Search Results

Search found 11336 results on 454 pages for 'property'.

Page 452/454 | < Previous Page | 448 449 450 451 452 453 454  | Next Page >

  • Error deploying Spring with JAX-WS application in Jboss 6 server

    - by arlahiru
    I'm getting this error when I deploying spring+JAX-WS application in jboss server 6.1.0. 09:14:38,175 ERROR [org.springframework.web.context.ContextLoader] Context initialization failed: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'com.sun.xml.ws.transport.http.servlet.SpringBinding#0' defined in ServletContext resource [/WEB-INF/applicationContext.xml]: Cannot create inner bean '(inner bean)' of type [org.jvnet.jax_ws_commons.spring.SpringService] while setting bean property 'service'; nested exception is org.springframework.beans.factory.BeanCreationException: Error creating bean with name '(inner bean)': FactoryBean threw exception on object creation; nested exception is java.lang.LinkageError: loader constraint violation: when resolving field "DATETIME" the class loader (instance of org/jboss/classloader/spi/base/BaseClassLoader) of the referring class, javax/xml/datatype/DatatypeConstants, and the class loader (instance of <bootloader>) for the field's resolved type, loader constraint violation: when resolving field "DATETIME" the class loader at org.springframework.beans.factory.support.BeanDefinitionValueResolver.resolveInnerBean(BeanDefinitionValueResolver.java:230) [:2.5.6] at org.springframework.beans.factory.support.BeanDefinitionValueResolver.resolveValueIfNecessary(BeanDefinitionValueResolver.java:122) [:2.5.6] at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.applyPropertyValues(AbstractAutowireCapableBeanFactory.java:1245) [:2.5.6] at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.populateBean(AbstractAutowireCapableBeanFactory.java:1010) [:2.5.6] at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:472) [:2.5.6] at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory$1.run(AbstractAutowireCapableBeanFactory.java:409) [:2.5.6] at java.security.AccessController.doPrivileged(Native Method) [:1.7.0_05] at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:380) [:2.5.6] at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:264) [:2.5.6] at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:222) [:2.5.6] at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:261) [:2.5.6] at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:185) [:2.5.6] at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:164) [:2.5.6] at org.springframework.beans.factory.support.DefaultListableBeanFactory.preInstantiateSingletons(DefaultListableBeanFactory.java:429) [:2.5.6] at org.springframework.context.support.AbstractApplicationContext.finishBeanFactoryInitialization(AbstractApplicationContext.java:728) [:2.5.6] at org.springframework.context.support.AbstractApplicationContext.refresh(AbstractApplicationContext.java:380) [:2.5.6] at org.springframework.web.context.ContextLoader.createWebApplicationContext(ContextLoader.java:255) [:2.5.6] at org.springframework.web.context.ContextLoader.initWebApplicationContext(ContextLoader.java:199) [:2.5.6] at org.springframework.web.context.ContextLoaderListener.contextInitialized(ContextLoaderListener.java:45) [:2.5.6] at org.apache.catalina.core.StandardContext.contextListenerStart(StandardContext.java:3369) [:6.1.0.Final] at org.apache.catalina.core.StandardContext.start(StandardContext.java:3828) [:6.1.0.Final] at org.jboss.web.tomcat.service.deployers.TomcatDeployment.performDeployInternal(TomcatDeployment.java:294) [:6.1.0.Final] at org.jboss.web.tomcat.service.deployers.TomcatDeployment.performDeploy(TomcatDeployment.java:146) [:6.1.0.Final] at org.jboss.web.deployers.AbstractWarDeployment.start(AbstractWarDeployment.java:476) [:6.1.0.Final] at org.jboss.web.deployers.WebModule.startModule(WebModule.java:118) [:6.1.0.Final] at org.jboss.web.deployers.WebModule.start(WebModule.java:95) [:6.1.0.Final] at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) [:1.7.0_05] at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) [:1.7.0_05] at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) [:1.7.0_05] at java.lang.reflect.Method.invoke(Method.java:601) [:1.7.0_05] at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:157) [:6.0.0.GA] at org.jboss.mx.server.Invocation.dispatch(Invocation.java:96) [:6.0.0.GA] at org.jboss.mx.server.Invocation.invoke(Invocation.java:88) [:6.0.0.GA] at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:271) [:6.0.0.GA] at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:670) [:6.0.0.GA] at org.jboss.system.microcontainer.ServiceProxy.invoke(ServiceProxy.java:206) [:2.2.0.SP2] at $Proxy41.start(Unknown Source) at org.jboss.system.microcontainer.StartStopLifecycleAction.installAction(StartStopLifecycleAction.java:53) [:2.2.0.SP2] at org.jboss.system.microcontainer.StartStopLifecycleAction.installAction(StartStopLifecycleAction.java:41) [:2.2.0.SP2] at org.jboss.dependency.plugins.action.SimpleControllerContextAction.simpleInstallAction(SimpleControllerContextAction.java:62) [jboss-dependency.jar:2.2.0.SP2] at org.jboss.dependency.plugins.action.AccessControllerContextAction.install(AccessControllerContextAction.java:71) [jboss-dependency.jar:2.2.0.SP2] at org.jboss.dependency.plugins.AbstractControllerContextActions.install(AbstractControllerContextActions.java:51) [jboss-dependency.jar:2.2.0.SP2] at org.jboss.dependency.plugins.AbstractControllerContext.install(AbstractControllerContext.java:379) [jboss-dependency.jar:2.2.0.SP2] at org.jboss.system.microcontainer.ServiceControllerContext.install(ServiceControllerContext.java:301) [:2.2.0.SP2] at org.jboss.dependency.plugins.AbstractController.install(AbstractController.java:2044) [jboss-dependency.jar:2.2.0.SP2] at org.jboss.dependency.plugins.AbstractController.incrementState(AbstractController.java:1083) [jboss-dependency.jar:2.2.0.SP2] at org.jboss.dependency.plugins.AbstractController.executeOrIncrementStateDirectly(AbstractController.java:1322) [jboss-dependency.jar:2.2.0.SP2] at org.jboss.dependency.plugins.AbstractController.resolveContexts(AbstractController.java:1246) [jboss-dependency.jar:2.2.0.SP2] at org.jboss.dependency.plugins.AbstractController.resolveContexts(AbstractController.java:1139) [jboss-dependency.jar:2.2.0.SP2] at org.jboss.dependency.plugins.AbstractController.change(AbstractController.java:939) [jboss-dependency.jar:2.2.0.SP2] at org.jboss.dependency.plugins.AbstractController.change(AbstractController.java:654) [jboss-dependency.jar:2.2.0.SP2] at org.jboss.system.ServiceController.doChange(ServiceController.java:671) [:6.1.0.Final (Build SVNTag:JBoss_6.1.0.Final date: 20110816)] at org.jboss.system.ServiceController.start(ServiceController.java:443) [:6.1.0.Final (Build SVNTag:JBoss_6.1.0.Final date: 20110816)] at org.jboss.system.deployers.ServiceDeployer.start(ServiceDeployer.java:189) [:6.1.0.Final] at org.jboss.system.deployers.ServiceDeployer.deploy(ServiceDeployer.java:102) [:6.1.0.Final] at org.jboss.system.deployers.ServiceDeployer.deploy(ServiceDeployer.java:49) [:6.1.0.Final] at org.jboss.deployers.spi.deployer.helpers.AbstractSimpleRealDeployer.internalDeploy(AbstractSimpleRealDeployer.java:63) [:2.2.2.GA] at org.jboss.deployers.spi.deployer.helpers.AbstractRealDeployer.deploy(AbstractRealDeployer.java:55) [:2.2.2.GA] at org.jboss.deployers.plugins.deployers.DeployerWrapper.deploy(DeployerWrapper.java:179) [:2.2.2.GA] at org.jboss.deployers.plugins.deployers.DeployersImpl.doDeploy(DeployersImpl.java:1832) [:2.2.2.GA] at org.jboss.deployers.plugins.deployers.DeployersImpl.doInstallParentFirst(DeployersImpl.java:1550) [:2.2.2.GA] at org.jboss.deployers.plugins.deployers.DeployersImpl.doInstallParentFirst(DeployersImpl.java:1571) [:2.2.2.GA] at org.jboss.deployers.plugins.deployers.DeployersImpl.install(DeployersImpl.java:1491) [:2.2.2.GA] at org.jboss.dependency.plugins.AbstractControllerContext.install(AbstractControllerContext.java:379) [jboss-dependency.jar:2.2.0.SP2] at org.jboss.dependency.plugins.AbstractController.install(AbstractController.java:2044) [jboss-dependency.jar:2.2.0.SP2] at org.jboss.dependency.plugins.AbstractController.incrementState(AbstractController.java:1083) [jboss-dependency.jar:2.2.0.SP2] at org.jboss.dependency.plugins.AbstractController.executeOrIncrementStateDirectly(AbstractController.java:1322) [jboss-dependency.jar:2.2.0.SP2] at org.jboss.dependency.plugins.AbstractController.resolveContexts(AbstractController.java:1246) [jboss-dependency.jar:2.2.0.SP2] at org.jboss.dependency.plugins.AbstractController.resolveContexts(AbstractController.java:1139) [jboss-dependency.jar:2.2.0.SP2] at org.jboss.dependency.plugins.AbstractController.change(AbstractController.java:939) [jboss-dependency.jar:2.2.0.SP2] at org.jboss.dependency.plugins.AbstractController.change(AbstractController.java:654) [jboss-dependency.jar:2.2.0.SP2] at org.jboss.deployers.plugins.deployers.DeployersImpl.change(DeployersImpl.java:1983) [:2.2.2.GA] at org.jboss.deployers.plugins.deployers.DeployersImpl.process(DeployersImpl.java:1076) [:2.2.2.GA] at org.jboss.deployers.plugins.main.MainDeployerImpl.process(MainDeployerImpl.java:679) [:2.2.2.GA] at org.jboss.system.server.profileservice.deployers.MainDeployerPlugin.process(MainDeployerPlugin.java:106) [:6.1.0.Final] at org.jboss.profileservice.dependency.ProfileControllerContext$DelegateDeployer.process(ProfileControllerContext.java:143) [:0.2.2] at org.jboss.profileservice.plugins.deploy.actions.DeploymentStartAction.doPrepare(DeploymentStartAction.java:98) [:0.2.2] at org.jboss.profileservice.management.actions.AbstractTwoPhaseModificationAction.prepare(AbstractTwoPhaseModificationAction.java:101) [:0.2.2] at org.jboss.profileservice.management.ModificationSession.prepare(ModificationSession.java:87) [:0.2.2] at org.jboss.profileservice.management.AbstractActionController.internalPerfom(AbstractActionController.java:234) [:0.2.2] at org.jboss.profileservice.management.AbstractActionController.performWrite(AbstractActionController.java:213) [:0.2.2] at org.jboss.profileservice.management.AbstractActionController.perform(AbstractActionController.java:150) [:0.2.2] at org.jboss.profileservice.plugins.deploy.AbstractDeployHandler.startDeployments(AbstractDeployHandler.java:168) [:0.2.2] at org.jboss.profileservice.management.upload.remoting.DeployHandlerDelegate.startDeployments(DeployHandlerDelegate.java:74) [:6.1.0.Final] at org.jboss.profileservice.management.upload.remoting.DeployHandler.invoke(DeployHandler.java:156) [:6.1.0.Final] at org.jboss.remoting.ServerInvoker.invoke(ServerInvoker.java:967) [:6.1.0.Final] at org.jboss.remoting.transport.socket.ServerThread.completeInvocation(ServerThread.java:791) [:6.1.0.Final] at org.jboss.remoting.transport.socket.ServerThread.processInvocation(ServerThread.java:744) [:6.1.0.Final] at org.jboss.remoting.transport.socket.ServerThread.dorun(ServerThread.java:548) [:6.1.0.Final] at org.jboss.remoting.transport.socket.ServerThread.run(ServerThread.java:234) [:6.1.0.Final] Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with name '(inner bean)': FactoryBean threw exception on object creation; nested exception is java.lang.LinkageError: loader constraint violation: when resolving field "DATETIME" the class loader (instance of org/jboss/classloader/spi/base/BaseClassLoader) of the referring class, javax/xml/datatype/DatatypeConstants, and the class loader (instance of <bootloader>) for the field's resolved type, loader constraint violation: when resolving field "DATETIME" the class loader at org.springframework.beans.factory.support.FactoryBeanRegistrySupport$1.run(FactoryBeanRegistrySupport.java:127) [:2.5.6] at java.security.AccessController.doPrivileged(Native Method) [:1.7.0_05] at org.springframework.beans.factory.support.FactoryBeanRegistrySupport.doGetObjectFromFactoryBean(FactoryBeanRegistrySupport.java:116) [:2.5.6] at org.springframework.beans.factory.support.FactoryBeanRegistrySupport.getObjectFromFactoryBean(FactoryBeanRegistrySupport.java:98) [:2.5.6] at org.springframework.beans.factory.support.BeanDefinitionValueResolver.resolveInnerBean(BeanDefinitionValueResolver.java:223) [:2.5.6] ... 89 more Caused by: java.lang.LinkageError: loader constraint violation: when resolving field "DATETIME" the class loader (instance of org/jboss/classloader/spi/base/BaseClassLoader) of the referring class, javax/xml/datatype/DatatypeConstants, and the class loader (instance of <bootloader>) for the field's resolved type, loader constraint violation: when resolving field "DATETIME" the class loader at com.sun.xml.bind.v2.model.impl.RuntimeBuiltinLeafInfoImpl.<clinit>(RuntimeBuiltinLeafInfoImpl.java:263) [:2.2] at com.sun.xml.bind.v2.model.impl.RuntimeTypeInfoSetImpl.<init>(RuntimeTypeInfoSetImpl.java:65) [:2.2] at com.sun.xml.bind.v2.model.impl.RuntimeModelBuilder.createTypeInfoSet(RuntimeModelBuilder.java:133) [:2.2] at com.sun.xml.bind.v2.model.impl.RuntimeModelBuilder.createTypeInfoSet(RuntimeModelBuilder.java:85) [:2.2] at com.sun.xml.bind.v2.model.impl.ModelBuilder.<init>(ModelBuilder.java:156) [:2.2] at com.sun.xml.bind.v2.model.impl.RuntimeModelBuilder.<init>(RuntimeModelBuilder.java:93) [:2.2] at com.sun.xml.bind.v2.runtime.JAXBContextImpl.getTypeInfoSet(JAXBContextImpl.java:473) [:2.2] at com.sun.xml.bind.v2.runtime.JAXBContextImpl.<init>(JAXBContextImpl.java:319) [:2.2] at com.sun.xml.bind.v2.runtime.JAXBContextImpl$JAXBContextBuilder.build(JAXBContextImpl.java:1170) [:2.2] at com.sun.xml.bind.v2.ContextFactory.createContext(ContextFactory.java:188) [:2.2] at com.sun.xml.bind.api.JAXBRIContext.newInstance(JAXBRIContext.java:111) [:2.2] at com.sun.xml.ws.developer.JAXBContextFactory$1.createJAXBContext(JAXBContextFactory.java:113) [:2.2.3] at com.sun.xml.ws.model.AbstractSEIModelImpl$1.run(AbstractSEIModelImpl.java:166) [:2.2.3] at com.sun.xml.ws.model.AbstractSEIModelImpl$1.run(AbstractSEIModelImpl.java:159) [:2.2.3] at java.security.AccessController.doPrivileged(Native Method) [:1.7.0_05] at com.sun.xml.ws.model.AbstractSEIModelImpl.createJAXBContext(AbstractSEIModelImpl.java:158) [:2.2.3] at com.sun.xml.ws.model.AbstractSEIModelImpl.postProcess(AbstractSEIModelImpl.java:99) [:2.2.3] at com.sun.xml.ws.model.RuntimeModeler.buildRuntimeModel(RuntimeModeler.java:250) [:2.2.3] at com.sun.xml.ws.server.EndpointFactory.createSEIModel(EndpointFactory.java:343) [:2.2.3] at com.sun.xml.ws.server.EndpointFactory.createEndpoint(EndpointFactory.java:205) [:2.2.3] at com.sun.xml.ws.api.server.WSEndpoint.create(WSEndpoint.java:513) [:2.2.3] at org.jvnet.jax_ws_commons.spring.SpringService.getObject(SpringService.java:333) [:] at org.jvnet.jax_ws_commons.spring.SpringService.getObject(SpringService.java:45) [:] at org.springframework.beans.factory.support.FactoryBeanRegistrySupport$1.run(FactoryBeanRegistrySupport.java:121) [:2.5.6] ... 93 more *** DEPLOYMENTS IN ERROR: Name -> Error vfs:///usr/jboss/jboss-6.1.0.Final/server/default/deploy/SpringWS.war -> org.jboss.deployers.spi.DeploymentException: URL file:/usr/jboss/jboss-6.1.0.Final/server/default/tmp/vfs/automountb159aa6e8c1b8582/SpringWS.war-4ec4d0151b4c7d7/ deployment failed DEPLOYMENTS IN ERROR: Deployment "vfs:///usr/jboss/jboss-6.1.0.Final/server/default/deploy/SpringWS.war" is in error due to the following reason(s): org.jboss.deployers.spi.DeploymentException: URL file:/usr/jboss/jboss-6.1.0.Final/server/default/tmp/vfs/automountb159aa6e8c1b8582/SpringWS.war-4ec4d0151b4c7d7/ deployment failed But this application is workinng correctly in glassfish 3.x server and web service is up and running. I'm using Netbeans IDE in Ubuntu 12.04 to build and deploy the application and I couldn't figure out what is the issue here. I guess its about spring and jboss because its working in glassfish smoothly. Please help me to solve this issue. Thanks all in advance.

    Read the article

  • Glassfish 3 Cant update JDK no way

    - by Parhs
    Hello.. I was using 1.6.0_19 jdk and installed 1.6.0_20 jdk.. Glassfish doesnt like that... Here are my windows environment variables.. ALLUSERSPROFILE=C:\ProgramData ANT_HOME=C:\apache-ant-1.8.1\ APPDATA=C:\Users\Parhs\AppData\Roaming CommonProgramFiles=C:\Program Files\Common Files COMPUTERNAME=PARHS-PC ComSpec=C:\Windows\system32\cmd.exe FP_NO_HOST_CHECK=NO HOMEDRIVE=C: HOMEPATH=\Users\Parhs JAVA_HOME=C:\Program Files\Java\jdk1.6.0_20\ LOCALAPPDATA=C:\Users\Parhs\AppData\Local LOGONSERVER=\\PARHS-PC NUMBER_OF_PROCESSORS=2 OS=Windows_NT Path=C:\Program Files\PHP\;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wb em;C:\Windows\System32\WindowsPowerShell\v1.0\;C:\Program Files\Toshiba\Bluetoot h Toshiba Stack\sys\;C:\Program Files\Microsoft SQL Server\90\Tools\binn\;C:\apa che-ant-1.8.1\bin PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC PHPRC=C:\Program Files\PHP\php.ini PROCESSOR_ARCHITECTURE=x86 PROCESSOR_IDENTIFIER=x86 Family 6 Model 14 Stepping 8, GenuineIntel PROCESSOR_LEVEL=6 PROCESSOR_REVISION=0e08 ProgramData=C:\ProgramData ProgramFiles=C:\Program Files PROMPT=$P$G PSModulePath=C:\Windows\system32\WindowsPowerShell\v1.0\Modules\ PUBLIC=C:\Users\Public SESSIONNAME=Console SystemDrive=C: SystemRoot=C:\Windows TEMP=C:\Users\Parhs\AppData\Local\Temp TMP=C:\Users\Parhs\AppData\Local\Temp USERDOMAIN=Parhs-PC USERNAME=Parhs USERPROFILE=C:\Users\Parhs VS90COMNTOOLS=C:\Program Files\Microsoft Visual Studio 9.0\Common7\Tools\ windir=C:\Windows Also here is my asenv.bat REM DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER. REM REM Copyright 2004-2009 Sun Microsystems, Inc. All rights reserved. REM REM Use is subject to License Terms REM set AS_IMQ_LIB=....\mq\lib set AS_IMQ_BIN=....\mq\bin set AS_CONFIG=..\config set AS_INSTALL=.. set AS_DEF_DOMAINS_PATH=..\domains set AS_DERBY_INSTALL=....\javadb set AS_JAVA="C:\Program Files\Java\jdk1.6.0_20" And although restarting system and server i am getting this report Operating System Information: Name of the Operating System: Windows 7 Binary Architecture name of the Operating System: x86, Version: 6.1 Number of processors available on the Operating System: 2 System load on the available processors for the last minute: -1.0. (Sum of running and queued runnable entities per minute) General Java Runtime Environment Information for the VM: 6152@Parhs-PC JRE BootClassPath: C:\glassfishv3\glassfish/modules/endorsed\javax.annotation.jar;C:\glassfishv3\glassfish/modules/endorsed\jaxb-api-osgi.jar;C:\glassfishv3\glassfish/modules/endorsed\webservices-api-osgi.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\resources.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\rt.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\sunrsasign.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\jsse.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\jce.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\charsets.jar;C:\Program Files\Java\jdk1.6.0_19\jre\classes;C:\glassfishv3\glassfish\lib\monitor\btrace-boot.jar JRE ClassPath: C:\glassfishv3\glassfish\modules\glassfish.jar;C:\glassfishv3\glassfish\lib\monitor\btrace-agent.jar JRE Native Library Path: C:\Program Files\Java\jdk1.6.0_19\bin;.;C:\Windows\Sun\Java\bin;C:\Windows\system32;C:\Windows;C:\Program Files\PHP\;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0\;C:\Program Files\Toshiba\Bluetooth Toshiba Stack\sys\;C:\Program Files\Microsoft SQL Server\90\Tools\binn\;C:\apache-ant-1.8.1\bin JRE name: Java HotSpot(TM) Client VM Vendor: Sun Microsystems Inc. Version: 16.2-b04 List of System Properties for the Java Virtual Machine: ANTLR_USE_DIRECT_CLASS_LOADING = true AS_CONFIG = C:\glassfishv3\glassfish\config\..\config AS_DEF_DOMAINS_PATH = C:\glassfishv3\glassfish\config\..\domains AS_DERBY_INSTALL = C:\glassfishv3\glassfish\config\..\..\javadb AS_IMQ_BIN = C:\glassfishv3\glassfish\config\..\..\mq\bin AS_IMQ_LIB = C:\glassfishv3\glassfish\config\..\..\mq\lib AS_INSTALL = C:\glassfishv3\glassfish\config\.. AS_JAVA = C:\Program Files\Java\jdk1.6.0_20\jre GlassFish_Platform = Felix awt.toolkit = sun.awt.windows.WToolkit catalina.base = C:\glassfishv3\glassfish\domains\domain1 catalina.home = C:\glassfishv3\glassfish\domains\domain1 catalina.useNaming = false com.sun.aas.configRoot = C:\glassfishv3\glassfish\config com.sun.aas.derbyRoot = C:\glassfishv3\javadb com.sun.aas.domainsRoot = C:\glassfishv3\glassfish\domains com.sun.aas.hostName = Parhs-PC com.sun.aas.imqBin = C:\glassfishv3\mq\bin com.sun.aas.imqLib = C:\glassfishv3\mq\lib com.sun.aas.installRoot = C:\glassfishv3\glassfish com.sun.aas.installRootURI = file:/C:/glassfishv3/glassfish/ com.sun.aas.instanceName = server com.sun.aas.instanceRoot = C:\glassfishv3\glassfish\domains\domain1 com.sun.aas.instanceRootURI = file:/C:/glassfishv3/glassfish/domains/domain1/ com.sun.aas.javaRoot = C:\Program Files\Java\jdk1.6.0_19\jre com.sun.enterprise.config.config_environment_factory_class = com.sun.enterprise.config.serverbeans.AppserverConfigEnvironmentFactory com.sun.enterprise.hk2.cacheDir = C:\glassfishv3\glassfish\domains\domain1\osgi-cache\felix com.sun.enterprise.jaccprovider.property.repository = C:\glassfishv3\glassfish\domains\domain1/generated/policy com.sun.enterprise.security.httpsOutboundKeyAlias = s1as common.loader = ${catalina.home}/common/classes,${catalina.home}/common/endorsed/*.jar,${catalina.home}/common/lib/*.jar eclipselink.security.usedoprivileged = true ejb.home = C:\glassfishv3\glassfish\modules\ejb felix.config.properties = file:/C:/glassfishv3/glassfish/osgi/felix/conf/config.properties felix.fileinstall.bundles.new.start = true felix.fileinstall.debug = 1 felix.fileinstall.dir = C:\glassfishv3\glassfish/modules/autostart/ felix.fileinstall.poll = 5000 felix.system.properties = file:/C:/glassfishv3/glassfish/osgi/felix/conf/system.properties file.encoding = Cp1253 file.encoding.pkg = sun.io file.separator = \ glassfish.version = GlassFish v3 (build 74.2) hk2.startup.context.args = #Mon Jun 07 20:27:37 EEST 2010 -startup-classpath=C\:\\glassfishv3\\glassfish\\modules\\glassfish.jar;C\:\\glassfishv3\\glassfish\\lib\\monitor\\btrace-agent.jar __time_zero=1275931657334 hk2.startup.context.mainModule=org.glassfish.core.kernel -startup-args=--domain,,,domain1,,,--domaindir,,,C\:\\glassfishv3\\glassfish\\domains\\domain1 --domain=domain1 -startup-classname=com.sun.enterprise.glassfish.bootstrap.ASMain --domaindir=C\:\\glassfishv3\\glassfish\\domains\\domain1 hk2.startup.context.root = C:\glassfishv3\glassfish\modules http.nonProxyHosts = localhost|127.0.0.1|Parhs-PC java.awt.graphicsenv = sun.awt.Win32GraphicsEnvironment java.awt.printerjob = sun.awt.windows.WPrinterJob java.class.path = C:\glassfishv3\glassfish\modules\glassfish.jar;C:\glassfishv3\glassfish\lib\monitor\btrace-agent.jar java.class.version = 50.0 java.endorsed.dirs = C:\glassfishv3\glassfish/modules/endorsed;C:\glassfishv3\glassfish/lib/endorsed java.ext.dirs = C:\Program Files\Java\jdk1.6.0_19\jre/lib/ext;C:\Program Files\Java\jdk1.6.0_19\jre/jre/lib/ext;C:\glassfishv3\glassfish\domains\domain1/lib/ext java.home = C:\Program Files\Java\jdk1.6.0_19\jre java.io.tmpdir = C:\Users\Parhs\AppData\Local\Temp\ java.library.path = C:\Program Files\Java\jdk1.6.0_19\bin;.;C:\Windows\Sun\Java\bin;C:\Windows\system32;C:\Windows;C:\Program Files\PHP\;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0\;C:\Program Files\Toshiba\Bluetooth Toshiba Stack\sys\;C:\Program Files\Microsoft SQL Server\90\Tools\binn\;C:\apache-ant-1.8.1\bin java.net.useSystemProxies = true java.rmi.server.randomIDs = true java.runtime.name = Java(TM) SE Runtime Environment java.runtime.version = 1.6.0_19-b04 java.security.auth.login.config = C:\glassfishv3\glassfish\domains\domain1/config/login.conf java.security.policy = C:\glassfishv3\glassfish\domains\domain1/config/server.policy java.specification.name = Java Platform API Specification java.specification.vendor = Sun Microsystems Inc. java.specification.version = 1.6 java.util.logging.config.file = C:\glassfishv3\glassfish\domains\domain1\config\logging.properties java.vendor = Sun Microsystems Inc. java.vendor.url = http://java.sun.com/ java.vendor.url.bug = http://java.sun.com/cgi-bin/bugreport.cgi java.version = 1.6.0_19 java.vm.info = mixed mode java.vm.name = Java HotSpot(TM) Client VM java.vm.specification.name = Java Virtual Machine Specification java.vm.specification.vendor = Sun Microsystems Inc. java.vm.specification.version = 1.0 java.vm.vendor = Sun Microsystems Inc. java.vm.version = 16.2-b04 javax.net.ssl.keyStore = C:\glassfishv3\glassfish\domains\domain1/config/keystore.jks javax.net.ssl.keyStorePassword = changeit javax.net.ssl.trustStore = C:\glassfishv3\glassfish\domains\domain1/config/cacerts.jks javax.net.ssl.trustStorePassword = changeit javax.rmi.CORBA.PortableRemoteObjectClass = com.sun.corba.ee.impl.javax.rmi.PortableRemoteObject javax.rmi.CORBA.StubClass = com.sun.corba.ee.impl.javax.rmi.CORBA.StubDelegateImpl javax.rmi.CORBA.UtilClass = com.sun.corba.ee.impl.javax.rmi.CORBA.Util javax.security.jacc.PolicyConfigurationFactory.provider = com.sun.enterprise.security.provider.PolicyConfigurationFactoryImpl jdbc.drivers = org.apache.derby.jdbc.ClientDriver jpa.home = C:\glassfishv3\glassfish\modules\jpa line.separator = org.glassfish.web.rfc2109_cookie_names_enforced = false org.jvnet.hk2.osgimain.autostartBundles = osgi-adapter.jar, org.apache.felix.shell.jar, org.apache.felix.shell.remote.jar, org.apache.felix.configadmin.jar, org.apache.felix.fileinstall.jar org.jvnet.hk2.osgimain.bundlesDir = C:\glassfishv3\glassfish\modules org.jvnet.hk2.osgimain.excludedSubDirs = autostart/ org.omg.CORBA.ORBClass = com.sun.corba.ee.impl.orb.ORBImpl org.omg.CORBA.ORBSingletonClass = com.sun.corba.ee.impl.orb.ORBSingleton org.osgi.framework.storage = C:\glassfishv3\glassfish\domains\domain1\osgi-cache\felix os.arch = x86 os.name = Windows 7 os.version = 6.1 osgi.shell.telnet.ip = 127.0.0.1 osgi.shell.telnet.maxconn = 1 osgi.shell.telnet.port = 6666 package.access = package.definition = path.separator = ; security.home = C:\glassfishv3\glassfish\modules\security server.loader = ${catalina.home}/server/classes,${catalina.home}/server/lib/*.jar shared.loader = ${catalina.home}/shared/classes,${catalina.home}/shared/lib/*.jar sun.arch.data.model = 32 sun.boot.class.path = C:\glassfishv3\glassfish/modules/endorsed\javax.annotation.jar;C:\glassfishv3\glassfish/modules/endorsed\jaxb-api-osgi.jar;C:\glassfishv3\glassfish/modules/endorsed\webservices-api-osgi.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\resources.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\rt.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\sunrsasign.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\jsse.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\jce.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\charsets.jar;C:\Program Files\Java\jdk1.6.0_19\jre\classes;C:\glassfishv3\glassfish\lib\monitor\btrace-boot.jar sun.boot.library.path = C:\Program Files\Java\jdk1.6.0_19\jre\bin sun.cpu.endian = little sun.cpu.isalist = pentium_pro+mmx pentium_pro pentium+mmx pentium i486 i386 i86 sun.desktop = windows sun.io.unicode.encoding = UnicodeLittle sun.java.launcher = SUN_STANDARD sun.jnu.encoding = Cp1253 sun.management.compiler = HotSpot Client Compiler sun.os.patch.level = user.country = GR user.dir = C:\glassfishv3\glassfish\domains\domain1 user.home = C:\Users\Parhs user.language = el user.name = Parhs user.timezone = Europe/Athens user.variant = web.home = C:\glassfishv3\glassfish\modules\web weld.home = C:\glassfishv3\glassfish\modules\weld Why it is so damn hard??? What am i missing?

