our intranet)

    - by Callum
    I have a very strange problem that is only affecting some versions of IE6. The problem does affect IE 6.0.2900.5512, but does not seem to affect 6.0.3790.3959 Basically I work for a company and we have an intranet. While I'm not an expert on "internal DNS pointers", what I was able to do was create a website (let's say about football), and when an employee who is sitting behind the company firewall types the word "football" in to the web address bar of their web browser, they get redirected to a particular server. I am told this is some kind "internally pointing DNS entry". So, I've set one of these up, and I have a placed a link to it on our company intranet page. However, when the link is clicked in IE6.0.2900.5512, the page goes blank. Clicking "refresh" then loads the correct page (the one specified in the link). Can anyone help me out here. I have tried changing the way URL is formed, everything from //football to http://football/ etc. The link works fine in every other browser and IE7+, but unfoturnatly, IE6 is still the most common browser in use at my organisation.

    Read the article

  • Secure iptables config for Samba

    - by Eric
    I'm trying to setup an iptables config such that outbound connections from my CentOS 6.2 server are allowed ONLY if they are of state ESTABLISHED. Currently, the following setup is working great for sshd, but all the Samba rules get totally ignored for a reason I cannot figure out. iptables Bash script to setup ALL rules: # Remove all existing rules iptables -F # Set default chain policies iptables -P INPUT DROP iptables -P FORWARD DROP iptables -P OUTPUT DROP # Allow incoming SSH iptables -A INPUT -i eth0 -p tcp --dport 22222 -m state --state NEW,ESTABLISHED -j ACCEPT iptables -A OUTPUT -o eth0 -p tcp --sport 22222 -m state --state ESTABLISHED -j ACCEPT # Allow incoming Samba iptables -A INPUT -i eth0 -s 10.1.1.0/24 -p udp --dport 137:138 -m state --state NEW,ESTABLISHED -j ACCEPT iptables -A OUTPUT -o eth0 -d 10.1.1.0/24 -p udp --sport 137:138 -m state --state ESTABLISHED -j ACCEPT iptables -A INPUT -i eth0 -s 10.1.1.0/24 -p tcp --dport 139 -m state --state NEW,ESTABLISHED -j ACCEPT iptables -A OUTPUT -o eth0 -d 10.1.1.0/24 -p tcp --sport 139 -m state --state ESTABLISHED -j ACCEPT # Enable these rules service iptables restart iptables rule list after running the above script: [root@repoman ~]# iptables -L Chain INPUT (policy DROP) target prot opt source destination ACCEPT tcp -- anywhere anywhere tcp dpt:22222 state NEW,ESTABLISHED Chain FORWARD (policy DROP) target prot opt source destination Chain OUTPUT (policy DROP) target prot opt source destination ACCEPT tcp -- anywhere anywhere tcp spt:22222 state ESTABLISHED Ultimately, I'm trying to restrict Samba the same way I have done for sshd. In addition, I'm trying to restrict connections to the following IP address range: 10.1.1.12 - 10.1.1.19 Can you guys offer some pointers or possibly even a full-blown solution? I've read man iptables quite extensively, so I'm not sure why the Samba rules are getting thrown out. Additionally, removing the -s 10.1.1.0/24 flags don't change the fact the rules get ignored.

    Read the article

  • Convert an Enum to String

    - by Aamir Hasan
     Retrieves the name of the constant in the specified enumeration that has the specified value. If you have used an enum before you will know that it can represent numbers (usually int but also byte, sbyte, short, ushort, int, uint, long, and ulong) but not strings. I created my enum and I was in the process of coding up a lookup table to convert my enum parameter back into a string when I found this handy method called Enum.GetName(). using System;public class GetNameTest { enum Colors { Red, Green, Blue, Yellow }; enum Styles { Plaid, Striped, Tartan, Corduroy }; public static void Main() {Response.Write("The 4th value of the Colors Enum is" + Enum.GetName(typeof(Colors), 3));Response.Write("The 4th value of the Styles Enum is "+ Enum.GetName(typeof(Styles), 3)); }}Reference:http://msdn.microsoft.com/en-us/library/system.enum.getname.aspxhttp://www.studentacad.com/post/2010/03/31/Convert-an-Enum-to-String.aspx

