Search Results

Search found 1157 results on 47 pages for 'latency'.

Page 45/47 | < Previous Page | 41 42 43 44 45 46 47  | Next Page >

  • Slow disk transfer rate

    - by Nooklez
    I have problem with slow disk transfer rate. It's static files server for our website. I was making backup of data and noticed that tar is very slow. So I did hdparm -t and... hdparm -t /dev/sda3 /dev/sda3: Timing buffered disk reads: 6 MB in 4.70 seconds = 1.28 MB/sec It's low traffic hour now on our site, so huge I/O traffic is not a reason (iotop show less than 1 MB/s). It's RAID10 setup (2x2 SATA drives). Unit UnitType Status %RCmpl %V/I/M Stripe Size(GB) Cache AVrfy ------------------------------------------------------------------------------ u0 RAID-10 OK - - 64K 1396.96 W ON VPort Status Unit Size Type Phy Encl-Slot Model ------------------------------------------------------------------------------ p0 OK u0 698.63 GB SATA 0 - WDC WD7500AADS-00M2 p1 OK u0 698.63 GB SATA 1 - WDC WD7500AADS-00M2 p2 OK u0 698.63 GB SATA 2 - WDC WD7500AADS-00M2 p3 OK u0 698.63 GB SATA 3 - WDC WD7500AADS-00M2 We have recently changed almost all components of server (excluding 3ware controller + disks). And I think problems started since then. Can it be configuration problem or hardware? EDIT: I found something like that in dmesg [166843.625843] irq 16: nobody cared (try booting with the "irqpoll" option) [166843.625846] Pid: 0, comm: swapper Not tainted 3.1.5-gentoo #3 [166843.625847] Call Trace: [166843.625848] <IRQ> [<ffffffff810859d5>] __report_bad_irq+0x35/0xc1 [166843.625856] [<ffffffff81085cec>] note_interrupt+0x165/0x1e1 [166843.625859] [<ffffffff8108445f>] handle_irq_event_percpu+0x16f/0x187 [166843.625861] [<ffffffff810844a9>] handle_irq_event+0x32/0x51 [166843.625863] [<ffffffff8108640b>] handle_fasteoi_irq+0x75/0x99 [166843.625866] [<ffffffff810039d7>] handle_irq+0x83/0x8b [166843.625868] [<ffffffff810036ad>] do_IRQ+0x48/0xa0 [166843.625871] [<ffffffff8155082b>] common_interrupt+0x6b/0x6b [166843.625872] <EOI> [<ffffffff812981e8>] ? acpi_safe_halt+0x22/0x35 [166843.625877] [<ffffffff812981e2>] ? acpi_safe_halt+0x1c/0x35 [166843.625879] [<ffffffff81298216>] acpi_idle_do_entry+0x1b/0x2b [166843.625881] [<ffffffff81298276>] acpi_idle_enter_c1+0x50/0x99 [166843.625884] [<ffffffff813b792a>] cpuidle_idle_call+0xed/0x171 [166843.625886] [<ffffffff81001257>] cpu_idle+0x55/0x81 [166843.625888] [<ffffffff81532a69>] rest_init+0x6d/0x6f [166843.625891] [<ffffffff81aa1aca>] start_kernel+0x329/0x334 [166843.625893] [<ffffffff81aa12a6>] x86_64_start_reservations+0xb6/0xba [166843.625894] [<ffffffff81aa139c>] x86_64_start_kernel+0xf2/0xf9 [166843.625896] handlers: [166843.625898] [<ffffffff812dc8de>] twl_interrupt [166843.625900] Disabling IRQ #16 It's related to problem? EDIT #2: Based on feedback in comments, here is more informations. cat /proc/interrupts 16: 390813 0 0 0 IO-APIC-fasteoi 3w-sas Controller model: [ 1.095350] 3ware Storage Controller device driver for Linux v1.26.02.003. [ 1.095467] 3ware 9000 Storage Controller device driver for Linux v2.26.02.014. [ 1.095641] LSI 3ware SAS/SATA-RAID Controller device driver for Linux v3.26.02.000. [ 1.095787] 3w-sas 0000:01:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 1.095881] 3w-sas 0000:01:00.0: setting latency timer to 64 [ 1.910801] 3w-sas: scsi0: Found an LSI 3ware 9750-4i Controller at 0xfe560000, IRQ: 16. [ 2.216537] 3w-sas: scsi0: Firmware FH9X 5.08.00.008, BIOS BE9X 5.07.00.011, Phys: 8. [ 2.216836] scsi 0:0:0:0: Direct-Access LSI 9750-4i DISK 5.08 PQ: 0 ANSI: 5 And motherboard: description: Motherboard product: P8H67-M vendor: ASUSTeK Computer INC.

    Read the article

  • what is the best mid/high-end class audio/music creation audio sound card?

    - by Chris
    Hello, I have a computershop myself, and I repair computers. But one of the things I really don't know (yet) is the performace od audio cards for music creation with midi. I have searched and searched and came up with some good reviews, but after browsing for a couple of hours I could't see the trees trough the forrest :-D (it's a dutch expression) At one moment I thought the M-Audio - Delta 1010LT would be a good PCIe card, later on I read that this card was released years ago. (but that could be false information) Also any personal expierence would be great, but not necessairy. I have searched a few cards, and I hope someone can help me make a choice for a friend of mine. He's buget is between $100 and $350 I know there are audio cards from $ 500 - $1850,- this is just too expensive. The following specs are crucial: ASIO Midi Mic in minimal 5.1, 7.1 recommended it's not for airplay, but just to compose music at home. using Ableton and midi keyboard. 1. M-Audio - Delta 1010LT: 8 x 8 analog I/O 2 mic preamps or line inputs S/PDIF digital I/O (coaxial) with 2-channel PCM SCMS copy protection control digital I/O supports surround-encoded AC-3 and DTS pass-through 1 x 1 MIDI I/O directly drive up to 7.1 surround (bass management software included) software controlled 36-bit internal DSP digital mixing/routing +4dbu/-10dBV operation individually switched in software word clock I/O for sample accurate device synchronization 2. RME HDSP 9632: * Stereo Analog Ein- und Ausgang, symmetrisch*, 24-Bit/192kHz, > 110 dB SNR * Optionale Erweiterungsboards mit je 4 symmetrischen Ein- und Ausgängen * Alle analogen I/Os voll 192 kHz-fähig, also keine Reduzierung der Kanalzahl * 1 x ADAT Digital In/Out, 96 kHz-fähig (S/MUX) * 1 x SPDIF Digital In/Out, 192 kHz-fähig * 1 x Breakout Kabel für koaxialen SPDIF-Betrieb* * Also bis zu 16 Ein-und Ausgänge gleichzeitig nutzbar! * 1 x Stereo Kopfhörerausgang, parallel zum analogen Ausgang, aber eigene Pegelanpassung * 1 x MIDI I/O für 16 Kanäle Hi-Speed MIDI über Breakout Kabel * DIGICheck, RMEs einzigartiges Meter- und Analysetool mit Spectral Analyser, Professionelle Level Meter 2/8/16-Kanalig, Vector Audio Scope und diversen weiteren Analysefunktionen * HDSP Meter Bridge: Frei skalierbare Levelmeter mit Peak- und RMS Berechnung in Hardware * TotalMix: 512-Kanal Mischer mit 40 Bit interner Auflösung 3. EMU 1212M (1212 M) PCIe: * Top kwaliteit convertors 24-bit/192kHz convertors. * Hardware gestuurde effecten. * DSP zero-latency hardware mixen en monitoring. * Analoge en digitale I/O plus MIDI. * EMU Production Tools Software Bundle - Cakewalk SONAR , Steinberg Cubase LE, Ableton Live E-MU Edition **EMU 1212M PCI-e inputs/outputs:** * 2 balanced jack inputs. * 2 balanced jack outputs. * 24-bit/192kHz ADAT I/O. * 24-bit/192kHz Coaxiale S/PDif I/O switchable to AES/EBU. * MIDI I/O. 4. M-Audio Audiophile 192: - Up to 24-bit/192kHz audio - 2 balanced analog inputs (1/4” TRS) - 2 balanced analog outputs (1/4” TRS) - S/PDIF digital I/O (coaxial RCA connectors) with 2-channel PCM - SCMS copy protection control - Digital I/O supports surround-encoded AC-3 and DTS pass-through - Direct hardware input monitoring via separate balanced 1/4” TRS monitor outputs - Software routing of inputs and outputs - Digital I/O can be routed to/from external effects - 16-channel MIDI I/O - ASIO, WDM, GSIF 2 and Core Audio driver support for compatibility with most applications - 64-bit driver support for Windows - PCI 2.2 compatibility - Apple G5 compatible - Incompatible exceptions - Includes Ableton Live Lite music production software, so you can make music right away - Works with other Delta cards Technical Specifcations: - Compatibility - ASIO - WDM - GSIF 2 - Core Audio

    Read the article

  • How to place SuperFetch cache on an SSD?

    - by Ian Boyd
    I'm thinking of adding a solid state drive (SSD) to my existing Windows 7 installation. I know I can (and should) move my paging file to the SSD: Should the pagefile be placed on SSDs? Yes. Most pagefile operations are small random reads or larger sequential writes, both of which are types of operations that SSDs handle well. In looking at telemetry data from thousands of traces and focusing on pagefile reads and writes, we find that Pagefile.sys reads outnumber pagefile.sys writes by about 40 to 1, Pagefile.sys read sizes are typically quite small, with 67% less than or equal to 4 KB, and 88% less than 16 KB. Pagefile.sys writes are relatively large, with 62% greater than or equal to 128 KB and 45% being exactly 1 MB in size. In fact, given typical pagefile reference patterns and the favorable performance characteristics SSDs have on those patterns, there are few files better than the pagefile to place on an SSD. What I don't know is if I even can put a SuperFetch cache (i.e. ReadyBoost cache) on the solid state drive. I want to get the benefit of Windows being able to cache gigabytes of frequently accessed data on a relativly small (e.g. 30GB) solid state drive. This is exactly what SuperFetch+ReadyBoost (or SuperFetch+ReadyDrive) was designed for. Will Windows offer (or let) me place a ReadyBoost cache on a solid state flash drive connected via SATA? A problem with the ReadyBoost cache over the ReadyDrive cache is that the ReadyBoost cache does not survive between reboots. The cache is encrypted with a per-session key, making its existing contents unusable during boot and SuperFetch pre-fetching during login. Update One I know that Windows Vista limited you to only one ReadyBoost.sfcache file (I do not know if Windows 7 removed that limitation): Q: Can use use multiple devices for EMDs? A: Nope. We've limited Vista to one ReadyBoost per machine Q: Why just one device? A: Time and quality. Since this is the first revision of the feature, we decided to focus on making the single device exceptional, without the difficulties of managing multiple caches. We like the idea, though, and it's under consideration for future versions. I also know that the 4GB limit on the cache file was a limitation of the FAT filesystem used on most USB sticks - an SSD drive would be formatted with NTFS: Q: What's the largest amount of flash that I can use for ReadyBoost? A: You can use up to 4GB of flash for ReadyBoost (which turns out to be 8GB of cache w/ the compression) Q: Why can't I use more than 4GB of flash? A: The FAT32 filesystem limits our ReadyBoost.sfcache file to 4GB Can a ReadyBoost cache on an NTFS volume be larger than 4GB? Update Two The ReadyBoost cache is encrypted with a per-boot session key. This means that the cache has to be re-built after each boot, and cannot be used to help speed boot times, or latency from login to usable. Windows ReadyDrive technology takes advantage of non-volatile (NV) memory (i.e. flash) that is incorporated with some hybrid hard drives. This flash cache can be used to help Windows boot, or resume from hibernate faster. Will Windows 7 use an internal SSD drive as a ReadyBoost/*ReadyDrive*/SuperFetch cache? Is it possible to make Windows store a SuperFetch cache (i.e. ReadyBoost) on a non-removable SSD? Is it possible to not encrypt the ReadyBoost cache, and if so will Windows 7 use the cache at boot time? See also SuperUser.com: ReadyBoost + SSD = ? Windows 7 - ReadyBoost & SSD drives? Support and Q&A for Solid-State Drives Using SDD as a cache for HDD, is there a solution? Performance increase using SSD for paging/fetch/cache or ReadyBoost? (Win7) Windows 7 To Boost SSD Performance How to Disable Nonvolatile Caching

    Read the article

  • hostapd running on Ubuntu Server 13.04 only allows single station to connect when using wpa

    - by user450688
    Problem Only a single station can connect to hostapd at a time. Any single station can connect (W8, OSX, iOS, Nexus) but when two or more hosts are connected at the same time the first client loses its connectivity. However there are no connectivity issues when WPA is not used. Setup Linux (Ubuntu server 13.04) wireless router (with separate networks for wired WAN, wired LAN, and Wireless LAN. iptables-save output: *nat :PREROUTING ACCEPT [0:0] :INPUT ACCEPT [0:0] :OUTPUT ACCEPT [0:0] :POSTROUTING ACCEPT [0:0] -A POSTROUTING -s 10.0.0.0/24 -o p4p1 -j MASQUERADE -A POSTROUTING -s 10.0.1.0/24 -o p4p1 -j MASQUERADE COMMIT *mangle :PREROUTING ACCEPT [13:916] :INPUT ACCEPT [9:708] :FORWARD ACCEPT [4:208] :OUTPUT ACCEPT [9:3492] :POSTROUTING ACCEPT [13:3700] COMMIT *filter :INPUT DROP [0:0] :FORWARD DROP [0:0] :OUTPUT ACCEPT [9:3492] -A INPUT -i p4p1 -m state --state RELATED,ESTABLISHED -j ACCEPT -A INPUT -i p4p1 -p tcp -m tcp --dport 22 -m state --state NEW -j ACCEPT -A INPUT -i eth0 -j ACCEPT -A INPUT -i wlan0 -j ACCEPT -A INPUT -i lo -j ACCEPT -A FORWARD -i p4p1 -m state --state RELATED,ESTABLISHED -j ACCEPT -A FORWARD -i eth0 -j ACCEPT -A FORWARD -i wlan0 -j ACCEPT -A FORWARD -i lo -j ACCEPT COMMIT /etc/hostapd/hostapd.conf #Wireless Interface interface=wlan0 driver=nl80211 ssid=<removed> hw_mode=g channel=6 max_num_sta=15 auth_algs=3 ieee80211n=1 wmm_enabled=1 wme_enabled=1 #Configure Hardware Capabilities of Interface ht_capab=[HT40+][SMPS-STATIC][GF][SHORT-GI-20][SHORT-GI-40][RX-STBC12] #Accept all MAC address macaddr_acl=0 #Shared Key Authentication wpa=1 wpa_passphrase=<removed> wpa_key_mgmt=WPA-PSK wpa_pairwise=CCMP rsn_pairwise=CCMP ###IPad Connectivevity Repair ieee8021x=0 eap_server=0 Wireless Card #lshw output product: RT2790 Wireless 802.11n 1T/2R PCIe vendor: Ralink corp. physical id: 0 bus info: pci@0000:03:00.0 logical name: mon.wlan0 version: 00 serial: <removed> width: 32 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list logical wireless ethernet physical configuration: broadcast=yes driver=rt2800pci driverversion=3.8.0-25-generic firmware=0.34 ip=10.0.1.254 latency=0 link=yes multicast=yes wireless=IEEE 802.11bgn #iw list output Band 1: Capabilities: 0x272 HT20/HT40 Static SM Power Save RX Greenfield RX HT20 SGI RX HT40 SGI RX STBC 2-streams Max AMSDU length: 3839 bytes No DSSS/CCK HT40 Maximum RX AMPDU length 65535 bytes (exponent: 0x003) Minimum RX AMPDU time spacing: 2 usec (0x04) HT RX MCS rate indexes supported: 0-15, 32 TX unequal modulation not supported HT TX Max spatial streams: 1 HT TX MCS rate indexes supported may differ Frequencies: * 2412 MHz [1] (27.0 dBm) * 2417 MHz [2] (27.0 dBm) * 2422 MHz [3] (27.0 dBm) * 2427 MHz [4] (27.0 dBm) * 2432 MHz [5] (27.0 dBm) * 2437 MHz [6] (27.0 dBm) * 2442 MHz [7] (27.0 dBm) * 2447 MHz [8] (27.0 dBm) * 2452 MHz [9] (27.0 dBm) * 2457 MHz [10] (27.0 dBm) * 2462 MHz [11] (27.0 dBm) * 2467 MHz [12] (disabled) * 2472 MHz [13] (disabled) * 2484 MHz [14] (disabled) Bitrates (non-HT): * 1.0 Mbps * 2.0 Mbps (short preamble supported) * 5.5 Mbps (short preamble supported) * 11.0 Mbps (short preamble supported) * 6.0 Mbps * 9.0 Mbps * 12.0 Mbps * 18.0 Mbps * 24.0 Mbps * 36.0 Mbps * 48.0 Mbps * 54.0 Mbps max # scan SSIDs: 4 max scan IEs length: 2257 bytes Coverage class: 0 (up to 0m) Supported Ciphers: * WEP40 (00-0f-ac:1) * WEP104 (00-0f-ac:5) * TKIP (00-0f-ac:2) * CCMP (00-0f-ac:4) Available Antennas: TX 0 RX 0 Supported interface modes: * IBSS * managed * AP * AP/VLAN * WDS * monitor * mesh point software interface modes (can always be added): * AP/VLAN * monitor valid interface combinations: * #{ AP } <= 8, total <= 8, #channels <= 1 Supported commands: * new_interface * set_interface * new_key * new_beacon * new_station * new_mpath * set_mesh_params * set_bss * authenticate * associate * deauthenticate * disassociate * join_ibss * join_mesh * set_tx_bitrate_mask * set_tx_bitrate_mask * action * frame_wait_cancel * set_wiphy_netns * set_channel * set_wds_peer * Unknown command (84) * Unknown command (87) * Unknown command (85) * Unknown command (89) * Unknown command (92) * testmode * connect * disconnect Supported TX frame types: * IBSS: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * managed: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * AP: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * AP/VLAN: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * mesh point: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * P2P-client: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * P2P-GO: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * Unknown mode (10): 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 Supported RX frame types: * IBSS: 0x40 0xb0 0xc0 0xd0 * managed: 0x40 0xd0 * AP: 0x00 0x20 0x40 0xa0 0xb0 0xc0 0xd0 * AP/VLAN: 0x00 0x20 0x40 0xa0 0xb0 0xc0 0xd0 * mesh point: 0xb0 0xc0 0xd0 * P2P-client: 0x40 0xd0 * P2P-GO: 0x00 0x20 0x40 0xa0 0xb0 0xc0 0xd0 * Unknown mode (10): 0x40 0xd0 Device supports RSN-IBSS. HT Capability overrides: * MCS: ff ff ff ff ff ff ff ff ff ff * maximum A-MSDU length * supported channel width * short GI for 40 MHz * max A-MPDU length exponent * min MPDU start spacing Device supports TX status socket option. Device supports HT-IBSS.

    Read the article

  • DBA Best Practices - A Blog Series: Episode 1 - Backups

    - by Argenis
      This blog post is part of the DBA Best Practices series, on which various topics of concern for daily database operations are discussed. Your feedback and comments are very much welcome, so please drop by the comments section and be sure to leave your thoughts on the subject. Morning Coffee When I was a DBA, the first thing I did when I sat down at my desk at work was checking that all backups had completed successfully. It really was more of a ritual, since I had a dual system in place to check for backup completion: 1) the scheduled agent jobs to back up the databases were set to alert the NOC in failure, and 2) I had a script run from a central server every so often to check for any backup failures. Why the redundancy, you might ask. Well, for one I was once bitten by the fact that database mail doesn't work 100% of the time. Potential causes for failure include issues on the SMTP box that relays your server email, firewall problems, DNS issues, etc. And so to be sure that my backups completed fine, I needed to rely on a mechanism other than having the servers do the taking - I needed to interrogate the servers and ask each one if an issue had occurred. This is why I had a script run every so often. Some of you might have monitoring tools in place like Microsoft System Center Operations Manager (SCOM) or similar 3rd party products that would track all these things for you. But at that moment, we had no resort but to write our own Powershell scripts to do it. Now it goes without saying that if you don't have backups in place, you might as well find another career. Your most sacred job as a DBA is to protect the data from a disaster, and only properly safeguarded backups can offer you peace of mind here. "But, we have a cluster...we don't need backups" Sadly I've heard this line more than I would have liked to. You need to understand that a cluster is comprised of shared storage, and that is precisely your single point of failure. A cluster will protect you from an issue at the Operating System level, and also under an outage of any SQL-related service or dependent devices. But it will most definitely NOT protect you against corruption, nor will it protect you against somebody deleting data from a table - accidentally or otherwise. Backup, fine. How often do I take a backup? The answer to this is something you will hear frequently when working with databases: it depends. What does it depend on? For one, you need to understand how much data your business is willing to lose. This is what's called Recovery Point Objective, or RPO. If you don't know how much data your business is willing to lose, you need to have an honest and realistic conversation about data loss expectations with your customers, internal or external. From my experience, their first answer to the question "how much data loss can you withstand?" will be "zero". In that case, you will need to explain how zero data loss is very difficult and very costly to achieve, even in today's computing environments. Do you want to go ahead and take full backups of all your databases every hour, or even every day? Probably not, because of the impact that taking a full backup can have on a system. That's what differential and transaction log backups are for. Have I answered the question of how often to take a backup? No, and I did that on purpose. You need to think about how much time you have to recover from any event that requires you to restore your databases. This is what's called Recovery Time Objective. Again, if you go ask your customer how long of an outage they can withstand, at first you will get a completely unrealistic number - and that will be your starting point for discussing a solution that is cost effective. The point that I'm trying to get across is that you need to have a plan. This plan needs to be practiced, and tested. Like a football playbook, you need to rehearse the moves you'll perform when the time comes. How often is up to you, and the objective is that you feel better about yourself and the steps you need to follow when emergency strikes. A backup is nothing more than an untested restore Backups are files. Files are prone to corruption. Put those two together and realize how you feel about those backups sitting on that network drive. When was the last time you restored any of those? Restoring your backups on another box - that, by the way, doesn't have to match the specs of your production server - will give you two things: 1) peace of mind, because now you know that your backups are good and 2) a place to offload your consistency checks with DBCC CHECKDB or any of the other DBCC commands like CHECKTABLE or CHECKCATALOG. This is a great strategy for VLDBs that cannot withstand the additional load created by the consistency checks. If you choose to offload your consistency checks to another server though, be sure to run DBCC CHECKDB WITH PHYSICALONLY on the production server, and if you're using SQL Server 2008 R2 SP1 CU4 and above, be sure to enable traceflags 2562 and/or 2549, which will speed up the PHYSICALONLY checks further - you can read more about this enhancement here. Back to the "How Often" question for a second. If you have the disk, and the network latency, and the system resources to do so, why not backup the transaction log often? As in, every 5 minutes, or even less than that? There's not much downside to doing it, as you will have to clear the log with a backup sooner than later, lest you risk running out space on your tlog, or even your drive. The one drawback to this approach is that you will have more files to deal with at restore time, and processing each file will add a bit of extra time to the entire process. But it might be worth that time knowing that you minimized the amount of data lost. Again, test your plan to make sure that it matches your particular needs. Where to back up to? Network share? Locally? SAN volume? This is another topic where everybody has a favorite choice. So, I'll stick to mentioning what I like to do and what I consider to be the best practice in this regard. I like to backup to a SAN volume, i.e., a drive that actually lives in the SAN, and can be easily attached to another server in a pinch, saving you valuable time - you wouldn't need to restore files on the network (slow) or pull out drives out a dead server (been there, done that, it’s also slow!). The key is to have a copy of those backup files made quickly, and, if at all possible, to a remote target on a different datacenter - or even the cloud. There are plenty of solutions out there that can help you put such a solution together. That right there is the first step towards a practical Disaster Recovery plan. But there's much more to DR, and that's material for a different blog post in this series.