    Read the article

  • Capturing and Transforming ASP.NET Output with Response.Filter

    - by Rick Strahl
    During one of my Handlers and Modules session at DevConnections this week one of the attendees asked a question that I didn’t have an immediate answer for. Basically he wanted to capture response output completely and then apply some filtering to the output – effectively injecting some additional content into the page AFTER the page had completely rendered. Specifically the output should be captured from anywhere – not just a page and have this code injected into the page. Some time ago I posted some code that allows you to capture ASP.NET Page output by overriding the Render() method, capturing the HtmlTextWriter() and reading its content, modifying the rendered data as text then writing it back out. I’ve actually used this approach on a few occasions and it works fine for ASP.NET pages. But this obviously won’t work outside of the Page class environment and it’s not really generic – you have to create a custom page class in order to handle the output capture. [updated 11/16/2009 – updated ResponseFilterStream implementation and a few additional notes based on comments] Enter Response.Filter However, ASP.NET includes a Response.Filter which can be used – well to filter output. Basically Response.Filter is a stream through which the OutputStream is piped back to the Web Server (indirectly). As content is written into the Response object, the filter stream receives the appropriate Stream commands like Write, Flush and Close as well as read operations although for a Response.Filter that’s uncommon to be hit. The Response.Filter can be programmatically replaced at runtime which allows you to effectively intercept all output generation that runs through ASP.NET. A common Example: Dynamic GZip Encoding A rather common use of Response.Filter hooking up code based, dynamic  GZip compression for requests which is dead simple by applying a GZipStream (or DeflateStream) to Response.Filter. The following generic routines can be used very easily to detect GZip capability of the client and compress response output with a single line of code and a couple of library helper routines: WebUtils.GZipEncodePage(); which is handled with a few lines of reusable code and a couple of static helper methods: /// <summary> ///Sets up the current page or handler to use GZip through a Response.Filter ///IMPORTANT:  ///You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() {     HttpResponse Response = HttpContext.Current.Response;     if(IsGZipSupported())     {         stringAcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"];         if(AcceptEncoding.Contains("deflate"))         {             Response.Filter = newSystem.IO.Compression.DeflateStream(Response.Filter,                                        System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "deflate");         }         else        {             Response.Filter = newSystem.IO.Compression.GZipStream(Response.Filter,                                       System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "gzip");                            }     }     // Allow proxy servers to cache encoded and unencoded versions separately    Response.AppendHeader("Vary", "Content-Encoding"); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } GZipStream and DeflateStream are streams that are assigned to Response.Filter and by doing so apply the appropriate compression on the active Response. Response.Filter content is chunked So to implement a Response.Filter effectively requires only that you implement a custom stream and handle the Write() method to capture Response output as it’s written. At first blush this seems very simple – you capture the output in Write, transform it and write out the transformed content in one pass. And that indeed works for small amounts of content. But you see, the problem is that output is written in small buffer chunks (a little less than 16k it appears) rather than just a single Write() statement into the stream, which makes perfect sense for ASP.NET to stream data back to IIS in smaller chunks to minimize memory usage en route. Unfortunately this also makes it a more difficult to implement any filtering routines since you don’t directly get access to all of the response content which is problematic especially if those filtering routines require you to look at the ENTIRE response in order to transform or capture the output as is needed for the solution the gentleman in my session asked for. So in order to address this a slightly different approach is required that basically captures all the Write() buffers passed into a cached stream and then making the stream available only when it’s complete and ready to be flushed. As I was thinking about the implementation I also started thinking about the few instances when I’ve used Response.Filter implementations. Each time I had to create a new Stream subclass and create my custom functionality but in the end each implementation did the same thing – capturing output and transforming it. I thought there should be an easier way to do this by creating a re-usable Stream class that can handle stream transformations that are common to Response.Filter implementations. Creating a semi-generic Response Filter Stream Class What I ended up with is a ResponseFilterStream class that provides a handful of Events that allow you to capture and/or transform Response content. The class implements a subclass of Stream and then overrides Write() and Flush() to handle capturing and transformation operations. By exposing events it’s easy to hook up capture or transformation operations via single focused methods. ResponseFilterStream exposes the following events: CaptureStream, CaptureString Captures the output only and provides either a MemoryStream or String with the final page output. Capture is hooked to the Flush() operation of the stream. TransformStream, TransformString Allows you to transform the complete response output with events that receive a MemoryStream or String respectively and can you modify the output then return it back as a return value. The transformed output is then written back out in a single chunk to the response output stream. These events capture all output internally first then write the entire buffer into the response. TransformWrite, TransformWriteString Allows you to transform the Response data as it is written in its original chunk size in the Stream’s Write() method. Unlike TransformStream/TransformString which operate on the complete output, these events only see the current chunk of data written. This is more efficient as there’s no caching involved, but can cause problems due to searched content splitting over multiple chunks. Using this implementation, creating a custom Response.Filter transformation becomes as simple as the following code. To hook up the Response.Filter using the MemoryStream version event: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformStream += filter_TransformStream; Response.Filter = filter; and the event handler to do the transformation: MemoryStream filter_TransformStream(MemoryStream ms) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = encoding.GetString(ms.ToArray()); output = FixPaths(output); ms = new MemoryStream(output.Length); byte[] buffer = encoding.GetBytes(output); ms.Write(buffer,0,buffer.Length); return ms; } private string FixPaths(string output) { string path = HttpContext.Current.Request.ApplicationPath; // override root path wonkiness if (path == "/") path = ""; output = output.Replace("\"~/", "\"" + path + "/").Replace("'~/", "'" + path + "/"); return output; } The idea of the event handler is that you can do whatever you want to the stream and return back a stream – either the same one that’s been modified or a brand new one – which is then sent back to as the final response. The above code can be simplified even more by using the string version events which handle the stream to string conversions for you: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; and the event handler to do the transformation calling the same FixPaths method shown above: string filter_TransformString(string output) { return FixPaths(output); } The events for capturing output and capturing and transforming chunks work in a very similar way. By using events to handle the transformations ResponseFilterStream becomes a reusable component and we don’t have to create a new stream class or subclass an existing Stream based classed. By the way, the example used here is kind of a cool trick which transforms “~/” expressions inside of the final generated HTML output – even in plain HTML controls not HTML controls – and transforms them into the appropriate application relative path in the same way that ResolveUrl would do. So you can write plain old HTML like this: <a href=”~/default.aspx”>Home</a>  and have it turned into: <a href=”/myVirtual/default.aspx”>Home</a>  without having to use an ASP.NET control like Hyperlink or Image or having to constantly use: <img src=”<%= ResolveUrl(“~/images/home.gif”) %>” /> in MVC applications (which frankly is one of the most annoying things about MVC especially given the path hell that extension-less and endpoint-less URLs impose). I can’t take credit for this idea. While discussing the Response.Filter issues on Twitter a hint from Dylan Beattie who pointed me at one of his examples which does something similar. I thought the idea was cool enough to use an example for future demos of Response.Filter functionality in ASP.NET next I time I do the Modules and Handlers talk (which was great fun BTW). How practical this is is debatable however since there’s definitely some overhead to using a Response.Filter in general and especially on one that caches the output and the re-writes it later. Make sure to test for performance anytime you use Response.Filter hookup and make sure it' doesn’t end up killing perf on you. You’ve been warned :-}. How does ResponseFilterStream work? The big win of this implementation IMHO is that it’s a reusable  component – so for implementation there’s no new class, no subclassing – you simply attach to an event to implement an event handler method with a straight forward signature to retrieve the stream or string you’re interested in. The implementation is based on a subclass of Stream as is required in order to handle the Response.Filter requirements. What’s different than other implementations I’ve seen in various places is that it supports capturing output as a whole to allow retrieving the full response output for capture or modification. The exception are the TransformWrite and TransformWrite events which operate only active chunk of data written by the Response. For captured output, the Write() method captures output into an internal MemoryStream that is cached until writing is complete. So Write() is called when ASP.NET writes to the Response stream, but the filter doesn’t pass on the Write immediately to the filter’s internal stream. The data is cached and only when the Flush() method is called to finalize the Stream’s output do we actually send the cached stream off for transformation (if the events are hooked up) and THEN finally write out the returned content in one big chunk. Here’s the implementation of ResponseFilterStream: /// <summary> /// A semi-generic Stream implementation for Response.Filter with /// an event interface for handling Content transformations via /// Stream or String. /// <remarks> /// Use with care for large output as this implementation copies /// the output into a memory stream and so increases memory usage. /// </remarks> /// </summary> public class ResponseFilterStream : Stream { /// <summary> /// The original stream /// </summary> Stream _stream; /// <summary> /// Current position in the original stream /// </summary> long _position; /// <summary> /// Stream that original content is read into /// and then passed to TransformStream function /// </summary> MemoryStream _cacheStream = new MemoryStream(5000); /// <summary> /// Internal pointer that that keeps track of the size /// of the cacheStream /// </summary> int _cachePointer = 0; /// <summary> /// /// </summary> /// <param name="responseStream"></param> public ResponseFilterStream(Stream responseStream) { _stream = responseStream; } /// <summary> /// Determines whether the stream is captured /// </summary> private bool IsCaptured { get { if (CaptureStream != null || CaptureString != null || TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Determines whether the Write method is outputting data immediately /// or delaying output until Flush() is fired. /// </summary> private bool IsOutputDelayed { get { if (TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Event that captures Response output and makes it available /// as a MemoryStream instance. Output is captured but won't /// affect Response output. /// </summary> public event Action<MemoryStream> CaptureStream; /// <summary> /// Event that captures Response output and makes it available /// as a string. Output is captured but won't affect Response output. /// </summary> public event Action<string> CaptureString; /// <summary> /// Event that allows you transform the stream as each chunk of /// the output is written in the Write() operation of the stream. /// This means that that it's possible/likely that the input /// buffer will not contain the full response output but only /// one of potentially many chunks. /// /// This event is called as part of the filter stream's Write() /// operation. /// </summary> public event Func<byte[], byte[]> TransformWrite; /// <summary> /// Event that allows you to transform the response stream as /// each chunk of bytep[] output is written during the stream's write /// operation. This means it's possibly/likely that the string /// passed to the handler only contains a portion of the full /// output. Typical buffer chunks are around 16k a piece. /// /// This event is called as part of the stream's Write operation. /// </summary> public event Func<string, string> TransformWriteString; /// <summary> /// This event allows capturing and transformation of the entire /// output stream by caching all write operations and delaying final /// response output until Flush() is called on the stream. /// </summary> public event Func<MemoryStream, MemoryStream> TransformStream; /// <summary> /// Event that can be hooked up to handle Response.Filter /// Transformation. Passed a string that you can modify and /// return back as a return value. The modified content /// will become the final output. /// </summary> public event Func<string, string> TransformString; protected virtual void OnCaptureStream(MemoryStream ms) { if (CaptureStream != null) CaptureStream(ms); } private void OnCaptureStringInternal(MemoryStream ms) { if (CaptureString != null) { string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); OnCaptureString(content); } } protected virtual void OnCaptureString(string output) { if (CaptureString != null) CaptureString(output); } protected virtual byte[] OnTransformWrite(byte[] buffer) { if (TransformWrite != null) return TransformWrite(buffer); return buffer; } private byte[] OnTransformWriteStringInternal(byte[] buffer) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = OnTransformWriteString(encoding.GetString(buffer)); return encoding.GetBytes(output); } private string OnTransformWriteString(string value) { if (TransformWriteString != null) return TransformWriteString(value); return value; } protected virtual MemoryStream OnTransformCompleteStream(MemoryStream ms) { if (TransformStream != null) return TransformStream(ms); return ms; } /// <summary> /// Allows transforming of strings /// /// Note this handler is internal and not meant to be overridden /// as the TransformString Event has to be hooked up in order /// for this handler to even fire to avoid the overhead of string /// conversion on every pass through. /// </summary> /// <param name="responseText"></param> /// <returns></returns> private string OnTransformCompleteString(string responseText) { if (TransformString != null) TransformString(responseText); return responseText; } /// <summary> /// Wrapper method form OnTransformString that handles /// stream to string and vice versa conversions /// </summary> /// <param name="ms"></param> /// <returns></returns> internal MemoryStream OnTransformCompleteStringInternal(MemoryStream ms) { if (TransformString == null) return ms; //string content = ms.GetAsString(); string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); content = TransformString(content); byte[] buffer = HttpContext.Current.Response.ContentEncoding.GetBytes(content); ms = new MemoryStream(); ms.Write(buffer, 0, buffer.Length); //ms.WriteString(content); return ms; } /// <summary> /// /// </summary> public override bool CanRead { get { return true; } } public override bool CanSeek { get { return true; } } /// <summary> /// /// </summary> public override bool CanWrite { get { return true; } } /// <summary> /// /// </summary> public override long Length { get { return 0; } } /// <summary> /// /// </summary> public override long Position { get { return _position; } set { _position = value; } } /// <summary> /// /// </summary> /// <param name="offset"></param> /// <param name="direction"></param> /// <returns></returns> public override long Seek(long offset, System.IO.SeekOrigin direction) { return _stream.Seek(offset, direction); } /// <summary> /// /// </summary> /// <param name="length"></param> public override void SetLength(long length) { _stream.SetLength(length); } /// <summary> /// /// </summary> public override void Close() { _stream.Close(); } /// <summary> /// Override flush by writing out the cached stream data /// </summary> public override void Flush() { if (IsCaptured && _cacheStream.Length > 0) { // Check for transform implementations _cacheStream = OnTransformCompleteStream(_cacheStream); _cacheStream = OnTransformCompleteStringInternal(_cacheStream); OnCaptureStream(_cacheStream); OnCaptureStringInternal(_cacheStream); // write the stream back out if output was delayed if (IsOutputDelayed) _stream.Write(_cacheStream.ToArray(), 0, (int)_cacheStream.Length); // Clear the cache once we've written it out _cacheStream.SetLength(0); } // default flush behavior _stream.Flush(); } /// <summary> /// /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> /// <returns></returns> public override int Read(byte[] buffer, int offset, int count) { return _stream.Read(buffer, offset, count); } /// <summary> /// Overriden to capture output written by ASP.NET and captured /// into a cached stream that is written out later when Flush() /// is called. /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> public override void Write(byte[] buffer, int offset, int count) { if ( IsCaptured ) { // copy to holding buffer only - we'll write out later _cacheStream.Write(buffer, 0, count); _cachePointer += count; } // just transform this buffer if (TransformWrite != null) buffer = OnTransformWrite(buffer); if (TransformWriteString != null) buffer = OnTransformWriteStringInternal(buffer); if (!IsOutputDelayed) _stream.Write(buffer, offset, buffer.Length); } } The key features are the events and corresponding OnXXX methods that handle the event hookups, and the Write() and Flush() methods of the stream implementation. All the rest of the members tend to be plain jane passthrough stream implementation code without much consequence. I do love the way Action<t> and Func<T> make it so easy to create the event signatures for the various events – sweet. A few Things to consider Performance Response.Filter is not great for performance in general as it adds another layer of indirection to the ASP.NET output pipeline, and this implementation in particular adds a memory hit as it basically duplicates the response output into the cached memory stream which is necessary since you may have to look at the entire response. If you have large pages in particular this can cause potentially serious memory pressure in your server application. So be careful of wholesale adoption of this (or other) Response.Filters. Make sure to do some performance testing to ensure it’s not killing your app’s performance. Response.Filter works everywhere A few questions came up in comments and discussion as to capturing ALL output hitting the site and – yes you can definitely do that by assigning a Response.Filter inside of a module. If you do this however you’ll want to be very careful and decide which content you actually want to capture especially in IIS 7 which passes ALL content – including static images/CSS etc. through the ASP.NET pipeline. So it is important to filter only on what you’re looking for – like the page extension or maybe more effectively the Response.ContentType. Response.Filter Chaining Originally I thought that filter chaining doesn’t work at all due to a bug in the stream implementation code. But it’s quite possible to assign multiple filters to the Response.Filter property. So the following actually works to both compress the output and apply the transformed content: WebUtils.GZipEncodePage(); ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; However the following does not work resulting in invalid content encoding errors: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; WebUtils.GZipEncodePage(); In other words multiple Response filters can work together but it depends entirely on the implementation whether they can be chained or in which order they can be chained. In this case running the GZip/Deflate stream filters apparently relies on the original content length of the output and chokes when the content is modified. But if attaching the compression first it works fine as unintuitive as that may seem. Resources Download example code Capture Output from ASP.NET Pages © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • How LINQ to Object statements work

    - by rajbk
    This post goes into detail as to now LINQ statements work when querying a collection of objects. This topic assumes you have an understanding of how generics, delegates, implicitly typed variables, lambda expressions, object/collection initializers, extension methods and the yield statement work. I would also recommend you read my previous two posts: Using Delegates in C# Part 1 Using Delegates in C# Part 2 We will start by writing some methods to filter a collection of data. Assume we have an Employee class like so: 1: public class Employee { 2: public int ID { get; set;} 3: public string FirstName { get; set;} 4: public string LastName {get; set;} 5: public string Country { get; set; } 6: } and a collection of employees like so: 1: var employees = new List<Employee> { 2: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 3: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 4: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 5: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 6: }; Filtering We wish to  find all employees that have an even ID. We could start off by writing a method that takes in a list of employees and returns a filtered list of employees with an even ID. 1: static List<Employee> GetEmployeesWithEvenID(List<Employee> employees) { 2: var filteredEmployees = new List<Employee>(); 3: foreach (Employee emp in employees) { 4: if (emp.ID % 2 == 0) { 5: filteredEmployees.Add(emp); 6: } 7: } 8: return filteredEmployees; 9: } The method can be rewritten to return an IEnumerable<Employee> using the yield return keyword. 1: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 2: foreach (Employee emp in employees) { 3: if (emp.ID % 2 == 0) { 4: yield return emp; 5: } 6: } 7: } We put these together in a console application. 1: using System; 2: using System.Collections.Generic; 3: //No System.Linq 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 15: }; 16: var filteredEmployees = GetEmployeesWithEvenID(employees); 17:  18: foreach (Employee emp in filteredEmployees) { 19: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 20: emp.ID, emp.FirstName, emp.LastName, emp.Country); 21: } 22:  23: Console.ReadLine(); 24: } 25: 26: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 27: foreach (Employee emp in employees) { 28: if (emp.ID % 2 == 0) { 29: yield return emp; 30: } 31: } 32: } 33: } 34:  35: public class Employee { 36: public int ID { get; set;} 37: public string FirstName { get; set;} 38: public string LastName {get; set;} 39: public string Country { get; set; } 40: } Output: ID 2 First_Name Jim Last_Name Ashlock Country UK ID 4 First_Name Jill Last_Name Anderson Country AUS Our filtering method is too specific. Let us change it so that it is capable of doing different types of filtering and lets give our method the name Where ;-) We will add another parameter to our Where method. This additional parameter will be a delegate with the following declaration. public delegate bool Filter(Employee emp); The idea is that the delegate parameter in our Where method will point to a method that contains the logic to do our filtering thereby freeing our Where method from any dependency. The method is shown below: 1: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 2: foreach (Employee emp in employees) { 3: if (filter(emp)) { 4: yield return emp; 5: } 6: } 7: } Making the change to our app, we create a new instance of the Filter delegate on line 14 with a target set to the method EmployeeHasEvenId. Running the code will produce the same output. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, filterDelegate); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  37: public class Employee { 38: public int ID { get; set;} 39: public string FirstName { get; set;} 40: public string LastName {get; set;} 41: public string Country { get; set; } 42: } Lets use lambda expressions to inline the contents of the EmployeeHasEvenId method in place of the method. The next code snippet shows this change (see line 15).  For brevity, the Employee class declaration has been skipped. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  The output displays the same two employees.  Our Where method is too restricted since it works with a collection of Employees only. Lets change it so that it works with any IEnumerable<T>. In addition, you may recall from my previous post,  that .NET 3.5 comes with a lot of predefined delegates including public delegate TResult Func<T, TResult>(T arg); We will get rid of our Filter delegate and use the one above instead. We apply these two changes to our code. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14:  15: foreach (Employee emp in filteredEmployees) { 16: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 17: emp.ID, emp.FirstName, emp.LastName, emp.Country); 18: } 19: Console.ReadLine(); 20: } 21: 22: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 23: foreach (var x in source) { 24: if (filter(x)) { 25: yield return x; 26: } 27: } 28: } 29: } We have successfully implemented a way to filter any IEnumerable<T> based on a  filter criteria. Projection Now lets enumerate on the items in the IEnumerable<Employee> we got from the Where method and copy them into a new IEnumerable<EmployeeFormatted>. The EmployeeFormatted class will only have a FullName and ID property. 1: public class EmployeeFormatted { 2: public int ID { get; set; } 3: public string FullName {get; set;} 4: } We could “project” our existing IEnumerable<Employee> into a new collection of IEnumerable<EmployeeFormatted> with the help of a new method. We will call this method Select ;-) 1: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 2: foreach (var emp in employees) { 3: yield return new EmployeeFormatted { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; 7: } 8: } The changes are applied to our app. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14: var formattedEmployees = Select(filteredEmployees); 15:  16: foreach (EmployeeFormatted emp in formattedEmployees) { 17: Console.WriteLine("ID {0} Full_Name {1}", 18: emp.ID, emp.FullName); 19: } 20: Console.ReadLine(); 21: } 22:  23: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 24: foreach (var x in source) { 25: if (filter(x)) { 26: yield return x; 27: } 28: } 29: } 30: 31: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 32: foreach (var emp in employees) { 33: yield return new EmployeeFormatted { 34: ID = emp.ID, 35: FullName = emp.LastName + ", " + emp.FirstName 36: }; 37: } 38: } 39: } 40:  41: public class Employee { 42: public int ID { get; set;} 43: public string FirstName { get; set;} 44: public string LastName {get; set;} 45: public string Country { get; set; } 46: } 47:  48: public class EmployeeFormatted { 49: public int ID { get; set; } 50: public string FullName {get; set;} 51: } Output: ID 2 Full_Name Ashlock, Jim ID 4 Full_Name Anderson, Jill We have successfully selected employees who have an even ID and then shaped our data with the help of the Select method so that the final result is an IEnumerable<EmployeeFormatted>.  Lets make our Select method more generic so that the user is given the freedom to shape what the output would look like. We can do this, like before, with lambda expressions. Our Select method is changed to accept a delegate as shown below. TSource will be the type of data that comes in and TResult will be the type the user chooses (shape of data) as returned from the selector delegate. 1:  2: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 3: foreach (var x in source) { 4: yield return selector(x); 5: } 6: } We see the new changes to our app. On line 15, we use lambda expression to specify the shape of the data. In this case the shape will be of type EmployeeFormatted. 1:  2: public class Program 3: { 4: [STAThread] 5: static void Main(string[] args) 6: { 7: var employees = new List<Employee> { 8: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 9: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 10: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 11: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 12: }; 13:  14: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 15: var formattedEmployees = Select(filteredEmployees, (emp) => 16: new EmployeeFormatted { 17: ID = emp.ID, 18: FullName = emp.LastName + ", " + emp.FirstName 19: }); 20:  21: foreach (EmployeeFormatted emp in formattedEmployees) { 22: Console.WriteLine("ID {0} Full_Name {1}", 23: emp.ID, emp.FullName); 24: } 25: Console.ReadLine(); 26: } 27: 28: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 29: foreach (var x in source) { 30: if (filter(x)) { 31: yield return x; 32: } 33: } 34: } 35: 36: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 37: foreach (var x in source) { 38: yield return selector(x); 39: } 40: } 41: } The code outputs the same result as before. On line 14 we filter our data and on line 15 we project our data. What if we wanted to be more expressive and concise? We could combine both line 14 and 15 into one line as shown below. Assuming you had to perform several operations like this on our collection, you would end up with some very unreadable code! 1: var formattedEmployees = Select(Where(employees, emp => emp.ID % 2 == 0), (emp) => 2: new EmployeeFormatted { 3: ID = emp.ID, 4: FullName = emp.LastName + ", " + emp.FirstName 5: }); A cleaner way to write this would be to give the appearance that the Select and Where methods were part of the IEnumerable<T>. This is exactly what extension methods give us. Extension methods have to be defined in a static class. Let us make the Select and Where extension methods on IEnumerable<T> 1: public static class MyExtensionMethods { 2: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 3: foreach (var x in source) { 4: if (filter(x)) { 5: yield return x; 6: } 7: } 8: } 9: 10: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 11: foreach (var x in source) { 12: yield return selector(x); 13: } 14: } 15: } The creation of the extension method makes the syntax much cleaner as shown below. We can write as many extension methods as we want and keep on chaining them using this technique. 1: var formattedEmployees = employees 2: .Where(emp => emp.ID % 2 == 0) 3: .Select (emp => new EmployeeFormatted { ID = emp.ID, FullName = emp.LastName + ", " + emp.FirstName }); Making these changes and running our code produces the same result. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new EmployeeFormatted { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (EmployeeFormatted emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } 55:  56: public class EmployeeFormatted { 57: public int ID { get; set; } 58: public string FullName {get; set;} 59: } Let’s change our code to return a collection of anonymous types and get rid of the EmployeeFormatted type. We see that the code produces the same output. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (var emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: public static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: public static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } To be more expressive, C# allows us to write our extension method calls as a query expression. Line 16 can be rewritten a query expression like so: 1: var formattedEmployees = from emp in employees 2: where emp.ID % 2 == 0 3: select new { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; When the compiler encounters an expression like the above, it simply rewrites it as calls to our extension methods.  So far we have been using our extension methods. The System.Linq namespace contains several extension methods for objects that implement the IEnumerable<T>. You can see a listing of these methods in the Enumerable class in the System.Linq namespace. Let’s get rid of our extension methods (which I purposefully wrote to be of the same signature as the ones in the Enumerable class) and use the ones provided in the Enumerable class. Our final code is shown below: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; //Added 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 15: }; 16:  17: var formattedEmployees = from emp in employees 18: where emp.ID % 2 == 0 19: select new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: }; 23:  24: foreach (var emp in formattedEmployees) { 25: Console.WriteLine("ID {0} Full_Name {1}", 26: emp.ID, emp.FullName); 27: } 28: Console.ReadLine(); 29: } 30: } 31:  32: public class Employee { 33: public int ID { get; set;} 34: public string FirstName { get; set;} 35: public string LastName {get; set;} 36: public string Country { get; set; } 37: } 38:  39: public class EmployeeFormatted { 40: public int ID { get; set; } 41: public string FullName {get; set;} 42: } This post has shown you a basic overview of LINQ to Objects work by showning you how an expression is converted to a sequence of calls to extension methods when working directly with objects. It gets more interesting when working with LINQ to SQL where an expression tree is constructed – an in memory data representation of the expression. The C# compiler compiles these expressions into code that builds an expression tree at runtime. The provider can then traverse the expression tree and generate the appropriate SQL query. You can read more about expression trees in this MSDN article.

    Read the article

  • Design by Contract with Microsoft .Net Code Contract

    - by Fredrik N
    I have done some talks on different events and summits about Defensive Programming and Design by Contract, last time was at Cornerstone’s Developer Summit 2010. Next time will be at SweNug (Sweden .Net User Group). I decided to write a blog post about of some stuffs I was talking about. Users are a terrible thing! Protect your self from them ”Human users have a gift for doing the worst possible thing at the worst possible time.” – Michael T. Nygard, Release It! The kind of users Michael T. Nygard are talking about is the users of a system. We also have users that uses our code, the users I’m going to focus on is the users of our code. Me and you and another developers. “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” – Martin Fowler Good programmers also writes code that humans know how to use, good programmers also make sure software behave in a predictable manner despise inputs or user actions. Design by Contract   Design by Contract (DbC) is a way for us to make a contract between us (the code writer) and the users of our code. It’s about “If you give me this, I promise to give you this”. It’s not about business validations, that is something completely different that should be part of the domain model. DbC is to make sure the users of our code uses it in a correct way, and that we can rely on the contract and write code in a way where we know that the users will follow the contract. It will make it much easier for us to write code with a contract specified. Something like the following code is something we may see often: public void DoSomething(Object value) { value.DoIKnowThatICanDoThis(); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Where “value” can be uses directly or passed to other methods and later be used. What some of us can easily forget here is that the “value” can be “null”. We will probably not passing a null value, but someone else that uses our code maybe will do it. I think most of you (including me) have passed “null” into a method because you don’t know if the argument need to be specified to a valid value etc. I bet most of you also have got the “Null reference exception”. Sometimes this “Null reference exception” can be hard and take time to fix, because we need to search among our code to see where the “null” value was passed in etc. Wouldn’t it be much better if we can as early as possible specify that the value can’t not be null, so the users of our code also know it when the users starts to use our code, and before run time execution of the code? This is where DbC comes into the picture. We can use DbC to specify what we need, and by doing so we can rely on the contract when we write our code. So the code above can actually use the DoIKnowThatICanDoThis() method on the value object without being worried that the “value” can be null. The contract between the users of the code and us writing the code, says that the “value” can’t be null.   Pre- and Postconditions   When working with DbC we are specifying pre- and postconditions.  Precondition is a condition that should be met before a query or command is executed. An example of a precondition is: “The Value argument of the method can’t be null”, and we make sure the “value” isn’t null before the method is called. Postcondition is a condition that should be met when a command or query is completed, a postcondition will make sure the result is correct. An example of a postconditon is “The method will return a list with at least 1 item”. Commands an Quires When using DbC, we need to know what a Command and a Query is, because some principles that can be good to follow are based on commands and queries. A Command is something that will not return anything, like the SQL’s CREATE, UPDATE and DELETE. There are two kinds of Commands when using DbC, the Creation commands (for example a Constructor), and Others. Others can for example be a Command to add a value to a list, remove or update a value etc. //Creation commands public Stack(int size) //Other commands public void Push(object value); public void Remove(); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   A Query, is something that will return something, for example an Attribute, Property or a Function, like the SQL’s SELECT.   There are two kinds of Queries, the Basic Queries  (Quires that aren’t based on another queries), and the Derived Queries, queries that is based on another queries. Here is an example of queries of a Stack: //Basic Queries public int Count; public object this[int index] { get; } //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To understand about some principles that are good to follow when using DbC, we need to know about the Commands and different Queries. The 6 Principles When working with DbC, it’s advisable to follow some principles to make it easier to define and use contracts. The following DbC principles are: Separate commands and queries. Separate basic queries from derived queries. For each derived query, write a postcondition that specifies what result will be returned, in terms of one or more basic queries. For each command, write a postcondition that specifies the value of every basic query. For every query and command, decide on a suitable precondition. Write invariants to define unchanging properties of objects. Before I will write about each of them I want you to now that I’m going to use .Net 4.0 Code Contract. I will in the rest of the post uses a simple Stack (Yes I know, .Net already have a Stack class) to give you the basic understanding about using DbC. A Stack is a data structure where the first item in, will be the first item out. Here is a basic implementation of a Stack where not contract is specified yet: public class Stack { private object[] _array; //Basic Queries public uint Count; public object this[uint index] { get { return _array[index]; } set { _array[index] = value; } } //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } //Is related to Count and this[] Query public object Top() { return this[Count]; } //Creation commands public Stack(uint size) { Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { this[++Count] = value; } public void Remove() { this[Count] = null; Count--; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: The Stack is implemented in a way to demonstrate the use of Code Contract in a simple way, the implementation may not look like how you would implement it, so don’t think this is the perfect Stack implementation, only used for demonstration.   Before I will go deeper into the principles I will simply mention how we can use the .Net Code Contract. I mention before about pre- and postcondition, is about “Require” something and to “Ensure” something. When using Code Contract, we will use a static class called “Contract” and is located in he “System.Diagnostics.Contracts” namespace. The contract must be specified at the top or our member statement block. To specify a precondition with Code Contract we uses the Contract.Requires method, and to specify a postcondition, we uses the Contract.Ensure method. Here is an example where both a pre- and postcondition are used: public object Top() { Contract.Requires(Count > 0, "Stack is empty"); Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The contract above requires that the Count is greater than 0, if not we can’t get the item at the Top of a Stack. We also Ensures that the results (By using the Contract.Result method, we can specify a postcondition that will check if the value returned from a method is correct) of the Top query is equal to this[Count].   1. Separate Commands and Queries   When working with DbC, it’s important to separate Command and Quires. A method should either be a command that performs an Action, or returning information to the caller, not both. By asking a question the answer shouldn’t be changed. The following is an example of a Command and a Query of a Stack: public void Push(object value) public object Top() .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The Push is a command and will not return anything, just add a value to the Stack, the Top is a query to get the item at the top of the stack.   2. Separate basic queries from derived queries There are two different kinds of queries,  the basic queries that doesn’t rely on another queries, and derived queries that uses a basic query. The “Separate basic queries from derived queries” principle is about about that derived queries can be specified in terms of basic queries. So this principles is more about recognizing that a query is a derived query or a basic query. It will then make is much easier to follow the other principles. The following code shows a basic query and a derived query: //Basic Queries public uint Count; //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   We can see that IsEmpty will use the Count query, and that makes the IsEmpty a Derived query.   3. For each derived query, write a postcondition that specifies what result will be returned, in terms of one or more basic queries.   When the derived query is recognize we can follow the 3ed principle. For each derived query, we can create a postcondition that specifies what result our derived query will return in terms of one or more basic queries. Remember that DbC is about contracts between the users of the code and us writing the code. So we can’t use demand that the users will pass in a valid value, we must also ensure that we will give the users what the users wants, when the user is following our contract. The IsEmpty query of the Stack will use a Count query and that will make the IsEmpty a Derived query, so we should now write a postcondition that specified what results will be returned, in terms of using a basic query and in this case the Count query, //Basic Queries public uint Count; //Derived Queries public bool IsEmpty() { Contract.Ensures(Contract.Result<bool>() == (Count == 0)); return Count == 0; } The Contract.Ensures is used to create a postcondition. The above code will make sure that the results of the IsEmpty (by using the Contract.Result to get the result of the IsEmpty method) is correct, that will say that the IsEmpty will be either true or false based on Count is equal to 0 or not. The postcondition are using a basic query, so the IsEmpty is now following the 3ed principle. We also have another Derived Query, the Top query, it will also need a postcondition and it uses all basic queries. The Result of the Top method must be the same value as the this[] query returns. //Basic Queries public uint Count; public object this[uint index] { get { return _array[index]; } set { _array[index] = value; } } //Derived Queries //Is related to Count and this[] Query public object Top() { Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   4. For each command, write a postcondition that specifies the value of every basic query.   For each command we will create a postconditon that specifies the value of basic queries. If we look at the Stack implementation we will have three Commands, one Creation command, the Constructor, and two others commands, Push and Remove. Those commands need a postcondition and they should include basic query to follow the 4th principle. //Creation commands public Stack(uint size) { Contract.Ensures(Count == 0); Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { Contract.Ensures(Count == Contract.OldValue<uint>(Count) + 1); Contract.Ensures(this[Count] == value); this[++Count] = value; } public void Remove() { Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   As you can see the Create command will Ensures that Count will be 0 when the Stack is created, when a Stack is created there shouldn’t be any items in the stack. The Push command will take a value and put it into the Stack, when an item is pushed into the Stack, the Count need to be increased to know the number of items added to the Stack, and we must also make sure the item is really added to the Stack. The postconditon of the Push method will make sure the that old value of the Count (by using the Contract.OldValue we can get the value a Query has before the method is called)  plus 1 will be equal to the Count query, this is the way we can ensure that the Push will increase the Count with one. We also make sure the this[] query will now contain the item we pushed into the Stack. The Remove method must make sure the Count is decreased by one when the top item is removed from the Stack. The Commands is now following the 4th principle, where each command now have a postcondition that used the value of basic queries. Note: The principle says every basic Query, the Remove only used one Query the Count, it’s because this command can’t use the this[] query because an item is removed, so the only way to make sure an item is removed is to just use the Count query, so the Remove will still follow the principle.   5. For every query and command, decide on a suitable precondition.   We have now focused only on postcondition, now time for some preconditons. The 5th principle is about deciding a suitable preconditon for every query and command. If we starts to look at one of our basic queries (will not go through all Queries and commands here, just some of them) the this[] query, we can’t pass an index that is lower then 1 (.Net arrays and list are zero based, but not the stack in this blog post ;)) and the index can’t be lesser than the number of items in the stack. So here we will need a preconditon. public object this[uint index] { get { Contract.Requires(index >= 1); Contract.Requires(index <= Count); return _array[index]; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Think about the Contract as an documentation about how to use the code in a correct way, so if the contract could be specified elsewhere (not part of the method body), we could simply write “return _array[index]” and there is no need to check if index is greater or lesser than Count, because that is specified in a “contract”. The implementation of Code Contract, requires that the contract is specified in the code. As a developer I would rather have this contract elsewhere (Like Spec#) or implemented in a way Eiffel uses it as part of the language. Now when we have looked at one Query, we can also look at one command, the Remove command (You can see the whole implementation of the Stack at the end of this blog post, where precondition is added to more queries and commands then what I’m going to show in this section). We can only Remove an item if the Count is greater than 0. So we can write a precondition that will require that Count must be greater than 0. public void Remove() { Contract.Requires(Count > 0); Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   6. Write invariants to define unchanging properties of objects.   The last principle is about making sure the object are feeling great! This is done by using invariants. When using Code Contract we can specify invariants by adding a method with the attribute ContractInvariantMethod, the method must be private or public and can only contains calls to Contract.Invariant. To make sure the Stack feels great, the Stack must have 0 or more items, the Count can’t never be a negative value to make sure each command and queries can be used of the Stack. Here is our invariant for the Stack object: [ContractInvariantMethod] private void ObjectInvariant() { Contract.Invariant(Count >= 0); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: The ObjectInvariant method will be called every time after a Query or Commands is called. Here is the full example using Code Contract:   public class Stack { private object[] _array; //Basic Queries public uint Count; public object this[uint index] { get { Contract.Requires(index >= 1); Contract.Requires(index <= Count); return _array[index]; } set { Contract.Requires(index >= 1); Contract.Requires(index <= Count); _array[index] = value; } } //Derived Queries //Is related to Count Query public bool IsEmpty() { Contract.Ensures(Contract.Result<bool>() == (Count == 0)); return Count == 0; } //Is related to Count and this[] Query public object Top() { Contract.Requires(Count > 0, "Stack is empty"); Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } //Creation commands public Stack(uint size) { Contract.Requires(size > 0); Contract.Ensures(Count == 0); Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { Contract.Requires(value != null); Contract.Ensures(Count == Contract.OldValue<uint>(Count) + 1); Contract.Ensures(this[Count] == value); this[++Count] = value; } public void Remove() { Contract.Requires(Count > 0); Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } [ContractInvariantMethod] private void ObjectInvariant() { Contract.Invariant(Count >= 0); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Summary By using Design By Contract we can make sure the users are using our code in a correct way, and we must also make sure the users will get the expected results when they uses our code. This can be done by specifying contracts. To make it easy to use Design By Contract, some principles may be good to follow like the separation of commands an queries. With .Net 4.0 we can use the Code Contract feature to specify contracts.

