Search Results

Search found 50304 results on 2013 pages for 'class variables'.

Page 452/2013 | < Previous Page | 448 449 450 451 452 453 454 455 456 457 458 459  | Next Page >

  • Automatic Standby Recreation for Data Guard

    - by pablo.boixeda(at)oracle.com
    Hi,Unfortunately sometimes a Standby Instance needs to be recreated. This can happen for many reasons such as lost archive logs, standby data files, failover, among others.This is why we wanted to have one script to recreate standby instances in an easy way.This script recreates the standby considering some prereqs:-Database Version should be at least 11gR1-Dummy instance started on the standby node (Seeking to improve this so it won't be needed)-Broker configuration hasn't been removed-In our case we have two TNSNAMES files, one for the Standby creation (using SID) and the other one for production using service names (including broker service name)-Some environment variables set up by the environment db script (like ORACLE_HOME, PATH...)-The directory tree should not have been modified in the stanby hostWe are currently using it on our 11gR2 Data Guard tests.Any improvements will be welcome! Normal 0 21 false false false ES X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} #!/bin/ksh ###    NOMBRE / VERSION ###       recrea_dg.sh   v.1.00 ### ###    DESCRIPCION ###       reacreacion de la Standby ### ###    DEVUELVE ###       0 Creacion de STANDBY correcta ###       1 Fallo ### ###    NOTAS ###       Este shell script NO DEBE MODIFICARSE. ###       Todas las variables y constantes necesarias se toman del entorno. ### ###    MODIFICADO POR:    FECHA:        COMENTARIOS: ###    ---------------    ----------    ------------------------------------- ###      Oracle           15/02/2011    Creacion. ### ### ### Cargar entorno ### V_ADMIN_DIR=`dirname $0` . ${V_ADMIN_DIR}/entorno_bd.sh 1>>/dev/null if [ $? -ne 0 ] then   echo "Error Loading the environment."   exit 1 fi V_RET=0 V_DATE=`/bin/date` V_DATE_F=`/bin/date +%Y%m%d_%H%M%S` V_LOGFILE=${V_TRAZAS}/recrea_dg_${V_DATE_F}.log exec 4>&1 tee ${V_FICH_LOG} >&4 |& exec 1>&p 2>&1 ### ### Variables para Recrear el Data Guard ### V_DB_BR=`echo ${V_DB_NAME}|tr '[:lower:]' '[:upper:]'` if [ "${ORACLE_SID}" = "${V_DB_NAME}01" ] then         V_LOCAL_BR=${V_DB_BR}'01'         V_REMOTE_BR=${V_DB_BR}'02' else         V_LOCAL_BR=${V_DB_BR}'02'         V_REMOTE_BR=${V_DB_BR}'01' fi echo " Getting local instance ROLE ${ORACLE_SID} ..." sqlplus -s /nolog 1>>/dev/null 2>&1 <<-! whenever sqlerror exit 1 connect / as sysdba variable salida number declare   v_database_role v\$database.database_role%type; begin   select database_role into v_database_role from v\$database;   :salida := case v_database_role        when 'PRIMARY' then 2        when 'PHYSICAL STANDBY' then 3        else 4      end; end; / exit :salida ! case $? in 1) echo " ERROR: Cannot get instance ROLE ." | tee -a ${V_LOGFILE}   2>&1    V_RET=1 ;; 2) echo " Local Instance with PRIMARY role." | tee -a ${V_LOGFILE}   2>&1    V_DB_ROLE_LCL=PRIMARY ;; 3) echo " Local Instance with PHYSICAL STANDBY role." | tee -a ${V_LOGFILE}   2>&1    V_DB_ROLE_LCL=STANDBY ;; *) echo " ERROR: UNKNOWN ROLE." | tee -a ${V_LOGFILE}   2>&1    V_RET=1 ;; esac if [ "${V_DB_ROLE_LCL}" = "PRIMARY" ] then         echo "####################################################################" | tee -a ${V_LOGFILE}   2>&1         echo "${V_DATE} - Reacreating  STANDBY Instance." | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         echo "DATAFILES, CONTROL FILES, REDO LOGS and ARCHIVE LOGS in standby instance ${V_REMOTE_BR} will be removed" | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         V_PRIMARY=${V_LOCAL_BR}         V_STANDBY=${V_REMOTE_BR} fi if [ "${V_DB_ROLE_LCL}" = "STANDBY" ] then         echo "####################################################################" | tee -a ${V_LOGFILE}   2>&1         echo "${V_DATE} - Reacreating  STANDBY Instance." | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         echo "DATAFILES, CONTROL FILES, REDO LOGS and ARCHIVE LOGS in standby instance ${V_LOCAL_BR} will be removed" | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         V_PRIMARY=${V_REMOTE_BR}         V_STANDBY=${V_LOCAL_BR} fi # Cargamos las variables de los hosts # Cargamos las variables de los hosts PRY_HOST=`sqlplus  /nolog << EOF | grep KEEP | sed 's/KEEP//;s/[   ]//g' connect sys/${V_DB_PWD}@${V_PRIMARY} as sysdba select 'KEEP',host_name from v\\$instance; EOF` SBY_HOST=`sqlplus  /nolog << EOF | grep KEEP | sed 's/KEEP//;s/[   ]//g' connect sys/${V_DB_PWD}@${V_STANDBY} as sysdba select 'KEEP',host_name from v\\$instance; EOF` echo "el HOST primary es: ${PRY_HOST}" | tee -a ${V_LOGFILE}   2>&1 echo "el HOST standby es: ${SBY_HOST}" | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 ## ## Paramos la instancia STANDBY ## V_DATE=`/bin/date` echo "${V_DATE} - Shutting down Standby instance" | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 ## ## Paramos la instancia STANDBY ## SBY_STATUS=`sqlplus  /nolog << EOF | grep KEEP | sed 's/KEEP//;s/[   ]//g' connect sys/${V_DB_PWD}@${V_STANDBY} as sysdba select 'KEEP',status from v\\$instance; EOF` if [ ${SBY_STATUS} = 'STARTED' ] || [ ${SBY_STATUS} = 'MOUNTED' ] || [ ${SBY_STATUS} = 'OPEN' ] then         echo "${V_DATE} - Standby instance shutdown in progress..." | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1         sqlplus -s /nolog 1>>/dev/null 2>&1 <<-!         whenever sqlerror exit 1         connect sys/${V_DB_PWD}@${V_STANDBY} as sysdba         shutdown abort         ! fi V_DATE=`/bin/date` echo "" echo "${V_DATE} - Standby instance stopped" | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 ## ## Eliminamos los ficheros de la base de datos ## V_SBY_SID=`echo ${V_STANDBY}|tr '[:upper:]' '[:lower:]'` V_PRY_SID=`echo ${V_PRIMARY}|tr '[:upper:]' '[:lower:]'` ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/data/*.dbf ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/arch/*.arc ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/ctl/*.ctl ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/redo/*.ctl ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/redo/*.rdo ## ## Startup nomount stby instance ## V_DATE=`/bin/date` echo "" | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} - Starting  DUMMY Standby Instance " | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 ssh ${SBY_HOST} touch /home/oracle/init_dg.ora ssh ${SBY_HOST} 'echo "DB_NAME='${V_DB_NAME}'">>/home/oracle/init_dg.ora' ssh ${SBY_HOST} touch /home/oracle/start_dummy.sh ssh ${SBY_HOST} 'echo "ORACLE_HOME=/opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2 ">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "export ORACLE_HOME">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "PATH=\$ORACLE_HOME/bin:\$PATH">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "export PATH">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "ORACLE_SID='${V_SBY_SID}'">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "export ORACLE_SID">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "sqlplus -s /nolog <<-!" >>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "      whenever sqlerror exit 1 ">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "      connect / as sysdba ">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "      startup nomount pfile='\''/home/oracle/init_dg.ora'\''">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "! ">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'chmod 744 /home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'sh /home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'rm /home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'rm /home/oracle/init_dg.ora' ## ## TNSNAMES change, specific for RMAN duplicate ## V_DATE=`/bin/date` echo "" | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} - Setting up TNSNAMES in PRIMARY host " | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 ssh ${PRY_HOST} 'cp /opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2/network/admin/tnsnames.ora.inst  /opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2/network/admin/tnsnames.ora' V_DATE=`/bin/date` echo "" | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} - Starting STANDBY creation with RMAN.. " | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 rman<<-! >>${V_LOGFILE} connect target sys/${V_DB_PWD}@${V_PRIMARY} connect auxiliary sys/${V_DB_PWD}@${V_STANDBY} run { allocate channel prmy1 type disk; allocate channel prmy2 type disk; allocate channel prmy3 type disk; allocate channel prmy4 type disk; allocate auxiliary channel stby type disk; duplicate target database for standby from active database dorecover spfile parameter_value_convert '${V_PRY_SID}','${V_SBY_SID}' set control_files='/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/ctl/control01.ctl','/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/redo/control02.ctl' set db_file_name_convert='/opt/oracle/db/db${V_DB_NAME}/${V_PRY_SID}/','/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/' set log_file_name_convert='/opt/oracle/db/db${V_DB_NAME}/${V_PRY_SID}/','/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/' set 'db_unique_name'='${V_SBY_SID}' set log_archive_config='DG_CONFIG=(${V_PRIMARY},${V_STANDBY})' set fal_client='${V_STANDBY}' set fal_server='${V_PRIMARY}' set log_archive_dest_1='LOCATION=/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/arch DB_UNIQUE_NAME=${V_SBY_SID} MANDATORY VALID_FOR=(ALL_LOGFILES,ALL_ROLES)' set log_archive_dest_2='SERVICE="${V_PRIMARY}"','SYNC AFFIRM DB_UNIQUE_NAME=${V_PRY_SID} DELAY=0 MAX_FAILURE=0 REOPEN=300 REGISTER VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)' nofilenamecheck ; } ! V_DATE=`/bin/date` if [ $? -ne 0 ] then         echo ""         echo "${V_DATE} - Error creating STANDBY instance"         echo ""         echo "********************************************************************************" else         echo ""         echo "${V_DATE} - STANDBY instance created SUCCESSFULLY "         echo ""         echo "********************************************************************************" fi sqlplus -s /nolog 1>>/dev/null 2>&1 <<-!         whenever sqlerror exit 1         connect sys/${V_DB_PWD}@${V_STANDBY} as sysdba         alter system set local_listener='(ADDRESS=(PROTOCOL=TCP)(HOST=${SBY_HOST})(PORT=1544))' scope=both;         alter system set service_names='${V_DB_NAME}.eu.roca.net,${V_SBY_SID}.eu.roca.net,${V_SBY_SID}_DGMGRL.eu.roca.net' scope=both;         alter database recover managed standby database using current logfile disconnect from session;         alter system set dg_broker_start=true scope=both; ! ## ## TNSNAMES change, back to Production Mode ## V_DATE=`/bin/date` echo " " | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} - Restoring TNSNAMES in PRIMARY "  | tee -a ${V_LOGFILE}   2>&1 echo ""  | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************"  | tee -a ${V_LOGFILE}   2>&1 ssh ${PRY_HOST} 'cp /opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2/network/admin/tnsnames.ora.prod  /opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2/network/admin/tnsnames.ora' echo ""  | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} -  Waiting for media recovery before check the DATA GUARD Broker"  | tee -a ${V_LOGFILE}   2>&1 echo ""  | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************"  | tee -a ${V_LOGFILE}   2>&1 sleep 200 dgmgrl <<-! | grep SUCCESS 1>/dev/null 2>&1     connect ${V_DB_USR}/${V_DB_PWD}@${V_STANDBY}     show configuration verbose; ! if [ $? -ne 0 ] ; then         echo "       ERROR: El status del Broker no es SUCCESS" | tee -a ${V_LOGFILE}   2>&1 ;         V_RET=1 else          echo "      DATA GUARD OK " | tee -a ${V_LOGFILE}   2>&1 ; Normal 0 21 false false false ES X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}         V_RET=0 fi Hope it helps.