    Read the article

  • iptables - quick safety eval & limit max conns over time

    - by Peter Hanneman
    Working on locking down a *nix server box with some fancy iptable(v1.4.4) rules. I'm approaching the matter with a "paranoid, everyone's out to get me" style, not necessarily because I expect the box to be a hacker magnet but rather just for the sake of learning iptables and *nix security more throughly. Everything is well commented - so if anyone sees something I missed please let me know! The *nat table's "--to-ports" point to the only ports with actively listening services. (aside from pings) Layer 2 apps listen exclusively on chmod'ed sockets bridged by one of the layer 1 daemons. Layers 3+ inherit from layer 2 in a similar fashion. The two lines giving me grief are commented out at the very bottom of the *filter rules. The first line runs fine but it's all or nothing. :) Many thanks, Peter H. *nat #Flush previous rules, chains and counters for the 'nat' table -F -X -Z #Redirect traffic to alternate internal ports -I PREROUTING --src 0/0 -p tcp --dport 80 -j REDIRECT --to-ports 8080 -I PREROUTING --src 0/0 -p tcp --dport 443 -j REDIRECT --to-ports 8443 -I PREROUTING --src 0/0 -p udp --dport 53 -j REDIRECT --to-ports 8053 -I PREROUTING --src 0/0 -p tcp --dport 9022 -j REDIRECT --to-ports 8022 COMMIT *filter #Flush previous settings, chains and counters for the 'filter' table -F -X -Z #Set default behavior for all connections and protocols -P INPUT DROP -P OUTPUT DROP -A FORWARD -j DROP #Only accept loopback traffic originating from the local NIC -A INPUT -i lo -j ACCEPT -A INPUT ! -i lo -d 127.0.0.0/8 -j DROP #Accept all outgoing non-fragmented traffic having a valid state -A OUTPUT ! -f -m state --state NEW,RELATED,ESTABLISHED -j ACCEPT #Drop fragmented incoming packets (Not always malicious - acceptable for use now) -A INPUT -f -j DROP #Allow ping requests rate limited to one per second (burst ensures reliable results for high latency connections) -A INPUT -p icmp --icmp-type 8 -m limit --limit 1/sec --limit-burst 2 -j ACCEPT #Declaration of custom chains -N INSPECT_TCP_FLAGS -N INSPECT_STATE -N INSPECT #Drop incoming tcp connections with invalid tcp-flags -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ALL ALL -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ALL NONE -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ACK,FIN FIN -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ACK,PSH PSH -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ACK,URG URG -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags SYN,FIN SYN,FIN -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ALL FIN,PSH,URG -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags FIN,RST FIN,RST -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags SYN,RST SYN,RST -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ALL SYN,FIN,PSH,URG -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ALL SYN,RST,ACK,FIN,URG -j DROP #Accept incoming traffic having either an established or related state -A INSPECT_STATE -m state --state ESTABLISHED,RELATED -j ACCEPT #Drop new incoming tcp connections if they aren't SYN packets -A INSPECT_STATE -m state --state NEW -p tcp ! --syn -j DROP #Drop incoming traffic with invalid states -A INSPECT_STATE -m state --state INVALID -j DROP #INSPECT chain definition -A INSPECT -p tcp -j INSPECT_TCP_FLAGS -A INSPECT -j INSPECT_STATE #Route incoming traffic through the INSPECT chain -A INPUT -j INSPECT #Accept redirected HTTP traffic via HA reverse proxy -A INPUT -p tcp --dport 8080 -j ACCEPT #Accept redirected HTTPS traffic via STUNNEL SSH gateway (As well as tunneled HTTPS traffic destine for other services) -A INPUT -p tcp --dport 8443 -j ACCEPT #Accept redirected DNS traffic for NSD authoritative nameserver -A INPUT -p udp --dport 8053 -j ACCEPT #Accept redirected SSH traffic for OpenSSH server #Temp solution: -A INPUT -p tcp --dport 8022 -j ACCEPT #Ideal solution: #Limit new ssh connections to max 10 per 10 minutes while allowing an "unlimited" (or better reasonably limited?) number of established connections. #-A INPUT -p tcp --dport 8022 --state NEW,ESTABLISHED -m recent --set -j ACCEPT #-A INPUT -p tcp --dport 8022 --state NEW -m recent --update --seconds 600 --hitcount 11 -j DROP COMMIT *mangle #Flush previous rules, chains and counters in the 'mangle' table -F -X -Z COMMIT

    Read the article

  • Ubuntu 14.04, OpenLDAP TLS problems

    - by larsemil
    So i have set up an openldap server using this guide here. It worked fine. But as i want to use sssd i also need TLS to be working for ldap. So i looked into and followed the TLS part of the guide. And i never got any errors and slapd started fine again. BUT. It does not seem to work when i try to use ldap over tls. root@server:~# ldapsearch -x -ZZ -H ldap://83.209.243.253 -b dc=daladevelop,dc=se ldap_start_tls: Protocol error (2) additional info: unsupported extended operation Ganking up the debug level some notches returns some more information: root@server:~# ldapsearch -x -ZZ -H ldap://83.209.243.253 -b dc=daladevelop,dc=se -d 5 ldap_url_parse_ext(ldap://83.209.243.253) ldap_create ldap_url_parse_ext(ldap://83.209.243.253:389/??base) ldap_extended_operation_s ldap_extended_operation ldap_send_initial_request ldap_new_connection 1 1 0 ldap_int_open_connection ldap_connect_to_host: TCP 83.209.243.253:389 ldap_new_socket: 3 ldap_prepare_socket: 3 ldap_connect_to_host: Trying 83.209.243.253:389 ldap_pvt_connect: fd: 3 tm: -1 async: 0 ldap_open_defconn: successful ldap_send_server_request ber_scanf fmt ({it) ber: ber_scanf fmt ({) ber: ber_flush2: 31 bytes to sd 3 ldap_result ld 0x7f25df51e220 msgid 1 wait4msg ld 0x7f25df51e220 msgid 1 (infinite timeout) wait4msg continue ld 0x7f25df51e220 msgid 1 all 1 ** ld 0x7f25df51e220 Connections: * host: 83.209.243.253 port: 389 (default) refcnt: 2 status: Connected last used: Fri Jun 6 08:52:16 2014 ** ld 0x7f25df51e220 Outstanding Requests: * msgid 1, origid 1, status InProgress outstanding referrals 0, parent count 0 ld 0x7f25df51e220 request count 1 (abandoned 0) ** ld 0x7f25df51e220 Response Queue: Empty ld 0x7f25df51e220 response count 0 ldap_chkResponseList ld 0x7f25df51e220 msgid 1 all 1 ldap_chkResponseList returns ld 0x7f25df51e220 NULL ldap_int_select read1msg: ld 0x7f25df51e220 msgid 1 all 1 ber_get_next ber_get_next: tag 0x30 len 42 contents: read1msg: ld 0x7f25df51e220 msgid 1 message type extended-result ber_scanf fmt ({eAA) ber: read1msg: ld 0x7f25df51e220 0 new referrals read1msg: mark request completed, ld 0x7f25df51e220 msgid 1 request done: ld 0x7f25df51e220 msgid 1 res_errno: 2, res_error: <unsupported extended operation>, res_matched: <> ldap_free_request (origid 1, msgid 1) ldap_parse_extended_result ber_scanf fmt ({eAA) ber: ldap_parse_result ber_scanf fmt ({iAA) ber: ber_scanf fmt (}) ber: ldap_msgfree ldap_err2string ldap_start_tls: Protocol error (2) additional info: unsupported extended operation ldap_free_connection 1 1 ldap_send_unbind ber_flush2: 7 bytes to sd 3 ldap_free_connection: actually freed So no good information there neither. In /var/log/syslog i get: Jun 6 08:55:42 master slapd[21383]: conn=1008 fd=23 ACCEPT from IP=83.209.243.253:56440 (IP=0.0.0.0:389) Jun 6 08:55:42 master slapd[21383]: conn=1008 op=0 EXT oid=1.3.6.1.4.1.1466.20037 Jun 6 08:55:42 master slapd[21383]: conn=1008 op=0 do_extended: unsupported operation "1.3.6.1.4.1.1466.20037" Jun 6 08:55:42 master slapd[21383]: conn=1008 op=0 RESULT tag=120 err=2 text=unsupported extended operation Jun 6 08:55:42 master slapd[21383]: conn=1008 op=1 UNBIND Jun 6 08:55:42 master slapd[21383]: conn=1008 fd=23 closed If i portscan the host i get the following: Starting Nmap 6.40 ( http://nmap.org ) at 2014-06-06 08:56 CEST Nmap scan report for h83-209-243-253.static.se.alltele.net (83.209.243.253) Host is up (0.0072s latency). Not shown: 996 closed ports PORT STATE SERVICE 22/tcp open ssh 80/tcp open http 389/tcp open ldap 636/tcp open ldapssl But when i check certs root@master:~# openssl s_client -connect daladevelop.se:636 -showcerts -state CONNECTED(00000003) SSL_connect:before/connect initialization SSL_connect:unknown state 140244859233952:error:140790E5:SSL routines:SSL23_WRITE:ssl handshake failure:s23_lib.c:177: --- no peer certificate available --- No client certificate CA names sent --- SSL handshake has read 0 bytes and written 317 bytes --- New, (NONE), Cipher is (NONE) Secure Renegotiation IS NOT supported Compression: NONE Expansion: NONE --- And i feel like i am clearly out in deep water not knowing at all where to go from here. Anny hints appreciated on what to do or to get better debug logging... EDIT: This is my config slapcated from cn=config and it does not mention at all anything about TLS. I have inserted my certinfo.ldif: root@master:~# cat certinfo.ldif dn: cn=config add: olcTLSCACertificateFile olcTLSCACertificateFile: /etc/ssl/certs/cacert.pem - add: olcTLSCertificateFile olcTLSCertificateFile: /etc/ssl/certs/daladevelop_slapd_cert.pem - add: olcTLSCertificateKeyFile olcTLSCertificateKeyFile: /etc/ssl/private/daladevelop_slapd_key.pem and when doing that i only got this as an answer. root@master:~# sudo ldapmodify -Y EXTERNAL -H ldapi:/// -f certinfo.ldif SASL/EXTERNAL authentication started SASL username: gidNumber=0+uidNumber=0,cn=peercred,cn=external,cn=auth SASL SSF: 0 modifying entry "cn=config" So still no wiser.

    Read the article

  • DBA Best Practices - A Blog Series: Episode 1 - Backups

    - by Argenis
      This blog post is part of the DBA Best Practices series, on which various topics of concern for daily database operations are discussed. Your feedback and comments are very much welcome, so please drop by the comments section and be sure to leave your thoughts on the subject. Morning Coffee When I was a DBA, the first thing I did when I sat down at my desk at work was checking that all backups have completed successfully. It really was more of a ritual, since I had a dual system in place to check for backup completion: 1) the scheduled agent jobs to back up the databases were set to alert the NOC in failure, and 2) I had a script run from a central server every so often to check for any backup failures. Why the redundancy, you might ask. Well, for one I was once bitten by the fact that database mail doesn't work 100% of the time. Potential causes for failure include issues on the SMTP box that relays your server email, firewall problems, DNS issues, etc. And so to be sure that my backups completed fine, I needed to rely on a mechanism other than having the servers do the taking - I needed to interrogate the servers and ask each one if an issue had occurred. This is why I had a script run every so often. Some of you might have monitoring tools in place like Microsoft System Center Operations Manager (SCOM) or similar 3rd party products that would track all these things for you. But at that moment, we had no resort but to write our own Powershell scripts to do it. Now it goes without saying that if you don't have backups in place, you might as well find another career. Your most sacred job as a DBA is to protect the data from a disaster, and only properly safeguarded backups can offer you peace of mind here. "But, we have a cluster...we don't need backups" Sadly I've heard this line more than I would have liked to. You need to understand that a cluster is comprised of shared storage, and that is precisely your single point of failure. A cluster will protect you from an issue at the Operating System level, and also under an outage of any SQL-related service or dependent devices. But it will most definitely NOT protect you against corruption, nor will it protect you against somebody deleting data from a table - accidentally or otherwise. Backup, fine. How often do I take a backup? The answer to this is something you will hear frequently when working with databases: it depends. What does it depend on? For one, you need to understand how much data your business is willing to lose. This is what's called Recovery Point Objective, or RPO. If you don't know how much data your business is willing to lose, you need to have an honest and realistic conversation about data loss expectations with your customers, internal or external. From my experience, their first answer to the question "how much data loss can you withstand?" will be "zero". In that case, you will need to explain how zero data loss is very difficult and very costly to achieve, even in today's computing environments. Do you want to go ahead and take full backups of all your databases every hour, or even every day? Probably not, because of the impact that taking a full backup can have on a system. That's what differential and transaction log backups are for. Have I answered the question of how often to take a backup? No, and I did that on purpose. You need to think about how much time you have to recover from any event that requires you to restore your databases. This is what's called Recovery Time Objective. Again, if you go ask your customer how long of an outage they can withstand, at first you will get a completely unrealistic number - and that will be your starting point for discussing a solution that is cost effective. The point that I'm trying to get across is that you need to have a plan. This plan needs to be practiced, and tested. Like a football playbook, you need to rehearse the moves you'll perform when the time comes. How often is up to you, and the objective is that you feel better about yourself and the steps you need to follow when emergency strikes. A backup is nothing more than an untested restore Backups are files. Files are prone to corruption. Put those two together and realize how you feel about those backups sitting on that network drive. When was the last time you restored any of those? Restoring your backups on another box - that, by the way, doesn't have to match the specs of your production server - will give you two things: 1) peace of mind, because now you know that your backups are good and 2) a place to offload your consistency checks with DBCC CHECKDB or any of the other DBCC commands like CHECKTABLE or CHECKCATALOG. This is a great strategy for VLDBs that cannot withstand the additional load created by the consistency checks. If you choose to offload your consistency checks to another server though, be sure to run DBCC CHECKDB WITH PHYSICALONLY on the production server, and if you're using SQL Server 2008 R2 SP1 CU4 and above, be sure to enable traceflags 2562 and/or 2549, which will speed up the PHYSICALONLY checks further - you can read more about this enhancement here. Back to the "How Often" question for a second. If you have the disk, and the network latency, and the system resources to do so, why not backup the transaction log often? As in, every 5 minutes, or even less than that? There's not much downside to doing it, as you will have to clear the log with a backup sooner than later, lest you risk running out space on your tlog, or even your drive. The one drawback to this approach is that you will have more files to deal with at restore time, and processing each file will add a bit of extra time to the entire process. But it might be worth that time knowing that you minimized the amount of data lost. Again, test your plan to make sure that it matches your particular needs. Where to back up to? Network share? Locally? SAN volume? This is another topic where everybody has a favorite choice. So, I'll stick to mentioning what I like to do and what I consider to be the best practice in this regard. I like to backup to a SAN volume, i.e., a drive that actually lives in the SAN, and can be easily attached to another server in a pinch, saving you valuable time - you wouldn't need to restore files on the network (slow) or pull out drives out a dead server (been there, done that, it’s also slow!). The key is to have a copy of those backup files made quickly, and, if at all possible, to a remote target on a different datacenter - or even the cloud. There are plenty of solutions out there that can help you put such a solution together. That right there is the first step towards a practical Disaster Recovery plan. But there's much more to DR, and that's material for a different blog post in this series.

    Read the article

  • BI Applications overview

    - by sv744
    Welcome to Oracle BI applications blog! This blog will talk about various features, general roadmap, description of functionality and implementation steps related to Oracle BI applications. In the first post we start with an overview of the BI apps and will delve deeper into some of the topics below in the upcoming weeks and months. If there are other topics you would like us to talk about, pl feel free to provide feedback on that. The Oracle BI applications are a set of pre-built applications that enable pervasive BI by providing role-based insight for each functional area, including sales, service, marketing, contact center, finance, supplier/supply chain, HR/workforce, and executive management. For example, Sales Analytics includes role-based applications for sales executives, sales management, as well as front-line sales reps, each of whom have different needs. The applications integrate and transform data from a range of enterprise sources—including Siebel, Oracle, PeopleSoft, SAP, and others—into actionable intelligence for each business function and user role. This blog  starts with the key benefits and characteristics of Oracle BI applications. In a series of subsequent blogs, each of these points will be explained in detail. Why BI apps? Demonstrate the value of BI to a business user, show reports / dashboards / model that can answer their business questions as part of the sales cycle. Demonstrate technical feasibility of BI project and significantly lower risk and improve success Build Vs Buy benefit Don’t have to start with a blank sheet of paper. Help consolidate disparate systems Data integration in M&A situations Insulate BI consumers from changes in the OLTP Present OLTP data and highlight issues of poor data / missing data – and improve data quality and accuracy Prebuilt Integrations BI apps support prebuilt integrations against leading ERP sources: Fusion Applications, E- Business Suite, Peoplesoft, JD Edwards, Siebel, SAP Co-developed with inputs from functional experts in BI and Applications teams. Out of the box dimensional model to source model mappings Multi source and Multi Instance support Rich Data Model    BI apps have a very rich dimensionsal data model built over 10 years that incorporates best practises from BI modeling perspective as well as reflect the source system complexities  Thanks for reading a long post, and be on the lookout for future posts.  We will look forward to your valuable feedback on these topics as well as suggestions on what other topics would you like us to cover. I Conformed dimensional model across all business subject areas allows cross functional reporting, e.g. customer / supplier 360 Over 360 fact tables across 7 product areas CRM – 145, SCM – 47, Financials – 28, Procurement – 20, HCM – 27, Projects – 18, Campus Solutions – 21, PLM - 56 Supported by 300 physical dimensions Support for extensive calendars; Gregorian, enterprise and ledger based Conformed data model and metrics for real time vs warehouse based reporting  Multi-tenant enabled Extensive BI related transformations BI apps ETL and data integration support various transformations required for dimensional models and reporting requirements. All these have been distilled into common patterns and abstracted logic which can be readily reused across different modules Slowly Changing Dimension support Hierarchy flattening support Row / Column Hybrid Hierarchy Flattening As Is vs. As Was hierarchy support Currency Conversion :-  Support for 3 corporate, CRM, ledger and transaction currencies UOM conversion Internationalization / Localization Dynamic Data translations Code standardization (Domains) Historical Snapshots Cycle and process lifecycle computations Balance Facts Equalization of GL accounting chartfields/segments Standardized values for categorizing GL accounts Reconciliation between GL and subledgers to track accounted/transferred/posted transactions to GL Materialization of data only available through costly and complex APIs e.g. Fusion Payroll, EBS / Fusion Accruals Complex event Interpretation of source data – E.g. o    What constitutes a transfer o    Deriving supervisors via position hierarchy o    Deriving primary assignment in PSFT o    Categorizing and transposition to measures of Payroll Balances to specific metrics to support side by side comparison of measures of for example Fixed Salary, Variable Salary, Tax, Bonus, Overtime Payments. o    Counting of Events – E.g. converting events to fact counters so that for example the number of hires can easily be added up and compared alongside the total transfers and terminations. Multi pass processing of multiple sources e.g. headcount, salary, promotion, performance to allow side to side comparison. Adding value to data to aid analysis through banding, additional domain classifications and groupings to allow higher level analytical reporting and data discovery Calculation of complex measures examples: o    COGs, DSO, DPO, Inventory turns  etc o    Transfers within a Hierarchy or out of / into a hierarchy relative to view point in hierarchy. Configurability and Extensibility support  BI apps offer support for extensibility for various entities as automated extensibility or part of extension methodology Key Flex fields and Descriptive Flex support  Extensible attribute support (JDE)  Conformed Domains ETL Architecture BI apps offer a modular adapter architecture which allows support of multiple product lines into a single conformed model Multi Source Multi Technology Orchestration – creates load plan taking into account task dependencies and customers deployment to generate a plan based on a customers of multiple complex etl tasks Plan optimization allowing parallel ETL tasks Oracle: Bit map indexes and partition management High availability support    Follow the sun support. TCO BI apps support several utilities / capabilities that help with overall total cost of ownership and ensure a rapid implementation Improved cost of ownership – lower cost to deploy On-going support for new versions of the source application Task based setups flows Data Lineage Functional setup performed in Web UI by Functional person Configuration Test to Production support Security BI apps support both data and object security enabling implementations to quickly configure the application as per the reporting security needs Fine grain object security at report / dashboard and presentation catalog level Data Security integration with source systems  Extensible to support external data security rules Extensive Set of KPIs Over 7000 base and derived metrics across all modules Time series calculations (YoY, % growth etc) Common Currency and UOM reporting Cross subject area KPIs (analyzing HR vs GL data, drill from GL to AP/AR, etc) Prebuilt reports and dashboards 3000+ prebuilt reports supporting a large number of industries Hundreds of role based dashboards Dynamic currency conversion at dashboard level Highly tuned Performance The BI apps have been tuned over the years for both a very performant ETL and dashboard performance. The applications use best practises and advanced database features to enable the best possible performance. Optimized data model for BI and analytic queries Prebuilt aggregates& the ability for customers to create their own aggregates easily on warehouse facts allows for scalable end user performance Incremental extracts and loads Incremental Aggregate build Automatic table index and statistics management Parallel ETL loads Source system deletes handling Low latency extract with Golden Gate Micro ETL support Bitmap Indexes Partitioning support Modularized deployment, start small and add other subject areas seamlessly Source Specfic Staging and Real Time Schema Support for source specific operational reporting schema for EBS, PSFT, Siebel and JDE Application Integrations The BI apps also allow for integration with source systems as well as other applications that provide value add through BI and enable BI consumption during operational decision making Embedded dashboards for Fusion, EBS and Siebel applications Action Link support Marketing Segmentation Sales Predictor Dashboard Territory Management External Integrations The BI apps data integration choices include support for loading extenral data External data enrichment choices : UNSPSC, Item class etc. Extensible Spend Classification Broad Deployment Choices Exalytics support Databases :  Oracle, Exadata, Teradata, DB2, MSSQL ETL tool of choice : ODI (coming), Informatica Extensible and Customizable Extensible architecture and Methodology to add custom and external content Upgradable across releases

    Read the article

  • Why am I unable to telnet to a local port that has a listening service?