    Read the article

  • Understanding and Implementing a Force based graph layout algorithm

    - by zcourts
    I'm trying to implement a force base graph layout algorithm, based on http://en.wikipedia.org/wiki/Force-based_algorithms_(graph_drawing) My first attempt didn't work so I looked at http://blog.ivank.net/force-based-graph-drawing-in-javascript.html and https://github.com/dhotson/springy I changed my implementation based on what I thought I understood from those two but I haven't managed to get it right and I'm hoping someone can help? JavaScript isn't my strong point so be gentle... If you're wondering why write my own. In reality I have no real reason to write my own I'm just trying to understand how the algorithm is implemented. Especially in my first link, that demo is brilliant. This is what I've come up with //support function.bind - https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/bind#Compatibility if (!Function.prototype.bind) { Function.prototype.bind = function (oThis) { if (typeof this !== "function") { // closest thing possible to the ECMAScript 5 internal IsCallable function throw new TypeError("Function.prototype.bind - what is trying to be bound is not callable"); } var aArgs = Array.prototype.slice.call(arguments, 1), fToBind = this, fNOP = function () {}, fBound = function () { return fToBind.apply(this instanceof fNOP ? this : oThis || window, aArgs.concat(Array.prototype.slice.call(arguments))); }; fNOP.prototype = this.prototype; fBound.prototype = new fNOP(); return fBound; }; } (function() { var lastTime = 0; var vendors = ['ms', 'moz', 'webkit', 'o']; for(var x = 0; x < vendors.length && !window.requestAnimationFrame; ++x) { window.requestAnimationFrame = window[vendors[x]+'RequestAnimationFrame']; window.cancelAnimationFrame = window[vendors[x]+'CancelAnimationFrame'] || window[vendors[x]+'CancelRequestAnimationFrame']; } if (!window.requestAnimationFrame) window.requestAnimationFrame = function(callback, element) { var currTime = new Date().getTime(); var timeToCall = Math.max(0, 16 - (currTime - lastTime)); var id = window.setTimeout(function() { callback(currTime + timeToCall); }, timeToCall); lastTime = currTime + timeToCall; return id; }; if (!window.cancelAnimationFrame) window.cancelAnimationFrame = function(id) { clearTimeout(id); }; }()); function Graph(o){ this.options=o; this.vertices={}; this.edges={};//form {vertexID:{edgeID:edge}} } /** *Adds an edge to the graph. If the verticies in this edge are not already in the *graph then they are added */ Graph.prototype.addEdge=function(e){ //if vertex1 and vertex2 doesn't exist in this.vertices add them if(typeof(this.vertices[e.vertex1])==='undefined') this.vertices[e.vertex1]=new Vertex(e.vertex1); if(typeof(this.vertices[e.vertex2])==='undefined') this.vertices[e.vertex2]=new Vertex(e.vertex2); //add the edge if(typeof(this.edges[e.vertex1])==='undefined') this.edges[e.vertex1]={}; this.edges[e.vertex1][e.id]=e; } /** * Add a vertex to the graph. If a vertex with the same ID already exists then * the existing vertex's .data property is replaced with the @param v.data */ Graph.prototype.addVertex=function(v){ if(typeof(this.vertices[v.id])==='undefined') this.vertices[v.id]=v; else this.vertices[v.id].data=v.data; } function Vertex(id,data){ this.id=id; this.data=data?data:{}; //initialize to data.[x|y|z] or generate random number for each this.x = this.data.x?this.data.x:-100 + Math.random()*200; this.y = this.data.y?this.data.y:-100 + Math.random()*200; this.z = this.data.y?this.data.y:-100 + Math.random()*200; //set initial velocity to 0 this.velocity = new Point(0, 0, 0); this.mass=this.data.mass?this.data.mass:Math.random(); this.force=new Point(0,0,0); } function Edge(vertex1ID,vertex2ID){ vertex1ID=vertex1ID?vertex1ID:Math.random() vertex2ID=vertex2ID?vertex2ID:Math.random() this.id=vertex1ID+"->"+vertex2ID; this.vertex1=vertex1ID; this.vertex2=vertex2ID; } function Point(x, y, z) { this.x = x; this.y = y; this.z = z; } Point.prototype.plus=function(p){ this.x +=p.x this.y +=p.y this.z +=p.z } function ForceLayout(o){ this.repulsion = o.repulsion?o.repulsion:200; this.attraction = o.attraction?o.attraction:0.06; this.damping = o.damping?o.damping:0.9; this.graph = o.graph?o.graph:new Graph(); this.total_kinetic_energy =0; this.animationID=-1; } ForceLayout.prototype.draw=function(){ //vertex velocities initialized to (0,0,0) when a vertex is created //vertex positions initialized to random position when created cc=0; do{ this.total_kinetic_energy =0; //for each vertex for(var i in this.graph.vertices){ var thisNode=this.graph.vertices[i]; // running sum of total force on this particular node var netForce=new Point(0,0,0) //for each other node for(var j in this.graph.vertices){ if(thisNode!=this.graph.vertices[j]){ //net-force := net-force + Coulomb_repulsion( this_node, other_node ) netForce.plus(this.CoulombRepulsion( thisNode,this.graph.vertices[j])) } } //for each spring connected to this node for(var k in this.graph.edges[thisNode.id]){ //(this node, node its connected to) //pass id of this node and the node its connected to so hookesattraction //can update the force on both vertices and return that force to be //added to the net force this.HookesAttraction(thisNode.id, this.graph.edges[thisNode.id][k].vertex2 ) } // without damping, it moves forever // this_node.velocity := (this_node.velocity + timestep * net-force) * damping thisNode.velocity.x=(thisNode.velocity.x+thisNode.force.x)*this.damping; thisNode.velocity.y=(thisNode.velocity.y+thisNode.force.y)*this.damping; thisNode.velocity.z=(thisNode.velocity.z+thisNode.force.z)*this.damping; //this_node.position := this_node.position + timestep * this_node.velocity thisNode.x=thisNode.velocity.x; thisNode.y=thisNode.velocity.y; thisNode.z=thisNode.velocity.z; //normalize x,y,z??? //total_kinetic_energy := total_kinetic_energy + this_node.mass * (this_node.velocity)^2 this.total_kinetic_energy +=thisNode.mass*((thisNode.velocity.x+thisNode.velocity.y+thisNode.velocity.z)* (thisNode.velocity.x+thisNode.velocity.y+thisNode.velocity.z)) } cc+=1; }while(this.total_kinetic_energy >0.5) console.log(cc,this.total_kinetic_energy,this.graph) this.cancelAnimation(); } ForceLayout.prototype.HookesAttraction=function(v1ID,v2ID){ var a=this.graph.vertices[v1ID] var b=this.graph.vertices[v2ID] var force=new Point(this.attraction*(b.x - a.x),this.attraction*(b.y - a.y),this.attraction*(b.z - a.z)) // hook's attraction a.force.x += force.x; a.force.y += force.y; a.force.z += force.z; b.force.x += this.attraction*(a.x - b.x); b.force.y += this.attraction*(a.y - b.y); b.force.z += this.attraction*(a.z - b.z); return force; } ForceLayout.prototype.CoulombRepulsion=function(vertex1,vertex2){ //http://en.wikipedia.org/wiki/Coulomb's_law // distance squared = ((x1-x2)*(x1-x2)) + ((y1-y2)*(y1-y2)) + ((z1-z2)*(z1-z2)) var distanceSquared = ( (vertex1.x-vertex2.x)*(vertex1.x-vertex2.x)+ (vertex1.y-vertex2.y)*(vertex1.y-vertex2.y)+ (vertex1.z-vertex2.z)*(vertex1.z-vertex2.z) ); if(distanceSquared==0) distanceSquared = 0.001; var coul = this.repulsion / distanceSquared; return new Point(coul * (vertex1.x-vertex2.x),coul * (vertex1.y-vertex2.y), coul * (vertex1.z-vertex2.z)); } ForceLayout.prototype.animate=function(){ if(this.animating) this.animationID=requestAnimationFrame(this.animate.bind(this)); this.draw(); } ForceLayout.prototype.cancelAnimation=function(){ cancelAnimationFrame(this.animationID); this.animating=false; } ForceLayout.prototype.redraw=function(){ this.animating=true; this.animate(); } $(document).ready(function(){ var g= new Graph(); for(var i=0;i<=100;i++){ var v1=new Vertex(Math.random(), {}) var v2=new Vertex(Math.random(), {}) var e1= new Edge(v1.id,v2.id); g.addEdge(e1); } console.log(g); var l=new ForceLayout({ graph:g }); l.redraw(); });

    Read the article

  • Setting a Visual State from a data bound enum in WPF

    - by firoso
    Hey all, I've got a scenario where I want to switch the visiblity of 4 different content controls. The visual states I have set opacity, and collapsed based on each given state (See code.) What I'd like to do is have the visual state bound to a property of my View Model of type Enum. I tried using DataStateBehavior, but it requires true/false, which doesn't work for me. So I tried DataStateSwitchBehavior, which seems to be totally broken for WPF4 from what I could tell. Is there a better way to be doing this? I'm really open to different approaches if need be, but I'd really like to keep this enum in the equation. Edit: The code shouldn't be too important, I just need to know if there's a well known solution to this problem. <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:Custom="http://schemas.microsoft.com/expression/2010/interactivity" xmlns:ei="http://schemas.microsoft.com/expression/2010/interactions" xmlns:ee="http://schemas.microsoft.com/expression/2010/effects" xmlns:customBehaviors="clr-namespace:SEL.MfgTestDev.ESS.Behaviors" x:Class="SEL.MfgTestDev.ESS.View.PresenterControl" mc:Ignorable="d" d:DesignHeight="624" d:DesignWidth="1104" d:DataContext="{Binding ApplicationViewModel, Mode=OneWay, Source={StaticResource Locator}}"> <Grid> <Grid.Resources> <ResourceDictionary> <ResourceDictionary.MergedDictionaries> <ResourceDictionary Source="Layout/TerminalViewTemplate.xaml"/> <ResourceDictionary Source="Layout/DebugViewTemplate.xaml"/> <ResourceDictionary Source="Layout/ProgressViewTemplate.xaml"/> <ResourceDictionary Source="Layout/LoadoutViewTemplate.xaml"/> </ResourceDictionary.MergedDictionaries> </ResourceDictionary> </Grid.Resources> <Custom:Interaction.Behaviors> <customBehaviors:DataStateSwitchBehavior Binding="{Binding ApplicationViewState}"> <customBehaviors:DataStateSwitchCase State="LoadoutState" Value="Loadout"/> </customBehaviors:DataStateSwitchBehavior> </Custom:Interaction.Behaviors> <VisualStateManager.VisualStateGroups> <VisualStateGroup x:Name="ApplicationStates" ei:ExtendedVisualStateManager.UseFluidLayout="True"> <VisualStateGroup.Transitions> <VisualTransition GeneratedDuration="0:0:1"> <VisualTransition.GeneratedEasingFunction> <SineEase EasingMode="EaseInOut"/> </VisualTransition.GeneratedEasingFunction> <ei:ExtendedVisualStateManager.TransitionEffect> <ee:SmoothSwirlGridTransitionEffect/> </ei:ExtendedVisualStateManager.TransitionEffect> </VisualTransition> </VisualStateGroup.Transitions> <VisualState x:Name="LoadoutState"> <Storyboard> <DoubleAnimationUsingKeyFrames Storyboard.TargetProperty="(UIElement.Opacity)" Storyboard.TargetName="LoadoutPage"> <EasingDoubleKeyFrame KeyTime="0" Value="1"/> </DoubleAnimationUsingKeyFrames> <ObjectAnimationUsingKeyFrames Storyboard.TargetProperty="(UIElement.Visibility)" Storyboard.TargetName="LoadoutPage"> <DiscreteObjectKeyFrame KeyTime="0" Value="{x:Static Visibility.Visible}"/> </ObjectAnimationUsingKeyFrames> </Storyboard> </VisualState> <VisualState x:Name="ProgressState"> <Storyboard> <DoubleAnimationUsingKeyFrames Storyboard.TargetProperty="(UIElement.Opacity)" Storyboard.TargetName="ProgressPage"> <EasingDoubleKeyFrame KeyTime="0" Value="1"/> </DoubleAnimationUsingKeyFrames> <ObjectAnimationUsingKeyFrames Storyboard.TargetProperty="(UIElement.Visibility)" Storyboard.TargetName="ProgressPage"> <DiscreteObjectKeyFrame KeyTime="0" Value="{x:Static Visibility.Visible}"/> </ObjectAnimationUsingKeyFrames> </Storyboard> </VisualState> <VisualState x:Name="DebugState"> <Storyboard> <ObjectAnimationUsingKeyFrames Storyboard.TargetProperty="(UIElement.Visibility)" Storyboard.TargetName="DebugPage"> <DiscreteObjectKeyFrame KeyTime="0" Value="{x:Static Visibility.Visible}"/> </ObjectAnimationUsingKeyFrames> <DoubleAnimationUsingKeyFrames Storyboard.TargetProperty="(UIElement.Opacity)" Storyboard.TargetName="DebugPage"> <EasingDoubleKeyFrame KeyTime="0" Value="1"/> </DoubleAnimationUsingKeyFrames> </Storyboard> </VisualState> <VisualState x:Name="TerminalState"> <Storyboard> <ObjectAnimationUsingKeyFrames Storyboard.TargetProperty="(UIElement.Visibility)" Storyboard.TargetName="TerminalPage"> <DiscreteObjectKeyFrame KeyTime="0" Value="{x:Static Visibility.Visible}"/> </ObjectAnimationUsingKeyFrames> <DoubleAnimationUsingKeyFrames Storyboard.TargetProperty="(UIElement.Opacity)" Storyboard.TargetName="TerminalPage"> <EasingDoubleKeyFrame KeyTime="0" Value="1"/> </DoubleAnimationUsingKeyFrames> </Storyboard> </VisualState> </VisualStateGroup> </VisualStateManager.VisualStateGroups> <ContentControl x:Name="LoadoutPage" ContentTemplate="{StaticResource LoadoutViewTemplate}" Opacity="0" Content="{Binding}" Visibility="Collapsed"/> <ContentControl x:Name="ProgressPage" ContentTemplate="{StaticResource ProgressViewTemplate}" Opacity="0" Content="{Binding}" Visibility="Collapsed"/> <ContentControl x:Name="DebugPage" ContentTemplate="{StaticResource DebugViewTemplate}" Opacity="0" Content="{Binding}" Visibility="Collapsed"/> <ContentControl x:Name="TerminalPage" ContentTemplate="{StaticResource TerminalViewTemplate}" Opacity="0" Content="{Binding}" Visibility="Collapsed"/> <TextBlock HorizontalAlignment="Left" TextWrapping="Wrap" VerticalAlignment="Top" Text="{Binding ApplicationViewState}"> <TextBlock.Background> <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0"> <GradientStop Color="Black" Offset="0"/> <GradientStop Color="White" Offset="1"/> </LinearGradientBrush> </TextBlock.Background> </TextBlock> </Grid>

    Read the article

  • Windows Azure: Import/Export Hard Drives, VM ACLs, Web Sockets, Remote Debugging, Continuous Delivery, New Relic, Billing Alerts and More

    - by ScottGu
    Two weeks ago we released a giant set of improvements to Windows Azure, as well as a significant update of the Windows Azure SDK. This morning we released another massive set of enhancements to Windows Azure.  Today’s new capabilities include: Storage: Import/Export Hard Disk Drives to your Storage Accounts HDInsight: General Availability of our Hadoop Service in the cloud Virtual Machines: New VM Gallery, ACL support for VIPs Web Sites: WebSocket and Remote Debugging Support Notification Hubs: Segmented customer push notification support with tag expressions TFS & GIT: Continuous Delivery Support for Web Sites + Cloud Services Developer Analytics: New Relic support for Web Sites + Mobile Services Service Bus: Support for partitioned queues and topics Billing: New Billing Alert Service that sends emails notifications when your bill hits a threshold you define All of these improvements are now available to use immediately (note that some features are still in preview).  Below are more details about them. Storage: Import/Export Hard Disk Drives to Windows Azure I am excited to announce the preview of our new Windows Azure Import/Export Service! The Windows Azure Import/Export Service enables you to move large amounts of on-premises data into and out of your Windows Azure Storage accounts. It does this by enabling you to securely ship hard disk drives directly to our Windows Azure data centers. Once we receive the drives we’ll automatically transfer the data to or from your Windows Azure Storage account.  This enables you to import or export massive amounts of data more quickly and cost effectively (and not be constrained by available network bandwidth). Encrypted Transport Our Import/Export service provides built-in support for BitLocker disk encryption – which enables you to securely encrypt data on the hard drives before you send it, and not have to worry about it being compromised even if the disk is lost/stolen in transit (since the content on the transported hard drives is completely encrypted and you are the only one who has the key to it).  The drive preparation tool we are shipping today makes setting up bitlocker encryption on these hard drives easy. How to Import/Export your first Hard Drive of Data You can read our Getting Started Guide to learn more about how to begin using the import/export service.  You can create import and export jobs via the Windows Azure Management Portal as well as programmatically using our Server Management APIs. It is really easy to create a new import or export job using the Windows Azure Management Portal.  Simply navigate to a Windows Azure storage account, and then click the new Import/Export tab now available within it (note: if you don’t have this tab make sure to sign-up for the Import/Export preview): Then click the “Create Import Job” or “Create Export Job” commands at the bottom of it.  This will launch a wizard that easily walks you through the steps required: For more comprehensive information about Import/Export, refer to Windows Azure Storage team blog.  You can also send questions and comments to the [email protected] email address. We think you’ll find this new service makes it much easier to move data into and out of Windows Azure, and it will dramatically cut down the network bandwidth required when working on large data migration projects.  We hope you like it. HDInsight: 100% Compatible Hadoop Service in the Cloud Last week we announced the general availability release of Windows Azure HDInsight. HDInsight is a 100% compatible Hadoop service that allows you to easily provision and manage Hadoop clusters for big data processing in Windows Azure.  This release is now live in production, backed by an enterprise SLA, supported 24x7 by Microsoft Support, and is ready to use for production scenarios. HDInsight allows you to use Apache Hadoop tools, such as Pig and Hive, to process large amounts of data in Windows Azure Blob Storage. Because data is stored in Windows Azure Blob Storage, you can choose to dynamically create Hadoop clusters only when you need them, and then shut them down when they are no longer required (since you pay only for the time the Hadoop cluster instances are running this provides a super cost effective way to use them).  You can create Hadoop clusters using either the Windows Azure Management Portal (see below) or using our PowerShell and Cross Platform Command line tools: The import/export hard drive support that came out today is a perfect companion service to use with HDInsight – the combination allows you to easily ingest, process and optionally export a limitless amount of data.  We’ve also integrated HDInsight with our Business Intelligence tools, so users can leverage familiar tools like Excel in order to analyze the output of jobs.  You can find out more about how to get started with HDInsight here. Virtual Machines: VM Gallery Enhancements Today’s update of Windows Azure brings with it a new Virtual Machine gallery that you can use to create new VMs in the cloud.  You can launch the gallery by doing New->Compute->Virtual Machine->From Gallery within the Windows Azure Management Portal: The new Virtual Machine Gallery includes some nice enhancements that make it even easier to use: Search: You can now easily search and filter images using the search box in the top-right of the dialog.  For example, simply type “SQL” and we’ll filter to show those images in the gallery that contain that substring. Category Tree-view: Each month we add more built-in VM images to the gallery.  You can continue to browse these using the “All” view within the VM Gallery – or now quickly filter them using the category tree-view on the left-hand side of the dialog.  For example, by selecting “Oracle” in the tree-view you can now quickly filter to see the official Oracle supplied images. MSDN and Supported checkboxes: With today’s update we are also introducing filters that makes it easy to filter out types of images that you may not be interested in. The first checkbox is MSDN: using this filter you can exclude any image that is not part of the Windows Azure benefits for MSDN subscribers (which have highly discounted pricing - you can learn more about the MSDN pricing here). The second checkbox is Supported: this filter will exclude any image that contains prerelease software, so you can feel confident that the software you choose to deploy is fully supported by Windows Azure and our partners. Sort options: We sort gallery images by what we think customers are most interested in, but sometimes you might want to sort using different views. So we’re providing some additional sort options, like “Newest,” to customize the image list for what suits you best. Pricing information: We now provide additional pricing information about images and options on how to cost effectively run them directly within the VM Gallery. The above improvements make it even easier to use the VM Gallery and quickly create launch and run Virtual Machines in the cloud. Virtual Machines: ACL Support for VIPs A few months ago we exposed the ability to configure Access Control Lists (ACLs) for Virtual Machines using Windows PowerShell cmdlets and our Service Management API. With today’s release, you can now configure VM ACLs using the Windows Azure Management Portal as well. You can now do this by clicking the new Manage ACL command in the Endpoints tab of a virtual machine instance: This will enable you to configure an ordered list of permit and deny rules to scope the traffic that can access your VM’s network endpoints. For example, if you were on a virtual network, you could limit RDP access to a Windows Azure virtual machine to only a few computers attached to your enterprise. Or if you weren’t on a virtual network you could alternatively limit traffic from public IPs that can access your workloads: Here is the default behaviors for ACLs in Windows Azure: By default (i.e. no rules specified), all traffic is permitted. When using only Permit rules, all other traffic is denied. When using only Deny rules, all other traffic is permitted. When there is a combination of Permit and Deny rules, all other traffic is denied. Lastly, remember that configuring endpoints does not automatically configure them within the VM if it also has firewall rules enabled at the OS level.  So if you create an endpoint using the Windows Azure Management Portal, Windows PowerShell, or REST API, be sure to also configure your guest VM firewall appropriately as well. Web Sites: Web Sockets Support With today’s release you can now use Web Sockets with Windows Azure Web Sites.  This feature enables you to easily integrate real-time communication scenarios within your web based applications, and is available at no extra charge (it even works with the free tier).  Higher level programming libraries like SignalR and socket.io are also now supported with it. You can enable Web Sockets support on a web site by navigating to the Configure tab of a Web Site, and by toggling Web Sockets support to “on”: Once Web Sockets is enabled you can start to integrate some really cool scenarios into your web applications.  Check out the new SignalR documentation hub on www.asp.net to learn more about some of the awesome scenarios you can do with it. Web Sites: Remote Debugging Support The Windows Azure SDK 2.2 we released two weeks ago introduced remote debugging support for Windows Azure Cloud Services. With today’s Windows Azure release we are extending this remote debugging support to also work with Windows Azure Web Sites. With live, remote debugging support inside of Visual Studio, you are able to have more visibility than ever before into how your code is operating live in Windows Azure. It is now super easy to attach the debugger and quickly see what is going on with your application in the cloud. Remote Debugging of a Windows Azure Web Site using VS 2013 Enabling the remote debugging of a Windows Azure Web Site using VS 2013 is really easy.  Start by opening up your web application’s project within Visual Studio. Then navigate to the “Server Explorer” tab within Visual Studio, and click on the deployed web-site you want to debug that is running within Windows Azure using the Windows Azure->Web Sites node in the Server Explorer.  Then right-click and choose the “Attach Debugger” option on it: When you do this Visual Studio will remotely attach the debugger to the Web Site running within Windows Azure.  The debugger will then stop the web site’s execution when it hits any break points that you have set within your web application’s project inside Visual Studio.  For example, below I set a breakpoint on the “ViewBag.Message” assignment statement within the HomeController of the standard ASP.NET MVC project template.  When I hit refresh on the “About” page of the web site within the browser, the breakpoint was triggered and I am now able to debug the app remotely using Visual Studio: Note above how we can debug variables (including autos/watchlist/etc), as well as use the Immediate and Command Windows. In the debug session above I used the Immediate Window to explore some of the request object state, as well as to dynamically change the ViewBag.Message property.  When we click the the “Continue” button (or press F5) the app will continue execution and the Web Site will render the content back to the browser.  This makes it super easy to debug web apps remotely. Tips for Better Debugging To get the best experience while debugging, we recommend publishing your site using the Debug configuration within Visual Studio’s Web Publish dialog. This will ensure that debug symbol information is uploaded to the Web Site which will enable a richer debug experience within Visual Studio.  You can find this option on the Web Publish dialog on the Settings tab: When you ultimately deploy/run the application in production we recommend using the “Release” configuration setting – the release configuration is memory optimized and will provide the best production performance.  To learn more about diagnosing and debugging Windows Azure Web Sites read our new Troubleshooting Windows Azure Web Sites in Visual Studio guide. Notification Hubs: Segmented Push Notification support with tag expressions In August we announced the General Availability of Windows Azure Notification Hubs - a powerful Mobile Push Notifications service that makes it easy to send high volume push notifications with low latency from any mobile app back-end.  Notification hubs can be used with any mobile app back-end (including ones built using our Mobile Services capability) and can also be used with back-ends that run in the cloud as well as on-premises. Beginning with the initial release, Notification Hubs allowed developers to send personalized push notifications to both individual users as well as groups of users by interest, by associating their devices with tags representing the logical target of the notification. For example, by registering all devices of customers interested in a favorite MLB team with a corresponding tag, it is possible to broadcast one message to millions of Boston Red Sox fans and another message to millions of St. Louis Cardinals fans with a single API call respectively. New support for using tag expressions to enable advanced customer segmentation With today’s release we are adding support for even more advanced customer targeting.  You can now identify customers that you want to send push notifications to by defining rich tag expressions. With tag expressions, you can now not only broadcast notifications to Boston Red Sox fans, but take that segmenting a step farther and reach more granular segments. This opens up a variety of scenarios, for example: Offers based on multiple preferences—e.g. send a game day vegetarian special to users tagged as both a Boston Red Sox fan AND a vegetarian Push content to multiple segments in a single message—e.g. rain delay information only to users who are tagged as either a Boston Red Sox fan OR a St. Louis Cardinal fan Avoid presenting subsets of a segment with irrelevant content—e.g. season ticket availability reminder to users who are tagged as a Boston Red Sox fan but NOT also a season ticket holder To illustrate with code, consider a restaurant chain app that sends an offer related to a Red Sox vs Cardinals game for users in Boston. Devices can be tagged by your app with location tags (e.g. “Loc:Boston”) and interest tags (e.g. “Follows:RedSox”, “Follows:Cardinals”), and then a notification can be sent by your back-end to “(Follows:RedSox || Follows:Cardinals) && Loc:Boston” in order to deliver an offer to all devices in Boston that follow either the RedSox or the Cardinals. This can be done directly in your server backend send logic using the code below: var notification = new WindowsNotification(messagePayload); hub.SendNotificationAsync(notification, "(Follows:RedSox || Follows:Cardinals) && Loc:Boston"); In your expressions you can use all Boolean operators: AND (&&), OR (||), and NOT (!).  Some other cool use cases for tag expressions that are now supported include: Social: To “all my group except me” - group:id && !user:id Events: Touchdown event is sent to everybody following either team or any of the players involved in the action: Followteam:A || Followteam:B || followplayer:1 || followplayer:2 … Hours: Send notifications at specific times. E.g. Tag devices with time zone and when it is 12pm in Seattle send to: GMT8 && follows:thaifood Versions and platforms: Send a reminder to people still using your first version for Android - version:1.0 && platform:Android For help on getting started with Notification Hubs, visit the Notification Hub documentation center.  Then download the latest NuGet package (or use the Notification Hubs REST APIs directly) to start sending push notifications using tag expressions.  They are really powerful and enable a bunch of great new scenarios. TFS & GIT: Continuous Delivery Support for Web Sites + Cloud Services With today’s Windows Azure release we are making it really easy to enable continuous delivery support with Windows Azure and Team Foundation Services.  Team Foundation Services is a cloud based offering from Microsoft that provides integrated source control (with both TFS and Git support), build server, test execution, collaboration tools, and agile planning support.  It makes it really easy to setup a team project (complete with automated builds and test runners) in the cloud, and it has really rich integration with Visual Studio. With today’s Windows Azure release it is now really easy to enable continuous delivery support with both TFS and Git based repositories hosted using Team Foundation Services.  This enables a workflow where when code is checked in, built successfully on an automated build server, and all tests pass on it – I can automatically have the app deployed on Windows Azure with zero manual intervention or work required. The below screen-shots demonstrate how to quickly setup a continuous delivery workflow to Windows Azure with a Git-based ASP.NET MVC project hosted using Team Foundation Services. Enabling Continuous Delivery to Windows Azure with Team Foundation Services The project I’m going to enable continuous delivery with is a simple ASP.NET MVC project whose source code I’m hosting using Team Foundation Services.  I did this by creating a “SimpleContinuousDeploymentTest” repository there using Git – and then used the new built-in Git tooling support within Visual Studio 2013 to push the source code to it.  Below is a screen-shot of the Git repository hosted within Team Foundation Services: I can access the repository within Visual Studio 2013 and easily make commits with it (as well as branch, merge and do other tasks).  Using VS 2013 I can also setup automated builds to take place in the cloud using Team Foundation Services every time someone checks in code to the repository: The cool thing about this is that I don’t have to buy or rent my own build server – Team Foundation Services automatically maintains its own build server farm and can automatically queue up a build for me (for free) every time someone checks in code using the above settings.  This build server (and automated testing) support now works with both TFS and Git based source control repositories. Connecting a Team Foundation Services project to Windows Azure Once I have a source repository hosted in Team Foundation Services with Automated Builds and Testing set up, I can then go even further and set it up so that it will be automatically deployed to Windows Azure when a source code commit is made to the repository (assuming the Build + Tests pass).  Enabling this is now really easy.  To set this up with a Windows Azure Web Site simply use the New->Compute->Web Site->Custom Create command inside the Windows Azure Management Portal.  This will create a dialog like below.  I gave the web site a name and then made sure the “Publish from source control” checkbox was selected: When we click next we’ll be prompted for the location of the source repository.  We’ll select “Team Foundation Services”: Once we do this we’ll be prompted for our Team Foundation Services account that our source repository is hosted under (in this case my TFS account is “scottguthrie”): When we click the “Authorize Now” button we’ll be prompted to give Windows Azure permissions to connect to the Team Foundation Services account.  Once we do this we’ll be prompted to pick the source repository we want to connect to.  Starting with today’s Windows Azure release you can now connect to both TFS and Git based source repositories.  This new support allows me to connect to the “SimpleContinuousDeploymentTest” respository we created earlier: Clicking the finish button will then create the Web Site with the continuous delivery hooks setup with Team Foundation Services.  Now every time someone pushes source control to the repository in Team Foundation Services, it will kick off an automated build, run all of the unit tests in the solution , and if they pass the app will be automatically deployed to our Web Site in Windows Azure.  You can monitor the history and status of these automated deployments using the Deployments tab within the Web Site: This enables a really slick continuous delivery workflow, and enables you to build and deploy apps in a really nice way. Developer Analytics: New Relic support for Web Sites + Mobile Services With today’s Windows Azure release we are making it really easy to enable Developer Analytics and Monitoring support with both Windows Azure Web Site and Windows Azure Mobile Services.  We are partnering with New Relic, who provide a great dev analytics and app performance monitoring offering, to enable this - and we have updated the Windows Azure Management Portal to make it really easy to configure. Enabling New Relic with a Windows Azure Web Site Enabling New Relic support with a Windows Azure Web Site is now really easy.  Simply navigate to the Configure tab of a Web Site and scroll down to the “developer analytics” section that is now within it: Clicking the “add-on” button will display some additional UI.  If you don’t already have a New Relic subscription, you can click the “view windows azure store” button to obtain a subscription (note: New Relic has a perpetually free tier so you can enable it even without paying anything): Clicking the “view windows azure store” button will launch the integrated Windows Azure Store experience we have within the Windows Azure Management Portal.  You can use this to browse from a variety of great add-on services – including New Relic: Select “New Relic” within the dialog above, then click the next button, and you’ll be able to choose which type of New Relic subscription you wish to purchase.  For this demo we’ll simply select the “Free Standard Version” – which does not cost anything and can be used forever:  Once we’ve signed-up for our New Relic subscription and added it to our Windows Azure account, we can go back to the Web Site’s configuration tab and choose to use the New Relic add-on with our Windows Azure Web Site.  We can do this by simply selecting it from the “add-on” dropdown (it is automatically populated within it once we have a New Relic subscription in our account): Clicking the “Save” button will then cause the Windows Azure Management Portal to automatically populate all of the needed New Relic configuration settings to our Web Site: Deploying the New Relic Agent as part of a Web Site The final step to enable developer analytics using New Relic is to add the New Relic runtime agent to our web app.  We can do this within Visual Studio by right-clicking on our web project and selecting the “Manage NuGet Packages” context menu: This will bring up the NuGet package manager.  You can search for “New Relic” within it to find the New Relic agent.  Note that there is both a 32-bit and 64-bit edition of it – make sure to install the version that matches how your Web Site is running within Windows Azure (note: you can configure your Web Site to run in either 32-bit or 64-bit mode using the Web Site’s “Configuration” tab within the Windows Azure Management Portal): Once we install the NuGet package we are all set to go.  We’ll simply re-publish the web site again to Windows Azure and New Relic will now automatically start monitoring the application Monitoring a Web Site using New Relic Now that the application has developer analytics support with New Relic enabled, we can launch the New Relic monitoring portal to start monitoring the health of it.  We can do this by clicking on the “Add Ons” tab in the left-hand side of the Windows Azure Management Portal.  Then select the New Relic add-on we signed-up for within it.  The Windows Azure Management Portal will provide some default information about the add-on when we do this.  Clicking the “Manage” button in the tray at the bottom will launch a new browser tab and single-sign us into the New Relic monitoring portal associated with our account: When we do this a new browser tab will launch with the New Relic admin tool loaded within it: We can now see insights into how our app is performing – without having to have written a single line of monitoring code.  The New Relic service provides a ton of great built-in monitoring features allowing us to quickly see: Performance times (including browser rendering speed) for the overall site and individual pages.  You can optionally set alert thresholds to trigger if the speed does not meet a threshold you specify. Information about where in the world your customers are hitting the site from (and how performance varies by region) Details on the latency performance of external services your web apps are using (for example: SQL, Storage, Twitter, etc) Error information including call stack details for exceptions that have occurred at runtime SQL Server profiling information – including which queries executed against your database and what their performance was And a whole bunch more… The cool thing about New Relic is that you don’t need to write monitoring code within your application to get all of the above reports (plus a lot more).  The New Relic agent automatically enables the CLR profiler within applications and automatically captures the information necessary to identify these.  This makes it super easy to get started and immediately have a rich developer analytics view for your solutions with very little effort. If you haven’t tried New Relic out yet with Windows Azure I recommend you do so – I think you’ll find it helps you build even better cloud applications.  Following the above steps will help you get started and deliver you a really good application monitoring solution in only minutes. Service Bus: Support for partitioned queues and topics With today’s release, we are enabling support within Service Bus for partitioned queues and topics. Enabling partitioning enables you to achieve a higher message throughput and better availability from your queues and topics. Higher message throughput is achieved by implementing multiple message brokers for each partitioned queue and topic.  The  multiple messaging stores will also provide higher availability. You can create a partitioned queue or topic by simply checking the Enable Partitioning option in the custom create wizard for a Queue or Topic: Read this article to learn more about partitioned queues and topics and how to take advantage of them today. Billing: New Billing Alert Service Today’s Windows Azure update enables a new Billing Alert Service Preview that enables you to get proactive email notifications when your Windows Azure bill goes above a certain monetary threshold that you configure.  This makes it easier to manage your bill and avoid potential surprises at the end of the month. With the Billing Alert Service Preview, you can now create email alerts to monitor and manage your monetary credits or your current bill total.  To set up an alert first sign-up for the free Billing Alert Service Preview.  Then visit the account management page, click on a subscription you have setup, and then navigate to the new Alerts tab that is available: The alerts tab allows you to setup email alerts that will be sent automatically once a certain threshold is hit.  For example, by clicking the “add alert” button above I can setup a rule to send myself email anytime my Windows Azure bill goes above $100 for the month: The Billing Alert Service will evolve to support additional aspects of your bill as well as support multiple forms of alerts such as SMS.  Try out the new Billing Alert Service Preview today and give us feedback. Summary Today’s Windows Azure release enables a ton of great new scenarios, and makes building applications hosted in the cloud even easier. If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Silverlight 4 + WCF RIA - Data Service Design Best Practices