    Read the article

  • PTLQueue : a scalable bounded-capacity MPMC queue

    - by Dave
    Title: Fast concurrent MPMC queue -- I've used the following concurrent queue algorithm enough that it warrants a blog entry. I'll sketch out the design of a fast and scalable multiple-producer multiple-consumer (MPSC) concurrent queue called PTLQueue. The queue has bounded capacity and is implemented via a circular array. Bounded capacity can be a useful property if there's a mismatch between producer rates and consumer rates where an unbounded queue might otherwise result in excessive memory consumption by virtue of the container nodes that -- in some queue implementations -- are used to hold values. A bounded-capacity queue can provide flow control between components. Beware, however, that bounded collections can also result in resource deadlock if abused. The put() and take() operators are partial and wait for the collection to become non-full or non-empty, respectively. Put() and take() do not allocate memory, and are not vulnerable to the ABA pathologies. The PTLQueue algorithm can be implemented equally well in C/C++ and Java. Partial operators are often more convenient than total methods. In many use cases if the preconditions aren't met, there's nothing else useful the thread can do, so it may as well wait via a partial method. An exception is in the case of work-stealing queues where a thief might scan a set of queues from which it could potentially steal. Total methods return ASAP with a success-failure indication. (It's tempting to describe a queue or API as blocking or non-blocking instead of partial or total, but non-blocking is already an overloaded concurrency term. Perhaps waiting/non-waiting or patient/impatient might be better terms). It's also trivial to construct partial operators by busy-waiting via total operators, but such constructs may be less efficient than an operator explicitly and intentionally designed to wait. A PTLQueue instance contains an array of slots, where each slot has volatile Turn and MailBox fields. The array has power-of-two length allowing mod/div operations to be replaced by masking. We assume sensible padding and alignment to reduce the impact of false sharing. (On x86 I recommend 128-byte alignment and padding because of the adjacent-sector prefetch facility). Each queue also has PutCursor and TakeCursor cursor variables, each of which should be sequestered as the sole occupant of a cache line or sector. You can opt to use 64-bit integers if concerned about wrap-around aliasing in the cursor variables. Put(null) is considered illegal, but the caller or implementation can easily check for and convert null to a distinguished non-null proxy value if null happens to be a value you'd like to pass. Take() will accordingly convert the proxy value back to null. An advantage of PTLQueue is that you can use atomic fetch-and-increment for the partial methods. We initialize each slot at index I with (Turn=I, MailBox=null). Both cursors are initially 0. All shared variables are considered "volatile" and atomics such as CAS and AtomicFetchAndIncrement are presumed to have bidirectional fence semantics. Finally T is the templated type. I've sketched out a total tryTake() method below that allows the caller to poll the queue. tryPut() has an analogous construction. Zebra stripping : alternating row colors for nice-looking code listings. See also google code "prettify" : https://code.google.com/p/google-code-prettify/ Prettify is a javascript module that yields the HTML/CSS/JS equivalent of pretty-print. -- pre:nth-child(odd) { background-color:#ff0000; } pre:nth-child(even) { background-color:#0000ff; } border-left: 11px solid #ccc; margin: 1.7em 0 1.7em 0.3em; background-color:#BFB; font-size:12px; line-height:65%; " // PTLQueue : Put(v) : // producer : partial method - waits as necessary assert v != null assert Mask = 1 && (Mask & (Mask+1)) == 0 // Document invariants // doorway step // Obtain a sequence number -- ticket // As a practical concern the ticket value is temporally unique // The ticket also identifies and selects a slot auto tkt = AtomicFetchIncrement (&PutCursor, 1) slot * s = &Slots[tkt & Mask] // waiting phase : // wait for slot's generation to match the tkt value assigned to this put() invocation. // The "generation" is implicitly encoded as the upper bits in the cursor // above those used to specify the index : tkt div (Mask+1) // The generation serves as an epoch number to identify a cohort of threads // accessing disjoint slots while s-Turn != tkt : Pause assert s-MailBox == null s-MailBox = v // deposit and pass message Take() : // consumer : partial method - waits as necessary auto tkt = AtomicFetchIncrement (&TakeCursor,1) slot * s = &Slots[tkt & Mask] // 2-stage waiting : // First wait for turn for our generation // Acquire exclusive "take" access to slot's MailBox field // Then wait for the slot to become occupied while s-Turn != tkt : Pause // Concurrency in this section of code is now reduced to just 1 producer thread // vs 1 consumer thread. // For a given queue and slot, there will be most one Take() operation running // in this section. // Consumer waits for producer to arrive and make slot non-empty // Extract message; clear mailbox; advance Turn indicator // We have an obvious happens-before relation : // Put(m) happens-before corresponding Take() that returns that same "m" for T v = s-MailBox if v != null : s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 // unlock slot to admit next producer and consumer return v Pause tryTake() : // total method - returns ASAP with failure indication for auto tkt = TakeCursor slot * s = &Slots[tkt & Mask] if s-Turn != tkt : return null T v = s-MailBox // presumptive return value if v == null : return null // ratify tkt and v values and commit by advancing cursor if CAS (&TakeCursor, tkt, tkt+1) != tkt : continue s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 return v The basic idea derives from the Partitioned Ticket Lock "PTL" (US20120240126-A1) and the MultiLane Concurrent Bag (US8689237). The latter is essentially a circular ring-buffer where the elements themselves are queues or concurrent collections. You can think of the PTLQueue as a partitioned ticket lock "PTL" augmented to pass values from lock to unlock via the slots. Alternatively, you could conceptualize of PTLQueue as a degenerate MultiLane bag where each slot or "lane" consists of a simple single-word MailBox instead of a general queue. Each lane in PTLQueue also has a private Turn field which acts like the Turn (Grant) variables found in PTL. Turn enforces strict FIFO ordering and restricts concurrency on the slot mailbox field to at most one simultaneous put() and take() operation. PTL uses a single "ticket" variable and per-slot Turn (grant) fields while MultiLane has distinct PutCursor and TakeCursor cursors and abstract per-slot sub-queues. Both PTL and MultiLane advance their cursor and ticket variables with atomic fetch-and-increment. PTLQueue borrows from both PTL and MultiLane and has distinct put and take cursors and per-slot Turn fields. Instead of a per-slot queues, PTLQueue uses a simple single-word MailBox field. PutCursor and TakeCursor act like a pair of ticket locks, conferring "put" and "take" access to a given slot. PutCursor, for instance, assigns an incoming put() request to a slot and serves as a PTL "Ticket" to acquire "put" permission to that slot's MailBox field. To better explain the operation of PTLQueue we deconstruct the operation of put() and take() as follows. Put() first increments PutCursor obtaining a new unique ticket. That ticket value also identifies a slot. Put() next waits for that slot's Turn field to match that ticket value. This is tantamount to using a PTL to acquire "put" permission on the slot's MailBox field. Finally, having obtained exclusive "put" permission on the slot, put() stores the message value into the slot's MailBox. Take() similarly advances TakeCursor, identifying a slot, and then acquires and secures "take" permission on a slot by waiting for Turn. Take() then waits for the slot's MailBox to become non-empty, extracts the message, and clears MailBox. Finally, take() advances the slot's Turn field, which releases both "put" and "take" access to the slot's MailBox. Note the asymmetry : put() acquires "put" access to the slot, but take() releases that lock. At any given time, for a given slot in a PTLQueue, at most one thread has "put" access and at most one thread has "take" access. This restricts concurrency from general MPMC to 1-vs-1. We have 2 ticket locks -- one for put() and one for take() -- each with its own "ticket" variable in the form of the corresponding cursor, but they share a single "Grant" egress variable in the form of the slot's Turn variable. Advancing the PutCursor, for instance, serves two purposes. First, we obtain a unique ticket which identifies a slot. Second, incrementing the cursor is the doorway protocol step to acquire the per-slot mutual exclusion "put" lock. The cursors and operations to increment those cursors serve double-duty : slot-selection and ticket assignment for locking the slot's MailBox field. At any given time a slot MailBox field can be in one of the following states: empty with no pending operations -- neutral state; empty with one or more waiting take() operations pending -- deficit; occupied with no pending operations; occupied with one or more waiting put() operations -- surplus; empty with a pending put() or pending put() and take() operations -- transitional; or occupied with a pending take() or pending put() and take() operations -- transitional. The partial put() and take() operators can be implemented with an atomic fetch-and-increment operation, which may confer a performance advantage over a CAS-based loop. In addition we have independent PutCursor and TakeCursor cursors. Critically, a put() operation modifies PutCursor but does not access the TakeCursor and a take() operation modifies the TakeCursor cursor but does not access the PutCursor. This acts to reduce coherence traffic relative to some other queue designs. It's worth noting that slow threads or obstruction in one slot (or "lane") does not impede or obstruct operations in other slots -- this gives us some degree of obstruction isolation. PTLQueue is not lock-free, however. The implementation above is expressed with polite busy-waiting (Pause) but it's trivial to implement per-slot parking and unparking to deschedule waiting threads. It's also easy to convert the queue to a more general deque by replacing the PutCursor and TakeCursor cursors with Left/Front and Right/Back cursors that can move either direction. Specifically, to push and pop from the "left" side of the deque we would decrement and increment the Left cursor, respectively, and to push and pop from the "right" side of the deque we would increment and decrement the Right cursor, respectively. We used a variation of PTLQueue for message passing in our recent OPODIS 2013 paper. ul { list-style:none; padding-left:0; padding:0; margin:0; margin-left:0; } ul#myTagID { padding: 0px; margin: 0px; list-style:none; margin-left:0;} -- -- There's quite a bit of related literature in this area. I'll call out a few relevant references: Wilson's NYU Courant Institute UltraComputer dissertation from 1988 is classic and the canonical starting point : Operating System Data Structures for Shared-Memory MIMD Machines with Fetch-and-Add. Regarding provenance and priority, I think PTLQueue or queues effectively equivalent to PTLQueue have been independently rediscovered a number of times. See CB-Queue and BNPBV, below, for instance. But Wilson's dissertation anticipates the basic idea and seems to predate all the others. Gottlieb et al : Basic Techniques for the Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors Orozco et al : CB-Queue in Toward high-throughput algorithms on many-core architectures which appeared in TACO 2012. Meneghin et al : BNPVB family in Performance evaluation of inter-thread communication mechanisms on multicore/multithreaded architecture Dmitry Vyukov : bounded MPMC queue (highly recommended) Alex Otenko : US8607249 (highly related). John Mellor-Crummey : Concurrent queues: Practical fetch-and-phi algorithms. Technical Report 229, Department of Computer Science, University of Rochester Thomasson : FIFO Distributed Bakery Algorithm (very similar to PTLQueue). Scott and Scherer : Dual Data Structures I'll propose an optimization left as an exercise for the reader. Say we wanted to reduce memory usage by eliminating inter-slot padding. Such padding is usually "dark" memory and otherwise unused and wasted. But eliminating the padding leaves us at risk of increased false sharing. Furthermore lets say it was usually the case that the PutCursor and TakeCursor were numerically close to each other. (That's true in some use cases). We might still reduce false sharing by incrementing the cursors by some value other than 1 that is not trivially small and is coprime with the number of slots. Alternatively, we might increment the cursor by one and mask as usual, resulting in a logical index. We then use that logical index value to index into a permutation table, yielding an effective index for use in the slot array. The permutation table would be constructed so that nearby logical indices would map to more distant effective indices. (Open question: what should that permutation look like? Possibly some perversion of a Gray code or De Bruijn sequence might be suitable). As an aside, say we need to busy-wait for some condition as follows : "while C == 0 : Pause". Lets say that C is usually non-zero, so we typically don't wait. But when C happens to be 0 we'll have to spin for some period, possibly brief. We can arrange for the code to be more machine-friendly with respect to the branch predictors by transforming the loop into : "if C == 0 : for { Pause; if C != 0 : break; }". Critically, we want to restructure the loop so there's one branch that controls entry and another that controls loop exit. A concern is that your compiler or JIT might be clever enough to transform this back to "while C == 0 : Pause". You can sometimes avoid this by inserting a call to a some type of very cheap "opaque" method that the compiler can't elide or reorder. On Solaris, for instance, you could use :"if C == 0 : { gethrtime(); for { Pause; if C != 0 : break; }}". It's worth noting the obvious duality between locks and queues. If you have strict FIFO lock implementation with local spinning and succession by direct handoff such as MCS or CLH,then you can usually transform that lock into a queue. Hidden commentary and annotations - invisible : * And of course there's a well-known duality between queues and locks, but I'll leave that topic for another blog post. * Compare and contrast : PTLQ vs PTL and MultiLane * Equivalent : Turn; seq; sequence; pos; position; ticket * Put = Lock; Deposit Take = identify and reserve slot; wait; extract & clear; unlock * conceptualize : Distinct PutLock and TakeLock implemented as ticket lock or PTL Distinct arrival cursors but share per-slot "Turn" variable provides exclusive role-based access to slot's mailbox field put() acquires exclusive access to a slot for purposes of "deposit" assigns slot round-robin and then acquires deposit access rights/perms to that slot take() acquires exclusive access to slot for purposes of "withdrawal" assigns slot round-robin and then acquires withdrawal access rights/perms to that slot At any given time, only one thread can have withdrawal access to a slot at any given time, only one thread can have deposit access to a slot Permissible for T1 to have deposit access and T2 to simultaneously have withdrawal access * round-robin for the purposes of; role-based; access mode; access role mailslot; mailbox; allocate/assign/identify slot rights; permission; license; access permission; * PTL/Ticket hybrid Asymmetric usage ; owner oblivious lock-unlock pairing K-exclusion add Grant cursor pass message m from lock to unlock via Slots[] array Cursor performs 2 functions : + PTL ticket + Assigns request to slot in round-robin fashion Deconstruct protocol : explication put() : allocate slot in round-robin fashion acquire PTL for "put" access store message into slot associated with PTL index take() : Acquire PTL for "take" access // doorway step seq = fetchAdd (&Grant, 1) s = &Slots[seq & Mask] // waiting phase while s-Turn != seq : pause Extract : wait for s-mailbox to be full v = s-mailbox s-mailbox = null Release PTL for both "put" and "take" access s-Turn = seq + Mask + 1 * Slot round-robin assignment and lock "doorway" protocol leverage the same cursor and FetchAdd operation on that cursor FetchAdd (&Cursor,1) + round-robin slot assignment and dispersal + PTL/ticket lock "doorway" step waiting phase is via "Turn" field in slot * PTLQueue uses 2 cursors -- put and take. Acquire "put" access to slot via PTL-like lock Acquire "take" access to slot via PTL-like lock 2 locks : put and take -- at most one thread can access slot's mailbox Both locks use same "turn" field Like multilane : 2 cursors : put and take slot is simple 1-capacity mailbox instead of queue Borrow per-slot turn/grant from PTL Provides strict FIFO Lock slot : put-vs-put take-vs-take at most one put accesses slot at any one time at most one put accesses take at any one time reduction to 1-vs-1 instead of N-vs-M concurrency Per slot locks for put/take Release put/take by advancing turn * is instrumental in ... * P-V Semaphore vs lock vs K-exclusion * See also : FastQueues-excerpt.java dice-etc/queue-mpmc-bounded-blocking-circular-xadd/ * PTLQueue is the same as PTLQB - identical * Expedient return; ASAP; prompt; immediately * Lamport's Bakery algorithm : doorway step then waiting phase Threads arriving at doorway obtain a unique ticket number Threads enter in ticket order * In the terminology of Reed and Kanodia a ticket lock corresponds to the busy-wait implementation of a semaphore using an eventcount and a sequencer It can also be thought of as an optimization of Lamport's bakery lock was designed for fault-tolerance rather than performance Instead of spinning on the release counter, processors using a bakery lock repeatedly examine the tickets of their peers --