    - by Skip Huffman
    I suspect this is either a very simple question, or a very complex one. I have a headless server running ubuntu 10.04 that I can ssh into. I have full root access to the system. I am trying to set up an ssh tunnel to allow me to vnc to the system (but that isn't my question. I have vnc running on port 5903, here is the netstat output for that: Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name tcp 0 0 0.0.0.0:5903 0.0.0.0:* LISTEN 7173/Xtightvnc tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 465/sshd But when I try to telnet to that port, from within the same system and login, I get unable to connect errors # telnet localhost 5903 Trying ::1... Trying 127.0.0.1... telnet: Unable to connect to remote host: Connection timed out I am able to telnet to port 22 (as a verification) ~# telnet localhost 22 Trying ::1... Connected to localhost. Escape character is '^]'. SSH-2.0-OpenSSH_5.3p1 Debian-3ubuntu7 I have tried to open up any possible ports using ufw (probably clumsy fashion) # ufw status numbered Status: active To Action From -- ------ ---- [ 1] 5903 ALLOW IN Anywhere [ 2] 22 ALLOW IN Anywhere What else might be blocking this connection locally? Thank you, Edit: The only reference to port 5903 in iptable -L -n is this: Chain ufw-user-input (1 references) target prot opt source destination ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:5903 ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 udp dpt:5903 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:22 ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 udp dpt:22 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:8080 ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 udp dpt:8080 I can post the whole output if that will be useful. hosts.allow and hosts.deny both contain only comments. Re-Edit: Some other questions pointed me to nmap, so I ran a portscan through that utility: # nmap -v -sT localhost -p1-65535 Starting Nmap 5.00 ( http://nmap.org ) at 2011-11-09 09:58 PST NSE: Loaded 0 scripts for scanning. Warning: Hostname localhost resolves to 2 IPs. Using 127.0.0.1. Initiating Connect Scan at 09:58 Scanning localhost (127.0.0.1) [65535 ports] Discovered open port 22/tcp on 127.0.0.1 Connect Scan Timing: About 18.56% done; ETC: 10:01 (0:02:16 remaining) Connect Scan Timing: About 44.35% done; ETC: 10:00 (0:01:17 remaining) Completed Connect Scan at 10:00, 112.36s elapsed (65535 total ports) Host localhost (127.0.0.1) is up (0.00s latency). Interesting ports on localhost (127.0.0.1): Not shown: 65533 filtered ports PORT STATE SERVICE 22/tcp open ssh 80/tcp closed http Read data files from: /usr/share/nmap Nmap done: 1 IP address (1 host up) scanned in 112.43 seconds Raw packets sent: 0 (0B) | Rcvd: 0 (0B) I think this shows that 5903 is blocked somehow. Which I pretty much knew. The question remains what is blocking it and how to modify. Re-re-edit: To check Paul Lathrop's suggested answer, I first verified my ip address with ifconfig: eth0 Link encap:Ethernet HWaddr 02:16:3e:42:28:8f inet addr:10.0.10.3 Bcast:10.0.10.255 Mask:255.255.255.0 Then tried to telnet to 5903 from that address: # telnet 10.0.10.3 5903 Trying 10.0.10.3... telnet: Unable to connect to remote host: Connection timed out No luck. Re-re-re-re-edit: Ok, I think I have isolated it a bit to vncserver, not the firewall, darn it. I shut off vncserver and had netcat listen on port 5903. My vnc client then was able to establish a connnection and sit and wait for a response. Looks like I should be chasing a vnc problem. At least that is progress Thanks for the help

    Read the article

  • "power limit notification" clobbering on 12G Dell servers with RHEL6

    - by Andrew B
    Server: Poweredge r620 OS: RHEL 6.4 Kernel: 2.6.32-358.18.1.el6.x86_64 I'm experiencing application alarms in my production environment. Critical CPU hungry processes are being starved of resources and causing a processing backlog. The problem is happening on all the 12th Generation Dell servers (r620s) in a recently deployed cluster. As near as I can tell, instances of this happening are matching up to peak CPU utilization, accompanied by massive amounts of "power limit notification" spam in dmesg. An excerpt of one of these events: Nov 7 10:15:15 someserver [.crit] CPU12: Core power limit notification (total events = 14) Nov 7 10:15:15 someserver [.crit] CPU0: Core power limit notification (total events = 14) Nov 7 10:15:15 someserver [.crit] CPU6: Core power limit notification (total events = 14) Nov 7 10:15:15 someserver [.crit] CPU14: Core power limit notification (total events = 14) Nov 7 10:15:15 someserver [.crit] CPU18: Core power limit notification (total events = 14) Nov 7 10:15:15 someserver [.crit] CPU2: Core power limit notification (total events = 14) Nov 7 10:15:15 someserver [.crit] CPU4: Core power limit notification (total events = 14) Nov 7 10:15:15 someserver [.crit] CPU16: Core power limit notification (total events = 14) Nov 7 10:15:15 someserver [.crit] CPU0: Package power limit notification (total events = 11) Nov 7 10:15:15 someserver [.crit] CPU6: Package power limit notification (total events = 13) Nov 7 10:15:15 someserver [.crit] CPU14: Package power limit notification (total events = 14) Nov 7 10:15:15 someserver [.crit] CPU18: Package power limit notification (total events = 14) Nov 7 10:15:15 someserver [.crit] CPU20: Core power limit notification (total events = 14) Nov 7 10:15:15 someserver [.crit] CPU8: Core power limit notification (total events = 14) Nov 7 10:15:15 someserver [.crit] CPU2: Package power limit notification (total events = 12) Nov 7 10:15:15 someserver [.crit] CPU10: Core power limit notification (total events = 14) Nov 7 10:15:15 someserver [.crit] CPU22: Core power limit notification (total events = 14) Nov 7 10:15:15 someserver [.crit] CPU4: Package power limit notification (total events = 14) Nov 7 10:15:15 someserver [.crit] CPU16: Package power limit notification (total events = 13) Nov 7 10:15:15 someserver [.crit] CPU20: Package power limit notification (total events = 14) Nov 7 10:15:15 someserver [.crit] CPU8: Package power limit notification (total events = 14) Nov 7 10:15:15 someserver [.crit] CPU10: Package power limit notification (total events = 14) Nov 7 10:15:15 someserver [.crit] CPU22: Package power limit notification (total events = 14) Nov 7 10:15:15 someserver [.crit] CPU15: Core power limit notification (total events = 369) Nov 7 10:15:15 someserver [.crit] CPU3: Core power limit notification (total events = 369) Nov 7 10:15:15 someserver [.crit] CPU1: Core power limit notification (total events = 369) Nov 7 10:15:15 someserver [.crit] CPU5: Core power limit notification (total events = 369) Nov 7 10:15:15 someserver [.crit] CPU17: Core power limit notification (total events = 369) Nov 7 10:15:15 someserver [.crit] CPU13: Core power limit notification (total events = 369) Nov 7 10:15:15 someserver [.crit] CPU15: Package power limit notification (total events = 375) Nov 7 10:15:15 someserver [.crit] CPU3: Package power limit notification (total events = 374) Nov 7 10:15:15 someserver [.crit] CPU1: Package power limit notification (total events = 376) Nov 7 10:15:15 someserver [.crit] CPU5: Package power limit notification (total events = 376) Nov 7 10:15:15 someserver [.crit] CPU7: Core power limit notification (total events = 369) Nov 7 10:15:15 someserver [.crit] CPU19: Core power limit notification (total events = 369) Nov 7 10:15:15 someserver [.crit] CPU17: Package power limit notification (total events = 377) Nov 7 10:15:15 someserver [.crit] CPU9: Core power limit notification (total events = 369) Nov 7 10:15:15 someserver [.crit] CPU21: Core power limit notification (total events = 369) Nov 7 10:15:15 someserver [.crit] CPU23: Core power limit notification (total events = 369) Nov 7 10:15:15 someserver [.crit] CPU11: Core power limit notification (total events = 369) Nov 7 10:15:15 someserver [.crit] CPU13: Package power limit notification (total events = 376) Nov 7 10:15:15 someserver [.crit] CPU7: Package power limit notification (total events = 375) Nov 7 10:15:15 someserver [.crit] CPU19: Package power limit notification (total events = 375) Nov 7 10:15:15 someserver [.crit] CPU9: Package power limit notification (total events = 374) Nov 7 10:15:15 someserver [.crit] CPU21: Package power limit notification (total events = 375) Nov 7 10:15:15 someserver [.crit] CPU23: Package power limit notification (total events = 374) A little Google Fu reveals that this is typically associated with the CPU running hot, or voltage regulation kicking in. I don't think that's what is happening though. Temperature sensors for all servers in the cluster are running fine, Power Cap Policy is disabled in the iDRAC, and my System Profile is set to "Performance" on all of these servers: # omreport chassis biossetup | grep -A10 'System Profile' System Profile Settings ------------------------------------------ System Profile : Performance CPU Power Management : Maximum Performance Memory Frequency : Maximum Performance Turbo Boost : Enabled C1E : Disabled C States : Disabled Monitor/Mwait : Enabled Memory Patrol Scrub : Standard Memory Refresh Rate : 1x Memory Operating Voltage : Auto Collaborative CPU Performance Control : Disabled A Dell mailing list post describes the symptoms almost perfectly. Dell suggested that the author try using the Performance profile, but that didn't help. He ended up applying some settings in Dell's guide for configuring a server for low latency environments and one of those settings (or a combination thereof) seems to have fixed the problem. Kernel.org bug #36182 notes that power-limit interrupt debugging was enabled by default, which is causing performance degradation in scenarios where CPU voltage regulation is kicking in. A RHN KB article (RHN login required) mentions a problem impacting PE r620 and r720 servers not running the Performance profile, and recommends an update to a kernel released two weeks ago. ...Except we are running the Performance profile... Everything I can find online is running me in circles here. What's the heck is going on?

    Read the article

  • Can someone explain the "use-cases" for the default munin graphs?

    - by exhuma
    When installing munin, it activates a default set of plugins (at least on ubuntu). Alternatively, you can simply run munin-node-configure to figure out which plugins are supported on your system. Most of these plugins plot straight-forward data. My question is not to explain the nature of the data (well... maybe for some) but what is it that you look for in these graphs? It is easy to install munin and see fancy graphs. But having the graphs and not being able to "read" them renders them totally useless. I am going to list standard plugins which are enabled by default on my system. So it's going to be a long list. For completeness, I am also going to list plugins which I think to understand and give a short explanation as to what I think it's used for. Pleas correct if I am wrong with any of them. So let me split this questions in three parts: Plugins where I don't even understand the data Plugins where I understand the data but don't know what I should look out for Plugins which I think to understand Plugins where I don't even understand the data These may contain questions that are not necessarily aimed at munin alone. Not understanding the data usually mean a gap in fundamental knowledge on operating systems/hardware.... ;) Feel free to respond with a "giyf" answer. These are plugins where I can only guess what's going on... I hardly want to look at these "guessing"... Disk IOs per device (IOs/second)What's an IO. I know it stands for input/output. But that's as far as it goes. Disk latency per device (Average IO wait)Not a clue what an "IO wait" is... IO Service TimeThis one is a huge mess, and it's near impossible to see something in the graph at all. Plugins where I understand the data but don't know what I should look out for IOStat (blocks/second read/written)I assume, the thing to look out for in here are spikes? Which would mean that the device is in heavy use? Available entropy (bytes)I assume that this is important for random number generation? Why would I graph this? So far the value has always been near constant. VMStat (running/I/O sleep processes)What's the difference between this one and the "processes" graph? Both show running/sleeping processes, whereas the "Processes" graph seems to have more details. Disk throughput per device (bytes/second read/written) What's thedifference between this one and the "IOStat" graph? inode table usageWhat should I look for in this graph? Plugins which I think to understand I'll be guessing some things here... correct me if I am wrong. Disk usage in percent (percent)How much disk space is used/remaining. As this is approaching 100%, you should consider cleaning up or extend the partition. This is extremely important for the root partition. Firewall Throughput (packets/second)The number of packets passing through the firewall. If this is spiking for a longer period of time, it could be a sign of a DOS attack (or we are simply recieving a large file). It can also give you an idea about your firewall performance. If it's levelling out and you need more "power" you should consider load balancing. If it's levelling out and see a correlation with your CPU load, it could also mean that your hardware is not fast enough. Correlations with disk usage could point to excessive LOG targets in you FW config. eth0 errors (packets in/out)Network errors. If this value is increasing, it could be a sign of faulty hardware. eth0 traffic (bits/second in/out)Raw network traffic. This should correlate with Firewall throughput. number of threadsAn ever-increasing value might point to a process not properly closing threads. Investigate! processesBreakdown of active processes (including sleeping). A quick spike in here might point to a fork-bomb. A slowly, but ever-increasing value might point to an application spawning sub-processes but not properly closing them. Investigate using ps faux. process priorityThis shows the distribution of process priorities. Having only high-priority processes is not of much use. Consider de-prioritizing some. cpu usageFairly straight-forward. If this is spiking, you may have an attack going on, or a process is hogging the CPU. Idf it's slowly increasing and approaching max in normal operations, you should consider upgrading your hardware (or load-balancing). file table usageNumber of actively open files. If this is reaching max, you may have a process opening, but not properly releasing files. load averageShows an summarized value for the system load. Should correlate with CPU usage. Increasing values can come from a number of sources. Look for correlations with other graphs. memory usageA graphical representation of you memory. As long as you have a lot of unused+cache+buffers you are fine. swap in/outShows the activity on your swap partition. This should always be 0. If you see activity on this, you should add more memory to your machine!

    Read the article

  • Improving TCP performance over a gigabit network lots of connections and high traffic for storage and streaming services

    - by Linux Guy
    I have two servers, Both servers hardware Specification are Processor : Dual Processor RAM : over 128 G.B Hard disk : SSD Hard disk Outging Traffic bandwidth : 3 Gbps network cards speed : 10 Gbps Server A : for Encoding videos Server B : for storage videos andstream videos over web interface like youtube The inbound bandwidth between two servers is 10Gbps , the outbound bandwidth internet bandwidth is 500Mpbs Both servers using public ip addresses in public and private network Both servers transfer and connection on nginx port , and the server B used for streaming media , like youtube stream videos Both servers in same network , when i do ping from Server A to Server B i got high time latency above 1.0ms , the time range time=52.7 ms to time=215.7 ms - This is the output of iftop utility 353Mb 707Mb 1.04Gb 1.38Gb 1.73Gb mqqqqqqqqqqqqqqqqqqqqqqqqqqqvqqqqqqqqqqqqqqqqqqqqqqqqqqqvqqqqqqqqqqqqqqqqqqqqqqqqqqqvqqqqqqqqqqqqqqqqqqqqqqqqqqqvqqqqqqqqqqqqqqqqqqqqqqqqqqq server.example.com => ip.address 6.36Mb 4.31Mb 1.66Mb <= 158Kb 94.8Kb 35.1Kb server.example.com => ip.address 1.23Mb 4.28Mb 1.12Mb <= 17.1Kb 83.5Kb 21.9Kb server.example.com => ip.address 395Kb 3.89Mb 1.07Mb <= 6.09Kb 109Kb 28.6Kb server.example.com => ip.address 4.55Mb 3.83Mb 1.04Mb <= 55.6Kb 45.4Kb 13.0Kb server.example.com => ip.address 649Kb 3.38Mb 1.47Mb <= 9.00Kb 38.7Kb 16.7Kb server.example.com => ip.address 5.00Mb 3.32Mb 1.80Mb <= 65.7Kb 55.1Kb 29.4Kb server.example.com => ip.address 387Kb 3.13Mb 1.06Mb <= 18.4Kb 39.9Kb 15.0Kb server.example.com => ip.address 3.27Mb 3.11Mb 1.01Mb <= 81.2Kb 64.5Kb 20.9Kb server.example.com => ip.address 1.75Mb 3.08Mb 2.72Mb <= 16.6Kb 35.6Kb 32.5Kb server.example.com => ip.address 1.75Mb 2.90Mb 2.79Mb <= 22.4Kb 32.6Kb 35.6Kb server.example.com => ip.address 3.03Mb 2.78Mb 1.82Mb <= 26.6Kb 27.4Kb 20.2Kb server.example.com => ip.address 2.26Mb 2.66Mb 1.36Mb <= 51.7Kb 49.1Kb 24.4Kb server.example.com => ip.address 586Kb 2.50Mb 1.03Mb <= 4.17Kb 26.1Kb 10.7Kb server.example.com => ip.address 2.42Mb 2.49Mb 2.44Mb <= 31.6Kb 29.7Kb 29.9Kb server.example.com => ip.address 2.41Mb 2.46Mb 2.41Mb <= 26.4Kb 24.5Kb 23.8Kb server.example.com => ip.address 2.37Mb 2.39Mb 2.40Mb <= 28.9Kb 27.0Kb 28.5Kb server.example.com => ip.address 525Kb 2.20Mb 1.05Mb <= 7.03Kb 26.0Kb 12.8Kb qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq TX: cum: 102GB peak: 1.65Gb rates: 1.46Gb 1.44Gb 1.48Gb RX: 1.31GB 24.3Mb 19.5Mb 18.9Mb 20.0Mb TOTAL: 103GB 1.67Gb 1.48Gb 1.46Gb 1.50Gb I check the transfer speed using iperf utility From Server A to Server B # iperf -c 0.0.0.2 -p 8777 ------------------------------------------------------------ Client connecting to 0.0.0.2, TCP port 8777 TCP window size: 85.3 KByte (default) ------------------------------------------------------------ [ 3] local 0.0.0.1 port 38895 connected with 0.0.0.2 port 8777 [ ID] Interval Transfer Bandwidth [ 3] 0.0-10.8 sec 528 KBytes 399 Kbits/sec My Current Connections in Server B # netstat -an|grep ":8777"|awk '/tcp/ {print $6}'|sort -nr| uniq -c 2072 TIME_WAIT 28 SYN_RECV 1 LISTEN 189 LAST_ACK 139 FIN_WAIT2 373 FIN_WAIT1 3381 ESTABLISHED 34 CLOSING Server A Network Card Information Settings for eth0: Supported ports: [ TP ] Supported link modes: 100baseT/Full 1000baseT/Full 10000baseT/Full Supported pause frame use: No Supports auto-negotiation: Yes Advertised link modes: 10000baseT/Full Advertised pause frame use: No Advertised auto-negotiation: Yes Speed: 10000Mb/s Duplex: Full Port: Twisted Pair PHYAD: 0 Transceiver: external Auto-negotiation: on MDI-X: Unknown Supports Wake-on: d Wake-on: d Current message level: 0x00000007 (7) drv probe link Link detected: yes Server B Network Card Information Settings for eth2: Supported ports: [ FIBRE ] Supported link modes: 10000baseT/Full Supported pause frame use: No Supports auto-negotiation: No Advertised link modes: 10000baseT/Full Advertised pause frame use: No Advertised auto-negotiation: No Speed: 10000Mb/s Duplex: Full Port: Direct Attach Copper PHYAD: 0 Transceiver: external Auto-negotiation: off Supports Wake-on: d Wake-on: d Current message level: 0x00000007 (7) drv probe link Link detected: yes ifconfig server A eth0 Link encap:Ethernet HWaddr 00:25:90:ED:9E:AA inet addr:0.0.0.1 Bcast:0.0.0.255 Mask:255.255.255.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:1202795665 errors:0 dropped:64334 overruns:0 frame:0 TX packets:2313161968 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:893413096188 (832.0 GiB) TX bytes:3360949570454 (3.0 TiB) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:2207544 errors:0 dropped:0 overruns:0 frame:0 TX packets:2207544 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:247769175 (236.2 MiB) TX bytes:247769175 (236.2 MiB) ifconfig Server B eth2 Link encap:Ethernet HWaddr 00:25:90:82:C4:FE inet addr:0.0.0.2 Bcast:0.0.0.2 Mask:255.255.255.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:39973046980 errors:0 dropped:1828387600 overruns:0 frame:0 TX packets:69618752480 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:3013976063688 (2.7 TiB) TX bytes:102250230803933 (92.9 TiB) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:1049495 errors:0 dropped:0 overruns:0 frame:0 TX packets:1049495 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:129012422 (123.0 MiB) TX bytes:129012422 (123.0 MiB) Netstat -i on Server B # netstat -i Kernel Interface table Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg eth2 9000 0 42098629968 0 2131223717 0 73698797854 0 0 0 BMRU lo 65536 0 1077908 0 0 0 1077908 0 0 0 LRU I Turn up send/receive buffers on the network card to 2048 and problem still persist I increase the MTU for server A and problem still persist and i increase the MTU for server B for better connectivity and transfer speed but it couldn't transfer at all The problem is : as you can see from iperf utility, the transfer speed from server A to server B slow when i restart network service in server B the transfer in server A at full speed, after 2 minutes , it's getting slow How could i troubleshoot slow speed issue and fix it in server B ? Notice : if there any other commands i should execute in servers for more information, so it might help resolve the problem , let me know in comments