    - by Chadd Nervig
    Hey all. I realize this is a rather long question, but I'd really appreciate any help from anyone experienced with RIA services. Thanks! I'm working on a Silverlight 4 app that views data from the server. I'm relatively inexperienced with RIA Services, so have been working through the tasks of getting the data I need down to the client, but every new piece I add to the puzzle seems to be more and more problematic. I feel like I'm missing some basic concepts here, and it seems like I'm just 'hacking' pieces on, in time-consuming ways, each one breaking the previous ones as I try to add them. I'd love to get the feedback of developers experienced with RIA services, to figure out the intended way to do what I'm trying to do. Let me lay out what I'm trying to do: First, the data. The source of this data is a variety of sources, primarily created by a shared library which reads data from our database, and exposes it as POCOs (Plain Old CLR Objects). I'm creating my own POCOs to represent the different types of data I need to pass between server and client. DataA - This app is for viewing a certain type of data, lets call DataA, in near-realtime. Every 3 minutes, the client should pull data down from the server, of all the new DataA since the last time it requested data. DataB - Users can view the DataA objects in the app, and may select one of them from the list, which displays additional details about that DataA. I'm bringing these extra details down from the server as DataB. DataC - One of the things that DataB contains is a history of a couple important values over time. I'm calling each data point of this history a DataC object, and each DataB object contains many DataCs. The Data Model - On the server side, I have a single DomainService: [EnableClientAccess] public class MyDomainService : DomainService { public IEnumerable<DataA> GetDataA(DateTime? startDate) { /*Pieces together the DataAs that have been created since startDate, and returns them*/ } public DataB GetDataB(int dataAID) { /*Looks up the extended info for that dataAID, constructs a new DataB with that DataA's data, plus the extended info (with multiple DataCs in a List<DataC> property on the DataB), and returns it*/ } //Not exactly sure why these are here, but I think it //wouldn't compile without them for some reason? The data //is entirely read-only, so I don't need to update. public void UpdateDataA(DataA dataA) { throw new NotSupportedException(); } public void UpdateDataB(DataB dataB) { throw new NotSupportedException(); } } The classes for DataA/B/C look like this: [KnownType(typeof(DataB))] public partial class DataA { [Key] [DataMember] public int DataAID { get; set; } [DataMember] public decimal MyDecimalA { get; set; } [DataMember] public string MyStringA { get; set; } [DataMember] public DataTime MyDateTimeA { get; set; } } public partial class DataB : DataA { [Key] [DataMember] public int DataAID { get; set; } [DataMember] public decimal MyDecimalB { get; set; } [DataMember] public string MyStringB { get; set; } [Include] //I don't know which of these, if any, I need? [Composition] [Association("DataAToC","DataAID","DataAID")] public List<DataC> DataCs { get; set; } } public partial class DataC { [Key] [DataMember] public int DataAID { get; set; } [Key] [DataMember] public DateTime Timestamp { get; set; } [DataMember] public decimal MyHistoricDecimal { get; set; } } I guess a big question I have here is... Should I be using Entities instead of POCOs? Are my classes constructed correctly to be able to pass the data down correctly? Should I be using Invoke methods instead of Query (Get) methods on the DomainService? On the client side, I'm having a number of issues. Surprisingly, one of my biggest ones has been threading. I didn't expect there to be so many threading issues with MyDomainContext. What I've learned is that you only seem to be able to create MyDomainContextObjects on the UI thread, all of the queries you can make are done asynchronously only, and that if you try to fake doing it synchronously by blocking the calling thread until the LoadOperation finishes, you have to do so on a background thread, since it uses the UI thread to make the query. So here's what I've got so far. The app should display a stream of the DataA objects, spreading each 3min chunk of them over the next 3min (so they end up displayed 3min after the occurred, looking like a continuous stream, but only have to be downloaded in 3min bursts). To do this, the main form initializes, creates a private MyDomainContext, and starts up a background worker, which continuously loops in a while(true). On each loop, it checks if it has any DataAs left over to display. If so, it displays that Data, and Thread.Sleep()s until the next DataA is scheduled to be displayed. If it's out of data, it queries for more, using the following methods: public DataA[] GetDataAs(DateTime? startDate) { _loadOperationGetDataACompletion = new AutoResetEvent(false); LoadOperation<DataA> loadOperationGetDataA = null; loadOperationGetDataA = _context.Load(_context.GetDataAQuery(startDate), System.ServiceModel.DomainServices.Client.LoadBehavior.RefreshCurrent, false); loadOperationGetDataA.Completed += new EventHandler(loadOperationGetDataA_Completed); _loadOperationGetDataACompletion.WaitOne(); List<DataA> dataAs = new List<DataA>(); foreach (var dataA in loadOperationGetDataA.Entities) dataAs.Add(dataA); return dataAs.ToArray(); } private static AutoResetEvent _loadOperationGetDataACompletion; private static void loadOperationGetDataA_Completed(object sender, EventArgs e) { _loadOperationGetDataACompletion.Set(); } Seems kind of clunky trying to force it into being synchronous, but since this already is on a background thread, I think this is OK? So far, everything actually works, as much of a hack as it seems like it may be. It's important to note that if I try to run that code on the UI thread, it locks, because it waits on the WaitOne() forever, locking the thread, so it can't make the Load request to the server. So once the data is displayed, users can click on one as it goes by to fill a details pane with the full DataB data about that object. To do that, I have the the details pane user control subscribing to a selection event I have setup, which gets fired when the selection changes (on the UI thread). I use a similar technique there, to get the DataB object: void SelectionService_SelectedDataAChanged(object sender, EventArgs e) { DataA dataA = /*Get the selected DataA*/; MyDomainContext context = new MyDomainContext(); var loadOperationGetDataB = context.Load(context.GetDataBQuery(dataA.DataAID), System.ServiceModel.DomainServices.Client.LoadBehavior.RefreshCurrent, false); loadOperationGetDataB.Completed += new EventHandler(loadOperationGetDataB_Completed); } private void loadOperationGetDataB_Completed(object sender, EventArgs e) { this.DataContext = ((LoadOperation<DataB>)sender).Entities.SingleOrDefault(); } Again, it seems kinda hacky, but it works... except on the DataB that it loads, the DataCs list is empty. I've tried all kinds of things there, and I don't see what I'm doing wrong to allow the DataCs to come down with the DataB. I'm about ready to make a 3rd query for the DataCs, but that's screaming even more hackiness to me. It really feels like I'm fighting against the grain here, like I'm doing this in an entirely unintended way. If anyone could offer any assistance, and point out what I'm doing wrong here, I'd very much appreciate it! Thanks!

    Read the article

  • Using HTML 5 SessionState to save rendered Page Content

    - by Rick Strahl
    HTML 5 SessionState and LocalStorage are very useful and super easy to use to manage client side state. For building rich client side or SPA style applications it's a vital feature to be able to cache user data as well as HTML content in order to swap pages in and out of the browser's DOM. What might not be so obvious is that you can also use the sessionState and localStorage objects even in classic server rendered HTML applications to provide caching features between pages. These APIs have been around for a long time and are supported by most relatively modern browsers and even all the way back to IE8, so you can use them safely in your Web applications. SessionState and LocalStorage are easy The APIs that make up sessionState and localStorage are very simple. Both object feature the same API interface which  is a simple, string based key value store that has getItem, setItem, removeitem, clear and  key methods. The objects are also pseudo array objects and so can be iterated like an array with  a length property and you have array indexers to set and get values with. Basic usage  for storing and retrieval looks like this (using sessionStorage, but the syntax is the same for localStorage - just switch the objects):// set var lastAccess = new Date().getTime(); if (sessionStorage) sessionStorage.setItem("myapp_time", lastAccess.toString()); // retrieve in another page or on a refresh var time = null; if (sessionStorage) time = sessionStorage.getItem("myapp_time"); if (time) time = new Date(time * 1); else time = new Date(); sessionState stores data that is browser session specific and that has a liftetime of the active browser session or window. Shut down the browser or tab and the storage goes away. localStorage uses the same API interface, but the lifetime of the data is permanently stored in the browsers storage area until deleted via code or by clearing out browser cookies (not the cache). Both sessionStorage and localStorage space is limited. The spec is ambiguous about this - supposedly sessionStorage should allow for unlimited size, but it appears that most WebKit browsers support only 2.5mb for either object. This means you have to be careful what you store especially since other applications might be running on the same domain and also use the storage mechanisms. That said 2.5mb worth of character data is quite a bit and would go a long way. The easiest way to get a feel for how sessionState and localStorage work is to look at a simple example. You can go check out the following example online in Plunker: http://plnkr.co/edit/0ICotzkoPjHaWa70GlRZ?p=preview which looks like this: Plunker is an online HTML/JavaScript editor that lets you write and run Javascript code and similar to JsFiddle, but a bit cleaner to work in IMHO (thanks to John Papa for turning me on to it). The sample has two text boxes with counts that update session/local storage every time you click the related button. The counts are 'cached' in Session and Local storage. The point of these examples is that both counters survive full page reloads, and the LocalStorage counter survives a complete browser shutdown and restart. Go ahead and try it out by clicking the Reload button after updating both counters and then shutting down the browser completely and going back to the same URL (with the same browser). What you should see is that reloads leave both counters intact at the counted values, while a browser restart will leave only the local storage counter intact. The code to deal with the SessionStorage (and LocalStorage not shown here) in the example is isolated into a couple of wrapper methods to simplify the code: function getSessionCount() { var count = 0; if (sessionStorage) { var count = sessionStorage.getItem("ss_count"); count = !count ? 0 : count * 1; } $("#txtSession").val(count); return count; } function setSessionCount(count) { if (sessionStorage) sessionStorage.setItem("ss_count", count.toString()); } These two functions essentially load and store a session counter value. The two key methods used here are: sessionStorage.getItem(key); sessionStorage.setItem(key,stringVal); Note that the value given to setItem and return by getItem has to be a string. If you pass another type you get an error. Don't let that limit you though - you can easily enough store JSON data in a variable so it's quite possible to pass complex objects and store them into a single sessionStorage value:var user = { name: "Rick", id="ricks", level=8 } sessionStorage.setItem("app_user",JSON.stringify(user)); to retrieve it:var user = sessionStorage.getItem("app_user"); if (user) user = JSON.parse(user); Simple! If you're using the Chrome Developer Tools (F12) you can also check out the session and local storage state on the Resource tab:   You can also use this tool to refresh or remove entries from storage. What we just looked at is a purely client side implementation where a couple of counters are stored. For rich client centric AJAX applications sessionStorage and localStorage provide a very nice and simple API to store application state while the application is running. But you can also use these storage mechanisms to manage server centric HTML applications when you combine server rendering with some JavaScript to perform client side data caching. You can both store some state information and data on the client (ie. store a JSON object and carry it forth between server rendered HTML requests) or you can use it for good old HTTP based caching where some rendered HTML is saved and then restored later. Let's look at the latter with a real life example. Why do I need Client-side Page Caching for Server Rendered HTML? I don't know about you, but in a lot of my existing server driven applications I have lists that display a fair amount of data. Typically these lists contain links to then drill down into more specific data either for viewing or editing. You can then click on a link and go off to a detail page that provides more concise content. So far so good. But now you're done with the detail page and need to get back to the list, so you click on a 'bread crumbs trail' or an application level 'back to list' button and… …you end up back at the top of the list - the scroll position, the current selection in some cases even filters conditions - all gone with the wind. You've left behind the state of the list and are starting from scratch in your browsing of the list from the top. Not cool! Sound familiar? This a pretty common scenario with server rendered HTML content where it's so common to display lists to drill into, only to lose state in the process of returning back to the original list. Look at just about any traditional forums application, or even StackOverFlow to see what I mean here. Scroll down a bit to look at a post or entry, drill in then use the bread crumbs or tab to go back… In some cases returning to the top of a list is not a big deal. On StackOverFlow that sort of works because content is turning around so quickly you probably want to actually look at the top posts. Not always though - if you're browsing through a list of search topics you're interested in and drill in there's no way back to that position. Essentially anytime you're actively browsing the items in the list, that's when state becomes important and if it's not handled the user experience can be really disrupting. Content Caching If you're building client centric SPA style applications this is a fairly easy to solve problem - you tend to render the list once and then update the page content to overlay the detail content, only hiding the list temporarily until it's used again later. It's relatively easy to accomplish this simply by hiding content on the page and later making it visible again. But if you use server rendered content, hanging on to all the detail like filters, selections and scroll position is not quite as easy. Or is it??? This is where sessionStorage comes in handy. What if we just save the rendered content of a previous page, and then restore it when we return to this page based on a special flag that tells us to use the cached version? Let's see how we can do this. A real World Use Case Recently my local ISP asked me to help out with updating an ancient classifieds application. They had a very busy, local classifieds app that was originally an ASP classic application. The old app was - wait for it: frames based - and even though I lobbied against it, the decision was made to keep the frames based layout to allow rapid browsing of the hundreds of posts that are made on a daily basis. The primary reason they wanted this was precisely for the ability to quickly browse content item by item. While I personally hate working with Frames, I have to admit that the UI actually works well with the frames layout as long as you're running on a large desktop screen. You can check out the frames based desktop site here: http://classifieds.gorge.net/ However when I rebuilt the app I also added a secondary view that doesn't use frames. The main reason for this of course was for mobile displays which work horribly with frames. So there's a somewhat mobile friendly interface to the interface, which ditches the frames and uses some responsive design tweaking for mobile capable operation: http://classifeds.gorge.net/mobile  (or browse the base url with your browser width under 800px)   Here's what the mobile, non-frames view looks like:   As you can see this means that the list of classifieds posts now is a list and there's a separate page for drilling down into the item. And of course… originally we ran into that usability issue I mentioned earlier where the browse, view detail, go back to the list cycle resulted in lost list state. Originally in mobile mode you scrolled through the list, found an item to look at and drilled in to display the item detail. Then you clicked back to the list and BAM - you've lost your place. Because there are so many items added on a daily basis the full list is never fully loaded, but rather there's a "Load Additional Listings"  entry at the button. Not only did we originally lose our place when coming back to the list, but any 'additionally loaded' items are no longer there because the list was now rendering  as if it was the first page hit. The additional listings, and any filters, the selection of an item all were lost. Major Suckage! Using Client SessionStorage to cache Server Rendered Content To work around this problem I decided to cache the rendered page content from the list in SessionStorage. Anytime the list renders or is updated with Load Additional Listings, the page HTML is cached and stored in Session Storage. Any back links from the detail page or the login or write entry forms then point back to the list page with a back=true query string parameter. If the server side sees this parameter it doesn't render the part of the page that is cached. Instead the client side code retrieves the data from the sessionState cache and simply inserts it into the page. It sounds pretty simple, and the overall the process is really easy, but there are a few gotchas that I'll discuss in a minute. But first let's look at the implementation. Let's start with the server side here because that'll give a quick idea of the doc structure. As I mentioned the server renders data from an ASP.NET MVC view. On the list page when returning to the list page from the display page (or a host of other pages) looks like this: https://classifieds.gorge.net/list?back=True The query string value is a flag, that indicates whether the server should render the HTML. Here's what the top level MVC Razor view for the list page looks like:@model MessageListViewModel @{ ViewBag.Title = "Classified Listing"; bool isBack = !string.IsNullOrEmpty(Request.QueryString["back"]); } <form method="post" action="@Url.Action("list")"> <div id="SizingContainer"> @if (!isBack) { @Html.Partial("List_CommandBar_Partial", Model) <div id="PostItemContainer" class="scrollbox" xstyle="-webkit-overflow-scrolling: touch;"> @Html.Partial("List_Items_Partial", Model) @if (Model.RequireLoadEntry) { <div class="postitem loadpostitems" style="padding: 15px;"> <div id="LoadProgress" class="smallprogressright"></div> <div class="control-progress"> Load additional listings... </div> </div> } </div> } </div> </form> As you can see the query string triggers a conditional block that if set is simply not rendered. The content inside of #SizingContainer basically holds  the entire page's HTML sans the headers and scripts, but including the filter options and menu at the top. In this case this makes good sense - in other situations the fact that the menu or filter options might be dynamically updated might make you only cache the list rather than essentially the entire page. In this particular instance all of the content works and produces the proper result as both the list along with any filter conditions in the form inputs are restored. Ok, let's move on to the client. On the client there are two page level functions that deal with saving and restoring state. Like the counter example I showed earlier, I like to wrap the logic to save and restore values from sessionState into a separate function because they are almost always used in several places.page.saveData = function(id) { if (!sessionStorage) return; var data = { id: id, scroll: $("#PostItemContainer").scrollTop(), html: $("#SizingContainer").html() }; sessionStorage.setItem("list_html",JSON.stringify(data)); }; page.restoreData = function() { if (!sessionStorage) return; var data = sessionStorage.getItem("list_html"); if (!data) return null; return JSON.parse(data); }; The data that is saved is an object which contains an ID which is the selected element when the user clicks and a scroll position. These two values are used to reset the scroll position when the data is used from the cache. Finally the html from the #SizingContainer element is stored, which makes for the bulk of the document's HTML. In this application the HTML captured could be a substantial bit of data. If you recall, I mentioned that the server side code renders a small chunk of data initially and then gets more data if the user reads through the first 50 or so items. The rest of the items retrieved can be rather sizable. Other than the JSON deserialization that's Ok. Since I'm using SessionStorage the storage space has no immediate limits. Next is the core logic to handle saving and restoring the page state. At first though this would seem pretty simple, and in some cases it might be, but as the following code demonstrates there are a few gotchas to watch out for. Here's the relevant code I use to save and restore:$( function() { … var isBack = getUrlEncodedKey("back", location.href); if (isBack) { // remove the back key from URL setUrlEncodedKey("back", "", location.href); var data = page.restoreData(); // restore from sessionState if (!data) { // no data - force redisplay of the server side default list window.location = "list"; return; } $("#SizingContainer").html(data.html); var el = $(".postitem[data-id=" + data.id + "]"); $(".postitem").removeClass("highlight"); el.addClass("highlight"); $("#PostItemContainer").scrollTop(data.scroll); setTimeout(function() { el.removeClass("highlight"); }, 2500); } else if (window.noFrames) page.saveData(null); // save when page loads $("#SizingContainer").on("click", ".postitem", function() { var id = $(this).attr("data-id"); if (!id) return true; if (window.noFrames) page.saveData(id); var contentFrame = window.parent.frames["Content"]; if (contentFrame) contentFrame.location.href = "show/" + id; else window.location.href = "show/" + id; return false; }); … The code starts out by checking for the back query string flag which triggers restoring from the client cache. If cached the cached data structure is read from sessionStorage. It's important here to check if data was returned. If the user had back=true on the querystring but there is no cached data, he likely bookmarked this page or otherwise shut down the browser and came back to this URL. In that case the server didn't render any detail and we have no cached data, so all we can do is redirect to the original default list view using window.location. If we continued the page would render no data - so make sure to always check the cache retrieval result. Always! If there is data the it's loaded and the data.html data is restored back into the document by simply injecting the HTML back into the document's #SizingContainer element:$("#SizingContainer").html(data.html); It's that simple and it's quite quick even with a fully loaded list of additional items and on a phone. The actual HTML data is stored to the cache on every page load initially and then again when the user clicks on an element to navigate to a particular listing. The former ensures that the client cache always has something in it, and the latter updates with additional information for the selected element. For the click handling I use a data-id attribute on the list item (.postitem) in the list and retrieve the id from that. That id is then used to navigate to the actual entry as well as storing that Id value in the saved cached data. The id is used to reset the selection by searching for the data-id value in the restored elements. The overall process of this save/restore process is pretty straight forward and it doesn't require a bunch of code, yet it yields a huge improvement in the usability of the site on mobile devices (or anybody who uses the non-frames view). Some things to watch out for As easy as it conceptually seems to simply store and retrieve cached content, you have to be quite aware what type of content you are caching. The code above is all that's specific to cache/restore cycle and it works, but it took a few tweaks to the rest of the script code and server code to make it all work. There were a few gotchas that weren't immediately obvious. Here are a few things to pay attention to: Event Handling Logic Timing of manipulating DOM events Inline Script Code Bookmarking to the Cache Url when no cache exists Do you have inline script code in your HTML? That script code isn't going to run if you restore from cache and simply assign or it may not run at the time you think it would normally in the DOM rendering cycle. JavaScript Event Hookups The biggest issue I ran into with this approach almost immediately is that originally I had various static event handlers hooked up to various UI elements that are now cached. If you have an event handler like:$("#btnSearch").click( function() {…}); that works fine when the page loads with server rendered HTML, but that code breaks when you now load the HTML from cache. Why? Because the elements you're trying to hook those events to may not actually be there - yet. Luckily there's an easy workaround for this by using deferred events. With jQuery you can use the .on() event handler instead:$("#SelectionContainer").on("click","#btnSearch", function() {…}); which monitors a parent element for the events and checks for the inner selector elements to handle events on. This effectively defers to runtime event binding, so as more items are added to the document bindings still work. For any cached content use deferred events. Timing of manipulating DOM Elements Along the same lines make sure that your DOM manipulation code follows the code that loads the cached content into the page so that you don't manipulate DOM elements that don't exist just yet. Ideally you'll want to check for the condition to restore cached content towards the top of your script code, but that can be tricky if you have components or other logic that might not all run in a straight line. Inline Script Code Here's another small problem I ran into: I use a DateTime Picker widget I built a while back that relies on the jQuery date time picker. I also created a helper function that allows keyboard date navigation into it that uses JavaScript logic. Because MVC's limited 'object model' the only way to embed widget content into the page is through inline script. This code broken when I inserted the cached HTML into the page because the script code was not available when the component actually got injected into the page. As the last bullet - it's a matter of timing. There's no good work around for this - in my case I pulled out the jQuery date picker and relied on native <input type="date" /> logic instead - a better choice these days anyway, especially since this view is meant to be primarily to serve mobile devices which actually support date input through the browser (unlike desktop browsers of which only WebKit seems to support it). Bookmarking Cached Urls When you cache HTML content you have to make a decision whether you cache on the client and also not render that same content on the server. In the Classifieds app I didn't render server side content so if the user comes to the page with back=True and there is no cached content I have to a have a Plan B. Typically this happens when somebody ends up bookmarking the back URL. The easiest and safest solution for this scenario is to ALWAYS check the cache result to make sure it exists and if not have a safe URL to go back to - in this case to the plain uncached list URL which amounts to effectively redirecting. This seems really obvious in hindsight, but it's easy to overlook and not see a problem until much later, when it's not obvious at all why the page is not rendering anything. Don't use <body> to replace Content Since we're practically replacing all the HTML in the page it may seem tempting to simply replace the HTML content of the <body> tag. Don't. The body tag usually contains key things that should stay in the page and be there when it loads. Specifically script tags and elements and possibly other embedded content. It's best to create a top level DOM element specifically as a placeholder container for your cached content and wrap just around the actual content you want to replace. In the app above the #SizingContainer is that container. Other Approaches The approach I've used for this application is kind of specific to the existing server rendered application we're running and so it's just one approach you can take with caching. However for server rendered content caching this is a pattern I've used in a few apps to retrofit some client caching into list displays. In this application I took the path of least resistance to the existing server rendering logic. Here are a few other ways that come to mind: Using Partial HTML Rendering via AJAXInstead of rendering the page initially on the server, the page would load empty and the client would render the UI by retrieving the respective HTML and embedding it into the page from a Partial View. This effectively makes the initial rendering and the cached rendering logic identical and removes the server having to decide whether this request needs to be rendered or not (ie. not checking for a back=true switch). All the logic related to caching is made on the client in this case. Using JSON Data and Client RenderingThe hardcore client option is to do the whole UI SPA style and pull data from the server and then use client rendering or databinding to pull the data down and render using templates or client side databinding with knockout/angular et al. As with the Partial Rendering approach the advantage is that there's no difference in the logic between pulling the data from cache or rendering from scratch other than the initial check for the cache request. Of course if the app is a  full on SPA app, then caching may not be required even - the list could just stay in memory and be hidden and reactivated. I'm sure there are a number of other ways this can be handled as well especially using  AJAX. AJAX rendering might simplify the logic, but it also complicates search engine optimization since there's no content loaded initially. So there are always tradeoffs and it's important to look at all angles before deciding on any sort of caching solution in general. State of the Session SessionState and LocalStorage are easy to use in client code and can be integrated even with server centric applications to provide nice caching features of content and data. In this post I've shown a very specific scenario of storing HTML content for the purpose of remembering list view data and state and making the browsing experience for lists a bit more friendly, especially if there's dynamically loaded content involved. If you haven't played with sessionStorage or localStorage I encourage you to give it a try. There's a lot of cool stuff that you can do with this beyond the specific scenario I've covered here… Resources Overview of localStorage (also applies to sessionStorage) Web Storage Compatibility Modernizr Test Suite© Rick Strahl, West Wind Technologies, 2005-2013Posted in JavaScript  HTML5  ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • xVal 1.0 not generating the correct xVal.AttachValidator script in view