    Read the article

  • A C# implementation of the CallStream pattern

    - by Bertrand Le Roy
    Dusan published this interesting post a couple of weeks ago about a novel JavaScript chaining pattern: http://dbj.org/dbj/?p=514 It’s similar to many existing patterns, but the syntax is extraordinarily terse and it provides a new form of friction-free, plugin-less extensibility mechanism. Here’s a JavaScript example from Dusan’s post: CallStream("#container") (find, "div") (attr, "A", 1) (css, "color", "#fff") (logger); The interesting thing here is that the functions that are being passed as the first argument are arbitrary, they don’t need to be declared as plug-ins. Compare that with a rough jQuery equivalent that could look something like this: $.fn.logger = function () { /* ... */ } $("selector") .find("div") .attr("A", 1) .css("color", "#fff") .logger(); There is also the “each” method in jQuery that achieves something similar, but its syntax is a little more verbose. Of course, that this pattern can be expressed so easily in JavaScript owes everything to the extraordinary way functions are treated in that language, something Douglas Crockford called “the very best part of JavaScript”. One of the first things I thought while reading Dusan’s post was how I could adapt that to C#. After all, with Lambdas and delegates, C# also has its first-class functions. And sure enough, it works really really well. After about ten minutes, I was able to write this: CallStreamFactory.CallStream (p => Console.WriteLine("Yay!")) (Dump, DateTime.Now) (DumpFooAndBar, new { Foo = 42, Bar = "the answer" }) (p => Console.ReadKey()); Where the Dump function is: public static void Dump(object options) { Console.WriteLine(options.ToString()); } And DumpFooAndBar is: public static void DumpFooAndBar(dynamic options) { Console.WriteLine("Foo is {0} and bar is {1}.", options.Foo, options.Bar); } So how does this work? Well, it really is very simple. And not. Let’s say it’s not a lot of code, but if you’re like me you might need an Advil after that. First, I defined the signature of the CallStream method as follows: public delegate CallStream CallStream (Action<object> action, object options = null); The delegate define a call stream as something that takes an action (a function of the options) and an optional options object and that returns a delegate of its own type. Tricky, but that actually works, a delegate can return its own type. Then I wrote an implementation of that delegate that calls the action and returns itself: public static CallStream CallStream (Action<object> action, object options = null) { action(options); return CallStream; } Pretty nice, eh? Well, yes and no. What we are doing here is to execute a sequence of actions using an interesting novel syntax. But for this to be actually useful, you’d need to build a more specialized call stream factory that comes with some sort of context (like Dusan did in JavaScript). For example, you could write the following alternate delegate signature that takes a string and returns itself: public delegate StringCallStream StringCallStream(string message); And then write the following call stream (notice the currying): public static StringCallStream CreateDumpCallStream(string dumpPath) { StringCallStream str = null; var dump = File.AppendText(dumpPath); dump.AutoFlush = true; str = s => { dump.WriteLine(s); return str; }; return str; } (I know, I’m not closing that stream; sure; bad, bad Bertrand) Finally, here’s how you use it: CallStreamFactory.CreateDumpCallStream(@".\dump.txt") ("Wow, this really works.") (DateTime.Now.ToLongTimeString()) ("And that is all."); Next step would be to combine this contextual implementation with the one that takes an action parameter and do some really fun stuff. I’m only scratching the surface here. This pattern could reveal itself to be nothing more than a gratuitous mind-bender or there could be applications that we hardly suspect at this point. In any case, it’s a fun new construct. Or is this nothing new? You tell me… Comments are open :)

    Read the article

  • how to split a very large database on sql server

    - by ken jackson
    I have a 90 GB SQL Server database that I want to make more manageable. It stores stock data from 50+ different stocks from 2009 and 2010, and each stock is a separate table. Some tables have hundreds of millions of rows, and other have just a few million. What I want to do is somehow split the database, so that I don't have a single database file that is 90 GB. What I want is to be able to somehow magically split all the tables so that I can backup the 2009 data once and not have to keep on including it in the backup every time I backup the entire database, however, I would like the 2009 data to be included whenever I do a query. Is partitioning the database the way to go? Will it do the above for me, or will I need some other solution? I research partitioning, but I wasn't sure if that would solve all my problems. I wasn't able to find anything that would tell me whether or not it would migrate prexisting data, or whether it only worked for newly inserted data. Any help or pointers would be much appreciated. Thanks in advance, Ken

    Read the article

  • configure apache/webdav readonly for user x, read/write for user y

    - by user82296
    I'm using Apache 2.2 on RHEL 6.x. I can get webdav setup as readonly for user x or readwrite for user x but can't figure out how to make it read only for user x and read/write for user y. I just have a single folder /var/www/html/davtest owned by apache:apache and I want myUser to have readonly access and myAdmin to have read/write access. So far I've only been able to control this by modifying the permissions on the dir /var/www/html/davtest (e.g. if apache has rw then no matter how I set limitExcept below either user can read/write Is this in general possible? <Directory /var/www/html/davtest > DAV on Options Indexes AuthType Digest AuthName myAuth AuthDigestDomain /myD/ http://mysys.x.y/davtest AuthDigestProvider file AuthUserFile /var/www/davDigest/dav_pw require user readOnlyUser <limitExcept get head options> require user myAdmin </limitExcept> </Directory> I've tried various permutations with Limit, LimitExcept and it appears that the only thing that determines who can read/write to the share are the permissions on the files/folders in the share. any guidance, pointers to docs would be greatly appreciated. thanks

    Read the article

  • Can IIS (Ideally Azure) do SSL Proxying?