    Read the article

  • External HDD USB 3.0 failure

    - by Philip
    [ 2560.376113] usb 9-1: new high-speed USB device number 2 using xhci_hcd [ 2560.376186] usb 9-1: Device not responding to set address. [ 2560.580136] usb 9-1: Device not responding to set address. [ 2560.784104] usb 9-1: device not accepting address 2, error -71 [ 2560.840127] hub 9-0:1.0: unable to enumerate USB device on port 1 [ 2561.080182] usb 10-1: new SuperSpeed USB device number 5 using xhci_hcd [ 2566.096163] usb 10-1: device descriptor read/8, error -110 [ 2566.200096] usb 10-1: new SuperSpeed USB device number 5 using xhci_hcd [ 2571.216175] usb 10-1: device descriptor read/8, error -110 [ 2571.376138] hub 10-0:1.0: unable to enumerate USB device on port 1 [ 2571.744174] usb 10-1: new SuperSpeed USB device number 7 using xhci_hcd [ 2576.760116] usb 10-1: device descriptor read/8, error -110 [ 2576.864074] usb 10-1: new SuperSpeed USB device number 7 using xhci_hcd [ 2581.880153] usb 10-1: device descriptor read/8, error -110 [ 2582.040123] hub 10-0:1.0: unable to enumerate USB device on port 1 [ 2582.224139] hub 9-0:1.0: unable to enumerate USB device on port 1 [ 2582.464177] usb 10-1: new SuperSpeed USB device number 9 using xhci_hcd [ 2587.480122] usb 10-1: device descriptor read/8, error -110 [ 2587.584079] usb 10-1: new SuperSpeed USB device number 9 using xhci_hcd [ 2592.600150] usb 10-1: device descriptor read/8, error -110 [ 2592.760134] hub 10-0:1.0: unable to enumerate USB device on port 1 [ 2593.128175] usb 10-1: new SuperSpeed USB device number 11 using xhci_hcd [ 2598.144183] usb 10-1: device descriptor read/8, error -110 [ 2598.248109] usb 10-1: new SuperSpeed USB device number 11 using xhci_hcd [ 2603.264171] usb 10-1: device descriptor read/8, error -110 [ 2603.480157] usb 10-1: new SuperSpeed USB device number 12 using xhci_hcd [ 2608.496162] usb 10-1: device descriptor read/8, error -110 [ 2608.600091] usb 10-1: new SuperSpeed USB device number 12 using xhci_hcd [ 2613.616166] usb 10-1: device descriptor read/8, error -110 [ 2613.832170] usb 10-1: new SuperSpeed USB device number 13 using xhci_hcd [ 2618.848135] usb 10-1: device descriptor read/8, error -110 [ 2618.952079] usb 10-1: new SuperSpeed USB device number 13 using xhci_hcd [ 2623.968155] usb 10-1: device descriptor read/8, error -110 [ 2624.184176] usb 10-1: new SuperSpeed USB device number 14 using xhci_hcd [ 2629.200124] usb 10-1: device descriptor read/8, error -110 [ 2629.304075] usb 10-1: new SuperSpeed USB device number 14 using xhci_hcd [ 2634.320172] usb 10-1: device descriptor read/8, error -110 [ 2634.424135] hub 10-0:1.0: unable to enumerate USB device on port 1 [ 2634.776186] usb 10-1: new SuperSpeed USB device number 15 using xhci_hcd [ 2639.792105] usb 10-1: device descriptor read/8, error -110 [ 2639.896090] usb 10-1: new SuperSpeed USB device number 15 using xhci_hcd [ 2644.912172] usb 10-1: device descriptor read/8, error -110 [ 2645.128174] usb 10-1: new SuperSpeed USB device number 16 using xhci_hcd [ 2650.144160] usb 10-1: device descriptor read/8, error -110 [ 2650.248062] usb 10-1: new SuperSpeed USB device number 16 using xhci_hcd [ 2655.264120] usb 10-1: device descriptor read/8, error -110 [ 2655.480182] usb 10-1: new SuperSpeed USB device number 17 using xhci_hcd [ 2660.496121] usb 10-1: device descriptor read/8, error -110 [ 2660.600086] usb 10-1: new SuperSpeed USB device number 17 using xhci_hcd [ 2665.616167] usb 10-1: device descriptor read/8, error -110 [ 2665.832177] usb 10-1: new SuperSpeed USB device number 18 using xhci_hcd [ 2670.848110] usb 10-1: device descriptor read/8, error -110 [ 2670.952066] usb 10-1: new SuperSpeed USB device number 18 using xhci_hcd [ 2675.968081] usb 10-1: device descriptor read/8, error -110 [ 2676.072124] hub 10-0:1.0: unable to enumerate USB device on port 1 [ 2786.104531] xhci_hcd 0000:02:00.0: remove, state 4 [ 2786.104546] usb usb10: USB disconnect, device number 1 [ 2786.104686] xHCI xhci_drop_endpoint called for root hub [ 2786.104692] xHCI xhci_check_bandwidth called for root hub [ 2786.104942] xhci_hcd 0000:02:00.0: USB bus 10 deregistered [ 2786.105054] xhci_hcd 0000:02:00.0: remove, state 4 [ 2786.105065] usb usb9: USB disconnect, device number 1 [ 2786.105176] xHCI xhci_drop_endpoint called for root hub [ 2786.105181] xHCI xhci_check_bandwidth called for root hub [ 2786.109787] xhci_hcd 0000:02:00.0: USB bus 9 deregistered [ 2786.110134] xhci_hcd 0000:02:00.0: PCI INT A disabled [ 2794.268445] pci 0000:02:00.0: [1b73:1000] type 0 class 0x000c03 [ 2794.268483] pci 0000:02:00.0: reg 10: [mem 0x00000000-0x0000ffff] [ 2794.268689] pci 0000:02:00.0: PME# supported from D0 D3hot [ 2794.268700] pci 0000:02:00.0: PME# disabled [ 2794.276383] pci 0000:02:00.0: BAR 0: assigned [mem 0xd7800000-0xd780ffff] [ 2794.276398] pci 0000:02:00.0: BAR 0: set to [mem 0xd7800000-0xd780ffff] (PCI address [0xd7800000-0xd780ffff]) [ 2794.276419] pci 0000:02:00.0: no hotplug settings from platform [ 2794.276658] xhci_hcd 0000:02:00.0: enabling device (0000 -> 0002) [ 2794.276675] xhci_hcd 0000:02:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 2794.276762] xhci_hcd 0000:02:00.0: setting latency timer to 64 [ 2794.276771] xhci_hcd 0000:02:00.0: xHCI Host Controller [ 2794.276913] xhci_hcd 0000:02:00.0: new USB bus registered, assigned bus number 9 [ 2794.395760] xhci_hcd 0000:02:00.0: irq 16, io mem 0xd7800000 [ 2794.396141] xHCI xhci_add_endpoint called for root hub [ 2794.396144] xHCI xhci_check_bandwidth called for root hub [ 2794.396195] hub 9-0:1.0: USB hub found [ 2794.396203] hub 9-0:1.0: 1 port detected [ 2794.396305] xhci_hcd 0000:02:00.0: xHCI Host Controller [ 2794.396371] xhci_hcd 0000:02:00.0: new USB bus registered, assigned bus number 10 [ 2794.396496] xHCI xhci_add_endpoint called for root hub [ 2794.396499] xHCI xhci_check_bandwidth called for root hub [ 2794.396547] hub 10-0:1.0: USB hub found [ 2794.396553] hub 10-0:1.0: 1 port detected [ 2798.004084] usb 1-3: new high-speed USB device number 8 using ehci_hcd [ 2798.140824] scsi21 : usb-storage 1-3:1.0 [ 2820.176116] usb 1-3: reset high-speed USB device number 8 using ehci_hcd [ 2824.000526] scsi 21:0:0:0: Direct-Access BUFFALO HD-PZU3 0001 PQ: 0 ANSI: 6 [ 2824.002263] sd 21:0:0:0: Attached scsi generic sg2 type 0 [ 2824.003617] sd 21:0:0:0: [sdb] 1953463728 512-byte logical blocks: (1.00 TB/931 GiB) [ 2824.005139] sd 21:0:0:0: [sdb] Write Protect is off [ 2824.005149] sd 21:0:0:0: [sdb] Mode Sense: 1f 00 00 08 [ 2824.009084] sd 21:0:0:0: [sdb] No Caching mode page present [ 2824.009094] sd 21:0:0:0: [sdb] Assuming drive cache: write through [ 2824.011944] sd 21:0:0:0: [sdb] No Caching mode page present [ 2824.011952] sd 21:0:0:0: [sdb] Assuming drive cache: write through [ 2824.049153] sdb: sdb1 [ 2824.051814] sd 21:0:0:0: [sdb] No Caching mode page present [ 2824.051821] sd 21:0:0:0: [sdb] Assuming drive cache: write through [ 2824.051825] sd 21:0:0:0: [sdb] Attached SCSI disk [ 2839.536624] usb 1-3: USB disconnect, device number 8 [ 2844.620178] usb 10-1: new SuperSpeed USB device number 2 using xhci_hcd [ 2844.640281] scsi22 : usb-storage 10-1:1.0 [ 2850.326545] scsi 22:0:0:0: Direct-Access BUFFALO HD-PZU3 0001 PQ: 0 ANSI: 6 [ 2850.327560] sd 22:0:0:0: Attached scsi generic sg2 type 0 [ 2850.329561] sd 22:0:0:0: [sdb] 1953463728 512-byte logical blocks: (1.00 TB/931 GiB) [ 2850.329889] sd 22:0:0:0: [sdb] Write Protect is off [ 2850.329897] sd 22:0:0:0: [sdb] Mode Sense: 1f 00 00 08 [ 2850.330223] sd 22:0:0:0: [sdb] No Caching mode page present [ 2850.330231] sd 22:0:0:0: [sdb] Assuming drive cache: write through [ 2850.331414] sd 22:0:0:0: [sdb] No Caching mode page present [ 2850.331423] sd 22:0:0:0: [sdb] Assuming drive cache: write through [ 2850.384116] usb 10-1: USB disconnect, device number 2 [ 2850.392050] sd 22:0:0:0: [sdb] Unhandled error code [ 2850.392056] sd 22:0:0:0: [sdb] Result: hostbyte=DID_NO_CONNECT driverbyte=DRIVER_OK [ 2850.392061] sd 22:0:0:0: [sdb] CDB: Read(10): 28 00 00 00 00 00 00 00 08 00 [ 2850.392074] end_request: I/O error, dev sdb, sector 0 [ 2850.392079] quiet_error: 70 callbacks suppressed [ 2850.392082] Buffer I/O error on device sdb, logical block 0 [ 2850.392194] ldm_validate_partition_table(): Disk read failed. [ 2850.392271] Dev sdb: unable to read RDB block 0 [ 2850.392377] sdb: unable to read partition table [ 2850.392581] sd 22:0:0:0: [sdb] READ CAPACITY failed [ 2850.392584] sd 22:0:0:0: [sdb] Result: hostbyte=DID_NO_CONNECT driverbyte=DRIVER_OK [ 2850.392588] sd 22:0:0:0: [sdb] Sense not available. [ 2850.392613] sd 22:0:0:0: [sdb] Asking for cache data failed [ 2850.392617] sd 22:0:0:0: [sdb] Assuming drive cache: write through [ 2850.392621] sd 22:0:0:0: [sdb] Attached SCSI disk [ 2850.732182] usb 10-1: new SuperSpeed USB device number 3 using xhci_hcd [ 2850.752228] scsi23 : usb-storage 10-1:1.0 [ 2851.752709] scsi 23:0:0:0: Direct-Access BUFFALO HD-PZU3 0001 PQ: 0 ANSI: 6 [ 2851.754481] sd 23:0:0:0: Attached scsi generic sg2 type 0 [ 2851.756576] sd 23:0:0:0: [sdb] 1953463728 512-byte logical blocks: (1.00 TB/931 GiB) [ 2851.758426] sd 23:0:0:0: [sdb] Write Protect is off [ 2851.758436] sd 23:0:0:0: [sdb] Mode Sense: 1f 00 00 08 [ 2851.758779] sd 23:0:0:0: [sdb] No Caching mode page present [ 2851.758787] sd 23:0:0:0: [sdb] Assuming drive cache: write through [ 2851.759968] sd 23:0:0:0: [sdb] No Caching mode page present [ 2851.759977] sd 23:0:0:0: [sdb] Assuming drive cache: write through [ 2851.817710] sdb: sdb1 [ 2851.820562] sd 23:0:0:0: [sdb] No Caching mode page present [ 2851.820568] sd 23:0:0:0: [sdb] Assuming drive cache: write through [ 2851.820572] sd 23:0:0:0: [sdb] Attached SCSI disk [ 2852.060352] usb 10-1: reset SuperSpeed USB device number 3 using xhci_hcd [ 2852.076533] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b19060 [ 2852.076538] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b1908c [ 2852.196329] usb 10-1: reset SuperSpeed USB device number 3 using xhci_hcd [ 2852.212593] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b19060 [ 2852.212599] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b1908c [ 2852.456290] usb 10-1: reset SuperSpeed USB device number 3 using xhci_hcd [ 2852.472402] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b19060 [ 2852.472408] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b1908c [ 2852.624304] usb 10-1: reset SuperSpeed USB device number 3 using xhci_hcd [ 2852.640531] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b19060 [ 2852.640536] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b1908c [ 2852.772296] usb 10-1: reset SuperSpeed USB device number 3 using xhci_hcd [ 2852.788536] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b19060 [ 2852.788541] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b1908c [ 2852.920349] usb 10-1: reset SuperSpeed USB device number 3 using xhci_hcd [ 2852.936536] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b19060 [ 2852.936540] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b1908c [ 2853.072287] usb 10-1: reset SuperSpeed USB device number 3 using xhci_hcd [ 2853.088565] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b19060 [ 2853.088570] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b1908c [ 2884.176339] usb 10-1: reset SuperSpeed USB device number 3 using xhci_hcd [ 2884.192561] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b19060 [ 2884.192567] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b1908c [ 2884.320349] usb 10-1: reset SuperSpeed USB device number 3 using xhci_hcd [ 2884.336526] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b19060 [ 2884.336531] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b1908c [ 2884.468344] usb 10-1: reset SuperSpeed USB device number 3 using xhci_hcd [ 2884.484551] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b19060 [ 2884.484556] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b1908c [ 2884.612349] usb 10-1: reset SuperSpeed USB device number 3 using xhci_hcd [ 2884.628540] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b19060 [ 2884.628545] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b1908c [ 2884.756350] usb 10-1: reset SuperSpeed USB device number 3 using xhci_hcd [ 2884.772528] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b19060 [ 2884.772533] xhci_hcd 0000:02:00.0: xHCI xhci_drop_endpoint called with disabled ep f6b1908c [ 2884.848116] usb 10-1: USB disconnect, device number 3 [ 2884.851493] scsi 23:0:0:0: [sdb] killing request [ 2884.851501] scsi 23:0:0:0: [sdb] killing request [ 2884.851699] scsi 23:0:0:0: [sdb] Unhandled error code [ 2884.851702] scsi 23:0:0:0: [sdb] Result: hostbyte=DID_NO_CONNECT driverbyte=DRIVER_OK [ 2884.851708] scsi 23:0:0:0: [sdb] CDB: Read(10): 28 00 00 5f 2b ee 00 00 3e 00 [ 2884.851721] end_request: I/O error, dev sdb, sector 6237166 [ 2884.851726] Buffer I/O error on device sdb1, logical block 6237102 [ 2884.851730] Buffer I/O error on device sdb1, logical block 6237103 [ 2884.851738] Buffer I/O error on device sdb1, logical block 6237104 [ 2884.851741] Buffer I/O error on device sdb1, logical block 6237105 [ 2884.851744] Buffer I/O error on device sdb1, logical block 6237106 [ 2884.851747] Buffer I/O error on device sdb1, logical block 6237107 [ 2884.851750] Buffer I/O error on device sdb1, logical block 6237108 [ 2884.851753] Buffer I/O error on device sdb1, logical block 6237109 [ 2884.851757] Buffer I/O error on device sdb1, logical block 6237110 [ 2884.851807] scsi 23:0:0:0: [sdb] Unhandled error code [ 2884.851810] scsi 23:0:0:0: [sdb] Result: hostbyte=DID_NO_CONNECT driverbyte=DRIVER_OK [ 2884.851813] scsi 23:0:0:0: [sdb] CDB: Read(10): 28 00 00 5f 2c 2c 00 00 3e 00 [ 2884.851824] end_request: I/O error, dev sdb, sector 6237228 [ 2885.168190] usb 10-1: new SuperSpeed USB device number 4 using xhci_hcd [ 2885.188268] scsi24 : usb-storage 10-1:1.0 Please help me with my problem. I got this after running dmesg.

    Read the article

  • Option Trading: Getting the most out of the event session options

    - by extended_events
    You can control different aspects of how an event session behaves by setting the event session options as part of the CREATE EVENT SESSION DDL. The default settings for the event session options are designed to handle most of the common event collection situations so I generally recommend that you just use the defaults. Like everything in the real world though, there are going to be a handful of “special cases” that require something different. This post focuses on identifying the special cases and the correct use of the options to accommodate those cases. There is a reason it’s called Default The default session options specify a total event buffer size of 4 MB with a 30 second latency. Translating this into human terms; this means that our default behavior is that the system will start processing events from the event buffer when we reach about 1.3 MB of events or after 30 seconds, which ever comes first. Aside: What’s up with the 1.3 MB, I thought you said the buffer was 4 MB?The Extended Events engine takes the total buffer size specified by MAX_MEMORY (4MB by default) and divides it into 3 equally sized buffers. This is done so that a session can be publishing events to one buffer while other buffers are being processed. There are always at least three buffers; how to get more than three is covered later. Using this configuration, the Extended Events engine can “keep up” with most event sessions on standard workloads. Why is this? The fact is that most events are small, really small; on the order of a couple hundred bytes. Even when you start considering events that carry dynamically sized data (eg. binary, text, etc.) or adding actions that collect additional data, the total size of the event is still likely to be pretty small. This means that each buffer can likely hold thousands of events before it has to be processed. When the event buffers are finally processed there is an economy of scale achieved since most targets support bulk processing of the events so they are processed at the buffer level rather than the individual event level. When all this is working together it’s more likely that a full buffer will be processed and put back into the ready queue before the remaining buffers (remember, there are at least three) are full. I know what you’re going to say: “My server is exceptional! My workload is so massive it defies categorization!” OK, maybe you weren’t going to say that exactly, but you were probably thinking it. The point is that there are situations that won’t be covered by the Default, but that’s a good place to start and this post assumes you’ve started there so that you have something to look at in order to determine if you do have a special case that needs different settings. So let’s get to the special cases… What event just fired?! How about now?! Now?! If you believe the commercial adage from Heinz Ketchup (Heinz Slow Good Ketchup ad on You Tube), some things are worth the wait. This is not a belief held by most DBAs, particularly DBAs who are looking for an answer to a troubleshooting question fast. If you’re one of these anxious DBAs, or maybe just a Program Manager doing a demo, then 30 seconds might be longer than you’re comfortable waiting. If you find yourself in this situation then consider changing the MAX_DISPATCH_LATENCY option for your event session. This option will force the event buffers to be processed based on your time schedule. This option only makes sense for the asynchronous targets since those are the ones where we allow events to build up in the event buffer – if you’re using one of the synchronous targets this option isn’t relevant. Avoid forgotten events by increasing your memory Have you ever had one of those days where you keep forgetting things? That can happen in Extended Events too; we call it dropped events. In order to optimizes for server performance and help ensure that the Extended Events doesn’t block the server if to drop events that can’t be published to a buffer because the buffer is full. You can determine if events are being dropped from a session by querying the dm_xe_sessions DMV and looking at the dropped_event_count field. Aside: Should you care if you’re dropping events?Maybe not – think about why you’re collecting data in the first place and whether you’re really going to miss a few dropped events. For example, if you’re collecting query duration stats over thousands of executions of a query it won’t make a huge difference to miss a couple executions. Use your best judgment. If you find that your session is dropping events it means that the event buffer is not large enough to handle the volume of events that are being published. There are two ways to address this problem. First, you could collect fewer events – examine you session to see if you are over collecting. Do you need all the actions you’ve specified? Could you apply a predicate to be more specific about when you fire the event? Assuming the session is defined correctly, the next option is to change the MAX_MEMORY option to a larger number. Picking the right event buffer size might take some trial and error, but a good place to start is with the number of dropped events compared to the number you’ve collected. Aside: There are three different behaviors for dropping events that you specify using the EVENT_RETENTION_MODE option. The default is to allow single event loss and you should stick with this setting since it is the best choice for keeping the impact on server performance low.You’ll be tempted to use the setting to not lose any events (NO_EVENT_LOSS) – resist this urge since it can result in blocking on the server. If you’re worried that you’re losing events you should be increasing your event buffer memory as described in this section. Some events are too big to fail A less common reason for dropping an event is when an event is so large that it can’t fit into the event buffer. Even though most events are going to be small, you might find a condition that occasionally generates a very large event. You can determine if your session is dropping large events by looking at the dm_xe_sessions DMV once again, this time check the largest_event_dropped_size. If this value is larger than the size of your event buffer [remember, the size of your event buffer, by default, is max_memory / 3] then you need a large event buffer. To specify a large event buffer you set the MAX_EVENT_SIZE option to a value large enough to fit the largest event dropped based on data from the DMV. When you set this option the Extended Events engine will create two buffers of this size to accommodate these large events. As an added bonus (no extra charge) the large event buffer will also be used to store normal events in the cases where the normal event buffers are all full and waiting to be processed. (Note: This is just a side-effect, not the intended use. If you’re dropping many normal events then you should increase your normal event buffer size.) Partitioning: moving your events to a sub-division Earlier I alluded to the fact that you can configure your event session to use more than the standard three event buffers – this is called partitioning and is controlled by the MEMORY_PARTITION_MODE option. The result of setting this option is fairly easy to explain, but knowing when to use it is a bit more art than science. First the science… You can configure partitioning in three ways: None, Per NUMA Node & Per CPU. This specifies the location where sets of event buffers are created with fairly obvious implication. There are rules we follow for sub-dividing the total memory (specified by MAX_MEMORY) between all the event buffers that are specific to the mode used: None: 3 buffers (fixed)Node: 3 * number_of_nodesCPU: 2.5 * number_of_cpus Here are some examples of what this means for different Node/CPU counts: Configuration None Node CPU 2 CPUs, 1 Node 3 buffers 3 buffers 5 buffers 6 CPUs, 2 Node 3 buffers 6 buffers 15 buffers 40 CPUs, 5 Nodes 3 buffers 15 buffers 100 buffers   Aside: Buffer size on multi-processor computersAs the number of Nodes or CPUs increases, the size of the event buffer gets smaller because the total memory is sub-divided into more pieces. The defaults will hold up to this for a while since each buffer set is holding events only from the Node or CPU that it is associated with, but at some point the buffers will get too small and you’ll either see events being dropped or you’ll get an error when you create your session because you’re below the minimum buffer size. Increase the MAX_MEMORY setting to an appropriate number for the configuration. The most likely reason to start partitioning is going to be related to performance. If you notice that running an event session is impacting the performance of your server beyond a reasonably expected level [Yes, there is a reasonably expected level of work required to collect events.] then partitioning might be an answer. Before you partition you might want to check a few other things: Is your event retention set to NO_EVENT_LOSS and causing blocking? (I told you not to do this.) Consider changing your event loss mode or increasing memory. Are you over collecting and causing more work than necessary? Consider adding predicates to events or removing unnecessary events and actions from your session. Are you writing the file target to the same slow disk that you use for TempDB and your other high activity databases? <kidding> <not really> It’s always worth considering the end to end picture – if you’re writing events to a file you can be impacted by I/O, network; all the usual stuff. Assuming you’ve ruled out the obvious (and not so obvious) issues, there are performance conditions that will be addressed by partitioning. For example, it’s possible to have a successful event session (eg. no dropped events) but still see a performance impact because you have many CPUs all attempting to write to the same free buffer and having to wait in line to finish their work. This is a case where partitioning would relieve the contention between the different CPUs and likely reduce the performance impact cause by the event session. There is no DMV you can check to find these conditions – sorry – that’s where the art comes in. This is  largely a matter of experimentation. On the bright side you probably won’t need to to worry about this level of detail all that often. The performance impact of Extended Events is significantly lower than what you may be used to with SQL Trace. You will likely only care about the impact if you are trying to set up a long running event session that will be part of your everyday workload – sessions used for short term troubleshooting will likely fall into the “reasonably expected impact” category. Hey buddy – I think you forgot something OK, there are two options I didn’t cover: STARTUP_STATE & TRACK_CAUSALITY. If you want your event sessions to start automatically when the server starts, set the STARTUP_STATE option to ON. (Now there is only one option I didn’t cover.) I’m going to leave causality for another post since it’s not really related to session behavior, it’s more about event analysis. - Mike Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Wireless will not connect