    - by bastijn
    I'm currently implementing xVal client-side validation. The server-side validation is working correctly at the moment. I have referenced xVall.dll (from xVal1.0.zip) in my project as well as the System.ComponentModel.DataAnnotations and System.web.mvc.DataAnnotations from the Data Annotations Model Binder Sample found at http://aspnet.codeplex.com/releases/view/24471. I have modified the method BindProperty in the DataAnnotationsModelBinder class since it returned a nullpointer exception telling me the modelState object was null. Some blogposts described to modify the method and I did according to this SO post. Next I put the following lines in my global.asax: protected void Application_Start() { // kept same and added following line RegisterModelBinders(ModelBinders.Binders); // Add this line } public void RegisterModelBinders(ModelBinderDictionary binders) // Add this whole method { binders.DefaultBinder = new Microsoft.Web.Mvc.DataAnnotations.DataAnnotationsModelBinder(); } Now, I have made a partial class and a metadata class since I use the entity framework and you cannot create partial declarations as of yet so I have: [MetadataType(typeof(PersonMetaData))] public partial class Persons { // .... } public class PersonMetaData { private const string EmailRegEx = @"^(([^<>()[\]\\.,;:\s@\""]+" + @"(\.[^<>()[\]\\.,;:\s@\""]+)*)|(\"".+\""))@" + @"((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}" + @"\.[0-9]{1,3}\])|(([a-zA-Z\-0-9]+\.)+" + @"[a-zA-Z]{2,}))$"; [Required] public string FirstName { get; set; } [Required] public string LastName { get; set; } [Required(ErrorMessage="Please fill in your email")] [RegularExpression(EmailRegEx,ErrorMessage="Please supply a valid email address")] public string Email { get; set; } } And in my controller I have the POST edit method which currently still use a FormCollection instead of a Persons object as input. I have to change this later on but due to time constraints and some strange bug this isnt done as of yet :). It shouldnt matter though. Below it is my view. // // POST: /Jobs/Edit/5 //[CustomAuthorize(Roles = "admin,moderator")] [AcceptVerbs(HttpVerbs.Post)] public ActionResult Edit([Bind(Exclude = "Id")]FormCollection form) { Persons person = this.GetLoggedInPerson(); person.UpdatedAt = DateTime.Now; // Update the updated time. TryUpdateModel(person, null, null, new string[]{"Id"}); if (ModelState.IsValid) { repository.SaveChanges(); return RedirectToAction("Index", "ControlPanel"); } return View(person); } #endregion My view contains a partial page containing the form. In my edit.aspx I have the following code: <div class="content"> <% Html.RenderPartial("PersonForm", Model); %> </div> </div> and in the .ascx partial page: <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl<WerkStageNu.Persons>" %> <% if (!Model.AddressesReference.IsLoaded) { %> <% Model.AddressesReference.Load(); %> <% } %> <%= Html.ValidationSummary("Edit was unsuccessful. Please correct the errors and try again.") %> <% using (Html.BeginForm()) {%> <fieldset> <legend>General information</legend> <table> <tr> <td><label for="FirstName">FirstName:</label></td><td><%= Html.TextBox("FirstName", Model.FirstName)%><%= Html.ValidationMessage("FirstName", "*")%></td> </tr> <tr> <td><label for="LastName">LastName:</label></td><td><%= Html.TextBox("LastName", Model.LastName)%><%= Html.ValidationMessage("LastName", "*")%></td> </tr> <tr> <td><label for="Email">Email:</label></td><td><%= Html.TextBox("Email", Model.Email)%><%= Html.ValidationMessage("Email", "*")%></td> </tr> <tr> <td><label for="Telephone">Telephone:</label></td><td> <%= Html.TextBox("Telephone", Model.Telephone) %><%= Html.ValidationMessage("Telephone", "*") %></td> </tr> <tr> <td><label for="Fax">Fax:</label></td><td><%= Html.TextBox("Fax", Model.Fax) %><%= Html.ValidationMessage("Fax", "*") %></td> </tr> </table> <%--<p> <label for="GenderID"><%= Html.Encode(Resources.Forms.gender) %>:</label> <%= Html.DropDownList("GenderID", Model.Genders)%> </p> --%> </fieldset> <fieldset> <legend><%= Html.Encode(Resources.Forms.addressinformation) %></legend> <table> <tr> <td><label for="Addresses.City"><%= Html.Encode(Resources.Forms.city) %>:</label></td><td><%= Html.TextBox("Addresses.City", Model.Addresses.City)%></td> </tr> <tr> <td><label for="Addresses.Street"><%= Html.Encode(Resources.Forms.street) %>:</label></td><td><%= Html.TextBox("Addresses.Street", Model.Addresses.Street)%></td> </tr> <tr> <td><label for="Addresses.StreetNo"><%= Html.Encode(Resources.Forms.streetNumber) %>:</label></td><td><%= Html.TextBox("Addresses.StreetNo", Model.Addresses.StreetNo)%></td> </tr> <tr> <td><label for="Addresses.Country"><%= Html.Encode(Resources.Forms.county) %>:</label></td><td><%= Html.TextBox("Addresses.Country", Model.Addresses.Country)%></td> </tr> </table> </fieldset> <p> <input type="image" src="../../Content/images/save_btn.png" /> </p> <%= Html.ClientSideValidation(typeof(WerkStageNu.Persons)) %> <% } % Still nothing really stunning over here. In combination with the edited data annotation dlls this gives me server-side validation working (although i have to manually exclude the "id" property as done in the TryUpdateModel). The strange thing is that it still generates the following script in my View: xVal.AttachValidator(null, {"Fields":[{"FieldName":"ID","FieldRules": [{"RuleName":"DataType","RuleParameters":{"Type":"Integer"}}]}]}, {}) While all the found blogposts on this ( 1, 2 ) but all of those are old posts and all say it should be fixed from xVal 0.8 and up. The last thing I found was this post but I did not really understand. I referenced using Visual Studio - add reference -- browse - selected from my bin dir where I stored the external compiled dlls (copied to the bin dir of my project). Can anyone tell me where the problem originates from? EDIT Adding the reference from the .NET tab fixed the problem somehow. While earlier adding from this tab resulted in a nullpointer error since it used the standard DataAnnotations delivered with the MVC1 framework instead of the freshly build one. Is it because I dropped the .dll in my bin dir that it now picks the correct one? Or why?

    Read the article

  • Need help with workflow in Alfresco

    - by Scott Gartner
    Hello SO community, I haven't had any luck getting help in the Alfresco forums, and I'm hoping for more here. We are building an application based on Alfresco and jBPM and I have defined a workflow, but I have either defined it wrong or am missing something or there are bugs in Alfresco integration with jBPM and I need help figuring out which and fixing it. Here is the problem: I have an advanced workflow and I am trying to launch it from JavaScript. Here is the code I'm using to start the workflow: var nodeId = args.nodeid; var document = search.findNode("workspace://SpacesStore/" + nodeId); var workflowAction = actions.create("start-workflow"); workflowAction.parameters.workflowName = "jbpm$nmwf:MyWorkflow"; workflowAction.parameters["bpm:workflowDescription"] = "Please edit: " + document.name; workflowAction.parameters["bpm:assignees"] = [people.getPerson("admin"), people.getPerson("andyg")]; var futureDate = new Date(); futureDate.setDate(futureDate.getDate() + 7); workflowAction.parameters["bpm:workflowDueDate"] = futureDate; workflowAction.execute(document); This runs fine and e-mail sent from the start node's default transition fires just fine. However, when I go looking for the workflow in my task list it is not there, but it is in my completed task list. The default transition (the only transition) from the start node points at a task node which has four transitions. There are 8 tasks and 22 transitions in the workflow. When I use the workflow console to start the workflow and end the start task, it properly follows the default start node transition to the next task. The new task shows up in "show tasks" but does not show up in "show my tasks" (apparently because the task was marked completed for some reason, though it is not in the "end" node). The task is: task id: jbpm$111 , name: nmwf:submitInEditing , properties: 18 If I do "show transitions" it looks just as I would expect: path: jbpm$62-@ , node: In Editing , active: true task id: jbpm$111 , name: nmwf:submitInEditing, title: submitInEditing title , desc: submitInEditing description , properties: 18 transition id: Submit for Approval , title: Submit for Approval transition id: Request Copyediting Review , title: Request Copyediting Review transition id: Request Legal Review , title: Request Legal Review transition id: Request Review , title: Request Review I don't want to post the entire workflow as it's large, but here are the first two nodes: First the swimlanes: <swimlane name="initiator"></swimlane> <swimlane name="Content Providers"> <assignment actor-id="Content Providers"> <actor>#{bpm_assignees}</actor> </assignment> </swimlane> Now the nodes: <start-state name="start"> <task name="nmwf:submitTask" swimlane="initiator"/> <transition name="" to="In Editing"> <action> <runas>admin</runas> <script> /* Code to send e-mail that a new workflow was started. I get this e-mail. */ </script> </action> </transition> </start-state> <task-node name="In Editing"> <task name="nmwf:submitInEditing" swimlane="Content Providers" /> <!-- I put e-mail sending code in each of these transitions, but none are firing. --> <transition to="In Approval" name="Submit for Approval"></transition> <transition to="In Copyediting" name="Request Copyediting Review"></transition> <transition to="In Legal Review" name="Request Legal Review"></transition> <transition to="In Review" name="Request Review"></transition> </task-node> Here is the model for these two nodes: <type name="nmwf:submitTask"> <parent>bpm:startTask</parent> <mandatory-aspects> <aspect>bpm:assignees</aspect> </mandatory-aspects> </type> <type name="nmwf:submitInEditing"> <parent>bpm:workflowTask</parent> <mandatory-aspects> <aspect>bpm:assignees</aspect> </mandatory-aspects> </type> Here is a pseudo-log of running the workflow in the workflow console: :: deploy alfresco/extension/workflow/processdefinition.xml deployed definition id: jbpm$69 , name: jbpm$nmwf:MyWorkflow , title: nmwf:MyWorkflow , version: 28 :: var bpm:assignees* person admin,andyg set var {http://www.alfresco.org/model/bpm/1.0}assignees = [workspace://SpacesStore/73cf1b28-21aa-40ca-9dde-1cff492d0268, workspace://SpacesStore/03297e91-0b89-4db6-b764-5ada2d167424] :: var bpm:package package 1 set var {http://www.alfresco.org/model/bpm/1.0}package = workspace://SpacesStore/6e2bbbbd-b728-4403-be37-dfce55a83641 :: start bpm:assignees bpm:package started workflow id: jbpm$63 , def: nmwf:MyWorkflow path: jbpm$63-@ , node: start , active: true task id: jbpm$112 , name: nmwf:submitTask, title: submitTask title , desc: submitTask description , properties: 16 transition id: [default] , title: Task Done :: show transitions path: jbpm$63-@ , node: start , active: true task id: jbpm$112 , name: nmwf:submitTask, title: submitTask title , desc: submitTask description , properties: 17 transition id: [default] , title: Task Done :: end task jbpm$112 signal sent - path id: jbpm$63-@ path: jbpm$63-@ , node: In Editing , active: true task id: jbpm$113 , name: nmwf:submitInEditing, title: submitInEditing title , desc: submitInEditing description , properties: 17 transition id: Submit for Approval , title: Submit for Approval transition id: Request Copyediting Review , title: Request Copyediting Review transition id: Request Legal Review , title: Request Legal Review transition id: Request Review , title: Request Review :: show tasks task id: jbpm$113 , name: nmwf:submitInEditing , properties: 18 :: show my tasks admin: [there is no output here] I have been making the assumption that the bpm:assignees that I am setting before starting the workflow initially are getting passed to the first task node "In Editing". Clearly the assignees are on the task object and not on the workflow object. I added the assignees aspect to the start-state task so that it could hold them (after I had a problem; initially they were not there) and possibly they are still sitting there, but the start-state has ended before I even get control back from the web script (not that it would help if it wasn't ended, I need it to be in "In Editing" as the start-state is only used to log that the workflow was started). It has always confused me that the properties that I need to set on each task need to be requested before the task is entered (when you choose a transition you must provide the data for the next task before you can actually move to the next task as you have to validate that you have all of the required data first and then signal the transition). However, the code to start the workflow is asynchronous and therefore does not return either the started workflow or the current task (which in my case would be "In Editing"). So, either way you cannot set variables such as bpm:assignees and bpm:dueDate. I wonder if this is the problem with the user task list. I'm setting the assignees in the property list, but maybe those assignees are going to the start-state task and are not getting passed to the "In Editing" task? Note that this is my first jBPM workflow, so please don't assume I know what I'm doing. If you see something that looks off, it probably is and I just don't know it. Thanks in advance for any advice or help,

    Read the article

  • Asset Pipeline acting up

    - by Abram
    Ok, so my asset pipeline has suddenly started acting up on my development machine. JS functions that previously worked are now throwing "not a function" errors.. I know I must be doing something wrong. A minute ago the datatables jquery function was working, then it was throwing an error, then it was working, and now it's not working or throwing an error. Here is my application.js //= require jquery //= require jquery-ui //= require jquery_ujs //= require_self //= require_tree . //= require dataTables/jquery.dataTables //= require dataTables/jquery.dataTables.bootstrap //= require bootstrap //= require bootstrap-tooltip //= require bootstrap-popover //= require bootstrap-tab //= require bootstrap-modal //= require bootstrap-alert //= require bootstrap-dropdown //= require jquery.ui.addresspicker //= require raty //= require jquery.alphanumeric //= require jquery.formrestrict //= require select2 //= require chosen/chosen.jquery //= require highcharts //= require jquery.lazyload Here is some of my layout header: <%= stylesheet_link_tag "application", media: "all" %> <%= yield(:scripthead) %> <%= javascript_include_tag "application" %> <%= csrf_meta_tags %> <%= yield(:head) %> Above I am using the yield to load up online scripts from google as they're only needed on some pages, and generally slow down the site if included in the application layout. I tried removing the yield but things were still broken, even after clearing the browser cache and running rake assets:clean (just to be on the safe side). Here's what shows up between CSS and metatags (for a page with nothin in the yield scripthead): <script src="/assets/jquery.js?body=1" type="text/javascript"></script> <script src="/assets/jquery-ui.js?body=1" type="text/javascript"></script> <script src="/assets/jquery_ujs.js?body=1" type="text/javascript"></script> <script src="/assets/application.js?body=1" type="text/javascript"></script> <script src="/assets/aidmodels.js?body=1" type="text/javascript"></script> <script src="/assets/audio.js?body=1" type="text/javascript"></script> <script src="/assets/bootstrap-alert.js?body=1" type="text/javascript"></script> <script src="/assets/bootstrap-dropdown.js?body=1" type="text/javascript"></script> <script src="/assets/bootstrap-modal.js?body=1" type="text/javascript"></script> <script src="/assets/bootstrap-popover.js?body=1" type="text/javascript"></script> <script src="/assets/bootstrap-tab.js?body=1" type="text/javascript"></script> <script src="/assets/bootstrap-tooltip.js?body=1" type="text/javascript"></script> <script src="/assets/branches.js?body=1" type="text/javascript"></script> <script src="/assets/charts.js?body=1" type="text/javascript"></script> <script src="/assets/chosen/backup_chosen.jquery.js?body=1" type="text/javascript"></script> <script src="/assets/chosen/chosen.jquery.js?body=1" type="text/javascript"></script> <script src="/assets/consumers.js?body=1" type="text/javascript"></script> <script src="/assets/dispensers.js?body=1" type="text/javascript"></script> <script src="/assets/favorites.js?body=1" type="text/javascript"></script> <script src="/assets/features.js?body=1" type="text/javascript"></script> <script src="/assets/generic_styles.js?body=1" type="text/javascript"></script> <script src="/assets/gmaps4rails/gmaps4rails.base.js?body=1" type="text/javascript"></script> <script src="/assets/gmaps4rails/gmaps4rails.bing.js?body=1" type="text/javascript"></script> <script src="/assets/gmaps4rails/gmaps4rails.googlemaps.js?body=1" type="text/javascript"></script> <script src="/assets/gmaps4rails/gmaps4rails.mapquest.js?body=1" type="text/javascript"></script> <script src="/assets/gmaps4rails/gmaps4rails.openlayers.js?body=1" type="text/javascript"></script> <script src="/assets/highcharts.js?body=1" type="text/javascript"></script> <script src="/assets/jquery-ui-1.8.18.custom.min.js?body=1" type="text/javascript"></script> <script src="/assets/jquery.alphanumeric.js?body=1" type="text/javascript"></script> <script src="/assets/jquery.formrestrict.js?body=1" type="text/javascript"></script> <script src="/assets/jquery.lazyload.js?body=1" type="text/javascript"></script> <script src="/assets/jquery.ui.addresspicker.js?body=1" type="text/javascript"></script> <script src="/assets/likes.js?body=1" type="text/javascript"></script> <script src="/assets/messages.js?body=1" type="text/javascript"></script> <script src="/assets/overalls.js?body=1" type="text/javascript"></script> <script src="/assets/pages.js?body=1" type="text/javascript"></script> <script src="/assets/questions.js?body=1" type="text/javascript"></script> <script src="/assets/raty.js?body=1" type="text/javascript"></script> <script src="/assets/reviews.js?body=1" type="text/javascript"></script> <script src="/assets/sessions.js?body=1" type="text/javascript"></script> <script src="/assets/styles.js?body=1" type="text/javascript"></script> <script src="/assets/tickets.js?body=1" type="text/javascript"></script> <script src="/assets/universities.js?body=1" type="text/javascript"></script> <script src="/assets/users.js?body=1" type="text/javascript"></script> <script src="/assets/dataTables/jquery.dataTables.js?body=1" type="text/javascript"></script> <script src="/assets/dataTables/jquery.dataTables.bootstrap.js?body=1" type="text/javascript"></script> <script src="/assets/bootstrap-transition.js?body=1" type="text/javascript"></script> <script src="/assets/bootstrap-affix.js?body=1" type="text/javascript"></script> <script src="/assets/bootstrap-button.js?body=1" type="text/javascript"></script> <script src="/assets/bootstrap-carousel.js?body=1" type="text/javascript"></script> <script src="/assets/bootstrap-collapse.js?body=1" type="text/javascript"></script> <script src="/assets/bootstrap-scrollspy.js?body=1" type="text/javascript"></script> <script src="/assets/bootstrap-typeahead.js?body=1" type="text/javascript"></script> <script src="/assets/bootstrap.js?body=1" type="text/javascript"></script> <script src="/assets/select2.js?body=1" type="text/javascript"></script> From application.rb: config.assets.initialize_on_precompile = false # Enable the asset pipeline config.assets.enabled = true config.action_controller.assets_dir = "#{File.dirname(File.dirname(__FILE__))}/public" # Version of your assets, change this if you want to expire all your assets config.assets.version = '1.0' I'm sorry, I'm not sure what else to include to help with this puzzle, but any advise would be appreciated. I was having no problems before I started trying to upload to heroku and now everything's gone haywire. EDIT: In the console at the moment I'm seeing Uncaught TypeError: Cannot read property 'Constructor' of undefined bootstrap-popover.js:33 Uncaught ReferenceError: google is not defined jquery.ui.addresspicker.js:25 Uncaught TypeError: Object [object Object] has no method 'popover' overall:476

    Read the article

  • Silverlight 2.0 - Can't get the text wrapping behaviour that I want

    - by Anthony
    I am having trouble getting Silverlight 2.0 to lay out text exactly how I want. I want text with line breaks and embedded links, with wrapping, like HTML text in a web page. Here's the closest that I have come: <UserControl x:Class="FlowPanelTest.Page" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Controls="clr-namespace:Microsoft.Windows.Controls;assembly=Microsoft.Windows.Controls" Width="250" Height="300"> <Border BorderBrush="Black" BorderThickness="2" > <Controls:WrapPanel> <TextBlock x:Name="tb1" TextWrapping="Wrap">Short text. </TextBlock> <TextBlock x:Name="tb2" TextWrapping="Wrap">A bit of text. </TextBlock> <TextBlock x:Name="tb3" TextWrapping="Wrap">About half of a line of text.</TextBlock> <TextBlock x:Name="tb4" TextWrapping="Wrap">More than half a line of longer text.</TextBlock> <TextBlock x:Name="tb5" TextWrapping="Wrap">More than one line of text, so it will wrap onto the following line.</TextBlock> </Controls:WrapPanel> </Border> </UserControl> But the issue is that although the text blocks tb1 and tb2 will go onto the same line because there is room enough for them completely, tb3 onwards will not start on the same line as the previous block, even though it will wrap onto following lines. I want each text block to start where the previous one ends, on the same line. I want to put click event handlers on some of the text. I also want paragraph breaks. Essentially I'm trying to work around the lack of FlowDocument and Hyperlink controls in Silverlight 2.0's subset of XAML. To answer the questions posed in the answers: Why not use runs for the non-clickable text? If I just use individual TextBlocks only on the clickable text, then those bits of text will still suffer from the wrapping problem illustrated above. And the TextBlock just before the link, and the TextBlock just after. Essentially all of it. It doesn't look like I have many opportunities for putting multiple runs in the same TextBlock. Dividing the links from the other text with RegExs and loops is not the issue at all, the issue is display layout. Why not put each word in an individual TextBlock in a WrapPanel Aside from being an ugly hack, this does not play at all well with linebreaks - the layout is incorrect. It would also make the underline style of linked text into a broken line. Here's an example with each word in its own TextBlock. Try running it, note that the linebreak isn't shown in the right place at all. <UserControl x:Class="SilverlightApplication2.Page" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Controls="clr-namespace:Microsoft.Windows.Controls;assembly=Microsoft.Windows.Controls" Width="300" Height="300"> <Controls:WrapPanel> <TextBlock TextWrapping="Wrap">Short1 </TextBlock> <TextBlock TextWrapping="Wrap">Longer1 </TextBlock> <TextBlock TextWrapping="Wrap">Longerest1 </TextBlock> <TextBlock TextWrapping="Wrap"> <Run>Break</Run> <LineBreak></LineBreak> </TextBlock> <TextBlock TextWrapping="Wrap">Short2</TextBlock> <TextBlock TextWrapping="Wrap">Longer2</TextBlock> <TextBlock TextWrapping="Wrap">Longerest2</TextBlock> <TextBlock TextWrapping="Wrap">Short3</TextBlock> <TextBlock TextWrapping="Wrap">Longer3</TextBlock> <TextBlock TextWrapping="Wrap">Longerest3</TextBlock> </Controls:WrapPanel> </UserControl> What about The LinkLabelControl as here and here. It has the same problems as the approach above, since it's much the same. Try running the sample, and make the link text longer and longer until it wraps. Note that the link starts on a new line, which it shouldn't. Make the link text even longer, so that the link text is longer than a line. Note that it doesn't wrap at all, it cuts off. This control doesn't handle line breaks and paragraph breaks either. Why not put the text all in runs, detect clicks on the containing TextBlock and work out which run was clicked Runs do not have mouse events, but the containing TextBlock does. I can't find a way to check if the run is under the mouse (IsMouseOver is not present in SilverLight) or to find the bounding geometry of the run (no clip property). There is VisualTreeHelper.FindElementsInHostCoordinates() The code below uses VisualTreeHelper.FindElementsInHostCoordinates to get the controls under the click. The output lists the TextBlock but not the Run, since a Run is not a UiElement. private void theText_MouseLeftButtonDown(object sender, System.Windows.Input.MouseButtonEventArgs e) { // get the elements under the click UIElement uiElementSender = sender as UIElement; Point clickPos = e.GetPosition(uiElementSender); var UiElementsUnderClick = VisualTreeHelper.FindElementsInHostCoordinates(clickPos, uiElementSender); // show the controls string outputText = ""; foreach (var uiElement in UiElementsUnderClick) { outputText += uiElement.GetType().ToString() + "\n"; } this.outText.Text = outputText; } Use an empty text block with a margin to space following content onto a following line I'm still thinking about this one. How do you calculate the right width for a line-breaking block to force following content onto the following line? Too short and the following content will still be on the same line, at the right. Too long and the "linebreak" will be on the following line, with content after it. You would have to resize the breaks when the control is resized. Some of the code for this is: TextBlock lineBreak = new TextBlock(); lineBreak.TextWrapping = TextWrapping.Wrap; lineBreak.Text = " "; // need adaptive width lineBreak.Margin = new Thickness(0, 0, 200, 0);

    Read the article

  • xVal 1.0 not generating the correct xVal.AttachValidator

    - by bastijn
    I'm currently implementing xVal client-side validation. The server-side validation is working correctly at the moment. I have referenced xVall.dll (from xVal1.0.zip) in my project as well as the System.ComponentModel.DataAnnotations and System.web.mvc.DataAnnotations from the Data Annotations Model Binder Sample found at http://aspnet.codeplex.com/releases/view/24471. I have modified the method BindProperty in the DataAnnotationsModelBinder class since it returned a nullpointer exception telling me the modelState object was null. Some blogposts described to modify the method and I did according to this SO post. Next I put the following lines in my global.asax: protected void Application_Start() { // kept same and added following line RegisterModelBinders(ModelBinders.Binders); // Add this line } public void RegisterModelBinders(ModelBinderDictionary binders) // Add this whole method { binders.DefaultBinder = new Microsoft.Web.Mvc.DataAnnotations.DataAnnotationsModelBinder(); } Now, I have made a partial class and a metadata class since I use the entity framework and you cannot create partial declarations as of yet so I have: [MetadataType(typeof(PersonMetaData))] public partial class Persons { // .... } public class PersonMetaData { private const string EmailRegEx = @"^(([^<>()[\]\\.,;:\s@\""]+" + @"(\.[^<>()[\]\\.,;:\s@\""]+)*)|(\"".+\""))@" + @"((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}" + @"\.[0-9]{1,3}\])|(([a-zA-Z\-0-9]+\.)+" + @"[a-zA-Z]{2,}))$"; [Required] public string FirstName { get; set; } [Required] public string LastName { get; set; } [Required(ErrorMessage="Please fill in your email")] [RegularExpression(EmailRegEx,ErrorMessage="Please supply a valid email address")] public string Email { get; set; } } And in my controller I have the POST edit method which currently still use a FormCollection instead of a Persons object as input. I have to change this later on but due to time constraints and some strange bug this isnt done as of yet :). It shouldnt matter though. Below it is my view. // // POST: /Jobs/Edit/5 //[CustomAuthorize(Roles = "admin,moderator")] [AcceptVerbs(HttpVerbs.Post)] public ActionResult Edit([Bind(Exclude = "Id")]FormCollection form) { Persons person = this.GetLoggedInPerson(); person.UpdatedAt = DateTime.Now; // Update the updated time. TryUpdateModel(person, null, null, new string[]{"Id"}); if (ModelState.IsValid) { repository.SaveChanges(); return RedirectToAction("Index", "ControlPanel"); } return View(person); } #endregion My view contains a partial page containing the form. In my edit.aspx I have the following code: <div class="content"> <% Html.RenderPartial("PersonForm", Model); %> </div> </div> and in the .ascx partial page: <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl<WerkStageNu.Persons>" %> <% if (!Model.AddressesReference.IsLoaded) { % <% Model.AddressesReference.Load(); % <% } % <%= Html.ValidationSummary("Edit was unsuccessful. Please correct the errors and try again.") % <% using (Html.BeginForm()) {%> <fieldset> <legend>General information</legend> <table> <tr> <td><label for="FirstName">FirstName:</label></td><td><%= Html.TextBox("FirstName", Model.FirstName)%><%= Html.ValidationMessage("FirstName", "*")%></td> </tr> <tr> <td><label for="LastName">LastName:</label></td><td><%= Html.TextBox("LastName", Model.LastName)%><%= Html.ValidationMessage("LastName", "*")%></td> </tr> <tr> <td><label for="Email">Email:</label></td><td><%= Html.TextBox("Email", Model.Email)%><%= Html.ValidationMessage("Email", "*")%></td> </tr> <tr> <td><label for="Telephone">Telephone:</label></td><td> <%= Html.TextBox("Telephone", Model.Telephone) %><%= Html.ValidationMessage("Telephone", "*") %></td> </tr> <tr> <td><label for="Fax">Fax:</label></td><td><%= Html.TextBox("Fax", Model.Fax) %><%= Html.ValidationMessage("Fax", "*") %></td> </tr> </table> <%--<p> <label for="GenderID"><%= Html.Encode(Resources.Forms.gender) %>:</label> <%= Html.DropDownList("GenderID", Model.Genders)%> </p> --%> </fieldset> <fieldset> <legend><%= Html.Encode(Resources.Forms.addressinformation) %></legend> <table> <tr> <td><label for="Addresses.City"><%= Html.Encode(Resources.Forms.city) %>:</label></td><td><%= Html.TextBox("Addresses.City", Model.Addresses.City)%></td> </tr> <tr> <td><label for="Addresses.Street"><%= Html.Encode(Resources.Forms.street) %>:</label></td><td><%= Html.TextBox("Addresses.Street", Model.Addresses.Street)%></td> </tr> <tr> <td><label for="Addresses.StreetNo"><%= Html.Encode(Resources.Forms.streetNumber) %>:</label></td><td><%= Html.TextBox("Addresses.StreetNo", Model.Addresses.StreetNo)%></td> </tr> <tr> <td><label for="Addresses.Country"><%= Html.Encode(Resources.Forms.county) %>:</label></td><td><%= Html.TextBox("Addresses.Country", Model.Addresses.Country)%></td> </tr> </table> </fieldset> <p> <input type="image" src="../../Content/images/save_btn.png" /> </p> <%= Html.ClientSideValidation(typeof(WerkStageNu.Persons)) %> <% } % Still nothing really stunning over here. In combination with the edited data annotation dlls this gives me server-side validation working (although i have to manually exclude the "id" property as done in the TryUpdateModel). The strange thing is that it still generates the following script in my View: xVal.AttachValidator(null, {"Fields":[{"FieldName":"ID","FieldRules": [{"RuleName":"DataType","RuleParameters":{"Type":"Integer"}}]}]}, {}) While all the found blogposts on this ( 1, 2 ) but all of those are old posts and all say it should be fixed from xVal 0.8 and up. The last thing I found was this post but I did not really understand. I referenced using Visual Studio - add reference -- browse - selected from my bin dir where I stored the external compiled dlls (copied to the bin dir of my project). Can anyone tell me where the problem originates from?