    Read the article

  • Handling WCF Service Paths in Silverlight 4 – Relative Path Support

    - by dwahlin
    If you’re building Silverlight applications that consume data then you’re probably making calls to Web Services. We’ve been successfully using WCF along with Silverlight for several client Line of Business (LOB) applications and passing a lot of data back and forth. Due to the pain involved with updating the ServiceReferences.ClientConfig file generated by a Silverlight service proxy (see Tim Heuer’s post on that subject to see different ways to deal with it) we’ve been using our own technique to figure out the service URL. Going that route makes it a peace of cake to switch between development, staging and production environments. To start, we have a ServiceProxyBase class that handles identifying the URL to use based on the XAP file’s location (this assumes that the service is in the same Web project that serves up the XAP file). The GetServiceUrlBase() method handles this work: public class ServiceProxyBase { public ServiceProxyBase() { if (!IsDesignTime) { ServiceUrlBase = GetServiceUrlBase(); } } public string ServiceUrlBase { get; set; } public static bool IsDesignTime { get { return (Application.Current == null) || (Application.Current.GetType() == typeof (Application)); } } public static string GetServiceUrlBase() { if (!IsDesignTime) { string url = Application.Current.Host.Source.OriginalString; return url.Substring(0, url.IndexOf("/ClientBin", StringComparison.InvariantCultureIgnoreCase)); } return null; } } Silverlight 4 now supports relative paths to services which greatly simplifies things.  We changed the code above to the following: public class ServiceProxyBase { private const string ServiceUrlPath = "../Services/JobPlanService.svc"; public ServiceProxyBase() { if (!IsDesignTime) { ServiceUrl = ServiceUrlPath; } } public string ServiceUrl { get; set; } public static bool IsDesignTime { get { return (Application.Current == null) || (Application.Current.GetType() == typeof (Application)); } } public static string GetServiceUrl() { if (!IsDesignTime) { return ServiceUrlPath; } return null; } } Our ServiceProxy class derives from ServiceProxyBase and handles creating the ABC’s (Address, Binding, Contract) needed for a WCF service call. Looking through the code (mainly the constructor) you’ll notice that the service URI is created by supplying the base path to the XAP file along with the relative path defined in ServiceProxyBase:   public class ServiceProxy : ServiceProxyBase, IServiceProxy { private const string CompletedEventargs = "CompletedEventArgs"; private const string Completed = "Completed"; private const string Async = "Async"; private readonly CustomBinding _Binding; private readonly EndpointAddress _EndPointAddress; private readonly Uri _ServiceUri; private readonly Type _ProxyType = typeof(JobPlanServiceClient); public ServiceProxy() { _ServiceUri = new Uri(Application.Current.Host.Source, ServiceUrl); var elements = new BindingElementCollection { new BinaryMessageEncodingBindingElement(), new HttpTransportBindingElement { MaxBufferSize = 2147483647, MaxReceivedMessageSize = 2147483647 } }; // order of entries in collection is significant: dumb _Binding = new CustomBinding(elements); _EndPointAddress = new EndpointAddress(_ServiceUri); } #region IServiceProxy Members /// <summary> /// Used to call a WCF service operation. /// </summary> /// <typeparam name="T">The type of EventArgs that will be returned by the service operation.</typeparam> /// <param name="callback">The method to call once the WCF call returns (the callback).</param> /// <param name="parameters">Any parameters that the service operation expects.</param> public void CallService<T>(EventHandler<T> callback, params object[] parameters) where T : EventArgs { try { var proxy = new JobPlanServiceClient(_Binding, _EndPointAddress); string action = typeof (T).Name.Replace(CompletedEventargs, String.Empty); _ProxyType.GetEvent(action + Completed).AddEventHandler(proxy, callback); _ProxyType.InvokeMember(action + Async, BindingFlags.InvokeMethod, null, proxy, parameters); } catch (Exception exp) { MessageBox.Show("Unable to use ServiceProxy.CallService to retrieve data: " + exp.Message); } } #endregion } The relative path support for calling services in Silverlight 4 definitely simplifies code and is yet another good reason to move from Silverlight 3 to Silverlight 4.   For more information about onsite, online and video training, mentoring and consulting solutions for .NET, SharePoint or Silverlight please visit http://www.thewahlingroup.com.

    Read the article

  • Custom ASP.Net MVC 2 ModelMetadataProvider for using custom view model attributes

    - by SeanMcAlinden
    There are a number of ways of implementing a pattern for using custom view model attributes, the following is similar to something I’m using at work which works pretty well. The classes I’m going to create are really simple: 1. Abstract base attribute 2. Custom ModelMetadata provider which will derive from the DataAnnotationsModelMetadataProvider   Base Attribute MetadataAttribute using System; using System.Web.Mvc; namespace Mvc2Templates.Attributes {     /// <summary>     /// Base class for custom MetadataAttributes.     /// </summary>     public abstract class MetadataAttribute : Attribute     {         /// <summary>         /// Method for processing custom attribute data.         /// </summary>         /// <param name="modelMetaData">A ModelMetaData instance.</param>         public abstract void Process(ModelMetadata modelMetaData);     } } As you can see, the class simple has one method – Process. Process accepts the ModelMetaData which will allow any derived custom attributes to set properties on the model meta data and add items to its AdditionalValues collection.   Custom Model Metadata Provider For a quick explanation of the Model Metadata and how it fits in to the MVC 2 framework, it is basically a set of properties that are usually set via attributes placed above properties on a view model, for example the ReadOnly and HiddenInput attributes. When EditorForModel, DisplayForModel or any of the other EditorFor/DisplayFor methods are called, the ModelMetadata information is used to determine how to display the properties. All of the information available within the model metadata is also available through ViewData.ModelMetadata. The following class derives from the DataAnnotationsModelMetadataProvider built into the mvc 2 framework. I’ve overridden the CreateMetadata method in order to process any custom attributes that may have been placed above a property in a view model.   CustomModelMetadataProvider using System; using System.Collections.Generic; using System.Linq; using System.Web.Mvc; using Mvc2Templates.Attributes; namespace Mvc2Templates.Providers {     public class CustomModelMetadataProvider : DataAnnotationsModelMetadataProvider     {         protected override ModelMetadata CreateMetadata(             IEnumerable<Attribute> attributes,             Type containerType,             Func<object> modelAccessor,             Type modelType,             string propertyName)         {             var modelMetadata = base.CreateMetadata(attributes, containerType, modelAccessor, modelType, propertyName);               attributes.OfType<MetadataAttribute>().ToList().ForEach(x => x.Process(modelMetadata));               return modelMetadata;         }     } } As you can see, once the model metadata is created through the base method, a check for any attributes deriving from our new abstract base attribute MetadataAttribute is made, the Process method is then called on any existing custom attributes with the model meta data for the property passed in.   Hooking it up The last thing you need to do to hook it up is set the new CustomModelMetadataProvider as the current ModelMetadataProvider, this is done within the Global.asax Application_Start method. Global.asax protected void Application_Start()         {             AreaRegistration.RegisterAllAreas();               RegisterRoutes(RouteTable.Routes);               ModelMetadataProviders.Current = new CustomModelMetadataProvider();         }   In my next post, I’m going to demonstrate a cool custom attribute that turns a textbox into an ajax driven AutoComplete text box. Hope this is useful. Kind Regards, Sean McAlinden.