    - by azz0r
    Hello, I have installed Ubuntu 10.10 on the same machine as my windows setup. However, it will not connect to my wireless network. It can see its there, it can attempt to connect, yet it will never connect. It will keep bringing up the password prompt everyso often. I have tried turning my security to WEP, I ended up turning it back to WPA2. It is set to AES (noted a few threads on google about that). Can you assist? I would love to dive into Ubuntu, but without the internet its pointless. --- lshw -C network --- *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:02:00.0 logical name: eth0 version: 02 serial: 00:1d:92:ea:cc:62 capacity: 1GB/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list rom ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8168 driverversion=8.020.00-NAPI duplex=half latency=0 link=no multicast=yes port=twisted pair resources: irq:29 ioport:e800(size=256) memory:feaff000-feafffff memory:f8ff0000-f8ffffff(prefetchable) memory:feac0000-feadffff(prefetchable) *-network description: Wireless interface physical id: 1 logical name: wlan0 serial: 00:15:af:72:a4:38 capabilities: ethernet physical wireless configuration: broadcast=yes multicast=yes wireless=IEEE 802.11bgn --- iwconfig ---- lo no wireless extensions. eth0 no wireless extensions. wlan0 IEEE 802.11bgn ESSID:"Wuggawoo" Mode:Managed Frequency:2.437 GHz Access Point: Not-Associated Tx-Power=9 dBm Retry long limit:7 RTS thr:off Fragment thr:off Encryption key:off Power Management:on --- cat /etc/network/interfaces ---- auto lo iface lo inet loopback logs deamon.log --- Jan 19 04:17:09 ubuntu wpa_supplicant[1289]: Authentication with 94:44:52:0d:22:0d timed out. Jan 19 04:17:09 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: associating -> disconnected Jan 19 04:17:09 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: disconnected -> scanning Jan 19 04:17:11 ubuntu wpa_supplicant[1289]: WPS-AP-AVAILABLE Jan 19 04:17:11 ubuntu wpa_supplicant[1289]: Trying to associate with 94:44:52:0d:22:0d (SSID='Wuggawoo' freq=2437 MHz) Jan 19 04:17:11 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: scanning -> associating Jan 19 04:17:12 ubuntu NetworkManager: <info> Activation (wlan0/wireless): association took too long. Jan 19 04:17:12 ubuntu NetworkManager: <info> (wlan0): device state change: 5 -> 6 (reason 0) Jan 19 04:17:12 ubuntu NetworkManager: <info> Activation (wlan0/wireless): asking for new secrets Jan 19 04:17:12 ubuntu NetworkManager: <info> Activation (wlan0) Stage 1 of 5 (Device Prepare) scheduled... Jan 19 04:17:12 ubuntu NetworkManager: <info> Activation (wlan0) Stage 1 of 5 (Device Prepare) started... Jan 19 04:17:12 ubuntu NetworkManager: <info> (wlan0): device state change: 6 -> 4 (reason 0) Jan 19 04:17:12 ubuntu NetworkManager: <info> Activation (wlan0) Stage 2 of 5 (Device Configure) scheduled... Jan 19 04:17:12 ubuntu NetworkManager: <info> Activation (wlan0) Stage 1 of 5 (Device Prepare) complete. Jan 19 04:17:12 ubuntu NetworkManager: <info> Activation (wlan0) Stage 2 of 5 (Device Configure) starting... Jan 19 04:17:12 ubuntu NetworkManager: <info> (wlan0): device state change: 4 -> 5 (reason 0) Jan 19 04:17:12 ubuntu NetworkManager: <info> Activation (wlan0/wireless): connection 'Wuggawoo' has security, and secrets exist. No new secrets needed. Jan 19 04:17:12 ubuntu NetworkManager: <info> Config: added 'ssid' value 'Wuggawoo' Jan 19 04:17:12 ubuntu NetworkManager: <info> Config: added 'scan_ssid' value '1' Jan 19 04:17:12 ubuntu NetworkManager: <info> Config: added 'key_mgmt' value 'WPA-PSK' Jan 19 04:17:12 ubuntu NetworkManager: <info> Config: added 'psk' value '<omitted>' Jan 19 04:17:12 ubuntu NetworkManager: nm_setting_802_1x_get_pkcs11_engine_path: assertion `NM_IS_SETTING_802_1X (setting)' failed Jan 19 04:17:12 ubuntu NetworkManager: nm_setting_802_1x_get_pkcs11_module_path: assertion `NM_IS_SETTING_802_1X (setting)' failed Jan 19 04:17:12 ubuntu NetworkManager: <info> Activation (wlan0) Stage 2 of 5 (Device Configure) complete. Jan 19 04:17:12 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: associating -> disconnected Jan 19 04:17:12 ubuntu NetworkManager: <info> Config: set interface ap_scan to 1 Jan 19 04:17:12 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: disconnected -> scanning Jan 19 04:17:13 ubuntu wpa_supplicant[1289]: WPS-AP-AVAILABLE Jan 19 04:17:13 ubuntu wpa_supplicant[1289]: Trying to associate with 94:44:52:0d:22:0d (SSID='Wuggawoo' freq=2437 MHz) Jan 19 04:17:13 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: scanning -> associating Jan 19 04:17:23 ubuntu wpa_supplicant[1289]: Authentication with 94:44:52:0d:22:0d timed out. Jan 19 04:17:23 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: associating -> disconnected Jan 19 04:17:23 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: disconnected -> scanning Jan 19 04:17:24 ubuntu AptDaemon: INFO: Initializing daemon Jan 19 04:17:25 ubuntu wpa_supplicant[1289]: WPS-AP-AVAILABLE Jan 19 04:17:25 ubuntu wpa_supplicant[1289]: Trying to associate with 94:44:52:0d:22:0d (SSID='Wuggawoo' freq=2437 MHz) Jan 19 04:17:25 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: scanning -> associating Jan 19 04:17:27 ubuntu NetworkManager: <info> wlan0: link timed out. --- kern.log --- Jan 19 04:18:11 ubuntu kernel: [ 142.420024] wlan0: direct probe to AP 94:44:52:0d:22:0d timed out Jan 19 04:18:13 ubuntu kernel: [ 144.333847] wlan0: direct probe to AP 94:44:52:0d:22:0d (try 1) Jan 19 04:18:13 ubuntu kernel: [ 144.539996] wlan0: direct probe to AP 94:44:52:0d:22:0d (try 2) Jan 19 04:18:13 ubuntu kernel: [ 144.750027] wlan0: direct probe to AP 94:44:52:0d:22:0d (try 3) Jan 19 04:18:14 ubuntu kernel: [ 144.940022] wlan0: direct probe to AP 94:44:52:0d:22:0d timed out Jan 19 04:18:25 ubuntu kernel: [ 155.832995] wlan0: direct probe to AP 94:44:52:0d:22:0d (try 1) Jan 19 04:18:25 ubuntu kernel: [ 156.030046] wlan0: direct probe to AP 94:44:52:0d:22:0d (try 2) Jan 19 04:18:25 ubuntu kernel: [ 156.230039] wlan0: direct probe to AP 94:44:52:0d:22:0d (try 3) Jan 19 04:18:25 ubuntu kernel: [ 156.430039] wlan0: direct probe to AP 94:44:52:0d:22:0d timed out --- syslog --- Jan 19 04:18:46 ubuntu wpa_supplicant[1289]: Authentication with 94:44:52:0d:22:0d timed out. Jan 19 04:18:46 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: associating -> disconnected Jan 19 04:18:46 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: disconnected -> scanning Jan 19 04:18:48 ubuntu wpa_supplicant[1289]: WPS-AP-AVAILABLE Jan 19 04:18:48 ubuntu wpa_supplicant[1289]: Trying to associate with 94:44:52:0d:22:0d (SSID='Wuggawoo' freq=2437 MHz) Jan 19 04:18:48 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: scanning -> associating Jan 19 04:18:48 ubuntu kernel: [ 178.833905] wlan0: direct probe to AP 94:44:52:0d:22:0d (try 1) Jan 19 04:18:48 ubuntu kernel: [ 179.030035] wlan0: direct probe to AP 94:44:52:0d:22:0d (try 2) Jan 19 04:18:48 ubuntu kernel: [ 179.230020] wlan0: direct probe to AP 94:44:52:0d:22:0d (try 3) Jan 19 04:18:48 ubuntu kernel: [ 179.433634] wlan0: direct probe to AP 94:44:52:0d:22:0d timed out lspci and lsusb lspci -- 00:00.0 Host bridge: Advanced Micro Devices [AMD] RS780 Host Bridge 00:02.0 PCI bridge: Advanced Micro Devices [AMD] RS780 PCI to PCI bridge (ext gfx port 0) 00:05.0 PCI bridge: Advanced Micro Devices [AMD] RS780 PCI to PCI bridge (PCIE port 1) 00:06.0 PCI bridge: Advanced Micro Devices [AMD] RS780 PCI to PCI bridge (PCIE port 2) 00:11.0 SATA controller: ATI Technologies Inc SB700/SB800 SATA Controller [AHCI mode] 00:12.0 USB Controller: ATI Technologies Inc SB700/SB800 USB OHCI0 Controller 00:12.1 USB Controller: ATI Technologies Inc SB700 USB OHCI1 Controller 00:12.2 USB Controller: ATI Technologies Inc SB700/SB800 USB EHCI Controller 00:13.0 USB Controller: ATI Technologies Inc SB700/SB800 USB OHCI0 Controller 00:13.1 USB Controller: ATI Technologies Inc SB700 USB OHCI1 Controller 00:13.2 USB Controller: ATI Technologies Inc SB700/SB800 USB EHCI Controller 00:14.0 SMBus: ATI Technologies Inc SBx00 SMBus Controller (rev 3a) 00:14.1 IDE interface: ATI Technologies Inc SB700/SB800 IDE Controller 00:14.2 Audio device: ATI Technologies Inc SBx00 Azalia (Intel HDA) 00:14.3 ISA bridge: ATI Technologies Inc SB700/SB800 LPC host controller 00:14.4 PCI bridge: ATI Technologies Inc SBx00 PCI to PCI Bridge 00:14.5 USB Controller: ATI Technologies Inc SB700/SB800 USB OHCI2 Controller 00:18.0 Host bridge: Advanced Micro Devices [AMD] K10 [Opteron, Athlon64, Sempron] HyperTransport Configuration 00:18.1 Host bridge: Advanced Micro Devices [AMD] K10 [Opteron, Athlon64, Sempron] Address Map 00:18.2 Host bridge: Advanced Micro Devices [AMD] K10 [Opteron, Athlon64, Sempron] DRAM Controller 00:18.3 Host bridge: Advanced Micro Devices [AMD] K10 [Opteron, Athlon64, Sempron] Miscellaneous Control 00:18.4 Host bridge: Advanced Micro Devices [AMD] K10 [Opteron, Athlon64, Sempron] Link Control 01:00.0 VGA compatible controller: nVidia Corporation G80 [GeForce 8800 GTS] (rev a2) 02:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller (rev 02) 03:00.0 FireWire (IEEE 1394): JMicron Technology Corp. IEEE 1394 Host Controller -- lsusb -- Bus 007 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 006 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 004 Device 003: ID 046d:c517 Logitech, Inc. LX710 Cordless Desktop Laser Bus 004 Device 002: ID 045e:0730 Microsoft Corp. Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 002 Device 003: ID 13d3:3247 IMC Networks 802.11 n/g/b Wireless LAN Adapter Bus 002 Device 002: ID 0718:0628 Imation Corp. Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 001 Device 003: ID 046d:08c2 Logitech, Inc. QuickCam PTZ Bus 001 Device 002: ID 0424:2228 Standard Microsystems Corp. 9-in-2 Card Reader Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub With no security on my router I still can't connect, I get: Jan 19 15:58:01 ubuntu wpa_supplicant[1165]: Authentication with 94:44:52:0d:22:0d timed out. Jan 19 15:58:01 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: associating -> disconnected Jan 19 15:58:01 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: disconnected -> scanning Jan 19 15:58:02 ubuntu wpa_supplicant[1165]: WPS-AP-AVAILABLE Jan 19 15:58:02 ubuntu wpa_supplicant[1165]: Trying to associate with 94:44:52:0d:22:0d (SSID='Wuggawoo' freq=2437 MHz) Jan 19 15:58:02 ubuntu wpa_supplicant[1165]: Association request to the driver failed Jan 19 15:58:02 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: scanning -> associating Jan 19 15:58:05 ubuntu NetworkManager: <info> wlan0: link timed out. Jan 19 15:58:07 ubuntu wpa_supplicant[1165]: Authentication with 94:44:52:0d:22:0d timed out. Jan 19 15:58:07 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: associating -> disconnected Jan 19 15:58:07 ubuntu NetworkManager: <info> (wlan0): supplicant connec

    Read the article

  • Windows Azure AppFabric: ServiceBus Queue WPF Sample

    - by xamlnotes
    The latest version of the AppFabric ServiceBus now has support for queues and topics. Today I will show you a bit about using queues and also talk about some of the best practices in using them. If you are just getting started, you can check out this site for more info on Windows Azure. One of the 1st things I thought if when Azure was announced back when was how we handle fault tolerance. Web sites hosted in Azure are no much of an issue unless they are using SQL Azure and then you must account for potential fault or latency issues. Today I want to talk a bit about ServiceBus and how to handle fault tolerance.  And theres stuff like connecting to the servicebus and so on you have to take care of. To demonstrate some of the things you can do, let me walk through this sample WPF app that I am posting for you to download. To start off, the application is going to need things like the servicenamespace, issuer details and so forth to make everything work.  To facilitate this I created settings in the wpf app for all of these items. Then I mapped a static class to them and set the values when the program loads like so: StaticElements.ServiceNamespace = Convert.ToString(Properties.Settings.Default["ServiceNamespace"]); StaticElements.IssuerName = Convert.ToString(Properties.Settings.Default["IssuerName"]); StaticElements.IssuerKey = Convert.ToString(Properties.Settings.Default["IssuerKey"]); StaticElements.QueueName = Convert.ToString(Properties.Settings.Default["QueueName"]);   Now I can get to each of these elements plus some other common values or instances directly from the StaticElements class. Now, lets look at the application.  The application looks like this when it starts:   The blue graphic represents the queue we are going to use.  The next figure shows the form after items were added and the queue stats were updated . You can see how the queue has grown: To add an item to the queue, click the Add Order button which displays the following dialog: After you fill in the form and press OK, the order is published to the ServiceBus queue and the form closes. The application also allows you to read the queued items by clicking the Process Orders button. As you can see below, the form shows the queued items in a list and the  queue has disappeared as its now empty. In real practice we normally would use a Windows Service or some other automated process to subscribe to the queue and pull items from it. I created a class named ServiceBusQueueHelper that has the core queue features we need. There are three public methods: * GetOrCreateQueue – Gets an instance of the queue description if the queue exists. if not, it creates the queue and returns a description instance. * SendMessageToQueue = This method takes an order instance and sends it to the queue. The call to the queue is wrapped in the ExecuteAction method from the Transient Fault Tolerance Framework and handles all the retry logic for the queue send process. * GetOrderFromQueue – Grabs an order from the queue and returns a typed order from the queue. It also marks the message complete so the queue can remove it.   Now lets turn to the WPF window code (MainWindow.xaml.cs). The constructor contains the 4 lines shown about to setup the static variables and to perform other initialization tasks. The next few lines setup certain features we need for the ServiceBus: TokenProvider credentials = TokenProvider.CreateSharedSecretTokenProvider(StaticElements.IssuerName, StaticElements.IssuerKey); Uri serviceUri = ServiceBusEnvironment.CreateServiceUri("sb", StaticElements.ServiceNamespace, string.Empty); StaticElements.CurrentNamespaceManager = new NamespaceManager(serviceUri, credentials); StaticElements.CurrentMessagingFactory = MessagingFactory.Create(serviceUri, credentials); The next two lines update the queue name label and also set the timer to 20 seconds.             QueueNameLabel.Content = StaticElements.QueueName;             _timer.Interval = TimeSpan.FromSeconds(20);             Next I call the UpdateQueueStats to initialize the UI for the queue:             UpdateQueueStats();             _timer.Tick += new EventHandler(delegate(object s, EventArgs a)                         {                      UpdateQueueStats();                  });             _timer.Start();         } The UpdateQueueStats method shown below. You can see that it uses the GetOrCreateQueue method mentioned earlier to grab the queue description, then it can get the MessageCount property.         private void UpdateQueueStats()         {             _queueDescription = _serviceBusQueueHelper.GetOrCreateQueue();             QueueCountLabel.Content = "(" + _queueDescription.MessageCount + ")";             long count = _queueDescription.MessageCount;             long queueWidth = count * 20;             QueueRectangle.Width = queueWidth;             QueueTickCount += 1;             TickCountlabel.Content = QueueTickCount.ToString();         }   The ReadQueueItemsButton_Click event handler calls the GetOrderFromQueue method and adds the order to the listbox. If you look at the SendQueueMessageController, you can see the SendMessage method that sends an order to the queue. Its pretty simple as it just creates a new CustomerOrderEntity instance,fills it and then passes it to the SendMessageToQueue. As you can see, all of our interaction with the queue is done through the helper class (ServiceBusQueueHelper). Now lets dig into the helper class. First, before you create anything like this, download the Transient Fault Handling Framework. Microsoft provides this free and they also provide the C# source. Theres a great article that shows how to use this framework with ServiceBus. I included the entire ServiceBusQueueHelper class in List 1. Notice the using statements for TransientFaultHandling: using Microsoft.AzureCAT.Samples.TransientFaultHandling; using Microsoft.AzureCAT.Samples.TransientFaultHandling.ServiceBus; The SendMessageToQueue in Listing 1 shows how to use the async send features of ServiceBus with them wrapped in the Transient Fault Handling Framework.  It is not much different than plain old ServiceBus calls but it sure makes it easy to have the fault tolerance added almost for free. The GetOrderFromQueue uses the standard synchronous methods to access the queue. The best practices article walks through using the async approach for a receive operation also.  Notice that this method makes a call to Receive to get the message then makes a call to GetBody to get a new strongly typed instance of CustomerOrderEntity to return. Listing 1 using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.AzureCAT.Samples.TransientFaultHandling; using Microsoft.AzureCAT.Samples.TransientFaultHandling.ServiceBus; using Microsoft.ServiceBus; using Microsoft.ServiceBus.Messaging; using System.Xml.Serialization; using System.Diagnostics; namespace WPFServicebusPublishSubscribeSample {     class ServiceBusQueueHelper     {         RetryPolicy currentPolicy = new RetryPolicy<ServiceBusTransientErrorDetectionStrategy>(RetryPolicy.DefaultClientRetryCount);         QueueClient currentQueueClient;         public QueueDescription GetOrCreateQueue()         {                        QueueDescription queue = null;             bool createNew = false;             try             {                 // First, let's see if a queue with the specified name already exists.                 queue = currentPolicy.ExecuteAction<QueueDescription>(() => { return StaticElements.CurrentNamespaceManager.GetQueue(StaticElements.QueueName); });                 createNew = (queue == null);             }             catch (MessagingEntityNotFoundException)             {                 // Looks like the queue does not exist. We should create a new one.                 createNew = true;             }             // If a queue with the specified name doesn't exist, it will be auto-created.             if (createNew)             {                 try                 {                     var newqueue = new QueueDescription(StaticElements.QueueName);                     queue = currentPolicy.ExecuteAction<QueueDescription>(() => { return StaticElements.CurrentNamespaceManager.CreateQueue(newqueue); });                 }                 catch (MessagingEntityAlreadyExistsException)                 {                     // A queue under the same name was already created by someone else,                     // perhaps by another instance. Let's just use it.                     queue = currentPolicy.ExecuteAction<QueueDescription>(() => { return StaticElements.CurrentNamespaceManager.GetQueue(StaticElements.QueueName); });                 }             }             currentQueueClient = StaticElements.CurrentMessagingFactory.CreateQueueClient(StaticElements.QueueName);             return queue;         }         public void SendMessageToQueue(CustomerOrderEntity Order)         {             BrokeredMessage msg = null;             GetOrCreateQueue();             // Use a retry policy to execute the Send action in an asynchronous and reliable fashion.             currentPolicy.ExecuteAction             (                 (cb) =>                 {                     // A new BrokeredMessage instance must be created each time we send it. Reusing the original BrokeredMessage instance may not                     // work as the state of its BodyStream cannot be guaranteed to be readable from the beginning.                     msg = new BrokeredMessage(Order);                     // Send the event asynchronously.                     currentQueueClient.BeginSend(msg, cb, null);                 },                 (ar) =>                 {                     try                     {                         // Complete the asynchronous operation.                         // This may throw an exception that will be handled internally by the retry policy.                         currentQueueClient.EndSend(ar);                     }                     finally                     {                         // Ensure that any resources allocated by a BrokeredMessage instance are released.                         if (msg != null)                         {                             msg.Dispose();                             msg = null;                         }                     }                 },                 (ex) =>                 {                     // Always dispose the BrokeredMessage instance even if the send                     // operation has completed unsuccessfully.                     if (msg != null)                     {                         msg.Dispose();                         msg = null;                     }                     // Always log exceptions.                     Trace.TraceError(ex.Message);                 }             );         }                 public CustomerOrderEntity GetOrderFromQueue()         {             CustomerOrderEntity Order = new CustomerOrderEntity();             QueueClient myQueueClient = StaticElements.CurrentMessagingFactory.CreateQueueClient(StaticElements.QueueName, ReceiveMode.PeekLock);             BrokeredMessage message;             ServiceBusQueueHelper serviceBusQueueHelper = new ServiceBusQueueHelper();             QueueDescription queueDescription;             queueDescription = serviceBusQueueHelper.GetOrCreateQueue();             if (queueDescription.MessageCount > 0)             {                 message = myQueueClient.Receive(TimeSpan.FromSeconds(90));                 if (message != null)                 {                     try                     {                         Order = message.GetBody<CustomerOrderEntity>();                         message.Complete();                     }                     catch (Exception ex)                     {                         throw ex;                     }                 }                 else                 {                     throw new Exception("Did not receive the messages");                 }             }             return Order;         }     } } I will post a link to the download demo in a separate post soon.