    - by Acoustic
    My team has been asked to add a new feature to a project we're working on, and none of can find authoritative details on whether it's possible with Windows/IIS. The short of it is that we're hoping to have customers update their DNS with a CNAME record to point their website to our server instead of theirs (they why's are trivial - it's what the app does on behalf of your site). We're using a reverse proxy with several custom modules to serve particular content from the original servers. So far everything works perfectly until we encounter SSL. Is there a way to have IIS serve up an SSL certificate from another server? In other words, is there a way to be a trusted man in the middle? I'm hoping that's possible so that we don't have to require all our clients to re-issue their SSL certs. Frankly, we don't want to have to manage hundreds of certs. I'd also like to avoid a UCC situation if there's a way to because it seems to require re-creating the cert each time a client is added. So, any pointers on proxying/hosting SSL (or even dynamic SSL hosting like http://www.globalsign.com/cloud/) would be appreciated.

    Read the article

  • Create Orchard Module in a Separate Project

    - by Steve Michelotti
    The Orchard Project is a new OOS Microsoft project that is being developed up on CodePlex. From the Orchard home page on CodePlex, it states “Orchard project is focused on delivering a .NET-based CMS application that will allow users to rapidly create content-driven Websites, and an extensibility framework that will allow developers and customizers to provide additional functionality through modules and themes.” The Orchard Project site contains additional information including documentation and walkthroughs. The ability to create a composite solution based on a collection of modules is a compelling feature. In Orchard, these modules can just be created as simple MVC Areas or they can also be created inside of stand-alone web application projects.  The walkthrough for writing an Orchard module that is available on the Orchard site uses a simple Area that is created inside of the host application. It is based on the Orchard MIX presentation. This walkthrough does an effective job introducing various Orchard concepts such as hooking into the navigation system, theme/layout system, content types, and more.  However, creating an Orchard module in a separate project does not seem to be concisely documented anywhere. Orchard ships with several module OOTB that are in separate assemblies – but again, it’s not well documented how to get started building one from scratch. The following are the steps I took to successfully get an Orchard module in a separate project up and running. Step 1 – Download the OrchardIIS.zip file from the Orchard Release page. Unzip and open up the solution. Step 2 – Add your project to the solution. I named my project “Orchard.Widget” and used and “MVC 2 Empty Web Application” project type. Make sure you put the physical path inside the “Modules” sub-folder to the main project like this: At this point the solution should look like: Step 3 – Add assembly references to Orchard.dll and Orchard.Core.dll. Step 4 – Add a controller and view.  I’ll just create a Hello World controller and view. Notice I created the view as a partial view (*.ascx). Also add the [Themed] attribute to the top of the HomeController class just like the normal Orchard walk through shows it. Step 5 – Add Module.txt to the project root. The is a very important step. Orchard will not recognize your module without this text file present.  It can contain just the name of your module: name: Widget Step 6 – Add Routes.cs. Notice I’ve given an area name of “Orchard.Widget” on lines 26 and 33. 1: using System; 2: using System.Collections.Generic; 3: using System.Web.Mvc; 4: using System.Web.Routing; 5: using Orchard.Mvc.Routes; 6:   7: namespace Orchard.Widget 8: { 9: public class Routes : IRouteProvider 10: { 11: public void GetRoutes(ICollection<RouteDescriptor> routes) 12: { 13: foreach (var routeDescriptor in GetRoutes()) 14: { 15: routes.Add(routeDescriptor); 16: } 17: } 18:   19: public IEnumerable<RouteDescriptor> GetRoutes() 20: { 21: return new[] { 22: new RouteDescriptor { 23: Route = new Route( 24: "Widget/{controller}/{action}/{id}", 25: new RouteValueDictionary { 26: {"area", "Orchard.Widget"}, 27: {"controller", "Home"}, 28: {"action", "Index"}, 29: {"id", ""} 30: }, 31: new RouteValueDictionary(), 32: new RouteValueDictionary { 33: {"area", "Orchard.Widget"} 34: }, 35: new MvcRouteHandler()) 36: } 37: }; 38: } 39: } 40: } Step 7 – Add MainMenu.cs. This will make sure that an item appears in the main menu called “Widget” which points to the module. 1: using System; 2: using Orchard.UI.Navigation; 3:   4: namespace Orchard.Widget 5: { 6: public class MainMenu : INavigationProvider 7: { 8: public void GetNavigation(NavigationBuilder builder) 9: { 10: builder.Add(menu => menu.Add("Widget", item => item.Action("Index", "Home", new 11: { 12: area = "Orchard.Widget" 13: }))); 14: } 15:   16: public string MenuName 17: { 18: get { return "main"; } 19: } 20: } 21: } Step 8 – Clean up web.config. By default Visual Studio adds numerous sections to the web.config. The sections that can be removed are: appSettings, connectionStrings, authentication, membership, profile, and roleManager. Step 9 – Delete Global.asax. This project will ultimately be running from inside the Orchard host so this “sub-site” should not have its own Global.asax.   Now you’re ready the run the app.  When you first run it, the “Widget” menu item will appear in the main menu because of the MainMenu.cs file we added: We can then click the “Widget” link in the main menu to send us over to our view:   Packaging From start to finish, it’s a relatively painless experience but it could be better. For example, a Visual Studio project template that encapsulates aspects from this blog post would definitely make it a lot easier to get up and running with creating an Orchard module.  Another aspect I found interesting is that if you read the first paragraph of the walkthrough, it says, “You can also develop modules as separate projects, to be packaged and shared with other users of Orchard CMS (the packaging story is still to be defined, along with marketplaces for sharing modules).” In particular, I will be extremely curious to see how the “packaging story” evolves. The first thing that comes to mind for me is: what if we explored MvcContrib Portable Areas as a potential mechanism for this packaging? This would certainly make things easy since all artifacts (aspx, aspx, images, css, javascript) are all wrapped up into a single assembly. Granted, Orchard does have its own infrastructure for layouts and themes but it seems like integrating portable areas into this pipeline would not be a difficult undertaking. Maybe that’ll be the next research task. :)

