As I understand it, most query optimizers are cost-based. Some can be influenced by hints like FIRST_ROWS(). Others are tailored for OLAP. Is it possible to know more detailed logic about how Informix IDS and SE's optimizers decide what's the best route for processing a query, other than SET EXPLAIN? Is there any documentation which illustrates the ranking of SELECT statements?
I would imagine that "SELECT col FROM table WHERE ROWID = n" ranks 1st.
What are the rest of them?.. If I'm not mistaking, Informix's ROWID is a SERIAL(INT) which allows for a max. of 2GB nrows, or maybe it uses INT9 for TB's nrows?.. However, I think Oracle uses HEX values for ROWID. Too bad ROWID can't be oftenly used, since a rows ROWID can change. So maybe ROWID is used by the optimizer as a counter? Perhaps, it could be used for implementing the query progress idea I mentioned in my "Begin viewing query results before query completes" question? For some reason, I feel it wouldn't be that difficult to report a query's progress while being processed, perhaps at the expense of some slight overhead, but it would be nice to know ahead of time: A "Google-like" estimate of how many rows meet a query's criteria, display it's progress every 100, 200, 500 or 1,000 rows, give users the ability to cancel it at anytime and start displaying the qualifying rows as they are being put into the current list, while it continues searching?.. This is just one example, perhaps we could think other neat/useful features, the ingridients are more or less there. Perhaps we could fine-tune each query with more granularity than currently available? OLTP queries tend to be mostly static and pre-defined. The "what-if's" are more OLAP, so let's try to add more control and intelligence to it? So, therefore, being able to more precisely control, not "hint-influence" a query is what's needed and therefore it would be necessary to know how the optimizers logic is programmed. We can then have Dynamic SELECT and other statements for specific situations! Maybe even tell IDS to read blocks of indexes nodes at-a-time instead of one-by-one, etc. etc.