    Read the article

  • Option Trading: Getting the most out of the event session options

    - by extended_events
    You can control different aspects of how an event session behaves by setting the event session options as part of the CREATE EVENT SESSION DDL. The default settings for the event session options are designed to handle most of the common event collection situations so I generally recommend that you just use the defaults. Like everything in the real world though, there are going to be a handful of “special cases” that require something different. This post focuses on identifying the special cases and the correct use of the options to accommodate those cases. There is a reason it’s called Default The default session options specify a total event buffer size of 4 MB with a 30 second latency. Translating this into human terms; this means that our default behavior is that the system will start processing events from the event buffer when we reach about 1.3 MB of events or after 30 seconds, which ever comes first. Aside: What’s up with the 1.3 MB, I thought you said the buffer was 4 MB?The Extended Events engine takes the total buffer size specified by MAX_MEMORY (4MB by default) and divides it into 3 equally sized buffers. This is done so that a session can be publishing events to one buffer while other buffers are being processed. There are always at least three buffers; how to get more than three is covered later. Using this configuration, the Extended Events engine can “keep up” with most event sessions on standard workloads. Why is this? The fact is that most events are small, really small; on the order of a couple hundred bytes. Even when you start considering events that carry dynamically sized data (eg. binary, text, etc.) or adding actions that collect additional data, the total size of the event is still likely to be pretty small. This means that each buffer can likely hold thousands of events before it has to be processed. When the event buffers are finally processed there is an economy of scale achieved since most targets support bulk processing of the events so they are processed at the buffer level rather than the individual event level. When all this is working together it’s more likely that a full buffer will be processed and put back into the ready queue before the remaining buffers (remember, there are at least three) are full. I know what you’re going to say: “My server is exceptional! My workload is so massive it defies categorization!” OK, maybe you weren’t going to say that exactly, but you were probably thinking it. The point is that there are situations that won’t be covered by the Default, but that’s a good place to start and this post assumes you’ve started there so that you have something to look at in order to determine if you do have a special case that needs different settings. So let’s get to the special cases… What event just fired?! How about now?! Now?! If you believe the commercial adage from Heinz Ketchup (Heinz Slow Good Ketchup ad on You Tube), some things are worth the wait. This is not a belief held by most DBAs, particularly DBAs who are looking for an answer to a troubleshooting question fast. If you’re one of these anxious DBAs, or maybe just a Program Manager doing a demo, then 30 seconds might be longer than you’re comfortable waiting. If you find yourself in this situation then consider changing the MAX_DISPATCH_LATENCY option for your event session. This option will force the event buffers to be processed based on your time schedule. This option only makes sense for the asynchronous targets since those are the ones where we allow events to build up in the event buffer – if you’re using one of the synchronous targets this option isn’t relevant. Avoid forgotten events by increasing your memory Have you ever had one of those days where you keep forgetting things? That can happen in Extended Events too; we call it dropped events. In order to optimizes for server performance and help ensure that the Extended Events doesn’t block the server if to drop events that can’t be published to a buffer because the buffer is full. You can determine if events are being dropped from a session by querying the dm_xe_sessions DMV and looking at the dropped_event_count field. Aside: Should you care if you’re dropping events?Maybe not – think about why you’re collecting data in the first place and whether you’re really going to miss a few dropped events. For example, if you’re collecting query duration stats over thousands of executions of a query it won’t make a huge difference to miss a couple executions. Use your best judgment. If you find that your session is dropping events it means that the event buffer is not large enough to handle the volume of events that are being published. There are two ways to address this problem. First, you could collect fewer events – examine you session to see if you are over collecting. Do you need all the actions you’ve specified? Could you apply a predicate to be more specific about when you fire the event? Assuming the session is defined correctly, the next option is to change the MAX_MEMORY option to a larger number. Picking the right event buffer size might take some trial and error, but a good place to start is with the number of dropped events compared to the number you’ve collected. Aside: There are three different behaviors for dropping events that you specify using the EVENT_RETENTION_MODE option. The default is to allow single event loss and you should stick with this setting since it is the best choice for keeping the impact on server performance low.You’ll be tempted to use the setting to not lose any events (NO_EVENT_LOSS) – resist this urge since it can result in blocking on the server. If you’re worried that you’re losing events you should be increasing your event buffer memory as described in this section. Some events are too big to fail A less common reason for dropping an event is when an event is so large that it can’t fit into the event buffer. Even though most events are going to be small, you might find a condition that occasionally generates a very large event. You can determine if your session is dropping large events by looking at the dm_xe_sessions DMV once again, this time check the largest_event_dropped_size. If this value is larger than the size of your event buffer [remember, the size of your event buffer, by default, is max_memory / 3] then you need a large event buffer. To specify a large event buffer you set the MAX_EVENT_SIZE option to a value large enough to fit the largest event dropped based on data from the DMV. When you set this option the Extended Events engine will create two buffers of this size to accommodate these large events. As an added bonus (no extra charge) the large event buffer will also be used to store normal events in the cases where the normal event buffers are all full and waiting to be processed. (Note: This is just a side-effect, not the intended use. If you’re dropping many normal events then you should increase your normal event buffer size.) Partitioning: moving your events to a sub-division Earlier I alluded to the fact that you can configure your event session to use more than the standard three event buffers – this is called partitioning and is controlled by the MEMORY_PARTITION_MODE option. The result of setting this option is fairly easy to explain, but knowing when to use it is a bit more art than science. First the science… You can configure partitioning in three ways: None, Per NUMA Node & Per CPU. This specifies the location where sets of event buffers are created with fairly obvious implication. There are rules we follow for sub-dividing the total memory (specified by MAX_MEMORY) between all the event buffers that are specific to the mode used: None: 3 buffers (fixed)Node: 3 * number_of_nodesCPU: 2.5 * number_of_cpus Here are some examples of what this means for different Node/CPU counts: Configuration None Node CPU 2 CPUs, 1 Node 3 buffers 3 buffers 5 buffers 6 CPUs, 2 Node 3 buffers 6 buffers 15 buffers 40 CPUs, 5 Nodes 3 buffers 15 buffers 100 buffers   Aside: Buffer size on multi-processor computersAs the number of Nodes or CPUs increases, the size of the event buffer gets smaller because the total memory is sub-divided into more pieces. The defaults will hold up to this for a while since each buffer set is holding events only from the Node or CPU that it is associated with, but at some point the buffers will get too small and you’ll either see events being dropped or you’ll get an error when you create your session because you’re below the minimum buffer size. Increase the MAX_MEMORY setting to an appropriate number for the configuration. The most likely reason to start partitioning is going to be related to performance. If you notice that running an event session is impacting the performance of your server beyond a reasonably expected level [Yes, there is a reasonably expected level of work required to collect events.] then partitioning might be an answer. Before you partition you might want to check a few other things: Is your event retention set to NO_EVENT_LOSS and causing blocking? (I told you not to do this.) Consider changing your event loss mode or increasing memory. Are you over collecting and causing more work than necessary? Consider adding predicates to events or removing unnecessary events and actions from your session. Are you writing the file target to the same slow disk that you use for TempDB and your other high activity databases? <kidding> <not really> It’s always worth considering the end to end picture – if you’re writing events to a file you can be impacted by I/O, network; all the usual stuff. Assuming you’ve ruled out the obvious (and not so obvious) issues, there are performance conditions that will be addressed by partitioning. For example, it’s possible to have a successful event session (eg. no dropped events) but still see a performance impact because you have many CPUs all attempting to write to the same free buffer and having to wait in line to finish their work. This is a case where partitioning would relieve the contention between the different CPUs and likely reduce the performance impact cause by the event session. There is no DMV you can check to find these conditions – sorry – that’s where the art comes in. This is  largely a matter of experimentation. On the bright side you probably won’t need to to worry about this level of detail all that often. The performance impact of Extended Events is significantly lower than what you may be used to with SQL Trace. You will likely only care about the impact if you are trying to set up a long running event session that will be part of your everyday workload – sessions used for short term troubleshooting will likely fall into the “reasonably expected impact” category. Hey buddy – I think you forgot something OK, there are two options I didn’t cover: STARTUP_STATE & TRACK_CAUSALITY. If you want your event sessions to start automatically when the server starts, set the STARTUP_STATE option to ON. (Now there is only one option I didn’t cover.) I’m going to leave causality for another post since it’s not really related to session behavior, it’s more about event analysis. - Mike Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Best Practices - updated: which domain types should be used to run applications

    - by jsavit
    This post is one of a series of "best practices" notes for Oracle VM Server for SPARC (formerly named Logical Domains). This is an updated and enlarged version of the post on this topic originally posted October 2012. One frequent question "what type of domain should I use to run applications?" There used to be a simple answer: "run applications in guest domains in almost all cases", but now there are more things to consider. Enhancements to Oracle VM Server for SPARC and introduction of systems like the current SPARC servers including the T4 and T5 systems, the Oracle SuperCluster T5-8 and Oracle SuperCluster M6-32 provide scale and performance much higher than the original servers that ran domains. Single-CPU performance, I/O capacity, memory sizes, are much larger now, and far more demanding applications are now being hosted in logical domains. The general advice continues to be "use guest domains in almost all cases", meaning, "use virtual I/O rather than physical I/O", unless there is a specific reason to use the other domain types. The sections below will discuss the criteria for choosing between domain types. Review: division of labor and types of domain Oracle VM Server for SPARC offloads management and I/O functionality from the hypervisor to domains (also called virtual machines), providing a modern alternative to older VM architectures that use a "thick", monolithic hypervisor. This permits a simpler hypervisor design, which enhances reliability, and security. It also reduces single points of failure by assigning responsibilities to multiple system components, further improving reliability and security. Oracle VM Server for SPARC defines the following types of domain, each with their own roles: Control domain - management control point for the server, runs the logical domain daemon and constraints engine, and is used to configure domains and manage resources. The control domain is the first domain to boot on a power-up, is always an I/O domain, and is usually a service domain as well. It doesn't have to be, but there's no reason to not leverage it for virtual I/O services. There is one control domain per T-series system, and one per Physical Domain (PDom) on an M5-32 or M6-32 system. M5 and M6 systems can be physically domained, with logical domains within the physical ones. I/O domain - a domain that has been assigned physical I/O devices. The devices may be one more more PCIe root complexes (in which case the domain is also called a root complex domain). The domain has native access to all the devices on the assigned PCIe buses. The devices can be any device type supported by Solaris on the hardware platform. a SR-IOV (Single-Root I/O Virtualization) function. SR-IOV lets a physical device (also called a physical function) or PF) be subdivided into multiple virtual functions (VFs) which can be individually assigned directly to domains. SR-IOV devices currently can be Ethernet or InfiniBand devices. direct I/O ownership of one or more PCI devices residing in a PCIe bus slot. The domain has direct access to the individual devices An I/O domain has native performance and functionality for the devices it owns, unmediated by any virtualization layer. It may also have virtual devices. Service domain - a domain that provides virtual network and disk devices to guest domains. The services are defined by commands that are run in the control domain. It usually is an I/O domain as well, in order for it to have devices to virtualize and serve out. Guest domain - a domain whose devices are all virtual rather than physical: virtual network and disk devices provided by one or more service domains. In common practice, this is where applications are run. Device considerations Consider the following when choosing between virtual devices and physical devices: Virtual devices provide the best flexibility - they can be dynamically added to and removed from a running domain, and you can have a large number of them up to a per-domain device limit. Virtual devices are compatible with live migration - domains that exclusively have virtual devices can be live migrated between servers supporting domains. On the other hand: Physical devices provide the best performance - in fact, native "bare metal" performance. Virtual devices approach physical device throughput and latency, especially with virtual network devices that can now saturate 10GbE links, but physical devices are still faster. Physical I/O devices do not add load to service domains - all the I/O goes directly from the I/O domain to the device, while virtual I/O goes through service domains, which must be provided sufficient CPU and memory capacity. Physical I/O devices can be other than network and disk - we virtualize network, disk, and serial console, but physical devices can be the wide range of attachable certified devices, including things like tape and CDROM/DVD devices. In some cases the lines are now blurred: virtual devices have better performance than previously: starting with Oracle VM Server for SPARC 3.1 there is near-native virtual network performance. There is more flexibility with physical devices than before: SR-IOV devices can now be dynamically reconfigured on domains. Tradeoffs one used to have to make are now relaxed: you can often have the flexibility of virtual I/O with performance that previously required physical I/O. You can have the performance and isolation of SR-IOV with the ability to dynamically reconfigure it, just like with virtual devices. Typical deployment A service domain is generally also an I/O domain: otherwise it wouldn't have access to physical device "backends" to offer to its clients. Similarly, an I/O domain is also typically a service domain in order to leverage the available PCI buses. Control domains must be I/O domains, because they boot up first on the server and require physical I/O. It's typical for the control domain to also be a service domain too so it doesn't "waste" the I/O resources it uses. A simple configuration consists of a control domain that is also the one I/O and service domain, and some number of guest domains using virtual I/O. In production, customers typically use multiple domains with I/O and service roles to eliminate single points of failure, as described in Availability Best Practices - Avoiding Single Points of Failure . Guest domains have virtual disk and virtual devices provisioned from more than one service domain, so failure of a service domain or I/O path or device does not result in an application outage. This also permits "rolling upgrades" in which service domains are upgraded one at a time while their guests continue to operate without disruption. (It should be noted that resiliency to I/O device failures can also be provided by the single control domain, using multi-path I/O) In this type of deployment, control, I/O, and service domains are used for virtualization infrastructure, while applications run in guest domains. Changing application deployment patterns The above model has been widely and successfully used, but more configuration options are available now. Servers got bigger than the original T2000 class machines with 2 I/O buses, so there is more I/O capacity that can be used for applications. Increased server capacity made it attractive to run more vertically-scaled applications, such as databases, with higher resource requirements than the "light" applications originally seen. This made it attractive to run applications in I/O domains so they could get bare-metal native I/O performance. This is leveraged by the Oracle SuperCluster engineered systems mentioned previously. In those engineered systems, I/O domains are used for high performance applications with native I/O performance for disk and network and optimized access to the Infiniband fabric. Another technical enhancement is Single Root I/O Virtualization (SR-IOV), which make it possible to give domains direct connections and native I/O performance for selected I/O devices. Not all I/O domains own PCI complexes, and there are increasingly more I/O domains that are not service domains. They use their I/O connectivity for performance for their own applications. However, there are some limitations and considerations: at this time, a domain using physical I/O cannot be live-migrated to another server. There is also a need to plan for security and introducing unneeded dependencies: if an I/O domain is also a service domain providing virtual I/O to guests, it has the ability to affect the correct operation of its client guest domains. This is even more relevant for the control domain. where the ldm command must be protected from unauthorized (or even mistaken) use that would affect other domains. As a general rule, running applications in the service domain or the control domain should be avoided. For reference, an excellent guide to secure deployment of domains by Stefan Hinker is at Secure Deployment of Oracle VM Server for SPARC. To recap: Guest domains with virtual I/O still provide the greatest operational flexibility, including features like live migration. They should be considered the default domain type to use unless there is a specific requirement that mandates an I/O domain. I/O domains can be used for applications with the highest performance requirements. Single Root I/O Virtualization (SR-IOV) makes this more attractive by giving direct I/O access to more domains, and by permitting dynamic reconfiguration of SR-IOV devices. Today's larger systems provide multiple PCIe buses - for example, 16 buses on the T5-8 - making it possible to configure multiple I/O domains each owning their own bus. Service domains should in general not be used for applications, because compromised security in the domain, or an outage, can affect domains that depend on it. This concern can be mitigated by providing guests' their virtual I/O from more than one service domain, so interruption of service in one service domain does not cause an application outage. The control domain should in general not be used to run applications, for the same reason. Oracle SuperCluster uses the control domain for applications, but it is an exception. It's not a general purpose environment; it's an engineered system with specifically configured applications and optimization for optimal performance. These are recommended "best practices" based on conversations with a number of Oracle architects. Keep in mind that "one size does not fit all", so you should evaluate these practices in the context of your own requirements. Summary Higher capacity servers that run Oracle VM Server for SPARC are attractive for applications with the most demanding resource requirements. New deployment models permit native I/O performance for demanding applications by running them in I/O domains with direct access to their devices. This is leveraged in SPARC SuperCluster, and can be leveraged in T-series servers to provision high-performance applications running in domains. Carefully planned, this can be used to provide peak performance for critical applications. That said, the improved virtual device performance in Oracle VM Server means that the default choice should still be guest domains with virtual I/O.

    Read the article

  • CodePlex Daily Summary for Thursday, May 20, 2010

    CodePlex Daily Summary for Thursday, May 20, 2010New ProjectsAlphaChannel: Closed projectAragon Online Client: The Aragon Online Client is a front-end application allowing users to play the online game http://aragon-online.net The client fetches game data a...BISBCarManager: Car managerBlammo.Net: Blammo.Net is a simple logging system that allows for multiple files, has simple configuration, and is modular.C# IMAPI2 Samples: This project is my effort to port the VB Script IMAPI2 samples to C# 4.0 and provide CD/DVD Burning capabilities in C#. This takes advantage of th...DemotToolkit: A toolbox to help you enjoy the demotivators.FMI Silverlight Course: This is the site for the final project of the Silverlight course taught at the Sofia University in the summer semester of 2010.InfoPath Publisher Helper: Building a large set of InfoPath Templates? Bored of the repetive stsadm commands to deploy an online form? This tool will allow you to submit ...JSBallBounce - HTML5 Stereocopy: A demo of basic stereoscopy in HTML5Kindler: Kindler allows you to easily convert simply HTML into documents that can be easily read on the Amazon Kindle.Maybe: Maybe or IfNotNull using lambdas for deep expressions. int? CityId= employee.Maybe(e=>e.Person.Address.City);PopCorn Project : play music with system beeps: PopCorn is an application that can play monophonic music through system beeps. You can launch music on the local machine, or on a remote server thr...RuneScape 2 Chronos - Emulation done right.: RuneScape 2 Chronos is a RuneScape 2 Emulator framework. It is completely open-source and is programmed in a way in which should be simpler for it'...RWEntregas: Projeto do Rogrigo e Wender referente a entregasSilverAmp: A media player to demonstrate lots of new Silverlight 4 features. Running out of browser and reading files from the MyMusic folder are two of them....Silverlight Scheduler: A light-weight silverlight scheduler control.SimpleContainer: SimpleContainer is very simple IoC container that consists of one class that implements two remarkable methods: one for registration and one for re...sqlserverextensions: This project will provide some use operations for files and directories. Further development will include extended string operations.TechWorks Portugal Sample BI Project: Techworks is a complete Microsoft BI sample project customized for Portugal to be used in demo and learning scenarios. It is based in SQL Server 20...Test4Proj: Test4ProjTV Show Renamer: TV Show Renamer is a program that is designed to take files downloaded off the internet and rename them to a more user friendly file name. It is fo...UnFreeZeMouSeW7: This small application disable or enable the standby mode on Windows 7 devices. As the mouse pointer freezes or the latency increase on some device...VianaNET - Videoanalysis for physical motion: The VianaNET project targets physics education. The software enables to analyze the motion of colored objects in life-video and video files. The da...Visual Studio 2010 extension for helping SharePoint 2010 debugging: This is a Visual Studio 2010 extensibility project that extends the debugging support for the built-in SharePoint 2010 tools with new menu items an...Visual Studio 2010 Load Test Plugins Library: Useful plugin library for Visual Studio Load Test 2010 version. (Best for web tests).VMware Lab Manager Powershell Cmdlet: This is a simple powershell cmdlet which connects you with the VMware lab manager internal soap api.Webgame UI: Bot to webgameNew ReleasesActipro WPF Controls Contrib: v2010.1: Minor tweaks and updated to target Actipro WPF Studio 2010.1. Addition of Editors.Interop.Datagrid project, which allows Actipro Editors for WPF t...Blammo.Net: Blammo.Net 1.0: This is the initial release of Blammo.Net.Build Version Increment Add-In Visual Studio: Shared Assembly Info Setup: Example solution that makes use of one shared assembly info file.CSS 360 Planetary Calendar: Zero Feature Release: =============================================================================== Zero Feature Release Version: 0.0 Description: This is a binar...DotNetNuke® Community Edition: 05.04.02: Updated the Installation Wizard's Polish & German language packs. Improved performance of Sql script for listing modules by portal. Improved De...DotNetNuke® Store: 02.01.36: What's New in this release? Bugs corrected: - The reference to resource.zip has been commented in the Install package. Sorry for that it's my mista...Extend SmallBasic: Teaching Extensions v.016: added turtle tree quizExtremeML: ExtremeML v1.0 Beta 2: Following the decision to terminate development of the Premium Edition of ExtremeML, this release includes all code previously restricted to the Pr...InfoPath Publisher Helper: 1st Release: InfoPath Publisher Helper Tool The version is mostly stable. There are some UI errors, which can be ignored. The code has not been cleaned up so t...JSBallBounce - HTML5 Stereocopy: HTML5 Stereoscopic Bouncing Balls Demo: Stereoscopic rendering in HTML5kdar: KDAR 0.0.22: KDAR - Kernel Debugger Anti Rootkit - signature's bases updated - ALPC port jbject check added - tcpip internal critical area checks added - some ...Lightweight Fluent Workflow: Objectflow core: Release Notes Fixed minor defects Framework changes Added IsFalse for boolean conditions Defects fixed IsTrue works with Not operator Installati...LiquidSilver SharePoint Framework: LiquidSilver 0.2.0.0 Beta: Changes in this version: - Fixed a bug in HgListItem when parsing double and int fields. - Added the LiquidSilver.Extra project. - Added the Liquid...Matrix: MatrixPlugin-0.5.1: Works with UniqueRoutes plugin on Google Code Works in Linux (path changes, variable usage etc) Builds .st2plugin by default Adapted to ST3MRDS Samples: MRDS Samples 1.0: Initial Release Please read the installation instructions on the Read Me page carefully before you unzip the samples. This ZIP file contains sourc...PopCorn Project : play music with system beeps: Popcorn v0.1: 1st beta releaseRuneScape 2 Chronos - Emulation done right.: Revision 0: Alpha stage of the Chronos source.SCSI Interface for Multimedia and Block Devices: Release 13 - Integrated Shell, x64 Fixes, and more: Changes from the previous version: - Added an integrated shell browser to the program and removed the Add/Remove File/Folder buttons, since the she...Silverlight Console: Silverlight Console Release 2: Release contains: - Orktane.Console.dll - Orktane.ScriptActions.dll Release targets: - Silverlight 4 Dependencies: - nRoute.Toolkit for Silverlig...SimpleContainer: SimpleContainer: Initial release of SimpleContainer library.Springshield Sample Site for EPiServer CMS: Springshield 1.0: City of Springshield - The accessible sample site for EPiServer CMS 6. Read the readme.txt on how to install.SQL Trim: 20100519: Improved releasesqlserverextensions: V 0.1 alpha: Version 0.1 Alphasvchost viewer: svchost viewer ver. 0.5.0.1: Got some feedback from a user, with some nice ideas so here they are: • Made the program resizable. • Program now saves the size and position when...Tribe.Cache: Tribe.Cache RC: Release Candidate There are breaking changes between BETA and RC :- 1) Cache Dictionary is now not exposed to the client. 2) Completly Thread Sa...TV Show Renamer: TV Show Renamer: This is the first public release. Don't worry that it is version 2.1 that is because i keep adding features to it and then upping the version numbe...UnFreeZeMouSeW7: UnFreeZeMouSeW7 0.1: First releaseVCC: Latest build, v2.1.30519.0: Automatic drop of latest buildVianaNET - Videoanalysis for physical motion: VianaNET V1.1 - alpha: This is the first alpha release of the completely rewritten Viana. Known issues are: - sometimes black frame at initial load of video - no abilit...visinia: visinia_1: The beta is gone, the visinia is here with visinia 1. now you can confidently install visinia use visinia and enjoy visinia. This version of visini...visinia: visinia_1_Src: The beta is gone, the visinia is here with visinia 1. now you can confidently install visinia use visinia and enjoy visinia. This version of visini...Visual Studio 2010 extension for helping SharePoint 2010 debugging: 1.0 First public release: The extension is released as a Visual Studio 2010 solution. See my related blog post at http://pholpar.wordpress.com/2010/05/20/visual-studio-2010-...Visual Studio 2010 Load Test Plugins Library: version 1 stable: version 1 stableVMware Lab Manager Powershell Cmdlet: LMCmdlet 1.0.0: first Release. You need to be an Administrator to install this cmdlet. After you run setup open powershell type: Get-PSSnapin -Registered you sh...WF Personalplaner: Personalplaner v1.7.29.10139: - Wenn ein Schema erstellt wird mit der Checkbox "Als neues Schema speichern" wurde pro Person ein Schema erstellt - Wenn ein Pensum geändert wurde...XAM.NET: XAM 1.0p2 + Issue Tracker 8396: Patch release for Issue Tracker 8396Xrns2XMod: Xrns2XMod 1.2: Fixed 32 bit flac conversion - Thanks to Yuri for updating FlacBox librariesMost Popular ProjectsRawrWBFS ManagerAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitWindows Presentation Foundation (WPF)patterns & practices – Enterprise LibraryMicrosoft SQL Server Community & SamplesPHPExcelASP.NETMost Active Projectspatterns & practices – Enterprise LibraryRawrPHPExcelGMap.NET - Great Maps for Windows Forms & PresentationCustomer Portal Accelerator for Microsoft Dynamics CRMBlogEngine.NETWindows Azure Command-line Tools for PHP DevelopersCassiniDev - Cassini 3.5/4.0 Developers EditionSQL Server PowerShell ExtensionsFluent Ribbon Control Suite