    Read the article

  • How to setup DNS server behind a VPN

    - by Brian
    I want to host some websites behind a VPN and I need some help with the finer points of the configuration. Thus far I've settled on OpenVPN + Bind9 and I want to configure the domains like this: External DNS mail.example.com www.example.com vpn.example.com I want to be able to connect to the vpn using 'vpn.example.com'. Once connected I then want to be able to resolve anything which is '*.vpn.example.com' with the DNS server sitting behind the VPN. I know that OpenVPN can push DNS servers to clients when they connect. I am having trouble though with the DNS config, both internal and external. I've gone through a few tutorials etc. and tried to reason about it myself but I'm not getting anywhere. So my main question would be does the above configuration make sense? If so, any general pointers or examples would be greatly appreciated. Here's what I've tried so far based on this tutorial (I've redacted my domain with example.com). When I try the tests with dig at the end to check the resolution is working it fails. db.vpn.example.com $TTL 15m vpn.example.com. IN SOA ns.vpn.example.com. [email protected]. ( 2009010910 ;serial 900 ;refresh 900 ;retry 900 ;expire 900 ;minimum TTL ) vpn.example.com. IN NS ns.vpn.example.com. ns IN A 192.168.0.2 test IN A 192.168.0.2

    Read the article

  • 2d tank movement and turret solution

    - by Phil
    Hi! I'm making a simple top-down tank game on the ipad where the user controls the movement of the tank with the left "joystick" and the rotation of the turret with the right one. I've spent several hours just trying to get it to work decently but now I turn to the pros :) I have two referencial objects, one for the movement and one for the rotation. The referencial objects always stay max two units away from the tank and I use them to tell the tank in what direction to move. I chose this approach to decouple movement and rotational behaviour from the raw input of the joysticks, I believe this will make it simpler to implement whatever behaviour I want for the tank. My problem is 1; the turret rotates the long way to the target. With this I mean that the target can be -5 degrees away in rotation and still it rotates 355 degrees instead of -5 degrees. I can't figure out why. The other problem is with the movement. It just doesn't feel right to have the tank turn while moving. I'd like to have a solution that would work as well for the AI as for the player. A blackbox function for the movement where the player only specifies in what direction it should move and it moves there under the constraints that are imposed on it. I am using the standard joystick class found in the Unity iPhone package. This is the code I'm using for the movement: public class TankFollow : MonoBehaviour { //Check angle difference and turn accordingly public GameObject followPoint; public float speed; public float turningSpeed; void Update() { transform.position = Vector3.Slerp(transform.position, followPoint.transform.position, speed * Time.deltaTime); //Calculate angle var forwardA = transform.forward; var forwardB = (followPoint.transform.position - transform.position); var angleA = Mathf.Atan2(forwardA.x, forwardA.z) * Mathf.Rad2Deg; var angleB = Mathf.Atan2(forwardB.x, forwardB.z) * Mathf.Rad2Deg; var angleDiff = Mathf.DeltaAngle(angleA, angleB); //print(angleDiff.ToString()); if (angleDiff > 5) { //Rotate to transform.Rotate(new Vector3(0, (-turningSpeed * Time.deltaTime),0)); //transform.rotation = new Quaternion(transform.rotation.x, transform.rotation.y + adjustment, transform.rotation.z, transform.rotation.w); } else if (angleDiff < 5) { transform.Rotate(new