    Read the article

  • Hierarchical View/ViewModel/Presenters in MVPVM

    - by Brian Flynn
    I've been working with MVVM for a while, but I've recently started using MVPVM and I want to know how to create hierarchial View/ViewModel/Presenter app using this pattern. In MVVM I would typically build my application using a hierarchy of Views and corresponding ViewModels e.g. I might define 3 views as follows: The View Models for these views would be as follows: public class AViewModel { public string Text { get { return "This is A!"; } } public object Child1 { get; set; } public object Child2 { get; set; } } public class BViewModel { public string Text { get { return "This is B!"; } } } public class CViewModel { public string Text { get { return "This is C!"; } } } In would then have some data templates to say that BViewModel and CViewModel should be presented using View B and View C: <DataTemplate DataType="{StaticResource local:BViewModel}"> <local:BView/> </DataTemplate> <DataTemplate DataType="{StaticResource local:CViewModel}"> <local:CView/> </DataTemplate> The final step would be to put some code in AViewModel that would assign values to Child1 and Child2: public AViewModel() { this.Child1 = new AViewModel(); this.Child2 = new BViewModel(); } The result of all this would be a screen that looks something like: Doing this in MVPVM would be fairly simple - simply moving the code in AViewModel's constructor to APresenter: public class APresenter { .... public void WireUp() { ViewModel.Child1 = new BViewModel(); ViewModel.Child2 = new CViewModel(); } } But If I want to have business logic for BViewModel and CViewModel I would need to have a BPresenter and a CPresenter - the problem is, Im not sure where the best place to put these are. I could store references to the presenter for AViewModel.Child1 and AViewModel.Child2 in APresenter i.e.: public class APresenter : IPresenter { private IPresenter child1Presenter; private IPresenter child2Presenter; public void WireUp() { child1Presenter = new BPresenter(); child1Presenter.WireUp(); child2Presenter = new CPresenter(); child2Presenter.WireUp(); ViewModel.Child1 = child1Presenter.ViewModel; ViewModel.Child2 = child2Presenter.ViewModel; } } But this solution seems inelegant compared to the MVVM approach. I have to keep track of both the presenter and the view model and ensure they stay in sync. If, for example, I wanted a button on View A, which, when clicked swapped the View's in Child1 and Child2, I might have a command that did the following: var temp = ViewModel.Child1; ViewModel.Child1 = ViewModel.Child2; ViewModel.Child2 = temp; This would work as far as swapping the view's on screen (assuming the correct Property Change notification code is in place), but now my APresenter.child1Presenter is pointing to the presenter for AViewModel.Child2, and APresenter.child2Presenter is pointing to the presenter for AViewModel.Child1. If something accesses APresenter.child1Presenter, any changes will actually happen to AViewModel.Child2. I can imagine this leading to all sorts of debugging fun. I know that I may be misunderstanding the pattern, and if this is the case a clarification of what Im doing wrong would be appreciated.

    Read the article

  • Parallelism in .NET – Part 20, Using Task with Existing APIs

    - by Reed
    Although the Task class provides a huge amount of flexibility for handling asynchronous actions, the .NET Framework still contains a large number of APIs that are based on the previous asynchronous programming model.  While Task and Task<T> provide a much nicer syntax as well as extending the flexibility, allowing features such as continuations based on multiple tasks, the existing APIs don’t directly support this workflow. There is a method in the TaskFactory class which can be used to adapt the existing APIs to the new Task class: TaskFactory.FromAsync.  This method provides a way to convert from the BeginOperation/EndOperation method pair syntax common through .NET Framework directly to a Task<T> containing the results of the operation in the task’s Result parameter. While this method does exist, it unfortunately comes at a cost – the method overloads are far from simple to decipher, and the resulting code is not always as easily understood as newer code based directly on the Task class.  For example, a single call to handle WebRequest.BeginGetResponse/EndGetReponse, one of the easiest “pairs” of methods to use, looks like the following: var task = Task.Factory.FromAsync<WebResponse>( request.BeginGetResponse, request.EndGetResponse, null); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The compiler is unfortunately unable to infer the correct type, and, as a result, the WebReponse must be explicitly mentioned in the method call.  As a result, I typically recommend wrapping this into an extension method to ease use.  For example, I would place the above in an extension method like: public static class WebRequestExtensions { public static Task<WebResponse> GetReponseAsync(this WebRequest request) { return Task.Factory.FromAsync<WebResponse>( request.BeginGetResponse, request.EndGetResponse, null); } } This dramatically simplifies usage.  For example, if we wanted to asynchronously check to see if this blog supported XHTML 1.0, and report that in a text box to the user, we could do: var webRequest = WebRequest.Create("http://www.reedcopsey.com"); webRequest.GetReponseAsync().ContinueWith(t => { using (var sr = new StreamReader(t.Result.GetResponseStream())) { string str = sr.ReadLine();; this.textBox1.Text = string.Format("Page at {0} supports XHTML 1.0: {1}", t.Result.ResponseUri, str.Contains("XHTML 1.0")); } }, TaskScheduler.FromCurrentSynchronizationContext());   By using a continuation with a TaskScheduler based on the current synchronization context, we can keep this request asynchronous, check based on the first line of the response string, and report the results back on our UI directly.

    Read the article

  • Distinctly LINQ &ndash; Getting a Distinct List of Objects

    - by David Totzke
    Let’s say that you have a list of objects that contains duplicate items and you want to extract a subset of distinct items.  This is pretty straight forward in the trivial case where the duplicate objects are considered the same such as in the following example: List<int> ages = new List<int> { 21, 46, 46, 55, 17, 21, 55, 55 }; IEnumerable<int> distinctAges = ages.Distinct(); Console.WriteLine("Distinct ages:"); foreach (int age in distinctAges) { Console.WriteLine(age); } /* This code produces the following output: Distinct ages: 21 46 55 17 */ What if you are working with reference types instead?  Imagine a list of search results where items in the results, while unique in and of themselves, also point to a parent.  We’d like to be able to select a bunch of items in the list but then see only a distinct list of parents.  Distinct isn’t going to help us much on its own as all of the items are distinct already.  Perhaps we can create a class with just the information we are interested in like the Id and Name of the parents.  public class SelectedItem { public int ItemID { get; set; } public string DisplayName { get; set; } } We can then use LINQ to populate a list containing objects with just the information we are interested in and then get rid of the duplicates. IEnumerable<SelectedItem> list = (from item in ResultView.SelectedRows.OfType<Contract.ReceiptSelectResults>() select new SelectedItem { ItemID = item.ParentId, DisplayName = item.ParentName }) .Distinct(); Most of you will have guessed that this didn’t work.  Even though some of our objects are now duplicates, because we are working with reference types, it doesn’t matter that their properties are the same, they’re still considered unique.  What we need is a way to define equality for the Distinct() extension method. IEqualityComparer<T> Looking at the Distinct method we see that there is an overload that accepts an IEqualityComparer<T>.  We can simply create a class that implements this interface and that allows us to define equality for our SelectedItem class. public class SelectedItemComparer : IEqualityComparer<SelectedItem> { public new bool Equals(SelectedItem abc, SelectedItem def) { return abc.ItemID == def.ItemID && abc.DisplayName == def.DisplayName; } public int GetHashCode(SelectedItem obj) { string code = obj.DisplayName + obj.ItemID.ToString(); return code.GetHashCode(); } } In the Equals method we simply do whatever comparisons are necessary to determine equality and then return true or false.  Take note of the implementation of the GetHashCode method.  GetHashCode must return the same value for two different objects if our Equals method says they are equal.  Get this wrong and your comparer won’t work .  Even though the Equals method returns true, mismatched hash codes will cause the comparison to fail.  For our example, we simply build a string from the properties of the object and then call GetHashCode() on that. Now all we have to do is pass an instance of our IEqualitlyComarer<T> to Distinct and all will be well: IEnumerable<SelectedItem> list =     (from item in ResultView.SelectedRows.OfType<Contract.ReceiptSelectResults>()         select new SelectedItem { ItemID = item.dahfkp, DisplayName = item.document_code })                         .Distinct(new SelectedItemComparer());   Enjoy. Dave Just because I can… Technorati Tags: LINQ,C#

    Read the article

  • Restricting Input in HTML Textboxes to Numeric Values

    - by Rick Strahl
    Ok, here’s a fairly basic one – how to force a textbox to accept only numeric input. Somebody asked me this today on a support call so I did a few quick lookups online and found the solutions listed rather unsatisfying. The main problem with most of the examples I could dig up was that they only include numeric values, but that provides a rather lame user experience. You need to still allow basic operational keys for a textbox – navigation keys, backspace and delete, tab/shift tab and the Enter key - to work or else the textbox will feel very different than a standard text box. Yes there are plug-ins that allow masked input easily enough but most are fixed width which is difficult to do with plain number input. So I took a few minutes to write a small reusable plug-in that handles this scenario. Imagine you have a couple of textboxes on a form like this: <div class="containercontent"> <div class="label">Enter a number:</div> <input type="text" name="txtNumber1" id="txtNumber1" value="" class="numberinput" /> <div class="label">Enter a number:</div> <input type="text" name="txtNumber2" id="txtNumber2" value="" class="numberinput" /> </div> and you want to restrict input to numbers. Here’s a small .forceNumeric() jQuery plug-in that does what I like to see in this case: [Updated thanks to Elijah Manor for a couple of small tweaks for additional keys to check for] <script type="text/javascript"> $(document).ready(function () { $(".numberinput").forceNumeric(); }); // forceNumeric() plug-in implementation jQuery.fn.forceNumeric = function () { return this.each(function () { $(this).keydown(function (e) { var key = e.which || e.keyCode; if (!e.shiftKey && !e.altKey && !e.ctrlKey && // numbers key >= 48 && key <= 57 || // Numeric keypad key >= 96 && key <= 105 || // comma, period and minus key == 190 || key == 188 || key == 109 || // Backspace and Tab and Enter key == 8 || key == 9 || key == 13 || // Home and End key == 35 || key == 36 || // left and right arrows key == 37 || key == 39 || // Del and Ins key == 46 || key == 45) return true; return false; }); }); } </script> With the plug-in in place in your page or an external .js file you can now simply use a selector to apply it: $(".numberinput").forceNumeric(); The plug-in basically goes through each selected element and hooks up a keydown() event handler. When a key is pressed the handler is fired and the keyCode of the event object is sent. Recall that jQuery normalizes the JavaScript Event object between browsers. The code basically white-lists a few key codes and rejects all others. It returns true to indicate the keypress is to go through or false to eat the keystroke and not process it which effectively removes it. Simple and low tech, and it works without too much change of typical text box behavior.© Rick Strahl, West Wind Technologies, 2005-2011Posted in JavaScript  jQuery  HTML  

    Read the article

  • Start/Stop Window Service from ASP.NET page

    - by kaushalparik27
    Last week, I needed to complete one task on which I am going to blog about in this entry. The task is "Create a control panel like webpage to control (Start/Stop) Window Services which are part of my solution installed on computer where the main application is hosted". Here are the important points to accomplish:[1] You need to add System.ServiceProcess reference in your application. This namespace holds ServiceController Class to access the window service.[2] You need to check the status of the window services before you explicitly start or stop it.[3] By default, IIS application runs under ASP.NET account which doesn't have access rights permission to window service. So, Very Important part of the solution is: Impersonation. You need to impersonate the application/part of the code with the User Credentials which is having proper rights and permission to access the window service. If you try to access window service it will generate "access denied" error.The alternatives are: You can either impersonate whole application by adding Identity tag in web.cofig as:        <identity impersonate="true" userName="" password=""/>This tag will be under System.Web section. the "userName" and "password" will be the credentials of the user which is having rights to access the window service. But, this would not be a wise and good solution; because you may not impersonate whole website like this just to have access window service (which is going to be a small part of code).Second alternative is: Only impersonate part of code where you need to access the window service to start or stop it. I opted this one. But, to be fair; I am really unaware of the code part for impersonation. So, I just googled it and injected the code in my solution in a separate class file named as "Impersonate" with required static methods. In Impersonate class; impersonateValidUser() is the method to impersonate a part of code and undoImpersonation() is the method to undo the impersonation. Below is one example:  You need to provide domain name (which is "." if you are working on your home computer), username and password of appropriate user to impersonate.[4] Here, it is very important to note that: You need to have to store the Access Credentials (username and password) which you are going to user for impersonation; to some secured and encrypted format. I have used Machinekey Encryption to store the value encrypted value inside database.[5] So now; The real part is to start or stop a window service. You are almost done; because ServiceController class has simple Start() and Stop() methods to start or stop a window service. A ServiceController class has parametrized constructor that takes name of the service as parameter.Code to Start the window service: Code to Stop the window service: Isn't that too easy! ServiceController made it easy :) I have attached a working example with this post here to start/stop "SQLBrowser" service where you need to provide proper credentials who have permission to access to window service.  hope it would helps./.