    Read the article

  • USB Hub and Ubuntu

    - by aserwin
    I have a powered 7 port hub connected to my Ubuntu box and it does nothing. The devices (zip drive and web cam) work direct, but aren't recognized through the hub. This worked fine in Windows 7. I can't prove it is the OS because this is a new motherboard and processor. Any advice? EDIT : Output from lsusb -v Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.00 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0002 2.0 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ehci_hcd iProduct 2 EHCI Host Controller iSerial 1 0000:00:12.2 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0004 1x 4 bytes bInterval 12 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 5 wHubCharacteristic 0x000a No power switching (usb 1.0) Per-port overcurrent protection bPwrOn2PwrGood 10 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0503 highspeed power enable connect Port 3: 0000.0100 power Port 4: 0000.0100 power Port 5: 0000.0100 power Device Status: 0x0001 Self Powered Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.00 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0002 2.0 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ehci_hcd iProduct 2 EHCI Host Controller iSerial 1 0000:00:13.2 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0004 1x 4 bytes bInterval 12 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 5 wHubCharacteristic 0x000a No power switching (usb 1.0) Per-port overcurrent protection bPwrOn2PwrGood 10 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0100 power Port 3: 0000.0100 power Port 4: 0000.0100 power Port 5: 0000.0100 power Device Status: 0x0001 Self Powered Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.00 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0002 2.0 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ehci_hcd iProduct 2 EHCI Host Controller iSerial 1 0000:00:16.2 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0004 1x 4 bytes bInterval 12 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 4 wHubCharacteristic 0x000a No power switching (usb 1.0) Per-port overcurrent protection bPwrOn2PwrGood 10 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0100 power Port 3: 0000.0100 power Port 4: 0000.0100 power Device Status: 0x0001 Self Powered Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 1.10 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0001 1.1 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ohci_hcd iProduct 2 OHCI Host Controller iSerial 1 0000:00:12.0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0002 1x 2 bytes bInterval 255 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 5 wHubCharacteristic 0x0002 No power switching (usb 1.0) Ganged overcurrent protection bPwrOn2PwrGood 2 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0100 power Port 3: 0000.0100 power Port 4: 0000.0100 power Port 5: 0000.0100 power Device Status: 0x0001 Self Powered Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 1.10 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0001 1.1 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ohci_hcd iProduct 2 OHCI Host Controller iSerial 1 0000:00:13.0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0002 1x 2 bytes bInterval 255 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 5 wHubCharacteristic 0x0002 No power switching (usb 1.0) Ganged overcurrent protection bPwrOn2PwrGood 2 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0100 power Port 3: 0000.0100 power Port 4: 0000.0100 power Port 5: 0000.0100 power Device Status: 0x0001 Self Powered Bus 006 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 1.10 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0001 1.1 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ohci_hcd iProduct 2 OHCI Host Controller iSerial 1 0000:00:14.5 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0002 1x 2 bytes bInterval 255 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 2 wHubCharacteristic 0x0002 No power switching (usb 1.0) Ganged overcurrent protection bPwrOn2PwrGood 2 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0100 power Device Status: 0x0001 Self Powered Bus 007 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 1.10 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0001 1.1 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ohci_hcd iProduct 2 OHCI Host Controller iSerial 1 0000:00:16.0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0002 1x 2 bytes bInterval 255 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 4 wHubCharacteristic 0x0002 No power switching (usb 1.0) Ganged overcurrent protection bPwrOn2PwrGood 2 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0303 lowspeed power enable connect Port 2: 0000.0100 power Port 3: 0000.0100 power Port 4: 0000.0100 power Device Status: 0x0001 Self Powered Bus 008 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.00 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 1 Single TT bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0002 2.0 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic xhci_hcd iProduct 2 xHCI Host Controller iSerial 1 0000:02:00.0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0004 1x 4 bytes bInterval 12 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 2 wHubCharacteristic 0x0009 Per-port power switching Per-port overcurrent protection TT think time 8 FS bits bPwrOn2PwrGood 10 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0100 power Device Status: 0x0001 Self Powered Bus 009 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 3.00 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 3 bMaxPacketSize0 9 idVendor 0x1d6b Linux Foundation idProduct 0x0003 3.0 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic xhci_hcd iProduct 2 xHCI Host Controller iSerial 1 0000:02:00.0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 31 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0004 1x 4 bytes bInterval 12 bMaxBurst 0 Hub Descriptor: bLength 12 bDescriptorType 42 nNbrPorts 2 wHubCharacteristic 0x0009 Per-port power switching Per-port overcurrent protection bPwrOn2PwrGood 10 * 2 milli seconds bHubContrCurrent 0 milli Ampere bHubDecLat 0.0 micro seconds wHubDelay 0 nano seconds DeviceRemovable 0x00 Hub Port Status: Port 1: 0000.02a0 5Gbps power Rx.Detect Port 2: 0000.02a0 5Gbps power Rx.Detect Binary Object Store Descriptor: bLength 5 bDescriptorType 15 wTotalLength 15 bNumDeviceCaps 1 SuperSpeed USB Device Capability: bLength 10 bDescriptorType 16 bDevCapabilityType 3 bmAttributes 0x00 Latency Tolerance Messages (LTM) Supported wSpeedsSupported 0x0008 Device can operate at SuperSpeed (5Gbps) bFunctionalitySupport 3 Lowest fully-functional device speed is SuperSpeed (5Gbps) bU1DevExitLat 3 micro seconds bU2DevExitLat 2047 micro seconds Device Status: 0x0001 Self Powered Bus 001 Device 002: ID 04a9:1709 Canon, Inc. PIXMA MP150 Scanner Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.00 bDeviceClass 0 (Defined at Interface level) bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 64 idVendor 0x04a9 Canon, Inc. idProduct 0x1709 PIXMA MP150 Scanner bcdDevice 1.08 iManufacturer 1 Canon iProduct 2 MP150 iSerial 3 20BC24 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 62 bNumInterfaces 2 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xc0 Self Powered MaxPower 2mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 3 bInterfaceClass 255 Vendor Specific Class bInterfaceSubClass 0 bInterfaceProtocol 255 iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x07 EP 7 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x88 EP 8 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x89 EP 9 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0040 1x 64 bytes bInterval 11 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 0 bNumEndpoints 2 bInterfaceClass 7 Printer bInterfaceSubClass 1 Printer bInterfaceProtocol 2 Bidirectional iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x01 EP 1 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x82 EP 2 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Device Qualifier (for other device speed): bLength 10 bDescriptorType 6 bcdUSB 2.00 bDeviceClass 0 (Defined at Interface level) bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 64 bNumConfigurations 1 Device Status: 0x0001 Self Powered Bus 007 Device 002: ID 046d:c517 Logitech, Inc. LX710 Cordless Desktop Laser Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 1.10 bDeviceClass 0 (Defined at Interface level) bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 8 idVendor 0x046d Logitech, Inc. idProduct 0xc517 LX710 Cordless Desktop Laser bcdDevice 38.10 iManufacturer 1 Logitech iProduct 2 USB Receiver iSerial 0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 59 bNumInterfaces 2 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xa0 (Bus Powered) Remote Wakeup MaxPower 98mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 3 Human Interface Device bInterfaceSubClass 1 Boot Interface Subclass bInterfaceProtocol 1 Keyboard iInterface 0 HID Device Descriptor: bLength 9 bDescriptorType 33 bcdHID 1.10 bCountryCode 0 Not supported bNumDescriptors 1 bDescriptorType 34 Report wDescriptorLength 59 Report Descriptors: ** UNAVAILABLE ** Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0008 1x 8 bytes bInterval 10 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 3 Human Interface Device bInterfaceSubClass 1 Boot Interface Subclass bInterfaceProtocol 2 Mouse iInterface 0 HID Device Descriptor: bLength 9 bDescriptorType 33 bcdHID 1.10 bCountryCode 0 Not supported bNumDescriptors 1 bDescriptorType 34 Report wDescriptorLength 177 Report Descriptors: ** UNAVAILABLE ** Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x82 EP 2 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0008 1x 8 bytes bInterval 10 Device Status: 0x0000 (Bus Powered) This is with the powered hub plugged in.

    Read the article

  • 10 Reasons Why Java is the Top Embedded Platform

    - by Roger Brinkley
    With the release of Oracle ME Embedded 3.2 and Oracle Java Embedded Suite, Java is now ready to fully move into the embedded developer space, what many have called the "Internet of Things". Here are 10 reasons why Java is the top embedded platform. 1. Decouples software development from hardware development cycle Development is typically split between both hardware and software in a traditional design flow . This leads to complicated co-design and requires prototype hardware to be built. This parallel and interdependent hardware / software design process typically leads to two or more re-development phases. With Embedded Java, all specific work is carried out in software, with the (processor) hardware implementation fully decoupled. This with eliminate or at least reduces the need for re-spins of software or hardware and the original development efforts can be carried forward directly into product development and validation. 2. Development and testing can be done (mostly) using standard desktop systems through emulation Because the software and hardware are decoupled it now becomes easier to test the software long before it reaches the hardware through hardware emulation. Emulation is the ability of a program in an electronic device to imitate another program or device. In the past Java tools like the Java ME SDK and the SunSPOTs Solarium provided developers with emulation for a complete set of mobile telelphones and SunSpots. This often included network interaction or in the case of SunSPOTs radio communication. What emulation does is speed up the development cycle by refining the software development process without the need of hardware. The software is fixed, redefined, and refactored without the timely expense of hardware testing. With tools like the Java ME 3.2 SDK, Embedded Java applications can be be quickly developed on Windows based platforms. In the end of course developers should do a full set of testing on the hardware as incompatibilities between emulators and hardware will exist, but the amount of time to do this should be significantly reduced. 3. Highly productive language, APIs, runtime, and tools mean quick time to market Charles Nutter probably said it best in twitter blog when he tweeted, "Every time I see a piece of C code I need to port, my heart dies a little. Then I port it to 1/4 as much Java, and feel better." The Java environment is a very complex combination of a Java Virtual Machine, the Java Language, and it's robust APIs. Combine that with the Java ME SDK for small devices or just Netbeans for the larger devices and you have a development environment where development time is reduced significantly meaning the product can be shipped sooner. Of course this is assuming that the engineers don't get slap happy adding new features given the extra time they'll have.  4. Create high-performance, portable, secure, robust, cross-platform applications easily The latest JIT compilers for the Oracle JVM approach the speed of C/C++ code, and in some memory allocation intensive circumstances, exceed it. And specifically for the embedded devices both ME Embedded and SE Embedded have been optimized for the smaller footprints.  In portability Java uses Bytecode to make the language platform independent. This creates a write once run anywhere environment that allows you to develop on one platform and execute on others and avoids a platform vendor lock in. For security, Java achieves protection by confining a Java program to a Java execution environment and not allowing it to access other parts of computer.  In variety of systems the program must execute reliably to be robust. Finally, Oracle Java ME Embedded is a cross-industry and cross-platform product optimized in release version 3.2 for chipsets based on the ARM architectures. Similarly Oracle Java SE Embedded works on a variety of ARM V5, V6, and V7, X86 and Power Architecture Linux. 5. Java isolates your apps from language and platform variations (e.g. C/C++, kernel, libc differences) This has been a key factor in Java from day one. Developers write to Java and don't have to worry about underlying differences in the platform variations. Those platform variations are being managed by the JVM. Gone are the C/C++ problems like memory corruptions, stack overflows, and other such bugs which are extremely difficult to isolate. Of course this doesn't imply that you won't be able to get away from native code completely. There could be some situations where you have to write native code in either assembler or C/C++. But those instances should be limited. 6. Most popular embedded processors supported allowing design flexibility Java SE Embedded is now available on ARM V5, V6, and V7 along with Linux on X86 and Power Architecture platforms. Java ME Embedded is available on system based on ARM architecture SOCs with low memory footprints and a device emulation environment for x86/Windows desktop computers, integrated with the Java ME SDK 3.2. A standard binary of Oracle Java ME Embedded 3.2 for ARM KEIL development boards based on ARM Cortex M-3/4 (KEIL MCBSTM32F200 using ST Micro SOC STM32F207IG) will soon be available for download from the Oracle Technology Network (OTN). 7. Support for key embedded features (low footprint, power mgmt., low latency, etc) All embedded devices by there very nature are constrained in some way. Economics may dictate a device with a less RAM and ROM. The CPU needs can dictate a less powerful device. Power consumption is another major resource in some embedded devices as connecting to consistent power source not always desirable or possible. For others they have to constantly on. Often many of these systems are headless (in the embedded space it's almost always Halloween).  For memory resources ,Java ME Embedded can run in environment as low as 130KB RAM/350KB ROM for a minimal, customized configuration up to 700KB RAM/1500KB ROM for the full, standard configuration. Java SE Embedded is designed for environments starting at 32MB RAM/39MB  ROM. Key functionality of embedded devices such as auto-start and recovery, flexible networking are fully supported. And while Java SE Embedded has been optimized for mid-range to high-end embedded systems, Java ME Embedded is a Java runtime stack optimized for small embedded systems. It provides a robust and flexible application platform with dedicated embedded functionality for always-on, headless (no graphics/UI), and connected devices. 8. Leverage huge Java developer ecosystem (expertise, existing code) There are over 9 million developers in world that work on Java, and while not all of them work on embedded systems, their wealth of expertise in developing applications is immense. In short, getting a java developer to work on a embedded system is pretty easy, you probably have a java developer living in your subdivsion.  Then of course there is the wealth of existing code. The Java Embedded Community on Java.net is central gathering place for embedded Java developers. Conferences like Embedded Java @ JavaOne and the a variety of hardware vendor conferences like Freescale Technlogy Forums offer an excellent opportunity for those interested in embedded systems. 9. Easily create end-to-end solutions integrated with Java back-end services In the "Internet of Things" things aren't on an island doing an single task. For instance and embedded drink dispenser doesn't just dispense a beverage, but could collect money from a credit card and also send information about current sales. Similarly, an embedded house power monitoring system doesn't just manage the power usage in a house, but can also send that data back to the power company. In both cases it isn't about the individual thing, but monitoring a collection of  things. How much power did your block, subdivsion, area of town, town, county, state, nation, world use? How many Dr Peppers were purchased from thing1, thing2, thingN? The point is that all this information can be collected and transferred securely  (and believe me that is key issue that Java fully supports) to back end services for further analysis. And what better back in service exists than a Java back in service. It's interesting to note that on larger embedded platforms that support the Java Embedded Suite some of the analysis might be done on the embedded device itself as JES has a glassfish server and Java Database as part of the installation. The result is an end to end Java solution. 10. Solutions from constrained devices to server-class systems Just take a look at some of the embedded Java systems that have already been developed and you'll see a vast range of solutions. Livescribe pen, Kindle, each and every Blu-Ray player, Cisco's Advanced VOIP phone, KronosInTouch smart time clock, EnergyICT smart metering, EDF's automated meter management, Ricoh Printers, and Stanford's automated car  are just a few of the list of embedded Java implementation that continues to grow. Conclusion Now if your a Java Developer you probably look at some of the 10 reasons and say "duh", but for the embedded developers this is should be an eye opening list. And with the release of ME Embedded 3.2 and the Java Embedded Suite the embedded developers life is now a whole lot easier. For the Java developer your employment opportunities are about to increase. For both it's a great time to start developing Java for the "Internet of Things".

    Read the article

  • Mobile App Data Syncronization

    - by Matt Rogish
    Let's say I have a mobile app that uses HTML5 SQLite DB (and/or the HTML5 key-value store). Assets (media files, PDFs, etc.) are stored locally on the mobile device. Luckily enough, the mobile device is a read-only copy of the "centralized" storage, so the mobile device won't have to propagate changes upstream. However, as the server changes assets (creates new ones, modifies existing, deletes old ones) I need to propagate those changes back to the mobile app. Assume that server changes are grouped into changesets (version number n) that contain some information (added element XYZ, deleted id = 45, etc.) and that the mobile device has limited CPU/bandwidth, so most of the processing has to take place on the server. I can think of a couple of methods to do this. All have trade-offs and at this point, I'm unsure which is the right course of action... Method 1: For change set n, store the "diff" of the current n and previous n-1. When a client with version y asks if there have been any changes, send the change sets from version y up to the current version. e.g. added item 334, contents: xxx. Deleted picture 44. Deleted PDF 11. Changed 33. added picture 99. Characteristics: Diffs take up space, although in theory would be kept small. However, all diffs must be kept around indefinitely (should a v1 app have not been updated for a year, must apply v2..v100). High latency devices (mobile apps) will incur a penalty to send lots of small files (assume cannot be zipped or tarr'd up into one file) Very few server CPU resources required, as all it does is send the client a list of files "Dumb" - if I change an item in change set 3, and change it to something else in 4, the client is going to perform both actions, even though #3 is rendered moot by #4. Or, if an asset is added in #4 and removed in #5 - the client will download a file just to delete it later. Method 2: Very similar to method 1 except on the server, do some sort of a diff between the change sets represented by the app version and server version. Package that up and send that single change set to the client. Characteristics: Client-efficient: The client only has to process one file, duplicate or irrelevant changes are stripped out. Server CPU/space intensive. The change sets must be diff'd and then written out to a file that is then sent to the client. Makes diff server scalability an issue. Possibly ways to cache the results and re-use them, but in the wild there's likely to be a lot of different versions so the diff re-use has a limit Diff algorithm is complicated. The change sets must be structured in such a way that an efficient and effective diff can be performed. Method 3: Instead of keeping diffs, write out the entire versioned asset collection to a mobile-database import file. When client requests an update, send the entire database to client and have them update their assets appropriately. Characteristics: Conceptually simple -- easy to develop and deploy Very inefficient as the client database is restored every update. If only one new thing was added, the whole database is refreshed. Server space and CPU efficient. Only the latest version DB needs kept around and the server just throws the file to the client. Others?? Thoughts? Thanks!!