    Read the article

  • Core Data error when assigning variable with one-to-one relationship

    - by Hoang Pham
    I tried to assign a managed object (C) with its property another managed object (B) (a one-to-one relationship) in which this other managed object (B) has a to-many relationship with one other managed object (A). There is an error from this assignment in which I copied as follows: #0 0x020e53a7 in ___forwarding___ #1 0x020c16c2 in __forwarding_prep_0___ #2 0x02078988 in CFRetain #3 0x0207a728 in CFSetAddValue #4 0x020c2fb2 in CFSetCreate #5 0x01e51ce8 in -[_NSFaultingMutableSet copyWithZone:] #6 0x020afcca in -[NSObject copy] #7 0x01e50d22 in -[NSManagedObject(_NSInternalMethods) _newPropertiesForRetainedTypes:andCopiedTypes:preserveFaults:] #8 0x01e51aa0 in -[NSManagedObject(_NSInternalMethods) _newAllPropertiesWithRelationshipFaultsIntact__] #9 0x01e519b4 in -[NSManagedObjectContext(_NSInternalChangeProcessing) _establishEventSnapshotsForObject:] #10 0x01e51866 in _PFFastMOCObjectWillChange #11 0x01e516c5 in _PF_ManagedObject_WillChangeValueForKeyIndex #12 0x01e51525 in _sharedIMPL_setvfk_core #13 0x01e51483 in _PF_Handler_Public_SetProperty #14 0x01e546d1 in -[NSManagedObject(_NSInternalMethods) _didChangeValue:forRelationship:named:withInverse:] #15 0x0030ec1e in NSKVONotify #16 0x002aae2a in -[NSObject(NSKeyValueObserverNotification) didChangeValueForKey:] #17 0x01e5212f in _PF_ManagedObject_DidChangeValueForKeyIndex #18 0x01e515b1 in _sharedIMPL_setvfk_core #19 0x01e55827 in _svfk_5 I don't understand very well what the exact description of this error is. Can someone explain to me what it is and how to solve this one. Note that all other assignments in which the managed object B does not have any A items do not raise this error. ObjectC *objectC = [NSEntityDescription insertNewObjectForEntityForName:@"ObjectC" inManagedObjectContext:managedObjectContext]; objectC.objectB = objectB; Thank you in advance. I added some more NSZombieEnabled/MallocStackLogging generated log: 2010-05-18 17:28:05.327 Foo[2069:207] *** -[CFSet retain]: message sent to deallocated instance 0x800c880 (gdb) shell malloc_history 207 0x800c880 malloc_history cannot examine process 207 because the process does not exist. (gdb) shell malloc_history 2069 0x800c880 ALLOC 0x800c880-0x800c884 [size=5]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlIOParseDTD | _endElementNs | -[Parser parser:didEndElement:namespaceURI:qualifiedName:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | asl_set_query | strdup | malloc | malloc_zone_malloc ---- FREE 0x800c880-0x800c884 [size=5]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlIOParseDTD | _endElementNs | -[Parser parser:didEndElement:namespaceURI:qualifiedName:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | asl_free | free ALLOC 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | asl_set_query | asprintf | malloc | malloc_zone_malloc ---- FREE 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | asl_set_query | free ALLOC 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | asprintf | malloc | malloc_zone_malloc ---- FREE 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | free ALLOC 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | asprintf | malloc | malloc_zone_malloc ---- FREE 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | free ALLOC 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | asprintf | malloc | malloc_zone_malloc ---- FREE 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | free ALLOC 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | asprintf | malloc | malloc_zone_malloc ---- FREE 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | free ALLOC 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | asprintf | malloc | malloc_zone_malloc ---- FREE 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | free ALLOC 0x800c700-0x800c893 [size=404]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlIOParseDTD | _startElementNs | -[Parser parser:didStartElement:namespaceURI:qualifiedName:attributes:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | CFCalendarDecomposeAbsoluteTime | _CFCalendarDecomposeAbsoluteTimeV | __CFCalendarSetupCal | __CFCalendarCreateUCalendar | ucal_open | icu::Calendar::createInstance(icu::TimeZone*, icu::Locale const&, UErrorCode&) | malloc | malloc_zone_malloc ---- FREE 0x800c700-0x800c893 [size=404]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlIOParseDTD | _startElementNs | -[Parser parser:didStartElement:namespaceURI:qualifiedName:attributes:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | _CFRelease | free ALLOC 0x800c880-0x800c8c7 [size=72]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlIOParseDTD | _startElementNs | -[Parser parser:didStartElement:namespaceURI:qualifiedName:attributes:] | +[NSEntityDescription insertNewObjectForEntityForName:inManagedObjectContext:] | +[NSManagedObject(_PFDynamicAccessorsAndPropertySupport) allocWithEntity:] | _PFAllocateObject | malloc_zone_calloc ---- FREE 0x800c880-0x800c8c7 [size=72]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __CFRunLoopDoObservers | _performRunLoopAction | -[_PFManagedObjectReferenceQueue _processReferenceQueue:] | _PFDeallocateObject | malloc_zone_free ALLOC 0x800c880-0x800c8a7 [size=40]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __CFRunLoopDoObservers | CA::Transaction::observer_callback(__CFRunLoopObserver*, unsigned long, void*) | CA::Transaction::commit() | CA::Context::commit_transaction(CA::Transaction*) | CALayerDisplayIfNeeded | -[TileLayer display] | -[CALayer _display] | CABackingStoreUpdate | backing_callback(CGContext*, void*) | WebCore::TiledSurface::drawLayer(CALayer*, CGContext*) | WKWindowDrawRect | WKViewDisplayRect | _WKViewDraw(CGContext*, WKView*, CGRect) | _WKViewDraw(CGContext*, WKView*, CGRect) | _WKViewDraw(CGContext*, WKView*, CGRect) | _WKViewDraw(CGContext*, WKView*, CGRect) | _WKViewDraw(CGContext*, WKView*, CGRect) | -[WebHTMLView drawSingleRect:] | -[WebFrame(WebInternal) _drawRect:contentsOnly:] | WebCore::FrameView::paintContents(WebCore::GraphicsContext*, WebCore::IntRect const&) | WebCore::RenderLayer::paint(WebCore::GraphicsContext*, WebCore::IntRect const&, WebCore::PaintRestriction, WebCore::RenderObject*) | WebCore::RenderLayer::paintLayer(WebCore::RenderLayer*, WebCore::GraphicsContext*, WebCore::IntRect const&, bool, WebCore::PaintRestriction, WebCore::RenderObject*, bool, bool) | WebCore::RenderLayer::paintLayer(WebCore::RenderLayer*, WebCore::GraphicsContext*, WebCore::IntRect const&, bool, WebCore::PaintRestriction, WebCore::RenderObject*, bool, bool) | WebCore::RenderBlock::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintObject(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintChildren(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintObject(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintChildren(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintObject(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintChildren(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintObject(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderFlow::paintLines(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RootInlineBox::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::InlineFlowBox::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::InlineTextBox::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::paintTextWithShadows(WebCore::GraphicsContext*, WebCore::Font const&, WebCore::TextRun const&, int, int, WebCore::IntPoint const&, int, int, int, int, WebCore::ShadowData*, bool) | WebCore::GraphicsContext::drawText(WebCore::Font const&, WebCore::TextRun const&, WebCore::IntPoint const&, int, int) | WebCore::Font::drawSimpleText(WebCore::GraphicsContext*, WebCore::TextRun const&, WebCore::FloatPoint const&, int, int) const | WebCore::Font::drawGlyphBuffer(WebCore::GraphicsContext*, WebCore::GlyphBuffer const&, WebCore::TextRun const&, WebCore::FloatPoint&) const | WebCore::Font::drawGlyphs(WebCore::GraphicsContext*, WebCore::SimpleFontData const*, WebCore::GlyphBuffer const&, int, int, WebCore::FloatPoint const&, bool) const | CGGStateSetFont | maybeCopyTextState | calloc | malloc_zone_calloc ---- FREE 0x800c880-0x800c8a7 [size=40]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __CFRunLoopDoObservers | CA::Transaction::observer_callback(__CFRunLoopObserver*, unsigned long, void*) | CA::Transaction::commit() | CA::Context::commit_transaction(CA::Transaction*) | CALayerDisplayIfNeeded | -[TileLayer display] | -[CALayer _display] | CABackingStoreUpdate | backing_callback(CGContext*, void*) | WebCore::TiledSurface::drawLayer(CALayer*, CGContext*) | WKWindowDrawRect | WKViewDisplayRect | _WKViewDraw(CGContext*, WKView*, CGRect) | _WKViewDraw(CGContext*, WKView*, CGRect) | _WKViewDraw(CGContext*, WKView*, CGRect) | _WKViewDraw(CGContext*, WKView*, CGRect) | _WKViewDraw(CGContext*, WKView*, CGRect) | -[WebHTMLView drawSingleRect:] | -[WebFrame(WebInternal) _drawRect:contentsOnly:] | WebCore::FrameView::paintContents(WebCore::GraphicsContext*, WebCore::IntRect const&) | WebCore::RenderLayer::paint(WebCore::GraphicsContext*, WebCore::IntRect const&, WebCore::PaintRestriction, WebCore::RenderObject*) | WebCore::RenderLayer::paintLayer(WebCore::RenderLayer*, WebCore::GraphicsContext*, WebCore::IntRect const&, bool, WebCore::PaintRestriction, WebCore::RenderObject*, bool, bool) | WebCore::RenderLayer::paintLayer(WebCore::RenderLayer*, WebCore::GraphicsContext*, WebCore::IntRect const&, bool, WebCore::PaintRestriction, WebCore::RenderObject*, bool, bool) | WebCore::RenderBlock::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintObject(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintChildren(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintObject(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintChildren(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintObject(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintChildren(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintObject(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderFlow::paintLines(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RootInlineBox::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::InlineFlowBox::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::InlineTextBox::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::paintTextWithShadows(WebCore::GraphicsContext*, WebCore::Font const&, WebCore::TextRun const&, int, int, WebCore::IntPoint const&, int, int, int, int, WebCore::ShadowData*, bool) | WebCore::GraphicsContext::restorePlatformState() | CGContextRestoreGState | CGGStackRestore | CGGStateRelease | textStateRelease | free ALLOC 0x800c880-0x800c8bf [size=64]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | CA::timer_callback(__CFRunLoopTimer*, void*) | run_animation_callbacks(double, void*) | -[UIViewAnimationState animationDidStop:finished:] | -[UIViewAnimationState sendDelegateAnimationDidStop:finished:] | -[UINavigationTransitionView _navigationTransitionDidStop] | -[UIView(Hierarchy) removeFromSuperview] | -[UITextField resignFirstResponder] | -[UIFieldEditor resignFirstResponder] | -[UIKeyboardImpl setDelegate:] | -[UIKeyboardImpl setDelegate:force:] | -[UITextInteractionAssistant setGestureRecognizers] | -[UITextInteractionAssistant addTwoFingerRangedSelectRecognizer] | -[UILongPressGestureRecognizer initWithTarget:action:] | -[__NSPlaceholderSet init] | -[__NSPlaceholderSet initWithCapacity:] | __CFSetInit | _CFRuntimeCreateInstance | malloc_zone_malloc

    Read the article

  • Could not synchronize database state with session

    - by user359427
    Hello all, I'm having trouble trying to persist an entity which ID is a generated value. This entity (A), at persistence time, has to persist in cascade another entity(B). The relationship within A and B is OneToMany, and the property related in B is part of a composite key. I'm using Eclipse, JBOSS Runtime, JPA/Hibernate Here is my code: Entity A: @Entity public class Cambios implements Serializable { private static final long serialVersionUID = 1L; @SequenceGenerator(name="CAMBIOS_GEN",sequenceName="CAMBIOS_SEQ",allocationSize=1) @Id @GeneratedValue(strategy=GenerationType.SEQUENCE, generator="CAMBIOS_GEN") @Column(name="ID_CAMBIO") private Long idCambio; //bi-directional many-to-one association to ObjetosCambio @OneToMany(cascade={CascadeType.PERSIST},mappedBy="cambios") private List<ObjetosCambio> objetosCambioList; public Cambios() { } ... } Entity B: @Entity @Table(name="OBJETOS_CAMBIO") public class ObjetosCambio implements Serializable { private static final long serialVersionUID = 1L; @EmbeddedId private ObjetosCambioPK id; //bi-directional many-to-one association to Cambios @ManyToOne @JoinColumn(name="ID_CAMBIO", insertable=false, updatable=false) private Cambios cambios; //bi-directional many-to-one association to Objetos @ManyToOne @JoinColumn(name="ID_OBJETO", insertable=false, updatable=false) private Objetos objetos; public ObjetosCambio() { } ... Entity B PK: @Embeddable public class ObjetosCambioPK implements Serializable { //default serial version id, required for serializable classes. private static final long serialVersionUID = 1L; @Column(name="ID_OBJETO") private Long idObjeto; @Column(name="ID_CAMBIO") private Long idCambio; public ObjetosCambioPK() { } Client: public String generarCambio(){ ServiceLocator serviceLocator = null; try { serviceLocator = serviceLocator.getInstance(); FachadaLocal tcLocal; tcLocal = (FachadaLocal)serviceLocator.getFacadeService("java:comp/env/negocio/Fachada"); Cambios cambio = new Cambios(); Iterator it = objetosLocal.iterator(); //OBJETOSLOCAL IS ALREADY POPULATED OUTSIDE OF THIS METHOD List<ObjetosCambio> ocList = new ArrayList(); while (it.hasNext()){ Objetos objeto = (Objetos)it.next(); ObjetosCambio objetosCambio = new ObjetosCambio(); objetosCambio.setCambios(cambio); //AT THIS TIME THIS "CAMBIO" DOES NOT HAVE ITS ID, ITS SUPPOSED TO BE GENERATED AT PERSISTENCE TIME ObjetosCambioPK ocPK = new ObjetosCambioPK(); ocPK.setIdObjeto(objeto.getIdObjeto()); objetosCambio.setId(ocPK); ocList.add(objetosCambio); } cambio.setObjetosCambioList(ocList); tcLocal.persistEntity(cambio); return "exito"; } catch (NamingException e) { // TODO e.printStackTrace(); } return null; } ERROR: 15:23:25,717 WARN [JDBCExceptionReporter] SQL Error: 1400, SQLState: 23000 15:23:25,717 ERROR [JDBCExceptionReporter] ORA-01400: no se puede realizar una inserción NULL en ("CDC"."OBJETOS_CAMBIO"."ID_CAMBIO") 15:23:25,717 WARN [JDBCExceptionReporter] SQL Error: 1400, SQLState: 23000 15:23:25,717 ERROR [JDBCExceptionReporter] ORA-01400: no se puede realizar una inserción NULL en ("CDC"."OBJETOS_CAMBIO"."ID_CAMBIO") 15:23:25,717 ERROR [AbstractFlushingEventListener] Could not synchronize database state with session org.hibernate.exception.ConstraintViolationException: Could not execute JDBC batch update at org.hibernate.exception.SQLStateConverter.convert(SQLStateConverter.java:94) at org.hibernate.exception.JDBCExceptionHelper.convert(JDBCExceptionHelper.java:66) at org.hibernate.jdbc.AbstractBatcher.executeBatch(AbstractBatcher.java:275) at org.hibernate.engine.ActionQueue.executeActions(ActionQueue.java:266) at org.hibernate.engine.ActionQueue.executeActions(ActionQueue.java:167) at org.hibernate.event.def.AbstractFlushingEventListener.performExecutions(AbstractFlushingEventListener.java:321) at org.hibernate.event.def.DefaultFlushEventListener.onFlush(DefaultFlushEventListener.java:50) at org.hibernate.impl.SessionImpl.flush(SessionImpl.java:1027) at org.hibernate.impl.SessionImpl.managedFlush(SessionImpl.java:365) at org.hibernate.ejb.AbstractEntityManagerImpl$1.beforeCompletion(AbstractEntityManagerImpl.java:504) at com.arjuna.ats.internal.jta.resources.arjunacore.SynchronizationImple.beforeCompletion(SynchronizationImple.java:101) at com.arjuna.ats.arjuna.coordinator.TwoPhaseCoordinator.beforeCompletion(TwoPhaseCoordinator.java:269) at com.arjuna.ats.arjuna.coordinator.TwoPhaseCoordinator.end(TwoPhaseCoordinator.java:89) at com.arjuna.ats.arjuna.AtomicAction.commit(AtomicAction.java:177) at com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionImple.commitAndDisassociate(TransactionImple.java:1423) at com.arjuna.ats.internal.jta.transaction.arjunacore.BaseTransaction.commit(BaseTransaction.java:137) at com.arjuna.ats.jbossatx.BaseTransactionManagerDelegate.commit(BaseTransactionManagerDelegate.java:75) at org.jboss.aspects.tx.TxPolicy.endTransaction(TxPolicy.java:170) at org.jboss.aspects.tx.TxPolicy.invokeInOurTx(TxPolicy.java:87) at org.jboss.aspects.tx.TxInterceptor$Required.invoke(TxInterceptor.java:190) at org.jboss.aop.joinpoint.MethodInvocation.invokeNext(MethodInvocation.java:102) at org.jboss.aspects.tx.TxPropagationInterceptor.invoke(TxPropagationInterceptor.java:76) at org.jboss.aop.joinpoint.MethodInvocation.invokeNext(MethodInvocation.java:102) at org.jboss.ejb3.tx.NullInterceptor.invoke(NullInterceptor.java:42) at org.jboss.aop.joinpoint.MethodInvocation.invokeNext(MethodInvocation.java:102) at org.jboss.ejb3.security.Ejb3AuthenticationInterceptorv2.invoke(Ejb3AuthenticationInterceptorv2.java:186) at org.jboss.aop.joinpoint.MethodInvocation.invokeNext(MethodInvocation.java:102) at org.jboss.ejb3.ENCPropagationInterceptor.invoke(ENCPropagationInterceptor.java:41) at org.jboss.aop.joinpoint.MethodInvocation.invokeNext(MethodInvocation.java:102) at org.jboss.ejb3.BlockContainerShutdownInterceptor.invoke(BlockContainerShutdownInterceptor.java:67) at org.jboss.aop.joinpoint.MethodInvocation.invokeNext(MethodInvocation.java:102) at org.jboss.aspects.currentinvocation.CurrentInvocationInterceptor.invoke(CurrentInvocationInterceptor.java:67) at org.jboss.aop.joinpoint.MethodInvocation.invokeNext(MethodInvocation.java:102) at org.jboss.ejb3.session.SessionSpecContainer.invoke(SessionSpecContainer.java:176) at org.jboss.ejb3.session.SessionSpecContainer.invoke(SessionSpecContainer.java:216) at org.jboss.ejb3.proxy.impl.handler.session.SessionProxyInvocationHandlerBase.invoke(SessionProxyInvocationHandlerBase.java:207) at org.jboss.ejb3.proxy.impl.handler.session.SessionProxyInvocationHandlerBase.invoke(SessionProxyInvocationHandlerBase.java:164) at $Proxy298.persistEntity(Unknown Source) at backing.SolicitudCambio.generarCambio(SolicitudCambio.java:521) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source) at java.lang.reflect.Method.invoke(Unknown Source) at com.sun.faces.el.MethodBindingImpl.invoke(MethodBindingImpl.java:146) at com.sun.faces.application.ActionListenerImpl.processAction(ActionListenerImpl.java:92) at javax.faces.component.UICommand.broadcast(UICommand.java:332) at javax.faces.component.UIViewRoot.broadcastEvents(UIViewRoot.java:287) at javax.faces.component.UIViewRoot.processApplication(UIViewRoot.java:401) at com.sun.faces.lifecycle.InvokeApplicationPhase.execute(InvokeApplicationPhase.java:95) at com.sun.faces.lifecycle.LifecycleImpl.phase(LifecycleImpl.java:245) at com.sun.faces.lifecycle.LifecycleImpl.execute(LifecycleImpl.java:110) at javax.faces.webapp.FacesServlet.service(FacesServlet.java:213) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:290) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.apache.myfaces.webapp.filter.ExtensionsFilter.doFilter(ExtensionsFilter.java:301) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.jboss.web.tomcat.filters.ReplyHeaderFilter.doFilter(ReplyHeaderFilter.java:96) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:235) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:191) at org.jboss.web.tomcat.security.SecurityAssociationValve.invoke(SecurityAssociationValve.java:190) at org.jboss.web.tomcat.security.JaccContextValve.invoke(JaccContextValve.java:92) at org.jboss.web.tomcat.security.SecurityContextEstablishmentValve.process(SecurityContextEstablishmentValve.java:126) at org.jboss.web.tomcat.security.SecurityContextEstablishmentValve.invoke(SecurityContextEstablishmentValve.java:70) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:127) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:102) at org.jboss.web.tomcat.service.jca.CachedConnectionValve.invoke(CachedConnectionValve.java:158) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:109) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:330) at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:829) at org.apache.coyote.http11.Http11Protocol$Http11ConnectionHandler.process(Http11Protocol.java:598) at org.apache.tomcat.util.net.JIoEndpoint$Worker.run(JIoEndpoint.java:447) at java.lang.Thread.run(Unknown Source) Caused by: java.sql.BatchUpdateException: ORA-01400: no se puede realizar una inserción NULL en ("CDC"."OBJETOS_CAMBIO"."ID_CAMBIO") Thanks in advance! JM.-

    Read the article

  • Linq-to-XML query to select specific sub-element based on additional criteria

    - by BrianLy
    My current LINQ query and example XML are below. What I'd like to do is select the primary email address from the email-addresses element into the User.Email property. The type element under the email-address element is set to primary when this is true. There may be more than one element under the email-addresses but only one will be marked primary. What is the simplest approach to take here? Current Linq Query (User.Email is currently empty): var users = from response in xdoc.Descendants("response") where response.Element("id") != null select new User { Id = (string)response.Element("id"), Name = (string)response.Element("full-name"), Email = (string)response.Element("email-addresses"), JobTitle = (string)response.Element("job-title"), NetworkId = (string)response.Element("network-id"), Type = (string)response.Element("type") }; Example XML: <?xml version="1.0" encoding="UTF-8"?> <response> <response> <contact> <phone-numbers/> <im> <provider></provider> <username></username> </im> <email-addresses> <email-address> <type>primary</type> <address>[email protected]</address> </email-address> </email-addresses> </contact> <job-title>Account Manager</job-title> <type>user</type> <expertise nil="true"></expertise> <summary nil="true"></summary> <kids-names nil="true"></kids-names> <location nil="true"></location> <guid nil="true"></guid> <timezone>Eastern Time (US &amp; Canada)</timezone> <network-name>Domain</network-name> <full-name>Alice</full-name> <network-id>79629</network-id> <stats> <followers>2</followers> <updates>4</updates> <following>3</following> </stats> <mugshot-url> https://assets3.yammer.com/images/no_photo_small.gif</mugshot-url> <previous-companies/> <birth-date></birth-date> <name>alice</name> <web-url>https://www.yammer.com/domain.com/users/alice</web-url> <interests nil="true"></interests> <state>active</state> <external-urls/> <url>https://www.yammer.com/api/v1/users/1089943</url> <network-domains> <network-domain>domain.com</network-domain> </network-domains> <id>1089943</id> <schools/> <hire-date nil="true"></hire-date> <significant-other nil="true"></significant-other> </response> <response> <contact> <phone-numbers/> <im> <provider></provider> <username></username> </im> <email-addresses> <email-address> <type>primary</type> <address>[email protected]</address> </email-address> </email-addresses> </contact> <job-title>Office Manager</job-title> <type>user</type> <expertise nil="true"></expertise> <summary nil="true"></summary> <kids-names nil="true"></kids-names> <location nil="true"></location> <guid nil="true"></guid> <timezone>Eastern Time (US &amp; Canada)</timezone> <network-name>Domain</network-name> <full-name>Bill</full-name> <network-id>79629</network-id> <stats> <followers>3</followers> <updates>1</updates> <following>1</following> </stats> <mugshot-url> https://assets3.yammer.com/images/no_photo_small.gif</mugshot-url> <previous-companies/> <birth-date></birth-date> <name>bill</name> <web-url>https://www.yammer.com/domain.com/users/bill</web-url> <interests nil="true"></interests> <state>active</state> <external-urls/> <url>https://www.yammer.com/api/v1/users/1089920</url> <network-domains> <network-domain>domain.com</network-domain> </network-domains> <id>1089920</id> <schools/> <hire-date nil="true"></hire-date> <significant-other nil="true"></significant-other> </response> </response>

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Maven2 - problem with pluginManagement and parent-child relationship

    - by Newtopian
    from maven documentation pluginManagement: is an element that is seen along side plugins. Plugin Management contains plugin elements in much the same way, except that rather than configuring plugin information for this particular project build, it is intended to configure project builds that inherit from this one. However, this only configures plugins that are actually referenced within the plugins element in the children. The children have every right to override pluginManagement definitions. Now : if I have this in my parent POM <build> <pluginManagement> <plugins> <plugin> <artifactId>maven-dependency-plugin</artifactId> <version>2.0</version> <executions> Some stuff for the children </execution> </executions> </plugin> </plugins> </pluginManagement> </build> and I run mvn help:effective-pom on the parent project I get what I want, namely the plugins part directly under build (the one doing the work) remains empty. Now if I do the following : <build> <pluginManagement> <plugins> <plugin> <artifactId>maven-dependency-plugin</artifactId> <version>2.0</version> <executions> Some stuff for the children </execution> </executions> </plugin> </plugins> </pluginManagement> <plugins> <plugin> <artifactId>maven-compiler-plugin</artifactId> <version>2.0.2</version> <inherited>true</inherited> <configuration> <source>1.6</source> <target>1.6</target> </configuration> </plugin> </plugins> </build> mvn help:effective-pom I get again just what I want, the plugins contains just what is declared and the pluginManagement section is ignored. BUT changing with the following <build> <pluginManagement> <plugins> <plugin> <artifactId>maven-dependency-plugin</artifactId> <version>2.0</version> <executions> Some stuff for the children </execution> </executions> </plugin> </plugins> </pluginManagement> <plugins> <plugin> <artifactId>maven-dependency-plugin</artifactId> <version>2.0</version> <inherited>false</inherited> <!-- this perticular config is NOT for kids... for parent only --> <executions> some stuff for adults only </execution> </executions> </plugin> </plugins> </build> and running mvn help:effective-pom the stuff from pluginManagement section is added on top of what is declared already. as such : <build> <pluginManagement> ... </pluginManagement> <plugins> <plugin> <artifactId>maven-dependency-plugin</artifactId> <version>2.0</version> <inherited>false</inherited> <!-- this perticular config is NOT for kids... for parent only --> <executions> Some stuff for the children </execution> <executions> some stuff for adults only </execution> </executions> </plugin> </plugins> </build> Is there a way to exclude the part for children from the parent pom's section ? In effect what I want is for the pluginManagement to behave exactly as the documentation states, that is I want it to apply for children only but not for the project in which it is declared. As a corrolary, is there a way I can override the parts from the pluginManagement by declaring the plugin in the normal build section of a project ? whatever I try I get that the section is added to executions but I cannot override one that exists already. EDIT: I never did find an acceptable solution for this and as such the issue remains open. Closest solution was offered below and is currently the accepted solution for this question until something better comes up. Right now there are three ways to achieve the desired result (modulate plugin behaviour depending on where in the inheritance hierarchy the current POM is): 1 - using profiles, it will work but you must beware that profiles are not inherited, which is somewhat counter intuitive. They are (if activated) applied to the POM where declared and then this generated POM is propagated down. As such the only way to activate the profile for child POM is specifically on the command line (least I did not find another way). Property, file and other means of activation fail to activate the POM because the trigger is not in the POM where the profile is declared. 2 - (this is what I ended up doing) Declare the plugin as not inherited in the parent and re-declare (copy-paste) the tidbit in every child where it is wanted. Not ideal but it is simple and it works. 3 - Split the aggregation nature and parent nature of the parent POM. Then since the part that only applies to the parent is in a different project it is now possible to use pluginManagement as firstly intended. However this means that a new artificial project must be created that does not contribute to the end product but only serves the could system. This is clear case of conceptual bleed. Also this only applies to my specific and is hard to generalize, so I abandoned efforts to try and make this work in favor of the not-pretty but more contained cut and paste patch described in 2. If anyone coming across this question has a better solution either because of my lack of knowledge of Maven or because the tool evolved to allow this please post the solution here for future reference. Thank you all for your help :-)