    Read the article

  • A Closer Look at the HiddenInput Attribute in MVC 2

    - by Steve Michelotti
    MVC 2 includes an attribute for model metadata called the HiddenInput attribute. The typical usage of the attribute looks like this (line #3 below): 1: public class PersonViewModel 2: { 3: [HiddenInput(DisplayValue = false)] 4: public int? Id { get; set; } 5: public string FirstName { get; set; } 6: public string LastName { get; set; } 7: } So if you displayed your PersonViewModel with Html.EditorForModel() or Html.EditorFor(m => m.Id), the framework would detect the [HiddenInput] attribute metadata and produce HTML like this: 1: <input id="Id" name="Id" type="hidden" value="21" /> This is pretty straight forward and allows an elegant way to keep the technical key for your model (e.g., a Primary Key from the database) in the HTML so that everything will be wired up correctly when the form is posted to the server and of course not displaying this value visually to the end user. However, when I was giving a recent presentation, a member of the audience asked me (quite reasonably), “When would you ever set DisplayValue equal to true when using a HiddenInput?” To which I responded, “Well, it’s an edge case. There are sometimes when…er…um…people might want to…um…display this value to the user.” It was quickly apparent to me (and I’m sure everyone else in the room) what a terrible answer this was. I realized I needed to have a much better answer here. First off, let’s look at what is produced if we change our view model to use “true” (which is equivalent to use specifying [HiddenInput] since “true” is the default) on line #3: 1: public class PersonViewModel 2: { 3: [HiddenInput(DisplayValue = true)] 4: public int? Id { get; set; } 5: public string FirstName { get; set; } 6: public string LastName { get; set; } 7: } Will produce the following HTML if rendered from Htm.EditorForModel() in your view: 1: <div class="editor-label"> 2: <label for="Id">Id</label> 3: </div> 4: <div class="editor-field"> 5: 21<input id="Id" name="Id" type="hidden" value="21" /> 6: <span class="field-validation-valid" id="Id_validationMessage"></span> 7: </div> The key is line #5. We get the text of “21” (which happened to be my DB Id in this instance) and also a hidden input element (again with “21”). So the question is, why would one want to use this? The best answer I’ve found is contained in this MVC 2 whitepaper: When a view lets users edit the ID of an object and it is necessary to display the value as well as to provide a hidden input element that contains the old ID so that it can be passed back to the controller. Well, that actually makes sense. Yes, it seems like something that would happen *rarely* but, for those instances, it would enable them easily. It’s effectively equivalent to doing this in your view: 1: <%: Html.LabelFor(m => m.Id) %> 2: <%: Model.Id %> 3: <%: Html.HiddenFor(m => m.Id) %> But it’s allowing you to specify it in metadata on your view model (and thereby take advantage of templated helpers like Html.EditorForModel() and Html.EditorFor()) rather than having to explicitly specifying everything in your view.

    Read the article

  • Reverse subarray of an array with O(1)

    - by Babibu
    I have an idea how to implement sub array reverse with O(1), not including precalculation such as reading the input. I will have many reverse operations, and I can't use the trivial solution of O(N). Edit: To be more clear I want to build data structure behind the array with access layer that knows about reversing requests and inverts the indexing logic as necessary when someone wants to iterate over the array. Edit 2: The data structure will only be used for iterations I been reading this and this and even this questions but they aren't helping. There are 3 cases that need to be taking care of: Regular reverse operation Reverse that including reversed area Intersection between reverse and part of other reversed area in the array Here is my implementation for the first two parts, I will need your help with the last one. This is the rule class: class Rule { public int startingIndex; public int weight; } It is used in my basic data structure City: public class City { Rule rule; private static AtomicInteger _counter = new AtomicInteger(-1); public final int id = _counter.incrementAndGet(); @Override public String toString() { return "" + id; } } This is the main class: public class CitiesList implements Iterable<City>, Iterator<City> { private int position; private int direction = 1; private ArrayList<City> cities; private ArrayDeque<City> citiesQeque = new ArrayDeque<>(); private LinkedList<Rule> rulesQeque = new LinkedList<>(); public void init(ArrayList<City> cities) { this.cities = cities; } public void swap(int index1, int index2){ Rule rule = new Rule(); rule.weight = Math.abs(index2 - index1); cities.get(index1).rule = rule; cities.get(index2 + 1).rule = rule; } @Override public void remove() { throw new IllegalStateException("Not implemented"); } @Override public City next() { City city = cities.get(position); if (citiesQeque.peek() == city){ citiesQeque.pop(); changeDirection(); position += (city.rule.weight + 1) * direction; city = cities.get(position); } if(city.rule != null){ if(city.rule != rulesQeque.peekLast()){ rulesQeque.add(city.rule); position += city.rule.weight * direction; changeDirection(); citiesQeque.push(city); } else{ rulesQeque.removeLast(); position += direction; } } else{ position += direction; } return city; } private void changeDirection() { direction *= -1; } @Override public boolean hasNext() { return position < cities.size(); } @Override public Iterator<City> iterator() { position = 0; return this; } } And here is a sample program: public static void main(String[] args) { ArrayList<City> list = new ArrayList<>(); for(int i = 0 ; i < 20; i++){ list.add(new City()); } CitiesList citiesList = new CitiesList(); citiesList.init(list); for (City city : citiesList) { System.out.print(city + " "); } System.out.println("\n******************"); citiesList.swap(4, 8); for (City city : citiesList) { System.out.print(city + " "); } System.out.println("\n******************"); citiesList.swap(2, 15); for (City city : citiesList) { System.out.print(city + " "); } } How do I handle reverse intersections?

    Read the article

  • RPi and Java Embedded GPIO: Writing Java code to blink LED

    - by hinkmond
    So, you've followed the previous steps to install Java Embedded on your Raspberry Pi ?, you went to Fry's and picked up some jumper wires, LEDs, and resistors ?, you hooked up the wires, LED, and resistor the the correct pins ?, and now you want to start programming in Java on your RPi? Yes? ???????! OK, then... Here we go. You can use the following source code to blink your first LED on your RPi using Java. In the code you can see that I'm not using any complicated gpio libraries like wiringpi or pi4j, and I'm not doing any low-level pin manipulation like you can in C. And, I'm not using python (hell no!). This is Java programming, so we keep it simple (and more readable) than those other programming languages. See: Write Java code to do this In the Java code, I'm opening up the RPi Debian Wheezy well-defined file handles to control the GPIO ports. First I'm resetting everything using the unexport/export file handles. (On the RPi, if you open the well-defined file handles and write certain ASCII text to them, you can drive your GPIO to perform certain operations. See this GPIO reference). Next, I write a "1" then "0" to the value file handle of the GPIO0 port (see the previous pinout diagram). That makes the LED blink. Then, I loop to infinity. Easy, huh? import java.io.* /* * Java Embedded Raspberry Pi GPIO app */ package jerpigpio; import java.io.FileWriter; /** * * @author hinkmond */ public class JerpiGPIO { static final String GPIO_OUT = "out"; static final String GPIO_ON = "1"; static final String GPIO_OFF = "0"; static final String GPIO_CH00="0"; /** * @param args the command line arguments */ public static void main(String[] args) { FileWriter commandFile; try { /*** Init GPIO port for output ***/ // Open file handles to GPIO port unexport and export controls FileWriter unexportFile = new FileWriter("/sys/class/gpio/unexport"); FileWriter exportFile = new FileWriter("/sys/class/gpio/export"); // Reset the port unexportFile.write(GPIO_CH00); unexportFile.flush(); // Set the port for use exportFile.write(GPIO_CH00); exportFile.flush(); // Open file handle to port input/output control FileWriter directionFile = new FileWriter("/sys/class/gpio/gpio"+GPIO_CH00+"/direction"); // Set port for output directionFile.write(GPIO_OUT); directionFile.flush(); /*--- Send commands to GPIO port ---*/ // Opne file handle to issue commands to GPIO port commandFile = new FileWriter("/sys/class/gpio/gpio"+GPIO_CH00+"/value"); // Loop forever while (true) { // Set GPIO port ON commandFile.write(GPIO_ON); commandFile.flush(); // Wait for a while java.lang.Thread.sleep(200); // Set GPIO port OFF commandFile.write(GPIO_OFF); commandFile.flush(); // Wait for a while java.lang.Thread.sleep(200); } } catch (Exception exception) { exception.printStackTrace(); } } } Hinkmond

    Read the article

  • Using Managed Beans with your ADF Mobile Client Applications

    - by [email protected]
    Did you know it's easy to extend your ADF Mobile Client application with a Managed Bean just like it is with an ADF web application?  Here's how: Using the New Gallery (File -> New), create a new Java class.  This class should extend oracle.adfnmc.el.utils.BeanResolver.         Add this java class as a managed bean: Go to your task flow, select the Overview tab at the bottom and go to the Managed Bean section.  Add an entry and name your new Managed Bean and point to the java class you just created.        Add your custom methods and properties to your java class   Since reflection is not supported in the J2ME version on some platforms (BlackBerry), you need to provide dispatch code if you want to invoke/access any of your methods/properties from EL.  Here's a sample:  MyBeanClass.java    Use Expression Language (EL) to access your properties and invoke your methods on your MCX pages.  Here's an sample:     <?xml version="1.0" encoding="UTF-8" ?><amc:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"          xmlns:amc="http://xmlns.oracle.com/jdev/amc">  <amc:form id="form0">    <amc:menuControl refId="menu0"/>    <amc:panelGroupLayout id="panelGroupLayout1" width="100%">      <amc:panelGroupLayout id="panelGroupLayout2" layout="horizontal"                            width="100%">        <amc:image id="image1" source="logo_sm.png"/>        <amc:outputText value="Home" id="outputText1" verticalAlign="center"                        fontSize="20" fontWeight="bold"                        foregroundColor="#ff0000"/>      </amc:panelGroupLayout>      <amc:commandLink text="#{MyBean.property1}" id="commandLink1"                       actionListener="#{MyBean.doFoo}"                       foregroundColor="#0000ff" action="patientlist"/>    </amc:panelGroupLayout>  </amc:form>  <amc:menu type="main" id="menu0">    <amc:menuGroup id="menuGroup1">      <amc:commandMenuItem id="commandMenuItem1" action="exit" label="Exit"                           index="1" weight="0"/>    </amc:menuGroup>  </amc:menu></amc:view> 