    Read the article

  • Everytime i am trying to connect to my box using SSH, its failing not connecting

    - by YumYumYum
    From any other PC doing SSH to my Ubuntu 11.10,is failing. My network setup: Telenet ISP (Belgium) Fiber cable < RJ45 cable straight to Ubuntu PC Even the SSH is running: Other PC: retrying over and over $ ping 192.168.0.128 PING 192.168.0.128 (192.168.0.128) 56(84) bytes of data. From 192.168.0.226 icmp_seq=1 Destination Host Unreachable From 192.168.0.226 icmp_seq=2 Destination Host Unreachable From 192.168.0.226 icmp_seq=3 Destination Host Unreachable From 192.168.0.226 icmp_seq=4 Destination Host Unreachable $ sudo service iptables stop Stopping iptables (via systemctl): [ OK ] $ ssh [email protected] ssh: connect to host 192.168.0.128 port 22: No route to host $ ssh [email protected] ssh: connect to host 192.168.0.128 port 22: No route to host $ ssh [email protected] ssh: connect to host 192.168.0.128 port 22: No route to host $ ssh [email protected] ssh: connect to host 192.168.0.128 port 22: No route to host $ ssh [email protected] Connection closed by 192.168.0.128 $ ssh [email protected] [email protected]'s password: Connection closed by UNKNOWN $ ssh [email protected] ssh: connect to host 192.168.0.128 port 22: No route to host $ ssh [email protected] ssh: connect to host 192.168.0.128 port 22: No route to host Follow up: -- checked cable -- using cable tester and other detectors -- no problem found in cable -- used random 10 cables -- adapter is not broken -- checked it using circuit tester by opening the system (card is new so its not network adapter card problem) -- leds are OK showing -- used LiveCD and did same ping test was having same problem -- disabled ipv6 100% to make sure its not the cause -- disabled iptables 100% so its also not the issue -- some more info $ nmap 192.168.0.128 Starting Nmap 5.50 ( http://nmap.org ) at 2012-06-08 19:11 CEST Nmap scan report for 192.168.0.128 Host is up (0.00045s latency). All 1000 scanned ports on 192.168.0.128 are closed (842) or filtered (158) Nmap done: 1 IP address (1 host up) scanned in 6.86 seconds ubuntu@ubuntu:~$ netstat -aunt | head Active Internet connections (servers and established) Proto Recv-Q Send-Q Local Address Foreign Address State tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN tcp 0 1 192.168.0.128:58616 74.125.132.99:80 FIN_WAIT1 tcp 0 0 192.168.0.128:56749 199.7.57.72:80 ESTABLISHED tcp 0 1 192.168.0.128:58614 74.125.132.99:80 FIN_WAIT1 tcp 0 0 192.168.0.128:49916 173.194.65.113:443 ESTABLISHED tcp 0 1 192.168.0.128:45699 64.34.119.101:80 SYN_SENT tcp 0 0 192.168.0.128:48404 64.34.119.12:80 ESTABLISHED tcp 0 0 192.168.0.128:54161 67.201.31.70:80 TIME_WAIT $ sudo killall dnsmasq -- did not solved the problem -- -- like many other Q/A was suggesting this same --- $ iptables --list Chain INPUT (policy ACCEPT) target prot opt source destination Chain FORWARD (policy ACCEPT) target prot opt source destination Chain OUTPUT (policy ACCEPT) target prot opt source destination $ netstat -nr Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 0.0.0.0 192.168.0.1 0.0.0.0 UG 0 0 0 eth0 169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth0 192.168.0.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0 $ ssh -vvv [email protected] OpenSSH_5.6p1, OpenSSL 1.0.0j-fips 10 May 2012 debug1: Reading configuration data /etc/ssh/ssh_config debug1: Applying options for * debug2: ssh_connect: needpriv 0 debug1: Connecting to 192.168.0.128 [192.168.0.128] port 22. debug1: Connection established. debug3: Not a RSA1 key file /home/sun/.ssh/id_rsa. debug2: key_type_from_name: unknown key type '-----BEGIN' debug3: key_read: missing keytype debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug3: key_read: missing whitespace debug2: key_type_from_name: unknown key type '-----END' debug3: key_read: missing keytype debug1: identity file /home/sun/.ssh/id_rsa type 1 debug1: identity file /home/sun/.ssh/id_rsa-cert type -1 debug1: identity file /home/sun/.ssh/id_dsa type -1 debug1: identity file /home/sun/.ssh/id_dsa-cert type -1 debug1: Remote protocol version 2.0, remote software version OpenSSH_5.8p1 Debian-7ubuntu1 debug1: match: OpenSSH_5.8p1 Debian-7ubuntu1 pat OpenSSH* debug1: Enabling compatibility mode for protocol 2.0 debug1: Local version string SSH-2.0-OpenSSH_5.6 debug2: fd 3 setting O_NONBLOCK debug1: SSH2_MSG_KEXINIT sent debug1: SSH2_MSG_KEXINIT received debug2: kex_parse_kexinit: diffie-hellman-group-exchange-sha256,diffie-hellman-group-exchange-sha1,diffie-hellman-group14-sha1,diffie-hellman-group1-sha1 debug2: kex_parse_kexinit: [email protected],[email protected],[email protected],[email protected],ssh-rsa,ssh-dss debug2: kex_parse_kexinit: aes128-ctr,aes192-ctr,aes256-ctr,arcfour256,arcfour128,aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,aes192-cbc,aes256-cbc,arcfour,[email protected] debug2: kex_parse_kexinit: aes128-ctr,aes192-ctr,aes256-ctr,arcfour256,arcfour128,aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,aes192-cbc,aes256-cbc,arcfour,[email protected] debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,[email protected],hmac-ripemd160,[email protected],hmac-sha1-96,hmac-md5-96 debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,[email protected],hmac-ripemd160,[email protected],hmac-sha1-96,hmac-md5-96 debug2: kex_parse_kexinit: none,[email protected],zlib debug2: kex_parse_kexinit: none,[email protected],zlib debug2: kex_parse_kexinit: debug2: kex_parse_kexinit: debug2: kex_parse_kexinit: first_kex_follows 0 debug2: kex_parse_kexinit: reserved 0 debug2: kex_parse_kexinit: ecdh-sha2-nistp256,ecdh-sha2-nistp384,ecdh-sha2-nistp521,diffie-hellman-group-exchange-sha256,diffie-hellman-group-exchange-sha1,diffie-hellman-group14-sha1,diffie-hellman-group1-sha1 debug2: kex_parse_kexinit: ssh-rsa,ssh-dss,ecdsa-sha2-nistp256 debug2: kex_parse_kexinit: aes128-ctr,aes192-ctr,aes256-ctr,arcfour256,arcfour128,aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,aes192-cbc,aes256-cbc,arcfour,[email protected] debug2: kex_parse_kexinit: aes128-ctr,aes192-ctr,aes256-ctr,arcfour256,arcfour128,aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,aes192-cbc,aes256-cbc,arcfour,[email protected] debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,[email protected],hmac-ripemd160,[email protected],hmac-sha1-96,hmac-md5-96 debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,[email protected],hmac-ripemd160,[email protected],hmac-sha1-96,hmac-md5-96 debug2: kex_parse_kexinit: none,[email protected] debug2: kex_parse_kexinit: none,[email protected] debug2: kex_parse_kexinit: debug2: kex_parse_kexinit: debug2: kex_parse_kexinit: first_kex_follows 0 debug2: kex_parse_kexinit: reserved 0 debug2: mac_setup: found hmac-md5 debug1: kex: server->client aes128-ctr hmac-md5 none debug2: mac_setup: found hmac-md5 debug1: kex: client->server aes128-ctr hmac-md5 none debug1: SSH2_MSG_KEX_DH_GEX_REQUEST(1024<1024<8192) sent debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP debug2: dh_gen_key: priv key bits set: 118/256 debug2: bits set: 539/1024 debug1: SSH2_MSG_KEX_DH_GEX_INIT sent debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY debug3: check_host_in_hostfile: host 192.168.0.128 filename /home/sun/.ssh/known_hosts debug3: check_host_in_hostfile: host 192.168.0.128 filename /home/sun/.ssh/known_hosts debug3: check_host_in_hostfile: match line 139 debug1: Host '192.168.0.128' is known and matches the RSA host key. debug1: Found key in /home/sun/.ssh/known_hosts:139 debug2: bits set: 544/1024 debug1: ssh_rsa_verify: signature correct debug2: kex_derive_keys debug2: set_newkeys: mode 1 debug1: SSH2_MSG_NEWKEYS sent debug1: expecting SSH2_MSG_NEWKEYS debug2: set_newkeys: mode 0 debug1: SSH2_MSG_NEWKEYS received debug1: Roaming not allowed by server debug1: SSH2_MSG_SERVICE_REQUEST sent debug2: service_accept: ssh-userauth debug1: SSH2_MSG_SERVICE_ACCEPT received debug2: key: /home/sun/.ssh/id_rsa (0x213db960) debug2: key: /home/sun/.ssh/id_dsa ((nil)) debug1: Authentications that can continue: publickey,password debug3: start over, passed a different list publickey,password debug3: preferred gssapi-keyex,gssapi-with-mic,publickey,keyboard-interactive,password debug3: authmethod_lookup publickey debug3: remaining preferred: keyboard-interactive,password debug3: authmethod_is_enabled publickey debug1: Next authentication method: publickey debug1: Offering RSA public key: /home/sun/.ssh/id_rsa debug3: send_pubkey_test debug2: we sent a publickey packet, wait for reply debug1: Authentications that can continue: publickey,password debug1: Trying private key: /home/sun/.ssh/id_dsa debug3: no such identity: /home/sun/.ssh/id_dsa debug2: we did not send a packet, disable method debug3: authmethod_lookup password debug3: remaining preferred: ,password debug3: authmethod_is_enabled password debug1: Next authentication method: password [email protected]'s password: debug3: packet_send2: adding 64 (len 60 padlen 4 extra_pad 64) debug2: we sent a password packet, wait for reply debug1: Authentication succeeded (password). Authenticated to 192.168.0.128 ([192.168.0.128]:22). debug1: channel 0: new [client-session] debug3: ssh_session2_open: channel_new: 0 debug2: channel 0: send open debug1: Requesting [email protected] debug1: Entering interactive session. debug2: callback start debug2: client_session2_setup: id 0 debug2: channel 0: request pty-req confirm 1 debug1: Sending environment. debug3: Ignored env ORBIT_SOCKETDIR debug3: Ignored env XDG_SESSION_ID debug3: Ignored env HOSTNAME debug3: Ignored env GIO_LAUNCHED_DESKTOP_FILE_PID debug3: Ignored env IMSETTINGS_INTEGRATE_DESKTOP debug3: Ignored env GPG_AGENT_INFO debug3: Ignored env TERM debug3: Ignored env HARDWARE_PLATFORM debug3: Ignored env SHELL debug3: Ignored env DESKTOP_STARTUP_ID debug3: Ignored env HISTSIZE debug3: Ignored env XDG_SESSION_COOKIE debug3: Ignored env GJS_DEBUG_OUTPUT debug3: Ignored env WINDOWID debug3: Ignored env GNOME_KEYRING_CONTROL debug3: Ignored env QTDIR debug3: Ignored env QTINC debug3: Ignored env GJS_DEBUG_TOPICS debug3: Ignored env IMSETTINGS_MODULE debug3: Ignored env USER debug3: Ignored env LS_COLORS debug3: Ignored env SSH_AUTH_SOCK debug3: Ignored env USERNAME debug3: Ignored env SESSION_MANAGER debug3: Ignored env GIO_LAUNCHED_DESKTOP_FILE debug3: Ignored env PATH debug3: Ignored env MAIL debug3: Ignored env DESKTOP_SESSION debug3: Ignored env QT_IM_MODULE debug3: Ignored env PWD debug1: Sending env XMODIFIERS = @im=none debug2: channel 0: request env confirm 0 debug1: Sending env LANG = en_US.utf8 debug2: channel 0: request env confirm 0 debug3: Ignored env KDE_IS_PRELINKED debug3: Ignored env GDM_LANG debug3: Ignored env KDEDIRS debug3: Ignored env GDMSESSION debug3: Ignored env SSH_ASKPASS debug3: Ignored env HISTCONTROL debug3: Ignored env HOME debug3: Ignored env SHLVL debug3: Ignored env GDL_PATH debug3: Ignored env GNOME_DESKTOP_SESSION_ID debug3: Ignored env LOGNAME debug3: Ignored env QTLIB debug3: Ignored env CVS_RSH debug3: Ignored env DBUS_SESSION_BUS_ADDRESS debug3: Ignored env LESSOPEN debug3: Ignored env WINDOWPATH debug3: Ignored env XDG_RUNTIME_DIR debug3: Ignored env DISPLAY debug3: Ignored env G_BROKEN_FILENAMES debug3: Ignored env COLORTERM debug3: Ignored env XAUTHORITY debug3: Ignored env _ debug2: channel 0: request shell confirm 1 debug2: fd 3 setting TCP_NODELAY debug2: callback done debug2: channel 0: open confirm rwindow 0 rmax 32768 debug2: channel_input_status_confirm: type 99 id 0 debug2: PTY allocation request accepted on channel 0 debug2: channel 0: rcvd adjust 2097152 debug2: channel_input_status_confirm: type 99 id 0 debug2: shell request accepted on channel 0 Welcome to Ubuntu 11.10 (GNU/Linux 3.0.0-12-generic x86_64) * Documentation: https://help.ubuntu.com/ 297 packages can be updated. 92 updates are security updates. New release '12.04 LTS' available. Run 'do-release-upgrade' to upgrade to it. Last login: Fri Jun 8 07:45:15 2012 from 192.168.0.226 sun@SystemAX51:~$ ping 19<--------Lost connection again-------------- Tail follow: -- dmesg is showing a very abnormal logs, like Ubuntu is automatically bringing the eth0 up, where eth0 is getting also auto down. [ 2025.897511] r8169 0000:02:00.0: eth0: link up [ 2029.347649] r8169 0000:02:00.0: eth0: link up [ 2030.775556] r8169 0000:02:00.0: eth0: link up [ 2038.242203] r8169 0000:02:00.0: eth0: link up [ 2057.267801] r8169 0000:02:00.0: eth0: link up [ 2062.871770] r8169 0000:02:00.0: eth0: link up [ 2082.479712] r8169 0000:02:00.0: eth0: link up [ 2285.630797] r8169 0000:02:00.0: eth0: link up [ 2308.417640] r8169 0000:02:00.0: eth0: link up [ 2480.948290] r8169 0000:02:00.0: eth0: link up [ 2824.884798] r8169 0000:02:00.0: eth0: link up [ 3030.022183] r8169 0000:02:00.0: eth0: link up [ 3306.587353] r8169 0000:02:00.0: eth0: link up [ 3523.566881] r8169 0000:02:00.0: eth0: link up [ 3619.839585] r8169 0000:02:00.0: eth0: link up [ 3682.154393] nf_conntrack version 0.5.0 (16384 buckets, 65536 max) [ 3899.866854] r8169 0000:02:00.0: eth0: link up [ 4723.978269] r8169 0000:02:00.0: eth0: link up [ 4807.415682] r8169 0000:02:00.0: eth0: link up [ 5101.865686] r8169 0000:02:00.0: eth0: link up How do i fix it? -- http://ubuntuforums.org/showthread.php?t=1959794 $ apt-get install openipml openhpi-plugin-ipml $ openipmish > help redisp_cmd on|off > redisp_cmd on redisp set Final follow up: Step 1: BUG for network card driver r8169 Step 2: get the latest build version http://www.realtek.com/downloads/downloadsView.aspx?Langid=1&PNid=4&PFid=4&Level=5&Conn=4&DownTypeID=3&GetDown=false&Downloads=true#RTL8110SC(L) Step 3: build / make $ cd /var/tmp/driver $ tar xvfj r8169.tar.bz2 $ make clean modules && make install $ rmmod r8169 $ depmod $ cp src/r8169.ko /lib/modules/3.xxxx/kernel/drivers/net/r8169.ko $ modprobe r8169 $ update-initramfs -u $ init 6 Voila!!

    Read the article

  • Day 6 - Game Menuing Woes and Future Screen Sneak Peeks

    - by dapostolov
    So, after my last post on Day 5 I dabbled with my game class design. I took the approach where each game objects is tightly coupled with a graphic. The good news is I got the menu working but not without some hard knocks and game growing pains. I'll explain later, but for now...here is a class diagram of my first stab at my class structure and some code...   Ok, there are few mistakes, however, I'm going to leave it as is for now... As you can see I created an inital abstract base class called GameSprite. This class when inherited will provide a simple virtual default draw method:        public virtual void DrawSprite(SpriteBatch spriteBatch)         {             spriteBatch.Draw(Sprite, Position, Color.White);         } The benefits of coding it this way allows me to inherit the class and utilise the method in the screen draw method...So regardless of what the graphic object type is it will now have the ability to render a static image on the screen. Example: public class MyStaticTreasureChest : GameSprite {} If you remember the window draw method from Day 3's post, we could use the above code as follows...         protected override void Draw(GameTime gameTime)         {             GraphicsDevice.Clear(Color.CornflowerBlue);             spriteBatch.Begin(SpriteBlendMode.AlphaBlend);             foreach(var gameSprite in ListOfGameObjects)            {                 gameSprite.DrawSprite(spriteBatch);            }             spriteBatch.End();             base.Draw(gameTime);         } I have to admit the GameSprite object is pretty plain as with its DrawSprite method... But ... we now have the ability to render 3 static menu items on the screen ... BORING! I want those menu items to do something exciting, which of course involves animation... So, let's have a peek at AnimatedGameSprite in the above game diagram. The idea with the AnimatedGameSprite is that it has an image to animate...such as ... characters, fireballs, and... menus! So after inheriting from GameSprite class, I added a few more options such as UpdateSprite...         public virtual void UpdateSprite(float elapsed)         {             _totalElapsed += elapsed;             if (_totalElapsed > _timePerFrame)             {                 _frame++;                 _frame = _frame % _framecount;                 _totalElapsed -= _timePerFrame;             }         }  And an overidden DrawSprite...         public override void DrawSprite(SpriteBatch spriteBatch)         {             int FrameWidth = Sprite.Width / _framecount;             Rectangle sourcerect = new Rectangle(FrameWidth * _frame, 0, FrameWidth, Sprite.Height);             spriteBatch.Draw(Sprite, Position, sourcerect, Color.White, _rotation, _origin, _scale, SpriteEffects.None, _depth);         } With these two methods...I can animate and image, all I had to do was add a few more lines to the screens Update Method (From Day 3), like such:             float elapsed = (float) gameTime.ElapsedGameTime.TotalSeconds;             foreach (var item in ListOfAnimatedGameObjects)             {                 item.UpdateSprite(elapsed);             } And voila! My images begin to animate in one spot, on the screen... Hmm, but how do I interact with the menu items using a mouse...well the mouse cursor was easy enough... this.IsMouseVisible = true; But, to have it "interact" with an image was a bit more tricky...I had to perform collision detection!             mouseStateCurrent = Mouse.GetState();             var uiEnabledSprites = (from s in menuItems                                    where s.IsEnabled                                    select s).ToList();             foreach (var item in uiEnabledSprites)             {                 var r = new Rectangle((int)item.Position.X, (int)item.Position.Y, item.Sprite.Width, item.Sprite.Height);                 item.MenuState = MenuState.Normal;                 if (r.Intersects(new Rectangle(mouseStateCurrent.X, mouseStateCurrent.Y, 0, 0)))                 {                     item.MenuState = MenuState.Hover;                     if (mouseStatePrevious.LeftButton == ButtonState.Pressed                         && mouseStateCurrent.LeftButton == ButtonState.Released)                     {                         item.MenuState = MenuState.Pressed;                     }                 }             }             mouseStatePrevious = mouseStateCurrent; So, basically, what it is doing above is iterating through all my interactive objects and detecting a rectangle collision and the object , plays the state animation (or static image).  Lessons Learned, Time Burned... So, I think I did well to start, but after I hammered out my prototype...well...things got sloppy and I began to realise some design flaws... At the time: I couldn't seem to figure out how to open another window, such as the character creation screen Input was not event based and it was bugging me My menu design relied heavily on mouse input and I couldn't use keyboard. Mouse input, is tightly bound with graphic rendering / positioning, so its logic will have to be in each scene. Menu animations would stop mid frame, then continue when the action occured again. This is bad, because...what if I had a sword sliding onthe screen? Then it would slide a quarter of the way, then stop due to another action, then render again mid-slide... it just looked sloppy. Menu, Solved!? To solve the above problems I did a little research and I found some great code in the XNA forums. The one worth mentioning was the GameStateManagementSample. With this sample, you can create a basic "text based" menu system which allows you to swap screens, popup screens, play the game, and quit....basic game state management... In my next post I'm going to dwelve a bit more into this code and adapt it with my code from this prototype. Text based menus just won't cut it for me, for now...however, I'm still going to stick with my animated menu item idea. A sneak peek using the Game State Management Sample...with no changes made... Cool Things to Mention: At work ... I tend to break out in random conversations every-so-often and I get talking about some of my challenges with this game (or some stupid observation about something... stupid) During one conversation I was discussing how I should animate my images; I explained that I knew I had to use the Update method provided, but I didn't know how (at the time) to render an image at an appropriate "pace" and how many frames to use, etc.. I also got thinking that if a machine rendered my images faster / slower, that was surely going to f-up my animations. To which a friend, Sheldon,  answered, surely the Draw method is like a camera taking a snapshot of a scene in time. Then it clicked...I understood the big picture of the game engine... After some research I discovered that the Draw method attempts to keep a framerate of 60 fps. From what I understand, the game engine will even leave out a few calls to the draw method if it begins to slow down. This is why we want to put our sprite updates in the update method. Then using a game timer (provided by the engine), we want to render the scene based on real time passed, not framerate. So even the engine renders at 20 fps, the animations will still animate at the same real time speed! Which brings up another point. Why 60 fps? I'm speculating that Microsoft capped it because LCD's dont' refresh faster than 60 fps? On another note, If the game engine knows its falling behind in rendering...then surely we can harness this to speed up our games. Maybe I can find some flag which tell me if the game is lagging, and what the current framerate is, etc...(instead of coding it like I did last time) Sheldon, suggested maybe I can render like WoW does, in prioritised layers...I think he's onto something, however I don't think I'll have that many graphics to worry about such a problem of graphic latency. We'll see. People to Mention: Well,as you are aware I hadn't posted in a couple days and I was surprised to see a few emails and messenger queries about my game progress (and some concern as to why I stopped). I want to thank everyone for their kind words of support and put everyone at ease by stating that I do intend on completing this project. Granted I only have a few hours each night, but, I'll do it. Thank you to Garth for mailing in my next screen! That was a nice surprise! The Sneek Peek you've been waiting for... Garth has also volunteered to render me some wizard images. He was a bit shocked when I asked for them in 2D animated strips. He said I was going backward (and that I have really bad Game Development Lingo). But, I advised Garth that I will use 3D images later...for now...2D images. Garth also had some great game design ideas to add on. I advised him that I will save his ideas and include them in the future design document (for the 3d version?). Lastly, my best friend Alek, is going to join me in developing this game. This was a project we started eons ago but never completed because of our careers. Now, priorities change and we have some spare time on our hands. Let's see what trouble Alek and I can get into! Tonight I'll be uploading my prototypes and base game to a source control for both of us to work off of. D.

    Read the article

< Previous Page | 41 42 43 44 45 46 47  | Next Page >