    Read the article

  • Building applications with WCF - Intro

    - by skjagini
    I am going to write series of articles using Windows Communication Framework (WCF) to develop client and server applications and this is the first part of that series. What is WCF As Juwal puts in his Programming WCF book, WCF provides an SDK for developing and deploying services on Windows, provides runtime environment to expose CLR types as services and consume services as CLR types. Building services with WCF is incredibly easy and it’s implementation provides a set of industry standards and off the shelf plumbing including service hosting, instance management, reliability, transaction management, security etc such that it greatly increases productivity Scenario: Lets consider a typical bank customer trying to create an account, deposit amount and transfer funds between accounts, i.e. checking and savings. To make it interesting, we are going to divide the functionality into multiple services and each of them working with database directly. We will run test cases with and without transactional support across services. In this post we will build contracts, services, data access layer, unit tests to verify end to end communication etc, nothing big stuff here and we dig into other features of the WCF in subsequent posts with incremental changes. In any distributed architecture we have two pieces i.e. services and clients. Services as the name implies provide functionality to execute various pieces of business logic on the server, and clients providing interaction to the end user. Services can be built with Web Services or with WCF. Service built on WCF have the advantage of binding independent, i.e. can run against TCP and HTTP protocol without any significant changes to the code. Solution Services Profile: For creating a new bank customer, getting details about existing customer ProfileContract ProfileService Checking Account: To get checking account balance, deposit or withdraw amount CheckingAccountContract CheckingAccountService Savings Account: To get savings account balance, deposit or withdraw amount SavingsAccountContract SavingsAccountService ServiceHost: To host services, i.e. running the services at particular address, binding and contract where client can connect to Client: Helps end user to use services like creating account and amount transfer between the accounts BankDAL: Data access layer to work with database     BankDAL It’s no brainer not to use an ORM as many matured products are available currently in market including Linq2Sql, Entity Framework (EF), LLblGenPro etc. For this exercise I am going to use Entity Framework 4.0, CTP 5 with code first approach. There are two approaches when working with data, data driven and code driven. In data driven we start by designing tables and their constrains in database and generate entities in code while in code driven (code first) approach entities are defined in code and the metadata generated from the entities is used by the EF to create tables and table constrains. In previous versions the entity classes had  to derive from EF specific base classes. In EF 4 it  is not required to derive from any EF classes, the entities are not only persistence ignorant but also enable full test driven development using mock frameworks.  Application consists of 3 entities, Customer entity which contains Customer details; CheckingAccount and SavingsAccount to hold the respective account balance. We could have introduced an Account base class for CheckingAccount and SavingsAccount which is certainly possible with EF mappings but to keep it simple we are just going to follow 1 –1 mapping between entity and table mappings. Lets start out by defining a class called Customer which will be mapped to Customer table, observe that the class is simply a plain old clr object (POCO) and has no reference to EF at all. using System;   namespace BankDAL.Model { public class Customer { public int Id { get; set; } public string FullName { get; set; } public string Address { get; set; } public DateTime DateOfBirth { get; set; } } }   In order to inform EF about the Customer entity we have to define a database context with properties of type DbSet<> for every POCO which needs to be mapped to a table in database. EF uses convention over configuration to generate the metadata resulting in much less configuration. using System.Data.Entity;   namespace BankDAL.Model { public class BankDbContext: DbContext { public DbSet<Customer> Customers { get; set; } } }   Entity constrains can be defined through attributes on Customer class or using fluent syntax (no need to muscle with xml files), CustomerConfiguration class. By defining constrains in a separate class we can maintain clean POCOs without corrupting entity classes with database specific information.   using System; using System.Data.Entity.ModelConfiguration;   namespace BankDAL.Model { public class CustomerConfiguration: EntityTypeConfiguration<Customer> { public CustomerConfiguration() { Initialize(); }   private void Initialize() { //Setting the Primary Key this.HasKey(e => e.Id);   //Setting required fields this.HasRequired(e => e.FullName); this.HasRequired(e => e.Address); //Todo: Can't create required constraint as DateOfBirth is not reference type, research it //this.HasRequired(e => e.DateOfBirth); } } }   Any queries executed against Customers property in BankDbContext are executed against Cusomers table. By convention EF looks for connection string with key of BankDbContext when working with the context.   We are going to define a helper class to work with Customer entity with methods for querying, adding new entity etc and these are known as repository classes, i.e., CustomerRepository   using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CustomerRepository { private readonly IDbSet<Customer> _customers;   public CustomerRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _customers = bankDbContext.Customers; }   public IQueryable<Customer> Query() { return _customers; }   public void Add(Customer customer) { _customers.Add(customer); } } }   From the above code it is observable that the Query methods returns customers as IQueryable i.e. customers are retrieved only when actually used i.e. iterated. Returning as IQueryable also allows to execute filtering and joining statements from business logic using lamba expressions without cluttering the data access layer with tens of methods.   Our CheckingAccountRepository and SavingsAccountRepository look very similar to each other using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CheckingAccountRepository { private readonly IDbSet<CheckingAccount> _checkingAccounts;   public CheckingAccountRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _checkingAccounts = bankDbContext.CheckingAccounts; }   public IQueryable<CheckingAccount> Query() { return _checkingAccounts; }   public void Add(CheckingAccount account) { _checkingAccounts.Add(account); }   public IQueryable<CheckingAccount> GetAccount(int customerId) { return (from act in _checkingAccounts where act.CustomerId == customerId select act); }   } } The repository classes look very similar to each other for Query and Add methods, with the help of C# generics and implementing repository pattern (Martin Fowler) we can reduce the repeated code. Jarod from ElegantCode has posted an article on how to use repository pattern with EF which we will implement in the subsequent articles along with WCF Unity life time managers by Drew Contracts It is very easy to follow contract first approach with WCF, define the interface and append ServiceContract, OperationContract attributes. IProfile contract exposes functionality for creating customer and getting customer details.   using System; using System.ServiceModel; using BankDAL.Model;   namespace ProfileContract { [ServiceContract] public interface IProfile { [OperationContract] Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth);   [OperationContract] Customer GetCustomer(int id);   } }   ICheckingAccount contract exposes functionality for working with checking account, i.e., getting balance, deposit and withdraw of amount. ISavingsAccount contract looks the same as checking account.   using System.ServiceModel;   namespace CheckingAccountContract { [ServiceContract] public interface ICheckingAccount { [OperationContract] decimal? GetCheckingAccountBalance(int customerId);   [OperationContract] void DepositAmount(int customerId,decimal amount);   [OperationContract] void WithdrawAmount(int customerId, decimal amount);   } }   Services   Having covered the data access layer and contracts so far and here comes the core of the business logic, i.e. services.   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } ProfileService implements the IProfile contract for creating customer and getting customer detail using CustomerRepository. using System; using System.Linq; using System.ServiceModel; using BankDAL; using BankDAL.Model; using BankDAL.Repositories; using ProfileContract;   namespace ProfileService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Profile: IProfile { public Customer CreateAccount( string customerName, string address, DateTime dateOfBirth) { Customer cust = new Customer { FullName = customerName, Address = address, DateOfBirth = dateOfBirth };   using (var bankDbContext = new BankDbContext()) { new CustomerRepository(bankDbContext).Add(cust); bankDbContext.SaveChanges(); } return cust; }   public Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth) { return CreateAccount(customerName, address, dateOfBirth); } public Customer GetCustomer(int id) { return new CustomerRepository(new BankDbContext()).Query() .Where(i => i.Id == id).FirstOrDefault(); }   } } From the above code you shall observe that we are calling bankDBContext’s SaveChanges method and there is no save method specific to customer entity because EF manages all the changes centralized at the context level and all the pending changes so far are submitted in a batch and it is represented as Unit of Work. Similarly Checking service implements ICheckingAccount contract using CheckingAccountRepository, notice that we are throwing overdraft exception if the balance falls by zero. WCF has it’s own way of raising exceptions using fault contracts which will be explained in the subsequent articles. SavingsAccountService is similar to CheckingAccountService. using System; using System.Linq; using System.ServiceModel; using BankDAL.Model; using BankDAL.Repositories; using CheckingAccountContract;   namespace CheckingAccountService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Checking:ICheckingAccount { public decimal? GetCheckingAccountBalance(int customerId) { using (var bankDbContext = new BankDbContext()) { CheckingAccount account = (new CheckingAccountRepository(bankDbContext) .GetAccount(customerId)).FirstOrDefault();   if (account != null) return account.Balance;   return null; } }   public void DepositAmount(int customerId, decimal amount) { using(var bankDbContext = new BankDbContext()) { var checkingAccountRepository = new CheckingAccountRepository(bankDbContext); CheckingAccount account = (checkingAccountRepository.GetAccount(customerId)) .FirstOrDefault();   if (account == null) { account = new CheckingAccount() { CustomerId = customerId }; checkingAccountRepository.Add(account); }   account.Balance = account.Balance + amount; if (account.Balance < 0) throw new ApplicationException("Overdraft not accepted");   bankDbContext.SaveChanges(); } } public void WithdrawAmount(int customerId, decimal amount) { DepositAmount(customerId, -1*amount); } } }   BankServiceHost The host acts as a glue binding contracts with it’s services, exposing the endpoints. The services can be exposed either through the code or configuration file, configuration file is preferred as it allows run time changes to service behavior even after deployment. We have 3 services and for each of the service you need to define name (the class that implements the service with fully qualified namespace) and endpoint known as ABC, i.e. address, binding and contract. We are using netTcpBinding and have defined the base address with for each of the contracts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <system.serviceModel> <services> <service name="ProfileService.Profile"> <endpoint binding="netTcpBinding" contract="ProfileContract.IProfile"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Profile"/> </baseAddresses> </host> </service> <service name="CheckingAccountService.Checking"> <endpoint binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Checking"/> </baseAddresses> </host> </service> <service name="SavingsAccountService.Savings"> <endpoint binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Savings"/> </baseAddresses> </host> </service> </services> </system.serviceModel> Have to open the services by creating service host which will handle the incoming requests from clients.   using System;   namespace ServiceHost { class Program { static void Main(string[] args) { CreateHosts(); Console.ReadLine(); }   private static void CreateHosts() { CreateHost(typeof(ProfileService.Profile),"Profile Service"); CreateHost(typeof(SavingsAccountService.Savings), "Savings Account Service"); CreateHost(typeof(CheckingAccountService.Checking), "Checking Account Service"); }   private static void CreateHost(Type type, string hostDescription) { System.ServiceModel.ServiceHost host = new System.ServiceModel.ServiceHost(type); host.Open();   if (host.ChannelDispatchers != null && host.ChannelDispatchers.Count != 0 && host.ChannelDispatchers[0].Listener != null) Console.WriteLine("Started: " + host.ChannelDispatchers[0].Listener.Uri); else Console.WriteLine("Failed to start:" + hostDescription); } } } BankClient    The client has no knowledge about service business logic other than the functionality it exposes through the contract, end points and a proxy to work against. The endpoint data and server proxy can be generated by right clicking on the project reference and choosing ‘Add Service Reference’ and entering the service end point address. Or if you have access to source, you can manually reference contract dlls and update clients configuration file to point to the service end point if the server and client happens to be being built using .Net framework. One of the pros with the manual approach is you don’t have to work against messy code generated files.   <system.serviceModel> <client> <endpoint name="tcpProfile" address="net.tcp://localhost:1000/Profile" binding="netTcpBinding" contract="ProfileContract.IProfile"/> <endpoint name="tcpCheckingAccount" address="net.tcp://localhost:1000/Checking" binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <endpoint name="tcpSavingsAccount" address="net.tcp://localhost:1000/Savings" binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/>   </client> </system.serviceModel> The client uses a façade to connect to the services   using System.ServiceModel; using CheckingAccountContract; using ProfileContract; using SavingsAccountContract;   namespace Client { public class ProxyFacade { public static IProfile ProfileProxy() { return (new ChannelFactory<IProfile>("tcpProfile")).CreateChannel(); }   public static ICheckingAccount CheckingAccountProxy() { return (new ChannelFactory<ICheckingAccount>("tcpCheckingAccount")) .CreateChannel(); }   public static ISavingsAccount SavingsAccountProxy() { return (new ChannelFactory<ISavingsAccount>("tcpSavingsAccount")) .CreateChannel(); }   } }   With that in place, lets get our unit tests going   using System; using System.Diagnostics; using BankDAL.Model; using NUnit.Framework; using ProfileContract;   namespace Client { [TestFixture] public class Tests { private void TransferFundsFromSavingsToCheckingAccount(int customerId, decimal amount) { ProxyFacade.CheckingAccountProxy().DepositAmount(customerId, amount); ProxyFacade.SavingsAccountProxy().WithdrawAmount(customerId, amount); }   private void TransferFundsFromCheckingToSavingsAccount(int customerId, decimal amount) { ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, amount); ProxyFacade.CheckingAccountProxy().WithdrawAmount(customerId, amount); }     [Test] public void CreateAndGetProfileTest() { IProfile profile = ProxyFacade.ProfileProxy(); const string customerName = "Tom"; int customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)).Id; Customer customer = profile.GetCustomer(customerId); Assert.AreEqual(customerName,customer.FullName); }   [Test] public void DepositWithDrawAndTransferAmountTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Smith" + DateTime.Now.ToString("HH:mm:ss"); var customer = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)); // Deposit to Savings ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 100); ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 25); Assert.AreEqual(125, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); // Withdraw ProxyFacade.SavingsAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(95, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id));   // Deposit to Checking ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 60); ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 40); Assert.AreEqual(100, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); // Withdraw ProxyFacade.CheckingAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(70, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Savings to Checking TransferFundsFromSavingsToCheckingAccount(customer.Id,10); Assert.AreEqual(85, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Checking to Savings TransferFundsFromCheckingToSavingsAccount(customer.Id, 50); Assert.AreEqual(135, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(30, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); }   [Test] public void FundTransfersWithOverDraftTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Angelina" + DateTime.Now.ToString("HH:mm:ss");   var customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1972, 1, 1)).Id;   ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, 100); TransferFundsFromSavingsToCheckingAccount(customerId,80); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId));   try { TransferFundsFromSavingsToCheckingAccount(customerId,30); } catch (Exception e) { Debug.WriteLine(e.Message); }   Assert.AreEqual(110, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId)); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); } } }   We are creating a new instance of the channel for every operation, we will look into instance management and how creating a new instance of channel affects it in subsequent articles. The first two test cases deals with creation of Customer, deposit and withdraw of month between accounts. The last case, FundTransferWithOverDraftTest() is interesting. Customer starts with depositing $100 in SavingsAccount followed by transfer of $80 in to checking account resulting in $20 in savings account.  Customer then initiates $30 transfer from Savings to Checking resulting in overdraft exception on Savings with $30 being deposited to Checking. As we are not running both the requests in transactions the customer ends up with more amount than what he started with $100. In subsequent posts we will look into transactions handling.  Make sure the ServiceHost project is set as start up project and start the solution. Run the test cases either from NUnit client or TestDriven.Net/Resharper which ever is your favorite tool. Make sure you have updated the data base connection string in the ServiceHost config file to point to your local database

    Read the article

  • Convert flyout menu to respond onclick vs mouseover

    - by Scott B
    The code below creates a nifty flyout menu action on a nested list item sequence. The client has called and wants the change the default behavior in which the flyouts are triggered by mouseover, so that you have to click to trigger a flyout. Ideally, I would just like to modify this code so that you click on a small icon (plus/minus) that sits to the right of the menu item if it has child menus. Can someone give me a bit of guidance on what bits I'd need to change to accomplish this? /* a few sniffs to circumvent known browser bugs */ var sUserAgent = navigator.userAgent.toLowerCase(); var isIE=document.all?true:false; var isNS4=document.layers?true:false; var isOp=(sUserAgent.indexOf('opera')!=-1)?true:false; var isMac=(sUserAgent.indexOf('mac')!=-1)?true:false; var isMoz=(sUserAgent.indexOf('mozilla/5')!=-1&&sUserAgent.indexOf('opera')==-1&&sUserAgent.indexOf('msie')==-1)?true:false; var isNS6=(sUserAgent.indexOf('netscape6')!=-1&&sUserAgent.indexOf('opera')==-1&&sUserAgent.indexOf('msie')==-1)?true:false; var dom=document.getElementById?true:false; /* sets time until menus disappear in milliseconds */ var iMenuTimeout=1500; var aMenus=new Array; var oMenuTimeout; var iMainMenusLength=0; /* the following boolean controls the z-index property if needed */ /* if is only necessary if you have multiple mainMenus in one file that are overlapping */ /* set bSetZIndeces to true (either here or in the HTML) and the main menus will have a z-index set in descending order so that preceding ones can overlap */ /* the integer iStartZIndexAt controls z-index of the first main menu */ var bSetZIndeces=true; var iStartZIndexAt=1000; var aMainMenus=new Array; /* load up the submenus */ function loadMenus(){ if(!dom)return; var aLists=document.getElementsByTagName('ul'); for(var i=0;i<aLists.length;i++){ if(aLists[i].className=='navMenu')aMenus[aMenus.length]=aLists[i]; } var aAnchors=document.getElementsByTagName('a'); var aItems = new Array; for(var i=0;i<aAnchors.length;i++){ // if(aAnchors[i].className=='navItem')aItems[aItems.length] = aAnchors[i]; aItems[aItems.length] = aAnchors[i]; } var sMenuId=null; var oParentMenu=null; var aAllElements=document.body.getElementsByTagName("*"); if(isIE)aAllElements=document.body.all; /* loop through navItem and navMenus and dynamically assign their IDs */ /* each relies on it's parent's ID being set before it */ for(var i=0;i<aAllElements.length;i++){ if(aAllElements[i].className.indexOf('x8menus')!=-1){ /* load up main menus collection */ if(bSetZIndeces)aMainMenus[aMainMenus.length]=aAllElements[i]; } // if(aAllElements[i].className=='navItem'){ if(aAllElements[i].tagName=='A'){ oParentMenu = aAllElements[i].parentNode.parentNode; if(!oParentMenu.childMenus) oParentMenu.childMenus = new Array; oParentMenu.childMenus[oParentMenu.childMenus.length]=aAllElements[i]; if(aAllElements[i].id==''){ if(oParentMenu.className=='x8menus'){ aAllElements[i].id='navItem_'+iMainMenusLength; //alert(aAllElements[i].id); iMainMenusLength++; }else{ aAllElements[i].id=oParentMenu.id.replace('Menu','Item')+'.'+oParentMenu.childMenus.length; } } } else if(aAllElements[i].className=='navMenu'){ oParentItem = aAllElements[i].parentNode.firstChild; aAllElements[i].id = oParentItem.id.replace('Item','Menu'); } } /* dynamically set z-indeces of main menus so they won't underlap */ for(var i=aMainMenus.length-1;i>=0;i--){ aMainMenus[i].style.zIndex=iStartZIndexAt-i; } /* set menu item properties */ for(var i=0;i<aItems.length;i++){ sMenuId=aItems[i].id; sMenuId='navMenu_'+sMenuId.substring(8,sMenuId.lastIndexOf('.')); /* assign event handlers */ /* eval() used here to avoid syntax errors for function literals in Netscape 3 */ eval('aItems[i].onmouseover=function(){modClass(true,this,"activeItem");window.clearTimeout(oMenuTimeout);showMenu("'+sMenuId+'");};'); eval('aItems[i].onmouseout=function(){modClass(false,this,"activeItem");window.clearTimeout(oMenuTimeout);oMenuTimeout=window.setTimeout("hideMenu(\'all\')",iMenuTimeout);}'); eval('aItems[i].onfocus=function(){this.onmouseover();}'); eval('aItems[i].onblur=function(){this.onmouseout();}'); //aItems[i].addEventListener("keydown",function(){keyNav(this,event);},false); } var sCatId=0; var oItem; for(var i=0;i<aMenus.length;i++){ /* assign event handlers */ /* eval() used here to avoid syntax errors for function literals in Netscape 3 */ eval('aMenus[i].onmouseover=function(){window.clearTimeout(oMenuTimeout);}'); eval('aMenus[i].onmouseout=function(){window.clearTimeout(oMenuTimeout);oMenuTimeout=window.setTimeout("hideMenu(\'all\')",iMenuTimeout);}'); sCatId=aMenus[i].id; sCatId=sCatId.substring(8,sCatId.length); oItem=document.getElementById('navItem_'+sCatId); if(oItem){ if(!isOp && !(isMac && isIE) && oItem.parentNode)modClass(true,oItem.parentNode,"hasSubMenu"); else modClass(true,oItem,"hasSubMenu"); /* assign event handlers */ eval('oItem.onmouseover=function(){window.clearTimeout(oMenuTimeout);showMenu("navMenu_'+sCatId+'");}'); eval('oItem.onmouseout=function(){window.clearTimeout(oMenuTimeout);oMenuTimeout=window.clearTimeout(oMenuTimeout);oMenuTimeout=window.setTimeout(\'hideMenu("navMenu_'+sCatId+'")\',iMenuTimeout);}'); eval('oItem.onfocus=function(){window.clearTimeout(oMenuTimeout);showMenu("navMenu_'+sCatId+'");}'); eval('oItem.onblur=function(){window.clearTimeout(oMenuTimeout);oMenuTimeout=window.clearTimeout(oMenuTimeout);oMenuTimeout=window.setTimeout(\'hideMenu("navMenu_'+sCatId+'")\',iMenuTimeout);}'); //oItem.addEventListener("keydown",function(){keyNav(this,event);},false); } } } /* this will append the loadMenus function to any previously assigned window.onload event */ /* if you reassign this onload event, you'll need to include this or execute it after all the menus are loaded */ function newOnload(){ if(typeof previousOnload=='function')previousOnload(); loadMenus(); } var previousOnload; if(window.onload!=null)previousOnload=window.onload; window.onload=newOnload; /* show menu and hide all others except ancestors of the current menu */ function showMenu(sWhich){ var oWhich=document.getElementById(sWhich); if(!oWhich){ hideMenu('all'); return; } var aRootMenus=new Array; aRootMenus[0]=sWhich var sCurrentRoot=sWhich; var bHasParentMenu=false; if(sCurrentRoot.indexOf('.')!=-1){ bHasParentMenu=true; } /* make array of this menu and ancestors so we know which to leave exposed */ /* ex. from ID string "navMenu_12.3.7.4", extracts menu levels ["12.3.7.4", "12.3.7", "12.3", "12"] */ while(bHasParentMenu){ if(sCurrentRoot.indexOf('.')==-1)bHasParentMenu=false; aRootMenus[aRootMenus.length]=sCurrentRoot; sCurrentRoot=sCurrentRoot.substring(0,sCurrentRoot.lastIndexOf('.')); } for(var i=0;i<aMenus.length;i++){ var bIsRoot=false; for(var j=0;j<aRootMenus.length;j++){ var oThisItem=document.getElementById(aMenus[i].id.replace('navMenu_','navItem_')); if(aMenus[i].id==aRootMenus[j])bIsRoot=true; } if(bIsRoot && oThisItem)modClass(true,oThisItem,'hasSubMenuActive'); else modClass(false,oThisItem,'hasSubMenuActive'); if(!bIsRoot && aMenus[i].id!=sWhich)modClass(false,aMenus[i],'showMenu'); } modClass(true,oWhich,'showMenu'); var oItem=document.getElementById(sWhich.replace('navMenu_','navItem_')); if(oItem)modClass(true,oItem,'hasSubMenuActive'); } function hideMenu(sWhich){ if(sWhich=='all'){ /* loop backwards b/c WinIE6 has a bug with hiding display of an element when it's parent is already hidden */ for(var i=aMenus.length-1;i>=0;i--){ var oThisItem=document.getElementById(aMenus[i].id.replace('navMenu_','navItem_')); if(oThisItem)modClass(false,oThisItem,'hasSubMenuActive'); modClass(false,aMenus[i],'showMenu'); } }else{ var oWhich=document.getElementById(sWhich); if(oWhich)modClass(false,oWhich,'showMenu'); var oThisItem=document.getElementById(sWhich.replace('navMenu_','navItem_')); if(oThisItem)modClass(false,oThisItem,'hasSubMenuActive'); } } /* add or remove element className */ function modClass(bAdd,oElement,sClassName){ if(bAdd){/* add class */ if(oElement.className.indexOf(sClassName)==-1)oElement.className+=' '+sClassName; }else{/* remove class */ if(oElement.className.indexOf(sClassName)!=-1){ if(oElement.className.indexOf(' '+sClassName)!=-1)oElement.className=oElement.className.replace(' '+sClassName,''); else oElement.className=oElement.className.replace(sClassName,''); } } return oElement.className; /* return new className */ } //document.body.addEventListener("keydown",function(){keyNav(event);},true); function setBubble(oEvent){ oEvent.bubbles = true; } function keyNav(oElement,oEvent){ alert(oEvent.keyCode); window.status=oEvent.keyCode; return false; }

    Read the article

  • Node.js Adventure - Storage Services and Service Runtime

    - by Shaun
    When I described on how to host a Node.js application on Windows Azure, one of questions might be raised about how to consume the vary Windows Azure services, such as the storage, service bus, access control, etc.. Interact with windows azure services is available in Node.js through the Windows Azure Node.js SDK, which is a module available in NPM. In this post I would like to describe on how to use Windows Azure Storage (a.k.a. WAS) as well as the service runtime.   Consume Windows Azure Storage Let’s firstly have a look on how to consume WAS through Node.js. As we know in the previous post we can host Node.js application on Windows Azure Web Site (a.k.a. WAWS) as well as Windows Azure Cloud Service (a.k.a. WACS). In theory, WAWS is also built on top of WACS worker roles with some more features. Hence in this post I will only demonstrate for hosting in WACS worker role. The Node.js code can be used when consuming WAS when hosted on WAWS. But since there’s no roles in WAWS, the code for consuming service runtime mentioned in the next section cannot be used for WAWS node application. We can use the solution that I created in my last post. Alternatively we can create a new windows azure project in Visual Studio with a worker role, add the “node.exe” and “index.js” and install “express” and “node-sqlserver” modules, make all files as “Copy always”. In order to use windows azure services we need to have Windows Azure Node.js SDK, as knows as a module named “azure” which can be installed through NPM. Once we downloaded and installed, we need to include them in our worker role project and make them as “Copy always”. You can use my “Copy all always” tool mentioned in my last post to update the currently worker role project file. You can also find the source code of this tool here. The source code of Windows Azure SDK for Node.js can be found in its GitHub page. It contains two parts. One is a CLI tool which provides a cross platform command line package for Mac and Linux to manage WAWS and Windows Azure Virtual Machines (a.k.a. WAVM). The other is a library for managing and consuming vary windows azure services includes tables, blobs, queues, service bus and the service runtime. I will not cover all of them but will only demonstrate on how to use tables and service runtime information in this post. You can find the full document of this SDK here. Back to Visual Studio and open the “index.js”, let’s continue our application from the last post, which was working against Windows Azure SQL Database (a.k.a. WASD). The code should looks like this. 1: var express = require("express"); 2: var sql = require("node-sqlserver"); 3:  4: var connectionString = "Driver={SQL Server Native Client 10.0};Server=tcp:ac6271ya9e.database.windows.net,1433;Database=synctile;Uid=shaunxu@ac6271ya9e;Pwd={PASSWORD};Encrypt=yes;Connection Timeout=30;"; 5: var port = 80; 6:  7: var app = express(); 8:  9: app.configure(function () { 10: app.use(express.bodyParser()); 11: }); 12:  13: app.get("/", function (req, res) { 14: sql.open(connectionString, function (err, conn) { 15: if (err) { 16: console.log(err); 17: res.send(500, "Cannot open connection."); 18: } 19: else { 20: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 21: if (err) { 22: console.log(err); 23: res.send(500, "Cannot retrieve records."); 24: } 25: else { 26: res.json(results); 27: } 28: }); 29: } 30: }); 31: }); 32:  33: app.get("/text/:key/:culture", function (req, res) { 34: sql.open(connectionString, function (err, conn) { 35: if (err) { 36: console.log(err); 37: res.send(500, "Cannot open connection."); 38: } 39: else { 40: var key = req.params.key; 41: var culture = req.params.culture; 42: var command = "SELECT * FROM [Resource] WHERE [Key] = '" + key + "' AND [Culture] = '" + culture + "'"; 43: conn.queryRaw(command, function (err, results) { 44: if (err) { 45: console.log(err); 46: res.send(500, "Cannot retrieve records."); 47: } 48: else { 49: res.json(results); 50: } 51: }); 52: } 53: }); 54: }); 55:  56: app.get("/sproc/:key/:culture", function (req, res) { 57: sql.open(connectionString, function (err, conn) { 58: if (err) { 59: console.log(err); 60: res.send(500, "Cannot open connection."); 61: } 62: else { 63: var key = req.params.key; 64: var culture = req.params.culture; 65: var command = "EXEC GetItem '" + key + "', '" + culture + "'"; 66: conn.queryRaw(command, function (err, results) { 67: if (err) { 68: console.log(err); 69: res.send(500, "Cannot retrieve records."); 70: } 71: else { 72: res.json(results); 73: } 74: }); 75: } 76: }); 77: }); 78:  79: app.post("/new", function (req, res) { 80: var key = req.body.key; 81: var culture = req.body.culture; 82: var val = req.body.val; 83:  84: sql.open(connectionString, function (err, conn) { 85: if (err) { 86: console.log(err); 87: res.send(500, "Cannot open connection."); 88: } 89: else { 90: var command = "INSERT INTO [Resource] VALUES ('" + key + "', '" + culture + "', N'" + val + "')"; 91: conn.queryRaw(command, function (err, results) { 92: if (err) { 93: console.log(err); 94: res.send(500, "Cannot retrieve records."); 95: } 96: else { 97: res.send(200, "Inserted Successful"); 98: } 99: }); 100: } 101: }); 102: }); 103:  104: app.listen(port); Now let’s create a new function, copy the records from WASD to table service. 1. Delete the table named “resource”. 2. Create a new table named “resource”. These 2 steps ensures that we have an empty table. 3. Load all records from the “resource” table in WASD. 4. For each records loaded from WASD, insert them into the table one by one. 5. Prompt to user when finished. In order to use table service we need the storage account and key, which can be found from the developer portal. Just select the storage account and click the Manage Keys button. Then create two local variants in our Node.js application for the storage account name and key. Since we need to use WAS we need to import the azure module. Also I created another variant stored the table name. In order to work with table service I need to create the storage client for table service. This is very similar as the Windows Azure SDK for .NET. As the code below I created a new variant named “client” and use “createTableService”, specified my storage account name and key. 1: var azure = require("azure"); 2: var storageAccountName = "synctile"; 3: var storageAccountKey = "/cOy9L7xysXOgPYU9FjDvjrRAhaMX/5tnOpcjqloPNDJYucbgTy7MOrAW7CbUg6PjaDdmyl+6pkwUnKETsPVNw=="; 4: var tableName = "resource"; 5: var client = azure.createTableService(storageAccountName, storageAccountKey); Now create a new function for URL “/was/init” so that we can trigger it through browser. Then in this function we will firstly load all records from WASD. 1: app.get("/was/init", function (req, res) { 2: // load all records from windows azure sql database 3: sql.open(connectionString, function (err, conn) { 4: if (err) { 5: console.log(err); 6: res.send(500, "Cannot open connection."); 7: } 8: else { 9: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 10: if (err) { 11: console.log(err); 12: res.send(500, "Cannot retrieve records."); 13: } 14: else { 15: if (results.rows.length > 0) { 16: // begin to transform the records into table service 17: } 18: } 19: }); 20: } 21: }); 22: }); When we succeed loaded all records we can start to transform them into table service. First I need to recreate the table in table service. This can be done by deleting and creating the table through table client I had just created previously. 1: app.get("/was/init", function (req, res) { 2: // load all records from windows azure sql database 3: sql.open(connectionString, function (err, conn) { 4: if (err) { 5: console.log(err); 6: res.send(500, "Cannot open connection."); 7: } 8: else { 9: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 10: if (err) { 11: console.log(err); 12: res.send(500, "Cannot retrieve records."); 13: } 14: else { 15: if (results.rows.length > 0) { 16: // begin to transform the records into table service 17: // recreate the table named 'resource' 18: client.deleteTable(tableName, function (error) { 19: client.createTableIfNotExists(tableName, function (error) { 20: if (error) { 21: error["target"] = "createTableIfNotExists"; 22: res.send(500, error); 23: } 24: else { 25: // transform the records 26: } 27: }); 28: }); 29: } 30: } 31: }); 32: } 33: }); 34: }); As you can see, the azure SDK provide its methods in callback pattern. In fact, almost all modules in Node.js use the callback pattern. For example, when I deleted a table I invoked “deleteTable” method, provided the name of the table and a callback function which will be performed when the table had been deleted or failed. Underlying, the azure module will perform the table deletion operation in POSIX async threads pool asynchronously. And once it’s done the callback function will be performed. This is the reason we need to nest the table creation code inside the deletion function. If we perform the table creation code after the deletion code then they will be invoked in parallel. Next, for each records in WASD I created an entity and then insert into the table service. Finally I send the response to the browser. Can you find a bug in the code below? I will describe it later in this post. 1: app.get("/was/init", function (req, res) { 2: // load all records from windows azure sql database 3: sql.open(connectionString, function (err, conn) { 4: if (err) { 5: console.log(err); 6: res.send(500, "Cannot open connection."); 7: } 8: else { 9: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 10: if (err) { 11: console.log(err); 12: res.send(500, "Cannot retrieve records."); 13: } 14: else { 15: if (results.rows.length > 0) { 16: // begin to transform the records into table service 17: // recreate the table named 'resource' 18: client.deleteTable(tableName, function (error) { 19: client.createTableIfNotExists(tableName, function (error) { 20: if (error) { 21: error["target"] = "createTableIfNotExists"; 22: res.send(500, error); 23: } 24: else { 25: // transform the records 26: for (var i = 0; i < results.rows.length; i++) { 27: var entity = { 28: "PartitionKey": results.rows[i][1], 29: "RowKey": results.rows[i][0], 30: "Value": results.rows[i][2] 31: }; 32: client.insertEntity(tableName, entity, function (error) { 33: if (error) { 34: error["target"] = "insertEntity"; 35: res.send(500, error); 36: } 37: else { 38: console.log("entity inserted"); 39: } 40: }); 41: } 42: // send the 43: console.log("all done"); 44: res.send(200, "All done!"); 45: } 46: }); 47: }); 48: } 49: } 50: }); 51: } 52: }); 53: }); Now we can publish it to the cloud and have a try. But normally we’d better test it at the local emulator first. In Node.js SDK there are three build-in properties which provides the account name, key and host address for local storage emulator. We can use them to initialize our table service client. We also need to change the SQL connection string to let it use my local database. The code will be changed as below. 1: // windows azure sql database 2: //var connectionString = "Driver={SQL Server Native Client 10.0};Server=tcp:ac6271ya9e.database.windows.net,1433;Database=synctile;Uid=shaunxu@ac6271ya9e;Pwd=eszqu94XZY;Encrypt=yes;Connection Timeout=30;"; 3: // sql server 4: var connectionString = "Driver={SQL Server Native Client 11.0};Server={.};Database={Caspar};Trusted_Connection={Yes};"; 5:  6: var azure = require("azure"); 7: var storageAccountName = "synctile"; 8: var storageAccountKey = "/cOy9L7xysXOgPYU9FjDvjrRAhaMX/5tnOpcjqloPNDJYucbgTy7MOrAW7CbUg6PjaDdmyl+6pkwUnKETsPVNw=="; 9: var tableName = "resource"; 10: // windows azure storage 11: //var client = azure.createTableService(storageAccountName, storageAccountKey); 12: // local storage emulator 13: var client = azure.createTableService(azure.ServiceClient.DEVSTORE_STORAGE_ACCOUNT, azure.ServiceClient.DEVSTORE_STORAGE_ACCESS_KEY, azure.ServiceClient.DEVSTORE_TABLE_HOST); Now let’s run the application and navigate to “localhost:12345/was/init” as I hosted it on port 12345. We can find it transformed the data from my local database to local table service. Everything looks fine. But there is a bug in my code. If we have a look on the Node.js command window we will find that it sent response before all records had been inserted, which is not what I expected. The reason is that, as I mentioned before, Node.js perform all IO operations in non-blocking model. When we inserted the records we executed the table service insert method in parallel, and the operation of sending response was also executed in parallel, even though I wrote it at the end of my logic. The correct logic should be, when all entities had been copied to table service with no error, then I will send response to the browser, otherwise I should send error message to the browser. To do so I need to import another module named “async”, which helps us to coordinate our asynchronous code. Install the module and import it at the beginning of the code. Then we can use its “forEach” method for the asynchronous code of inserting table entities. The first argument of “forEach” is the array that will be performed. The second argument is the operation for each items in the array. And the third argument will be invoked then all items had been performed or any errors occurred. Here we can send our response to browser. 1: app.get("/was/init", function (req, res) { 2: // load all records from windows azure sql database 3: sql.open(connectionString, function (err, conn) { 4: if (err) { 5: console.log(err); 6: res.send(500, "Cannot open connection."); 7: } 8: else { 9: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 10: if (err) { 11: console.log(err); 12: res.send(500, "Cannot retrieve records."); 13: } 14: else { 15: if (results.rows.length > 0) { 16: // begin to transform the records into table service 17: // recreate the table named 'resource' 18: client.deleteTable(tableName, function (error) { 19: client.createTableIfNotExists(tableName, function (error) { 20: if (error) { 21: error["target"] = "createTableIfNotExists"; 22: res.send(500, error); 23: } 24: else { 25: async.forEach(results.rows, 26: // transform the records 27: function (row, callback) { 28: var entity = { 29: "PartitionKey": row[1], 30: "RowKey": row[0], 31: "Value": row[2] 32: }; 33: client.insertEntity(tableName, entity, function (error) { 34: if (error) { 35: callback(error); 36: } 37: else { 38: console.log("entity inserted."); 39: callback(null); 40: } 41: }); 42: }, 43: // send reponse 44: function (error) { 45: if (error) { 46: error["target"] = "insertEntity"; 47: res.send(500, error); 48: } 49: else { 50: console.log("all done"); 51: res.send(200, "All done!"); 52: } 53: } 54: ); 55: } 56: }); 57: }); 58: } 59: } 60: }); 61: } 62: }); 63: }); Run it locally and now we can find the response was sent after all entities had been inserted. Query entities against table service is simple as well. Just use the “queryEntity” method from the table service client and providing the partition key and row key. We can also provide a complex query criteria as well, for example the code here. In the code below I queried an entity by the partition key and row key, and return the proper localization value in response. 1: app.get("/was/:key/:culture", function (req, res) { 2: var key = req.params.key; 3: var culture = req.params.culture; 4: client.queryEntity(tableName, culture, key, function (error, entity) { 5: if (error) { 6: res.send(500, error); 7: } 8: else { 9: res.json(entity); 10: } 11: }); 12: }); And then tested it on local emulator. Finally if we want to publish this application to the cloud we should change the database connection string and storage account. For more information about how to consume blob and queue service, as well as the service bus please refer to the MSDN page.   Consume Service Runtime As I mentioned above, before we published our application to the cloud we need to change the connection string and account information in our code. But if you had played with WACS you should have known that the service runtime provides the ability to retrieve configuration settings, endpoints and local resource information at runtime. Which means we can have these values defined in CSCFG and CSDEF files and then the runtime should be able to retrieve the proper values. For example we can add some role settings though the property window of the role, specify the connection string and storage account for cloud and local. And the can also use the endpoint which defined in role environment to our Node.js application. In Node.js SDK we can get an object from “azure.RoleEnvironment”, which provides the functionalities to retrieve the configuration settings and endpoints, etc.. In the code below I defined the connection string variants and then use the SDK to retrieve and initialize the table client. 1: var connectionString = ""; 2: var storageAccountName = ""; 3: var storageAccountKey = ""; 4: var tableName = ""; 5: var client; 6:  7: azure.RoleEnvironment.getConfigurationSettings(function (error, settings) { 8: if (error) { 9: console.log("ERROR: getConfigurationSettings"); 10: console.log(JSON.stringify(error)); 11: } 12: else { 13: console.log(JSON.stringify(settings)); 14: connectionString = settings["SqlConnectionString"]; 15: storageAccountName = settings["StorageAccountName"]; 16: storageAccountKey = settings["StorageAccountKey"]; 17: tableName = settings["TableName"]; 18:  19: console.log("connectionString = %s", connectionString); 20: console.log("storageAccountName = %s", storageAccountName); 21: console.log("storageAccountKey = %s", storageAccountKey); 22: console.log("tableName = %s", tableName); 23:  24: client = azure.createTableService(storageAccountName, storageAccountKey); 25: } 26: }); In this way we don’t need to amend the code for the configurations between local and cloud environment since the service runtime will take care of it. At the end of the code we will listen the application on the port retrieved from SDK as well. 1: azure.RoleEnvironment.getCurrentRoleInstance(function (error, instance) { 2: if (error) { 3: console.log("ERROR: getCurrentRoleInstance"); 4: console.log(JSON.stringify(error)); 5: } 6: else { 7: console.log(JSON.stringify(instance)); 8: if (instance["endpoints"] && instance["endpoints"]["nodejs"]) { 9: var endpoint = instance["endpoints"]["nodejs"]; 10: app.listen(endpoint["port"]); 11: } 12: else { 13: app.listen(8080); 14: } 15: } 16: }); But if we tested the application right now we will find that it cannot retrieve any values from service runtime. This is because by default, the entry point of this role was defined to the worker role class. In windows azure environment the service runtime will open a named pipeline to the entry point instance, so that it can connect to the runtime and retrieve values. But in this case, since the entry point was worker role and the Node.js was opened inside the role, the named pipeline was established between our worker role class and service runtime, so our Node.js application cannot use it. To fix this problem we need to open the CSDEF file under the azure project, add a new element named Runtime. Then add an element named EntryPoint which specify the Node.js command line. So that the Node.js application will have the connection to service runtime, then it’s able to read the configurations. Start the Node.js at local emulator we can find it retrieved the connections, storage account for local. And if we publish our application to azure then it works with WASD and storage service through the configurations for cloud.   Summary In this post I demonstrated how to use Windows Azure SDK for Node.js to interact with storage service, especially the table service. I also demonstrated on how to use WACS service runtime, how to retrieve the configuration settings and the endpoint information. And in order to make the service runtime available to my Node.js application I need to create an entry point element in CSDEF file and set “node.exe” as the entry point. I used five posts to introduce and demonstrate on how to run a Node.js application on Windows platform, how to use Windows Azure Web Site and Windows Azure Cloud Service worker role to host our Node.js application. I also described how to work with other services provided by Windows Azure platform through Windows Azure SDK for Node.js. Node.js is a very new and young network application platform. But since it’s very simple and easy to learn and deploy, as well as, it utilizes single thread non-blocking IO model, Node.js became more and more popular on web application and web service development especially for those IO sensitive projects. And as Node.js is very good at scaling-out, it’s more useful on cloud computing platform. Use Node.js on Windows platform is new, too. The modules for SQL database and Windows Azure SDK are still under development and enhancement. It doesn’t support SQL parameter in “node-sqlserver”. It does support using storage connection string to create the storage client in “azure”. But Microsoft is working on make them easier to use, working on add more features and functionalities.   PS, you can download the source code here. You can download the source code of my “Copy all always” tool here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Building a better mouse-trap &ndash; Improving the creation of XML Message Requests using Reflection, XML &amp; XSLT