    Read the article

  • Unit Testing DateTime – The Crazy Way

    - by João Angelo
    We all know that the process of unit testing code that depends on DateTime, particularly the current time provided through the static properties (Now, UtcNow and Today), it’s a PITA. If you go ask how to unit test DateTime.Now on stackoverflow I’ll bet that you’ll get two kind of answers: Encapsulate the current time in your own interface and use a standard mocking framework; Pull out the big guns like Typemock Isolator, JustMock or Microsoft Moles/Fakes and mock the static property directly. Now each alternative has is pros and cons and I would have to say that I glean more to the second approach because the first adds a layer of abstraction just for the sake of testability. However, the second approach depends on commercial tools that not every shop wants to buy or in the not so friendly Microsoft Moles. (Sidenote: Moles is now named Fakes and it will ship with VS 2012) This tends to leave people without an acceptable and simple solution so after reading another of these types of questions in SO I came up with yet another alternative, one based on the first alternative that I presented here but tries really hard to not get in your way with yet another layer of abstraction. So, without further dues, I present you, the Tardis. The Tardis is single section of conditionally compiled code that overrides the meaning of the DateTime expression inside a single class. You still get the normal coding experience of using DateTime all over the place, but in a DEBUG compilation your tests will be able to mock every static method or property of the DateTime class. An example follows, while the full Tardis code can be downloaded from GitHub: using System; using NSubstitute; using NUnit.Framework; using Tardis; public class Example { public Example() : this(string.Empty) { } public Example(string title) { #if DEBUG this.DateTime = DateTimeProvider.Default; this.Initialize(title); } internal IDateTimeProvider DateTime { get; set; } internal Example(string title, IDateTimeProvider provider) { this.DateTime = provider; #endif this.Initialize(title); } private void Initialize(string title) { this.Title = title; this.CreatedAt = DateTime.UtcNow; } private string title; public string Title { get { return this.title; } set { this.title = value; this.UpdatedAt = DateTime.UtcNow; } } public DateTime CreatedAt { get; private set; } public DateTime UpdatedAt { get; private set; } } public class TExample { public void T001() { // Arrange var tardis = Substitute.For<IDateTimeProvider>(); tardis.UtcNow.Returns(new DateTime(2000, 1, 1, 6, 6, 6)); // Act var sut = new Example("Title", tardis); // Assert Assert.That(sut.CreatedAt, Is.EqualTo(tardis.UtcNow)); } public void T002() { // Arrange var tardis = Substitute.For<IDateTimeProvider>(); var sut = new Example("Title", tardis); tardis.UtcNow.Returns(new DateTime(2000, 1, 1, 6, 6, 6)); // Act sut.Title = "Updated"; // Assert Assert.That(sut.UpdatedAt, Is.EqualTo(tardis.UtcNow)); } } This approach is also suitable for other similar classes with commonly used static methods or properties like the ConfigurationManager class.

    Read the article

  • Windows Workflow Foundation (WF) and things I were more intuitive

    - by pjohnson
    I've started using Windows Workflow Foundation, and so far ran into a few things that aren't incredibly obvious. Microsoft did a good job of providing a ton of samples, which is handy because you need them to get anywhere with WF. The docs are thin, so I've been bouncing between samples and downloadable labs to figure out how to implement various activities in a workflow. Code separation or not? You can create a workflow and activity in Visual Studio with or without code separation, i.e. just a .cs "Component" style object with a Designer.cs file, or a .xoml XML markup file with code behind (beside?) it. Absence any obvious advantage to one or the other, I used code separation for workflows and any complex custom activities, and without code separation for custom activities that just inherit from the Activity class and thus don't have anything special in the designer. So far, so good. Service - In the WF world, this is simply a class that talks to the workflow about things outside the workflow, not to be confused with how the term "service" is used in every other context I've seen in the Windows and .NET world, i.e. an executable that waits for events or requests from a client and services them (Windows service, web service, WCF service, etc.). ListenActivity - Such a great concept, yet so unintuitive. It seems you need at least two branches (EventDrivenActivity instances), one for your positive condition and one for a timeout. The positive condition has a HandleExternalEventActivity, and the timeout has a DelayActivity followed by however you want to handle the delay, e.g. a ThrowActivity. The timeout is simple enough; wiring up the HandleExternalEventActivity is where things get fun. You need to create a service (see above), and an interface for that service (this seems more complex than should be necessary--why not have activities just wire to a service directly?). And you need to create a custom EventArgs class that inherits from ExternalDataEventArgs--you can't create an ExternalDataEventArgs event handler directly, even if you don't need to add any more information to the event args, despite ExternalDataEventArgs not being marked as an abstract class, nor a compiler error nor warning nor any other indication that you're doing something wrong, until you run it and find that it always times out and get to check every place mentioned here to see why. Your interface and service need an event that consumes your custom EventArgs class, and a method to fire that event. You need to call that method from somewhere. Then you get to hope that you did everything just right, or that you can step through code in the debugger before your Delay timeout expires. Yes, it's as much fun as it sounds. TransactionScopeActivity - I had the bright idea of putting one in as a placeholder, then filling in the database updates later. That caused this error: The workflow hosting environment does not have a persistence service as required by an operation on the workflow instance "[GUID]". ...which is about as helpful as "Object reference not set to an instance of an object" and even more fun to debug. Google led me to this Microsoft Forums hit, and from there I figured out it didn't like that the activity had no children. Again, a Validator on TransactionScopeActivity would have pointed this out to me at design time, rather than handing me a nearly useless error at runtime. Easily enough, I disabled the activity and that fixed it. I still see huge potential in my work where WF could make things easier and more flexible, but there are some seriously rough edges at the moment. Maybe I'm just spoiled by how much easier and more intuitive development elsewhere in the .NET Framework is.

    Read the article

  • Measuring Code Quality

    - by DotNetBlues
    Several months back, I was tasked with measuring the quality of code in my organization. Foolishly, I said, "No problem." I figured that Visual Studio has a built-in code metrics tool (Analyze -> Calculate Code Metrics) and that would be a fine place to start with. I was right, but also very wrong. The Visual Studio calculates five primary metrics: Maintainability Index, Cyclomatic Complexity, Depth of Inheritance, Class Coupling, and Lines of Code. The first two are figured at the method level, the second at (primarily) the class level, and the last is a simple count. The first question any reasonable person should ask is "Which one do I look at first?" The first question any manager is going to ask is, "What one number tells me about the whole application?" My answer to both, in a way, was "Maintainability Index." Why? Because each of the other numbers represent one element of quality while MI is a composite number that includes Cyclomatic Complexity. I'd be lying if I said no consideration was given to the fact that it was abstract enough that it's harder for some surly developer (I've been known to resemble that remark) to start arguing why a high coupling or inheritance is no big deal or how complex requirements are to blame for complex code. I should also note that I don't think there is one magic bullet metric that will tell you objectively how good a code base is. There are a ton of different metrics out there, and each one was created for a specific purpose in mind and has a pet theory behind it. When you've got a group of developers who aren't accustomed to measuring code quality, picking a 0-100 scale, non-controversial metric that can be easily generated by tools you already own really isn't a bad place to start. That sort of answers the question a developer would ask, but what about the management question; how do you dashboard this stuff when Visual Studio doesn't roll up the numbers to the solution level? Since VS does roll up the MI to the project level, I thought I could just figure out what sort of weighting Microsoft used to roll method scores up to the class level and then to the namespace and project levels. I was a bit surprised by the answer: there is no weighting. That means that a class with one 1300 line method (which will score a 0 MI) and one empty constructor (which will score a 100 MI) will have an overall MI of a respectable 50. Throw in a couple of DTOs that are nothing more than getters and setters (which tend to score 95 or better) and the project ends up looking really, really healthy. The next poor bastard who has to work on the application is probably not going to be singing the praises of its maintainability, though. For the record, that 1300 line method isn't a hypothetical, either. So, what does one do with that? Well, I decided to weight the average by the Lines of Code per method. For our above example, the formula for the class's MI becomes ((1300 * 0) + (1 * 100))/1301 = .077, rounded to 0. Sounds about right. Continue the pattern for namespace, project, solution, and even multi-solution application MI scores. This can be done relatively easily by using the "export to Excel" button and running a quick formula against the data. On the short list of follow-up questions would be, "How do I improve my application's score?" That's an answer for another time, though.

    Read the article

  • WebGrid Helper and Complex Types

    - by imran_ku07
        Introduction:           WebGrid helper makes it very easy to show tabular data. It was originally designed for ASP.NET Web Pages(WebMatrix) to display, edit, page and sort tabular data but you can also use this helper in ASP.NET Web Forms and ASP.NET MVC. When using this helper, sometimes you may run into a problem if you use complex types in this helper. In this article, I will show you how you can use complex types in WebGrid helper.       Description:             Let's say you need to show the employee data and you have the following classes,   public class Employee { public string Name { get; set; } public Address Address { get; set; } public List<string> ContactNumbers { get; set; } } public class Address { public string City { get; set; } }               The Employee class contain a Name, an Address and list of ContactNumbers. You may think that you can easily show City in WebGrid using Address.City, but no. The WebGrid helper will throw an exception at runtime if any Address property is null in the Employee list. Also, you cannot directly show ContactNumbers property. The easiest way to show these properties is to add some additional properties,   public Address NotNullableAddress { get { return Address ?? new Address(); } } public string Contacts { get { return string.Join("; ",ContactNumbers); } }               Now you can easily use these properties in WebGrid. Here is the complete code of this example,  @functions{ public class Employee { public Employee(){ ContactNumbers = new List<string>(); } public string Name { get; set; } public Address Address { get; set; } public List<string> ContactNumbers { get; set; } public Address NotNullableAddress { get { return Address ?? new Address(); } } public string Contacts { get { return string.Join("; ",ContactNumbers); } } } public class Address { public string City { get; set; } } } @{ var myClasses = new List<Employee>{ new Employee { Name="A" , Address = new Address{ City="AA" }, ContactNumbers = new List<string>{"021-216452","9231425651"}}, new Employee { Name="C" , Address = new Address{ City="CC" }}, new Employee { Name="D" , ContactNumbers = new List<string>{"045-14512125","21531212121"}} }; var grid = new WebGrid(source: myClasses); } @grid.GetHtml(columns: grid.Columns( grid.Column("NotNullableAddress.City", header: "City"), grid.Column("Name"), grid.Column("Contacts")))                    Summary:           You can use WebGrid helper to show tabular data in ASP.NET MVC, ASP.NET Web Forms and  ASP.NET Web Pages. Using this helper, you can also show complex types in the grid. In this article, I showed you how you use complex types with WebGrid helper. Hopefully you will enjoy this article too.  