Vector3(0, (turningSpeed * Time.deltaTime),0)); //transform.rotation = new Quaternion(transform.rotation.x, transform.rotation.y + adjustment, transform.rotation.z, transform.rotation.w); } else { } transform.position = new Vector3(transform.position.x, 0, transform.position.z); } } And this is the code I'm using to rotate the turret: void LookAt() { var forwardA = -transform.right; var forwardB = (toLookAt.transform.position - transform.position); var angleA = Mathf.Atan2(forwardA.x, forwardA.z) * Mathf.Rad2Deg; var angleB = Mathf.Atan2(forwardB.x, forwardB.z) * Mathf.Rad2Deg; var angleDiff = Mathf.DeltaAngle(angleA, angleB); //print(angleDiff.ToString()); if (angleDiff - 180 > 1) { //Rotate to transform.Rotate(new Vector3(0, (turretSpeed * Time.deltaTime),0)); //transform.rotation = new Quaternion(transform.rotation.x, transform.rotation.y + adjustment, transform.rotation.z, transform.rotation.w); } else if (angleDiff - 180 < -1) { transform.Rotate(new Vector3(0, (-turretSpeed * Time.deltaTime),0)); //transform.rotation = new Quaternion(transform.rotation.x, transform.rotation.y + adjustment, transform.rotation.z, transform.rotation.w); print((angleDiff - 180).ToString()); } else { } } Since I want the turret reference point to turn in relation to the tank (when you rotate the body, the turret should follow and not stay locked on since it makes it impossible to control when you've got two thumbs to work with), I've made the TurretFollowPoint a child of the Turret object, which in turn is a child of the body. I'm thinking that I'm making it too difficult for myself with the reference points but I'm imagining that it's a good idea. Please be honest about this point. So I'll be grateful for any help I can get! I'm using Unity3d iPhone. Thanks!

    Read the article

  • What are the advantages and disadvantages of the various virtual machine image formats?

    - by Matt
    Xen and Virtualbox etc both support a range of different virtual machine image formats. These are: vmdk, vdi, qcow & qcow2, hdd & vhd. Without any bias toward a particular product, I'm wanting to know what are the advantages and disadvantages of the various formats both from a features perspective, robustness and speed? One piece of info I discovered in a forum post was this: "The major difference is that VDI uses relatively large blocks (1MB) when growing an image, and thus has less overhead for block pointers etc. but isn't ultimately space efficient in the sense that if a single byte is non-zero in such a 1MB block the entire space is used. VMDK in contrast uses 64K blocks, and thus has more management overhead and generally a bit less disk space consumption What offsets this is that VDI is more efficient when it comes to snapshots." You might be thinking, I want to know this because I want to know which format to choose? Not exactly, I'm developing some software which utilises these formats and want to support one or more of them. Simplicity, large disks and ease of development are my main drivers.

    Read the article

  • C# window application : How to validate mobile no.

    - by SAMIR BHOGAYTA
    //First : Simple Method private void textBox1_KeyPress(object sender, KeyPressEventArgs e) { if (char.IsDigit(e.KeyChar) == true) { if (textBox1.Text.Length 10) { MessageBox.Show("Invalid Indian Mobile Number !!"); txtPhone.Focus(); } } //With the help of JavaScript function phone_validate(phone) { var phoneReg = ^((\+)?(\d{2}[-]))?(\d{10}){1}?$; if(phoneReg.test(phone) == false) { alert("Phone number is not yet valid."); } else { alert("You have entered a valid phone number!"); } }

    Read the article

< Previous Page | 442 443 444 445 446 447 448 449 450 451 452 453  | Next Page >