    - by paulschapman
    Introduction The way I previously created messages to send to the GovTalk service I used the XMLDocument to create the request. While this worked it left a number of problems; not least that for every message a special function would need to created. This is OK for the short term but the biggest cost in any software project is maintenance and this would be a headache to maintain. So the following is a somewhat better way of achieving the same thing. For the purposes of this article I am going to be using the CompanyNumberSearch request of the GovTalk service – although this technique would work for any service that accepted XML. The C# functions which send and receive the messages remain the same. The magic sauce in this is the XSLT which defines the structure of the request, and the use of objects in conjunction with reflection to provide the content. It is a bit like Sweet Chilli Sauce added to Chicken on a bed of rice. So on to the Sweet Chilli Sauce The Sweet Chilli Sauce The request to search for a company based on it’s number is as follows; <GovTalkMessage xsi:schemaLocation="http://www.govtalk.gov.uk/CM/envelope http://xmlgw.companieshouse.gov.uk/v1-0/schema/Egov_ch-v2-0.xsd" xmlns="http://www.govtalk.gov.uk/CM/envelope" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:gt="http://www.govtalk.gov.uk/schemas/govtalk/core" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" > <EnvelopeVersion>1.0</EnvelopeVersion> <Header> <MessageDetails> <Class>NumberSearch</Class> <Qualifier>request</Qualifier> <TransactionID>1</TransactionID> </MessageDetails> <SenderDetails> <IDAuthentication> <SenderID>????????????????????????????????</SenderID> <Authentication> <Method>CHMD5</Method> <Value>????????????????????????????????</Value> </Authentication> </IDAuthentication> </SenderDetails> </Header> <GovTalkDetails> <Keys/> </GovTalkDetails> <Body> <NumberSearchRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://xmlgw.companieshouse.gov.uk/v1-0/schema/NumberSearch.xsd"> <PartialCompanyNumber>99999999</PartialCompanyNumber> <DataSet>LIVE</DataSet> <SearchRows>1</SearchRows> </NumberSearchRequest> </Body> </GovTalkMessage> This is the XML that we send to the GovTalk Service and we get back a list of companies that match the criteria passed A message is structured in two parts; The envelope which identifies the person sending the request, with the name of the request, and the body which gives the detail of the company we are looking for. The Chilli What makes it possible is the use of XSLT to define the message – and serialization to convert each request object into XML. To start we need to create an object which will represent the contents of the message we are sending. However there is a common properties in all the messages that we send to Companies House. These properties are as follows SenderId – the id of the person sending the message SenderPassword – the password associated with Id TransactionId – Unique identifier for the message AuthenticationValue – authenticates the request Because these properties are unique to the Companies House message, and because they are shared with all messages they are perfect candidates for a base class. The class is as follows; using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Security.Cryptography; using System.Text; using System.Text.RegularExpressions; using Microsoft.WindowsAzure.ServiceRuntime; namespace CompanyHub.Services { public class GovTalkRequest { public GovTalkRequest() { try { SenderID = RoleEnvironment.GetConfigurationSettingValue("SenderId"); SenderPassword = RoleEnvironment.GetConfigurationSettingValue("SenderPassword"); TransactionId = DateTime.Now.Ticks.ToString(); AuthenticationValue = EncodePassword(String.Format("{0}{1}{2}", SenderID, SenderPassword, TransactionId)); } catch (System.Exception ex) { throw ex; } } /// <summary> /// returns the Sender ID to be used when communicating with the GovTalk Service /// </summary> public String SenderID { get; set; } /// <summary> /// return the password to be used when communicating with the GovTalk Service /// </summary> public String SenderPassword { get; set; } // end SenderPassword /// <summary> /// Transaction Id - uses the Time and Date converted to Ticks /// </summary> public String TransactionId { get; set; } // end TransactionId /// <summary> /// calculate the authentication value that will be used when /// communicating with /// </summary> public String AuthenticationValue { get; set; } // end AuthenticationValue property /// <summary> /// encodes password(s) using MD5 /// </summary> /// <param name="clearPassword"></param> /// <returns></returns> public static String EncodePassword(String clearPassword) { MD5CryptoServiceProvider md5Hasher = new MD5CryptoServiceProvider(); byte[] hashedBytes; UTF32Encoding encoder = new UTF32Encoding(); hashedBytes = md5Hasher.ComputeHash(ASCIIEncoding.Default.GetBytes(clearPassword)); String result = Regex.Replace(BitConverter.ToString(hashedBytes), "-", "").ToLower(); return result; } } } There is nothing particularly clever here, except for the EncodePassword method which hashes the value made up of the SenderId, Password and Transaction id. Each message inherits from this object. So for the Company Number Search in addition to the properties above we need a partial number, which dataset to search – for the purposes of the project we only need to search the LIVE set so this can be set in the constructor and the SearchRows. Again all are set as properties. With the SearchRows and DataSet initialized in the constructor. public class CompanyNumberSearchRequest : GovTalkRequest, IDisposable { /// <summary> /// /// </summary> public CompanyNumberSearchRequest() : base() { DataSet = "LIVE"; SearchRows = 1; } /// <summary> /// Company Number to search against /// </summary> public String PartialCompanyNumber { get; set; } /// <summary> /// What DataSet should be searched for the company /// </summary> public String DataSet { get; set; } /// <summary> /// How many rows should be returned /// </summary> public int SearchRows { get; set; } public void Dispose() { DataSet = String.Empty; PartialCompanyNumber = String.Empty; DataSet = "LIVE"; SearchRows = 1; } } As well as inheriting from our base class, I have also inherited from IDisposable – not just because it is just plain good practice to dispose of objects when coding, but it gives also gives us more versatility when using the object. There are four stages in making a request and this is reflected in the four methods we execute in making a call to the Companies House service; Create a request Send a request Check the status If OK then get the results of the request I’ve implemented each of these stages within a static class called Toolbox – which also means I don’t need to create an instance of the class to use it. When making a request there are three stages; Get the template for the message Serialize the object representing the message Transform the serialized object using a predefined XSLT file. Each of my templates I have defined as an embedded resource. When retrieving a resource of this kind we have to include the full namespace to the resource. In making the code re-usable as much as possible I defined the full ‘path’ within the GetRequest method. requestFile = String.Format("CompanyHub.Services.Schemas.{0}", RequestFile); So we now have the full path of the file within the assembly. Now all we need do is retrieve the assembly and get the resource. asm = Assembly.GetExecutingAssembly(); sr = asm.GetManifestResourceStream(requestFile); Once retrieved  So this can be returned to the calling function and we now have a stream of XSLT to define the message. Time now to serialize the request to create the other side of this message. // Serialize object containing Request, Load into XML Document t = Obj.GetType(); ms = new MemoryStream(); serializer = new XmlSerializer(t); xmlTextWriter = new XmlTextWriter(ms, Encoding.ASCII); serializer.Serialize(xmlTextWriter, Obj); ms = (MemoryStream)xmlTextWriter.BaseStream; GovTalkRequest = Toolbox.ConvertByteArrayToString(ms.ToArray()); First off we need the type of the object so we make a call to the GetType method of the object containing the Message properties. Next we need a MemoryStream, XmlSerializer and an XMLTextWriter so these can be initialized. The object is serialized by making the call to the Serialize method of the serializer object. The result of that is then converted into a MemoryStream. That MemoryStream is then converted into a string. ConvertByteArrayToString This is a fairly simple function which uses an ASCIIEncoding object found within the System.Text namespace to convert an array of bytes into a string. public static String ConvertByteArrayToString(byte[] bytes) { System.Text.ASCIIEncoding enc = new System.Text.ASCIIEncoding(); return enc.GetString(bytes); } I only put it into a function because I will be using this in various places. The Sauce When adding support for other messages outside of creating a new object to store the properties of the message, the C# components do not need to change. It is in the XSLT file that the versatility of the technique lies. The XSLT file determines the format of the message. For the CompanyNumberSearch the XSLT file is as follows; <?xml version="1.0"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:template match="/"> <GovTalkMessage xsi:schemaLocation="http://www.govtalk.gov.uk/CM/envelope http://xmlgw.companieshouse.gov.uk/v1-0/schema/Egov_ch-v2-0.xsd" xmlns="http://www.govtalk.gov.uk/CM/envelope" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:gt="http://www.govtalk.gov.uk/schemas/govtalk/core" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" > <EnvelopeVersion>1.0</EnvelopeVersion> <Header> <MessageDetails> <Class>NumberSearch</Class> <Qualifier>request</Qualifier> <TransactionID> <xsl:value-of select="CompanyNumberSearchRequest/TransactionId"/> </TransactionID> </MessageDetails> <SenderDetails> <IDAuthentication> <SenderID><xsl:value-of select="CompanyNumberSearchRequest/SenderID"/></SenderID> <Authentication> <Method>CHMD5</Method> <Value> <xsl:value-of select="CompanyNumberSearchRequest/AuthenticationValue"/> </Value> </Authentication> </IDAuthentication> </SenderDetails> </Header> <GovTalkDetails> <Keys/> </GovTalkDetails> <Body> <NumberSearchRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://xmlgw.companieshouse.gov.uk/v1-0/schema/NumberSearch.xsd"> <PartialCompanyNumber> <xsl:value-of select="CompanyNumberSearchRequest/PartialCompanyNumber"/> </PartialCompanyNumber> <DataSet> <xsl:value-of select="CompanyNumberSearchRequest/DataSet"/> </DataSet> <SearchRows> <xsl:value-of select="CompanyNumberSearchRequest/SearchRows"/> </SearchRows> </NumberSearchRequest> </Body> </GovTalkMessage> </xsl:template> </xsl:stylesheet> The outer two tags define that this is a XSLT stylesheet and the root tag from which the nodes are searched for. The GovTalkMessage is the format of the message that will be sent to Companies House. We first set up the XslCompiledTransform object which will transform the XSLT template and the serialized object into the request to Companies House. xslt = new XslCompiledTransform(); resultStream = new MemoryStream(); writer = new XmlTextWriter(resultStream, Encoding.ASCII); doc = new XmlDocument(); The Serialize method require XmlTextWriter to write the XML (writer) and a stream to place the transferred object into (writer). The XML will be loaded into an XMLDocument object (doc) prior to the transformation. // create XSLT Template xslTemplate = Toolbox.GetRequest(Template); xslTemplate.Seek(0, SeekOrigin.Begin); templateReader = XmlReader.Create(xslTemplate); xslt.Load(templateReader); I have stored all the templates as a series of Embedded Resources and the GetRequestCall takes the name of the template and extracts the relevent XSLT file. /// <summary> /// Gets the framwork XML which makes the request /// </summary> /// <param name="RequestFile"></param> /// <returns></returns> public static Stream GetRequest(String RequestFile) { String requestFile = String.Empty; Stream sr = null; Assembly asm = null; try { requestFile = String.Format("CompanyHub.Services.Schemas.{0}", RequestFile); asm = Assembly.GetExecutingAssembly(); sr = asm.GetManifestResourceStream(requestFile); } catch (Exception) { throw; } finally { asm = null; } return sr; } // end private static stream GetRequest We first take the template name and expand it to include the full namespace to the Embedded Resource I like to keep all my schemas in the same directory and so the namespace reflects this. The rest is the default namespace for the project. Then we get the currently executing assembly (which will contain the resources with the call to GetExecutingAssembly() ) Finally we get a stream which contains the XSLT file. We use this stream and then load an XmlReader with the contents of the template, and that is in turn loaded into the XslCompiledTransform object. We convert the object containing the message properties into Xml by serializing it; calling the Serialize() method of the XmlSerializer object. To set up the object we do the following; t = Obj.GetType(); ms = new MemoryStream(); serializer = new XmlSerializer(t); xmlTextWriter = new XmlTextWriter(ms, Encoding.ASCII); We first determine the type of the object being transferred by calling GetType() We create an XmlSerializer object by passing the type of the object being serialized. The serializer writes to a memory stream and that is linked to an XmlTextWriter. Next job is to serialize the object and load it into an XmlDocument. serializer.Serialize(xmlTextWriter, Obj); ms = (MemoryStream)xmlTextWriter.BaseStream; xmlRequest = new XmlTextReader(ms); GovTalkRequest = Toolbox.ConvertByteArrayToString(ms.ToArray()); doc.LoadXml(GovTalkRequest); Time to transform the XML to construct the full request. xslt.Transform(doc, writer); resultStream.Seek(0, SeekOrigin.Begin); request = Toolbox.ConvertByteArrayToString(resultStream.ToArray()); So that creates the full request to be sent  to Companies House. Sending the request So far we have a string with a request for the Companies House service. Now we need to send the request to the Companies House Service. Configuration within an Azure project There are entire blog entries written about configuration within an Azure project – most of this is out of scope for this article but the following is a summary. Configuration is defined in two files within the parent project *.csdef which contains the definition of configuration setting. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="OnlineCompanyHub" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WebRole name="CompanyHub.Host"> <InputEndpoints> <InputEndpoint name="HttpIn" protocol="http" port="80" /> </InputEndpoints> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" /> <Setting name="DataConnectionString" /> </ConfigurationSettings> </WebRole> <WebRole name="CompanyHub.Services"> <InputEndpoints> <InputEndpoint name="HttpIn" protocol="http" port="8080" /> </InputEndpoints> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" /> <Setting name="SenderId"/> <Setting name="SenderPassword" /> <Setting name="GovTalkUrl"/> </ConfigurationSettings> </WebRole> <WorkerRole name="CompanyHub.Worker"> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" /> </ConfigurationSettings> </WorkerRole> </ServiceDefinition>   Above is the configuration definition from the project. What we are interested in however is the ConfigurationSettings tag of the CompanyHub.Services WebRole. There are four configuration settings here, but at the moment we are interested in the second to forth settings; SenderId, SenderPassword and GovTalkUrl The value of these settings are defined in the ServiceDefinition.cscfg file; <?xml version="1.0"?> <ServiceConfiguration serviceName="OnlineCompanyHub" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration"> <Role name="CompanyHub.Host"> <Instances count="2" /> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="DataConnectionString" value="UseDevelopmentStorage=true" /> </ConfigurationSettings> </Role> <Role name="CompanyHub.Services"> <Instances count="2" /> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="SenderId" value="UserID"/> <Setting name="SenderPassword" value="Password"/> <Setting name="GovTalkUrl" value="http://xmlgw.companieshouse.gov.uk/v1-0/xmlgw/Gateway"/> </ConfigurationSettings> </Role> <Role name="CompanyHub.Worker"> <Instances count="2" /> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" value="UseDevelopmentStorage=true" /> </ConfigurationSettings> </Role> </ServiceConfiguration>   Look for the Role tag that contains our project name (CompanyHub.Services). Having configured the parameters we can now transmit the request. This is done by ‘POST’ing a stream of XML to the Companies House servers. govTalkUrl = RoleEnvironment.GetConfigurationSettingValue("GovTalkUrl"); request = WebRequest.Create(govTalkUrl); request.Method = "POST"; request.ContentType = "text/xml"; writer = new StreamWriter(request.GetRequestStream()); writer.WriteLine(RequestMessage); writer.Close(); We use the WebRequest object to send the object. Set the method of sending to ‘POST’ and the type of data as text/xml. Once set up all we do is write the request to the writer – this sends the request to Companies House. Did the Request Work Part I – Getting the response Having sent a request – we now need the result of that request. response = request.GetResponse(); reader = response.GetResponseStream(); result = Toolbox.ConvertByteArrayToString(Toolbox.ReadFully(reader));   The WebRequest object has a GetResponse() method which allows us to get the response sent back. Like many of these calls the results come in the form of a stream which we convert into a string. Did the Request Work Part II – Translating the Response Much like XSLT and XML were used to create the original request, so it can be used to extract the response and by deserializing the result we create an object that contains the response. Did it work? It would be really great if everything worked all the time. Of course if it did then I don’t suppose people would pay me and others the big bucks so that our programmes do not a) Collapse in a heap (this is an area of memory) b) Blow every fuse in the place in a shower of sparks (this will probably not happen this being real life and not a Hollywood movie, but it was possible to blow the sound system of a BBC Model B with a poorly coded setting) c) Go nuts and trap everyone outside the airlock (this was from a movie, and unless NASA get a manned moon/mars mission set up unlikely to happen) d) Go nuts and take over the world (this was also from a movie, but please note life has a habit of being of exceeding the wildest imaginations of Hollywood writers (note writers – Hollywood executives have no imagination and judging by recent output of that town have turned plagiarism into an art form). e) Freeze in total confusion because the cleaner pulled the plug to the internet router (this has happened) So anyway – we need to check to see if our request actually worked. Within the GovTalk response there is a section that details the status of the message and a description of what went wrong (if anything did). I have defined an XSLT template which will extract these into an XML document. <?xml version="1.0"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:ev="http://www.govtalk.gov.uk/CM/envelope" xmlns:gt="http://www.govtalk.gov.uk/schemas/govtalk/core" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <xsl:template match="/"> <GovTalkStatus xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <Status> <xsl:value-of select="ev:GovTalkMessage/ev:Header/ev:MessageDetails/ev:Qualifier"/> </Status> <Text> <xsl:value-of select="ev:GovTalkMessage/ev:GovTalkDetails/ev:GovTalkErrors/ev:Error/ev:Text"/> </Text> <Location> <xsl:value-of select="ev:GovTalkMessage/ev:GovTalkDetails/ev:GovTalkErrors/ev:Error/ev:Location"/> </Location> <Number> <xsl:value-of select="ev:GovTalkMessage/ev:GovTalkDetails/ev:GovTalkErrors/ev:Error/ev:Number"/> </Number> <Type> <xsl:value-of select="ev:GovTalkMessage/ev:GovTalkDetails/ev:GovTalkErrors/ev:Error/ev:Type"/> </Type> </GovTalkStatus> </xsl:template> </xsl:stylesheet>   Only thing different about previous XSL files is the references to two namespaces ev & gt. These are defined in the GovTalk response at the top of the response; xsi:schemaLocation="http://www.govtalk.gov.uk/CM/envelope http://xmlgw.companieshouse.gov.uk/v1-0/schema/Egov_ch-v2-0.xsd" xmlns="http://www.govtalk.gov.uk/CM/envelope" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:gt="http://www.govtalk.gov.uk/schemas/govtalk/core" If we do not put these references into the XSLT template then  the XslCompiledTransform object will not be able to find the relevant tags. Deserialization is a fairly simple activity. encoder = new ASCIIEncoding(); ms = new MemoryStream(encoder.GetBytes(statusXML)); serializer = new XmlSerializer(typeof(GovTalkStatus)); xmlTextWriter = new XmlTextWriter(ms, Encoding.ASCII); messageStatus = (GovTalkStatus)serializer.Deserialize(ms);   We set up a serialization object using the object type containing the error state and pass to it the results of a transformation between the XSLT above and the GovTalk response. Now we have an object containing any error state, and the error message. All we need to do is check the status. If there is an error then we can flag an error. If not then  we extract the results and pass that as an object back to the calling function. We go this by guess what – defining an XSLT template for the result and using that to create an Xml Stream which can be deserialized into a .Net object. In this instance the XSLT to create the result of a Company Number Search is; <?xml version="1.0" encoding="us-ascii"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:ev="http://www.govtalk.gov.uk/CM/envelope" xmlns:sch="http://xmlgw.companieshouse.gov.uk/v1-0/schema" exclude-result-prefixes="ev"> <xsl:template match="/"> <CompanySearchResult xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <CompanyNumber> <xsl:value-of select="ev:GovTalkMessage/ev:Body/sch:NumberSearch/sch:CoSearchItem/sch:CompanyNumber"/> </CompanyNumber> <CompanyName> <xsl:value-of select="ev:GovTalkMessage/ev:Body/sch:NumberSearch/sch:CoSearchItem/sch:CompanyName"/> </CompanyName> </CompanySearchResult> </xsl:template> </xsl:stylesheet> and the object definition is; using System; using System.Collections.Generic; using System.Linq; using System.Web; namespace CompanyHub.Services { public class CompanySearchResult { public CompanySearchResult() { CompanyNumber = String.Empty; CompanyName = String.Empty; } public String CompanyNumber { get; set; } public String CompanyName { get; set; } } } Our entire code to make calls to send a request, and interpret the results are; String request = String.Empty; String response = String.Empty; GovTalkStatus status = null; fault = null; try { using (CompanyNumberSearchRequest requestObj = new CompanyNumberSearchRequest()) { requestObj.PartialCompanyNumber = CompanyNumber; request = Toolbox.CreateRequest(requestObj, "CompanyNumberSearch.xsl"); response = Toolbox.SendGovTalkRequest(request); status = Toolbox.GetMessageStatus(response); if (status.Status.ToLower() == "error") { fault = new HubFault() { Message = status.Text }; } else { Object obj = Toolbox.GetGovTalkResponse(response, "CompanyNumberSearchResult.xsl", typeof(CompanySearchResult)); } } } catch (FaultException<ArgumentException> ex) { fault = new HubFault() { FaultType = ex.Detail.GetType().FullName, Message = ex.Detail.Message }; } catch (System.Exception ex) { fault = new HubFault() { FaultType = ex.GetType().FullName, Message = ex.Message }; } finally { } Wrap up So there we have it – a reusable set of functions to send and interpret XML results from an internet based service. The code is reusable with a little change with any service which uses XML as a transport mechanism – and as for the Companies House GovTalk service all I need to do is create various objects for the result and message sent and the relevent XSLT files. I might need minor changes for other services but something like 70-90% will be exactly the same.

    Read the article

  • I need some help with either my SQL or my PHP I do not know which...

    - by sico87
    Hello I am creating a CMS and some of the functionality of it that the images that are within the content are managable. I currently trying to display a table that shows the the content title and then the associated images, ideally I would like a layout similar to this, Content Title Image 1 Image 2 Image 3 Content Title 2 Image 1 Image 2 Content Title 3 Image 1 The SQL the returns the data is actually formed using Codeigniters Active Record class, function getAllContentImages() { $this->db->select('*'); $this->db->from('contentImagesTable'); $this->db->join('contentTable', 'contentTable.contentId = contentImagesTable.contentId'); $this->db->join('categoryTable', 'categoryTable.categoryId = contentTable.categoryId'); $query = $this->db->get(); return $query->result_array(); } The array that is returned is looks like this, I have cut the size down for readability. Array ( [0] => Array ( [contentImageId] => 25 [contentImageName] => green.png [contentImageType] => .png [contentImagePath] => /var/www/bangmarketing.bang/media/uploads/contentImages/2/green.png [isHeadlineImage] => 1 [contentImageDateUploaded] => 1265222654 [contentId] => 2 [dashboardUserId] => 0 [contentTitle] => sadsadsadassss [contentAbstract] => <p>Pllllleeeeeeeaaaaasssssseeeeee Work</p> [contentBody] => <p>Please work :-( please</p> [contentOnline] => 0 [contentAllowComments] => 0 [contentDateCreated] => 1265124038 [categoryId] => 1 [categoryTitle] => blogsss [categoryAbstract] => <p>asdsdsadasdsadfdsgdgdsgdsgssssssssssss</p> [categorySlug] => blog [categoryIsSpecial] => 0 [categoryOnline] => 1 [categoryDateCreated] => 1266588327 ) [1] => Array ( [contentImageId] => 28 [contentImageName] => yellow.png [contentImageType] => .png [contentImagePath] => /var/www/bangmarketing.bang/media/uploads/contentImages/7/yellow.png [isHeadlineImage] => 1 [contentImageDateUploaded] => 1265388055 [contentId] => 7 [dashboardUserId] => 0 [contentTitle] => Another Blog [contentAbstract] => <p>This is another blog and it is shit becuase this does not work</p> [contentBody] => <p>ioasfihfududfhdufhuishdfiudshfiudhsfiuhdsiufhusdhfuids</p> [contentOnline] => 1 [contentAllowComments] => 0 [contentDateCreated] => 1265388034 [categoryId] => 1 [categoryTitle] => blogsss [categoryAbstract] => <p>asdsdsadasdsadfdsgdgdsgdsgssssssssssss</p> [categorySlug] => blog [categoryIsSpecial] => 0 [categoryOnline] => 1 [categoryDateCreated] => 1266588327 ) [2] => Array ( [contentImageId] => 33 [contentImageName] => portaski.jpg [contentImageType] => .jpg [contentImagePath] => /var/www/bangmarketing.bang/media/uploads/contentImages/11/portaski.jpg [isHeadlineImage] => 1 [contentImageDateUploaded] => 1265714175 [contentId] => 11 [dashboardUserId] => 0 [contentTitle] => Portaski - new product and brand launch by Bang [contentAbstract] => <p>Bang's experience in new product development has helped launch PortaSki &ndash; the pocket-sized device which is set to revolutionise skiing.</p> [contentBody] => <p>After developing Portaski's brand identity and positioning, Bang re-designed the product and its packaging ahead of launch in late 2008.</p> <p>A media and PR strategy was devised and implemented using Bang's close relationship with two of the UK's most influential organisations in the Advertising and Media Buying industries. On-line advertising was supported with editorial reviews in the UK's leading broadsheets and tabloids, which combined with pin-point HTML direct mail to drive consumers to the new e-commerce site.</p> <p>Impressive month-on-month growth has been achieved since launch, and the direct marketing activity resulted in an unprecedented 2.71% of targets going on-line to purchase a PortaSki.</p> <p>For further information visit <a href="http://www.portaski.com" target="_blank">www.portaski.com</a></p> [contentOnline] => 1 [contentAllowComments] => 0 [contentDateCreated] => 1265718184 [categoryId] => 1 [categoryTitle] => blogsss [categoryAbstract] => <p>asdsdsadasdsadfdsgdgdsgdsgssssssssssss</p> [categorySlug] => blog [categoryIsSpecial] => 0 [categoryOnline] => 1 [categoryDateCreated] => 1266588327 ) [3] => Array ( [contentImageId] => 26 [contentImageName] => housingplus.jpg [contentImageType] => .jpg [contentImagePath] => /var/www/bangmarketing.bang/media/uploads/contentImages/5/housingplus.jpg [isHeadlineImage] => 1 [contentImageDateUploaded] => 1265284989 [contentId] => 5 [dashboardUserId] => 0 [contentTitle] => Bang launches Housing Plus [contentAbstract] => <p>Bang has launched Housing Plus, the new brand for the Central Borders Housing Group, along with new sub-brands Property Care and SSHA.</p> [contentBody] => <p>The Midlands based Group, with turnover in excess of &pound;21M, appointed Bang in 2008 following an open pitch of over 40 agencies. Bang's work began with an extensive marketing research strategy that challenged the Group's former positioning and brand structure.</p> <p>The research unveiled that the housing sector demanded a values-led Group. This led Bang to develop the brave &lsquo;Together for the Right Reasons' positioning for Housing Plus.</p> <p>Chris Garratt, Marketing Director at Bang explained "The housing sector has witnessed wholesale change in recent years. Much to tenant's dismay, many associations and Groups appear to be losing touch with their roots, we wanted to develop a Group for associations who place principles at the heart of their corporate strategy".</p> <p>The repositioned sub-brands also play an important role in the Group's revised brand by highlighting Housing Plus' willingness to embrace and nurture individual identities. Chris Garratt continued "By adopting a &lsquo;house of brands' hierarchy from the outset, Housing Plus has sent out a strong message to prospective strategic partners".</p> <p>Bang handled all aspects of work for the redevelopment of the three brands, including research, brand creation, naming, positioning, internal branding and communications, advertising, the brand launches, building the brands' on-line presence and the creation of a powerful brand film &ndash; which is already attracting significant interest from across the sector.</p> [contentOnline] => 1 [contentAllowComments] => 0 [contentDateCreated] => 1265285940 [categoryId] => 8 [categoryTitle] => News [categoryAbstract] => <p>The world at Bang Marketing moves fast, keep up to date w [categorySlug] => news [categoryIsSpecial] => 0 [categoryOnline] => 1 [categoryDateCreated] => 1265283717 ) I need a way that I can get all the content images associated with the same content title in one group and then display under the content title. Can anyone help?

    Read the article

< Previous Page | 448 449 450 451 452 453 454  | Next Page >