    Read the article

  • Handling null values and missing object properties in Silverlight 4

    - by PeterTweed
    Before Silverlight 4 to bind a data object to the UI and display a message associated with either a null value or if the binding path was wrong, you would need to write a Converter.  In Silverlight 4 we find the addition of the markup extensions TargetNullValue and FallbackValue that allows us to display a value when a null value is found in the bound to property and display a value when the property being bound to is not found. This post will show you how to use both markup extensions. Steps: 1. Create a new Silverlight 4 application 2. In the body of the MainPage.xaml.cs file replace the MainPage class with the following code:     public partial class MainPage : UserControl     {         public MainPage()         {             InitializeComponent();             this.Loaded += new RoutedEventHandler(MainPage_Loaded);         }           void MainPage_Loaded(object sender, RoutedEventArgs e)         {             person p = new person() { NameValue = "Peter Tweed" };             this.DataContext = p;         }     }       public class person     {         public string NameValue { get; set; }         public string TitleValue { get; set; }     } This code defines a class called person with two properties.  A new instance of the class is created, only defining the value for one of the properties and bound to the DataContext of the page. 3.  In the MainPage.xaml file copy the following XAML into the LayoutRoot grid:         <Grid.RowDefinitions>             <RowDefinition Height="60*" />             <RowDefinition Height="28*" />             <RowDefinition Height="28*" />             <RowDefinition Height="30*" />             <RowDefinition Height="154*" />         </Grid.RowDefinitions>         <Grid.ColumnDefinitions>             <ColumnDefinition Width="86*" />             <ColumnDefinition Width="314*" />         </Grid.ColumnDefinitions>         <TextBlock Grid.Row="1" Height="23" HorizontalAlignment="Left" Margin="32,0,0,0" Name="textBlock1" Text="Name Value:" VerticalAlignment="Top" />         <TextBlock Grid.Row="2" Height="23" HorizontalAlignment="Left" Margin="32,0,0,0" Name="textBlock2" Text="Title Value:" VerticalAlignment="Top" />         <TextBlock Grid.Row="3" Height="23" HorizontalAlignment="Left" Margin="32,0,0,0" Name="textBlock3" Text="Non Existant Value:" VerticalAlignment="Top" />         <TextBlock Grid.Column="1" Grid.Row="1" Height="23" HorizontalAlignment="Left" Name="textBlock4" Text="{Binding NameValue, TargetNullValue='No Name!!!!!!!'}" VerticalAlignment="Top" Margin="6,0,0,0" />         <TextBlock Grid.Column="1" Grid.Row="2" Height="23" HorizontalAlignment="Left" Name="textBlock5" Text="{Binding TitleValue, TargetNullValue='No Title!!!!!!!'}" VerticalAlignment="Top" Margin="6,0,0,0" />         <TextBlock Grid.Column="1" Grid.Row="3" Height="23" HorizontalAlignment="Left" Margin="6,0,0,0" Name="textBlock6" Text="{Binding AgeValue, FallbackValue='No such property!'}" VerticalAlignment="Top" />    This XAML defines three textblocks – two of which use the TargetNull and one that uses the FallbackValue markup extensions.  4. Run the application and see the person name displayed as defined for the person object, the expected string displayed for the TargetNullValue when no value exists for the boudn property and the expected string displayed for the FallbackValue when the property bound to is not found on the bound object. It's that easy!

    Read the article

  • BizTalk Testing Series - The xpath Function

    - by Michael Stephenson
    Background While the xpath function in a BizTalk orchestration is a very powerful feature I have often come across the situation where someone has hard coded an xpath expression in an orchestration. If you have read some of my previous posts about testing I've tried to get across the general theme like test-driven or test-assisted development approaches where the underlying principle is that your building up your solution of small well tested units that are put together and the resulting solution is usually quite robust. You will be finding more bugs within your unit tests and fewer outside of your team. The thing I don't like about the xpath functions usual usage is when you come across an orchestration which has something like the below snippet in an expression or assign shape: string result = xpath(myMessage,"string(//Order/OrderItem/ProductName)"); My main issue with this is that the xpath statement is hard coded in the orchestration and you don't really know it works until you are running the orchestration. Some of the problems I think you end up with are: You waste time with lengthy debugging of the orchestration when your statement isn't working You might not know the function isn't working quite as expected because the testable unit around it is big You are much more open to regression issues if your schema changes     Approach to Testing The technique I usually follow is to hold the xpath statement as a constant in a helper class or to format a constant with a helper function to get the actual xpath statement. It is then used by the orchestration like follows. string result = xpath(myMessage, MyHelperClass.ProductNameXPathStatement); This means that because the xpath statement is available outside of the orchestration it now becomes testable in its own right. This means: I can test it in its own right I'm less likely to waste time tracking down problems caused by an error in the statement I can reduce the risk or regression issuess I'm now able to implement some testing around my xpath statements which usually are something like the following:    The test will use a sample xml file The sample will be validated against the schema The test will execute the xpath statement and then check the results are as expected     Walk-through BizTalk uses the XPathNavigator internally behind the xpath function to implement the queries you will usually use using the navigators select or evaluate functions. In the sample (link at bottom) I have a small solution which contains a schema from which I have generated a sample instance. I will then use this instance as the basis for my tests.     In the below diagram you can see the helper class which I've encapsulated my xpath expressions in, and some helper functions which will format the expression in the case of a repeating node which would want to inject an index into the xpath query.             I have then created a test class which has some functions to execute some queries against my sample xml file. An example of this is below.         In the test class I have a couple of helper functions which will execute the xpath expressions in a similar way to BizTalk. You could have a proper helper class to do this if you wanted.         You can see now in the BizTalk expression editor I can use these functions alongside the xpath function.         Conclusion I hope you can see with very little effort you can make your life much easier by testing xpath statements outside of an orchestration rather than using them directly hard coded into the orchestration.     This can also save you lots of pain longer term because your build should break if your schema changes unexpectedly causing these xpath tests to fail where as your tests around the orchestration will be more difficult to troubleshoot and workout the cause of the problem.     Sample Link The sample is available from the following link: http://code.msdn.microsoft.com/testbtsxpathfunction     Other Tools On the subject of using the xpath function, if you don't already use it the below tool is very useful for creating your xpath statements (thanks BizBert) http://www.bizbert.com/bizbert/2007/11/30/XPath+The+Hidden+Language+Of+BizTalk.aspx

    Read the article

  • C# 5 Async, Part 2: Asynchrony Today

    - by Reed
    The .NET Framework has always supported asynchronous operations.  However, different mechanisms for supporting exist throughout the framework.  While there are at least three separate asynchronous patterns used through the framework, only the latest is directly usable with the new Visual Studio Async CTP.  Before delving into details on the new features, I will talk about existing asynchronous code, and demonstrate how to adapt it for use with the new pattern. The first asynchronous pattern used in the .NET framework was the Asynchronous Programming Model (APM).  This pattern was based around callbacks.  A method is used to start the operation.  It typically is named as BeginSomeOperation.  This method is passed a callback defined as an AsyncCallback, and returns an object that implements IAsyncResult.  Later, the IAsyncResult is used in a call to a method named EndSomeOperation, which blocks until completion and returns the value normally directly returned from the synchronous version of the operation.  Often, the EndSomeOperation call would be called from the callback function passed, which allows you to write code that never blocks. While this pattern works perfectly to prevent blocking, it can make quite confusing code, and be difficult to implement.  For example, the sample code provided for FileStream’s BeginRead/EndRead methods is not simple to understand.  In addition, implementing your own asynchronous methods requires creating an entire class just to implement the IAsyncResult. Given the complexity of the APM, other options have been introduced in later versions of the framework.  The next major pattern introduced was the Event-based Asynchronous Pattern (EAP).  This provides a simpler pattern for asynchronous operations.  It works by providing a method typically named SomeOperationAsync, which signals its completion via an event typically named SomeOperationCompleted. The EAP provides a simpler model for asynchronous programming.  It is much easier to understand and use, and far simpler to implement.  Instead of requiring a custom class and callbacks, the standard event mechanism in C# is used directly.  For example, the WebClient class uses this extensively.  A method is used, such as DownloadDataAsync, and the results are returned via the DownloadDataCompleted event. While the EAP is far simpler to understand and use than the APM, it is still not ideal.  By separating your code into method calls and event handlers, the logic of your program gets more complex.  It also typically loses the ability to block until the result is received, which is often useful.  Blocking often requires writing the code to block by hand, which is error prone and adds complexity. As a result, .NET 4 introduced a third major pattern for asynchronous programming.  The Task<T> class introduced a new, simpler concept for asynchrony.  Task and Task<T> effectively represent an operation that will complete at some point in the future.  This is a perfect model for thinking about asynchronous code, and is the preferred model for all new code going forward.  Task and Task<T> provide all of the advantages of both the APM and the EAP models – you have the ability to block on results (via Task.Wait() or Task<T>.Result), and you can stay completely asynchronous via the use of Task Continuations.  In addition, the Task class provides a new model for task composition and error and cancelation handling.  This is a far superior option to the previous asynchronous patterns. The Visual Studio Async CTP extends the Task based asynchronous model, allowing it to be used in a much simpler manner.  However, it requires the use of Task and Task<T> for all operations.

    Read the article

  • RPi and Java Embedded GPIO: Sensor Reading using Java Code

    - by hinkmond
    And, now to program the Java code for reading the fancy-schmancy static electricity sensor connected to your Raspberry Pi, here is the source code we'll use: First, we need to initialize ourselves... /* * Java Embedded Raspberry Pi GPIO Input app */ package jerpigpioinput; import java.io.FileWriter; import java.io.RandomAccessFile; import java.text.DateFormat; import java.text.SimpleDateFormat; import java.util.Calendar; /** * * @author hinkmond */ public class JerpiGPIOInput { static final String GPIO_IN = "in"; // Add which GPIO ports to read here static String[] GpioChannels = { "7" }; /** * @param args the command line arguments */ public static void main(String[] args) { try { /*** Init GPIO port(s) for input ***/ // Open file handles to GPIO port unexport and export controls FileWriter unexportFile = new FileWriter("/sys/class/gpio/unexport"); FileWriter exportFile = new FileWriter("/sys/class/gpio/export"); for (String gpioChannel : GpioChannels) { System.out.println(gpioChannel); // Reset the port unexportFile.write(gpioChannel); unexportFile.flush(); // Set the port for use exportFile.write(gpioChannel); exportFile.flush(); // Open file handle to input/output direction control of port FileWriter directionFile = new FileWriter("/sys/class/gpio/gpio" + gpioChannel + "/direction"); // Set port for input directionFile.write(GPIO_IN); directionFile.flush(); } And, next we will open up a RandomAccessFile pointer to the GPIO port. /*** Read data from each GPIO port ***/ RandomAccessFile[] raf = new RandomAccessFile[GpioChannels.length]; int sleepPeriod = 10; final int MAXBUF = 256; byte[] inBytes = new byte[MAXBUF]; String inLine; int zeroCounter = 0; // Get current timestamp with Calendar() Calendar cal; DateFormat dateFormat = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss.SSS"); String dateStr; // Open RandomAccessFile handle to each GPIO port for (int channum=0; channum Then, loop forever to read in the values to the console. // Loop forever while (true) { // Get current timestamp for latest event cal = Calendar.getInstance(); dateStr = dateFormat.format(cal.getTime()); // Use RandomAccessFile handle to read in GPIO port value for (int channum=0; channum Rinse, lather, and repeat... Compile this Java code on your host PC or Mac with javac from the JDK. Copy over the JAR or class file to your Raspberry Pi, "sudo -i" to become root, then start up this Java app in a shell on your RPi. That's it! You should see a "1" value get logged each time you bring a statically charged item (like a balloon you rub on the cat) near the antenna of the sensor. There you go. You've just seen how Java Embedded technology on the Raspberry Pi is an easy way to access sensors. Hinkmond

    Read the article

  • How to write simple code using TDD [migrated]

    - by adeel41
    Me and my colleagues do a small TDD-Kata practice everyday for 30 minutes. For reference this is the link for the excercise http://osherove.com/tdd-kata-1/ The objective is to write better code using TDD. This is my code which I've written public class Calculator { public int Add( string numbers ) { const string commaSeparator = ","; int result = 0; if ( !String.IsNullOrEmpty( numbers ) ) result = numbers.Contains( commaSeparator ) ? AddMultipleNumbers( GetNumbers( commaSeparator, numbers ) ) : ConvertToNumber( numbers ); return result; } private int AddMultipleNumbers( IEnumerable getNumbers ) { return getNumbers.Sum(); } private IEnumerable GetNumbers( string separator, string numbers ) { var allNumbers = numbers .Replace( "\n", separator ) .Split( new string[] { separator }, StringSplitOptions.RemoveEmptyEntries ); return allNumbers.Select( ConvertToNumber ); } private int ConvertToNumber( string number ) { return Convert.ToInt32( number ); } } and the tests for this class are [TestFixture] public class CalculatorTests { private int ArrangeAct( string numbers ) { var calculator = new Calculator(); return calculator.Add( numbers ); } [Test] public void Add_WhenEmptyString_Returns0() { Assert.AreEqual( 0, ArrangeAct( String.Empty ) ); } [Test] [Sequential] public void Add_When1Number_ReturnNumber( [Values( "1", "56" )] string number, [Values( 1, 56 )] int expected ) { Assert.AreEqual( expected, ArrangeAct( number ) ); } [Test] public void Add_When2Numbers_AddThem() { Assert.AreEqual( 3, ArrangeAct( "1,2" ) ); } [Test] public void Add_WhenMoreThan2Numbers_AddThemAll() { Assert.AreEqual( 6, ArrangeAct( "1,2,3" ) ); } [Test] public void Add_SeparatorIsNewLine_AddThem() { Assert.AreEqual( 6, ArrangeAct( @"1 2,3" ) ); } } Now I'll paste code which they have written public class StringCalculator { private const char Separator = ','; public int Add( string numbers ) { const int defaultValue = 0; if ( ShouldReturnDefaultValue( numbers ) ) return defaultValue; return ConvertNumbers( numbers ); } private int ConvertNumbers( string numbers ) { var numberParts = GetNumberParts( numbers ); return numberParts.Select( ConvertSingleNumber ).Sum(); } private string[] GetNumberParts( string numbers ) { return numbers.Split( Separator ); } private int ConvertSingleNumber( string numbers ) { return Convert.ToInt32( numbers ); } private bool ShouldReturnDefaultValue( string numbers ) { return String.IsNullOrEmpty( numbers ); } } and the tests [TestFixture] public class StringCalculatorTests { [Test] public void Add_EmptyString_Returns0() { ArrangeActAndAssert( String.Empty, 0 ); } [Test] [TestCase( "1", 1 )] [TestCase( "2", 2 )] public void Add_WithOneNumber_ReturnsThatNumber( string numberText, int expected ) { ArrangeActAndAssert( numberText, expected ); } [Test] [TestCase( "1,2", 3 )] [TestCase( "3,4", 7 )] public void Add_WithTwoNumbers_ReturnsSum( string numbers, int expected ) { ArrangeActAndAssert( numbers, expected ); } [Test] public void Add_WithThreeNumbers_ReturnsSum() { ArrangeActAndAssert( "1,2,3", 6 ); } private void ArrangeActAndAssert( string numbers, int expected ) { var calculator = new StringCalculator(); var result = calculator.Add( numbers ); Assert.AreEqual( expected, result ); } } Now the question is which one is better? My point here is that we do not need so many small methods initially because StringCalculator has no sub classes and secondly the code itself is so simple that we don't need to break it up too much that it gets confusing after having so many small methods. Their point is that code should read like english and also its better if they can break it up earlier than doing refactoring later and third when they will do refactoring it would be much easier to move these methods quite easily into separate classes. My point of view against is that we never made a decision that code is difficult to understand so why we are breaking it up so early. So I need a third person's opinion to understand which option is much better.

    Read the article

  • NHibernate and Stored Procedures in C#

    - by Jess Nickson
    I was recently trying and failing to set up NHibernate (v1.2) in an ASP.NET project. The aim was to execute a stored procedure and return the results, but it took several iterations for me to end up with a working solution. In this post I am simply trying to put the required code in one place, in the hope that the snippets may be useful in guiding someone else through the same process. As it is kind’ve the first time I have had to play with NHibernate, there is a good chance that this solution is sub-optimal and, as such, I am open to suggestions on how it could be improved! There are four code snippets that I required: The stored procedure that I wanted to execute The C# class representation of the results of the procedure The XML mapping file that allows NHibernate to map from C# to the procedure and back again The C# code used to run the stored procedure The Stored Procedure The procedure was designed to take a UserId and, from this, go and grab some profile data for that user. Simple, right? We just need to do a join first, because the user’s site ID (the one we have access to) is not the same as the user’s forum ID. CREATE PROCEDURE [dbo].[GetForumProfileDetails] ( @userId INT ) AS BEGIN SELECT Users.UserID, forumUsers.Twitter, forumUsers.Facebook, forumUsers.GooglePlus, forumUsers.LinkedIn, forumUsers.PublicEmailAddress FROM Users INNER JOIN Forum_Users forumUsers ON forumUsers.UserSiteID = Users.UserID WHERE Users.UserID = @userId END I’d like to make a shout out to Format SQL for its help with, well, formatting the above SQL!   The C# Class This is just the class representation of the results we expect to get from the stored procedure. NHibernate requires a virtual property for each column of data, and these properties must be called the same as the column headers. You will also need to ensure that there is a public or protected parameterless constructor. public class ForumProfile : IForumProfile { public virtual int UserID { get; set; } public virtual string Twitter { get; set; } public virtual string Facebook { get; set; } public virtual string GooglePlus { get; set; } public virtual string LinkedIn { get; set; } public virtual string PublicEmailAddress { get; set; } public ForumProfile() { } }   The NHibernate Mapping File This is the XML I wrote in order to make NHibernate a) aware of the stored procedure, and b) aware of the expected results of the procedure. <?xml version="1.0" encoding="utf-8" ?> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" namespace="[namespace]" assembly="[assembly]"> <sql-query name="GetForumProfileDetails"> <return-scalar column="UserID" type="Int32"/> <return-scalar column="Twitter" type="String"/> <return-scalar column="Facebook" type="String"/> <return-scalar column="GooglePlus" type="String"/> <return-scalar column="LinkedIn" type="String"/> <return-scalar column="PublicEmailAddress" type="String"/> exec GetForumProfileDetails :UserID </sql-query> </hibernate-mapping>   Calling the Stored Procedure Finally, to bring it all together, the C# code that I used in order to execute the stored procedure! public IForumProfile GetForumUserProfile(IUser user) { return NHibernateHelper .GetCurrentSession() .GetNamedQuery("GetForumProfileDetails") .SetInt32("UserID", user.UserID) .SetResultTransformer( Transformers.AliasToBean(typeof (ForumProfile))) .UniqueResult<ForumProfile>(); } There are a number of ‘Set’ methods (i.e. SetInt32) that allow you specify values for any parameters in the procedure. The AliasToBean method is then required to map the returned scalars (as specified in the XML) to the correct C# class.

    Read the article

  • Handling Configuration Changes in Windows Azure Applications

    - by Your DisplayName here!
    While finalizing StarterSTS 1.5, I had a closer look at lifetime and configuration management in Windows Azure. (this is no new information – just some bits and pieces compiled at one single place – plus a bit of reality check) When dealing with lifetime management (and especially configuration changes), there are two mechanisms in Windows Azure – a RoleEntryPoint derived class and a couple of events on the RoleEnvironment class. You can find good documentation about RoleEntryPoint here. The RoleEnvironment class features two events that deal with configuration changes – Changing and Changed. Whenever a configuration change gets pushed out by the fabric controller (either changes in the settings section or the instance count of a role) the Changing event gets fired. The event handler receives an instance of the RoleEnvironmentChangingEventArgs type. This contains a collection of type RoleEnvironmentChange. This in turn is a base class for two other classes that detail the two types of possible configuration changes I mentioned above: RoleEnvironmentConfigurationSettingsChange (configuration settings) and RoleEnvironmentTopologyChange (instance count). The two respective classes contain information about which configuration setting and which role has been changed. Furthermore the Changing event can trigger a role recycle (aka reboot) by setting EventArgs.Cancel to true. So your typical job in the Changing event handler is to figure if your application can handle these configuration changes at runtime, or if you rather want a clean restart. Prior to the SDK 1.3 VS Templates – the following code was generated to reboot if any configuration settings have changed: private void RoleEnvironmentChanging(object sender, RoleEnvironmentChangingEventArgs e) {     // If a configuration setting is changing     if (e.Changes.Any(change => change is RoleEnvironmentConfigurationSettingChange))     {         // Set e.Cancel to true to restart this role instance         e.Cancel = true;     } } This is a little drastic as a default since most applications will work just fine with changed configuration – maybe that’s the reason this code has gone away in the 1.3 SDK templates (more). The Changed event gets fired after the configuration changes have been applied. Again the changes will get passed in just like in the Changing event. But from this point on RoleEnvironment.GetConfigurationSettingValue() will return the new values. You can still decide to recycle if some change was so drastic that you need a restart. You can use RoleEnvironment.RequestRecycle() for that (more). As a rule of thumb: When you always use GetConfigurationSettingValue to read from configuration (and there is no bigger state involved) – you typically don’t need to recycle. In the case of StarterSTS, I had to abstract away the physical configuration system and read the actual configuration (either from web.config or the Azure service configuration) at startup. I then cache the configuration settings in memory. This means I indeed need to take action when configuration changes – so in my case I simply clear the cache, and the new config values get read on the next access to my internal configuration object. No downtime – nice! Gotcha A very natural place to hook up the RoleEnvironment lifetime events is the RoleEntryPoint derived class. But with the move to the full IIS model in 1.3 – the RoleEntryPoint methods get executed in a different AppDomain (even in a different process) – see here.. You might no be able to call into your application code to e.g. clear a cache. Keep that in mind! In this case you need to handle these events from e.g. global.asax.

    Read the article

  • Where to store front-end data for "object calculator"

    - by Justin Grahn
    I recently have completed a language library that acts as a giant filter for food items, and flows a bit like this :Products -> Recipes -> MenuItems -> Meals and finally, upon submission, creates an Order. I have also completed a database structure that stores all the pertinent information to each class, and seems to fit my needs. The issue I'm having is linking the two. I imagined all of the information being local to each instance of the product, where there exists one backend user who edits and manipulates data, and multiple front end users who select their Meal(s) to create an Order. Ideally, all of the front end users would have all of this information stored locally within the library, and would update the library on startup from a database. How should I go about storing the data so that I can load it into the library every time the user opens the application? Do I package a database onboard and just load and populate every time? The only method I can currently conceive of doing this, even if I only have 500 possible Product objects, would require me to foreach the list for every Product that I need to match to a Recipe and so on and so forth every time I relaunch the program, which seems like a lot of wasteful loading. Here is a general flow of my architecture: Products: public class Product : IPortionable { public Product(string n, uint pNumber = 0) { name = n; productNumber = pNumber; } public string name { get; set; } public uint productNumber { get; set; } } Recipes: public Recipe(string n, decimal yieldAmt, Volume.Unit unit) { name = n; yield = new Volume(yieldAmt, unit); yield.ConvertUnit(); } /// <summary> /// Creates a new ingredient object /// </summary> /// <param name="n">Name</param> /// <param name="yieldAmt">Recipe Yield</param> /// <param name="unit">Unit of Yield</param> public Recipe(string n, decimal yieldAmt, Weight.Unit unit) { name = n; yield = new Weight(yieldAmt, unit); } public Recipe(Recipe r) { name = r.name; yield = r.yield; ingredients = r.ingredients; } public string name { get; set; } public IMeasure yield; public Dictionary<IPortionable, IMeasure> ingredients = new Dictionary<IPortionable,IMeasure>(); MenuItems: public abstract class MenuItem : IScalable { public static string title = null; public string name { get; set; } public decimal maxPortionSize { get; set; } public decimal minPortionSize { get; set; } public Dictionary<IPortionable, IMeasure> ingredients = new Dictionary<IPortionable, IMeasure>(); and Meal: public class Meal { public Meal(int guests) { guestCount = guests; } public int guestCount { get; private set; } //TODO: Make a new MainCourse class that holds pasta and Entree public Dictionary<string, int> counts = new Dictionary<string, int>(){ {MainCourse.title, 0}, {Side.title , 0}, {Appetizer.title, 0} }; public List<MenuItem> items = new List<MenuItem>(); The Database just stores and links each of these basic names and amounts together usings ID's (RecipeID, ProductID and MenuItemID)

    Read the article

< Previous Page | 448 449 450 451 452 453 454 455 456 457 458 459  | Next Page >