Search Results

Search found 1449 results on 58 pages for 'coordinate geometry'.

Page 46/58 | < Previous Page | 42 43 44 45 46 47 48 49 50 51 52 53  | Next Page >

  • JavaOne 2012 Call for Papers

    - by Tori Wieldt
    JavaOne 2012 is happening Sept. 30-Oct 4 in San Francisco. The Call For Papers for this conference is now open. Java Evangelist Arun Gupta, who was on one of the selection committees and will be again this year, provided some great tips for submission (and a peek into the submission process): JavaOne is a technology-focused conference so any product, marketing or seemingly marketish talk are put at the bottom of the list. Oracle Open World and Oracle Develop are better options for submitting product specific talks. Make your title catchy. Remember the attendees are more likely to read the abstract if they like the title. We try our best to recategorize the talk to a different track if it needs to but please ensure that you are filing in the right track to have all the right eyeballs looking at it. Also, it does not hurt marking an alternate track if your talk meets the criteria. Make sure to coordinate within your team before the submission - multiple sessions from the same team or company does not ensure that the best speaker is picked. In such case we rely upon your "google presence" and/or review committee's prior knowledge of the speaker. The reviewers may not know you or your product at all and you get 750 characters to pitch your idea. Make sure to use all of them, to the last 750th character. Make sure to read your abstract multiple times to ensure that you are giving all the relevant information ? Think through your presentation and see if you are leaving out any important aspects. Also look if the abstract has any redundant information that will not required by the reviewers. There are additional sections that allow you to share information about the speaker and the presentation summary. Use them to blow the horn about yourself and any other relevant details. Please don't say "call me at xxx-xxx-xxxx to find out the details." :-) The tracks this year are: Core Java Platform Development Tools and Techniques Emerging Langauges on the JVM Enterprise Services Architectures and the Cloud Java EE Web Profile and Platform Technologies Java ME, Java Card, Embedded, and Devices Java FX and Rich User Experiences IMPORTANT: Submit your proposal as soon as possible, the the Call for Papers closes April 9th, a mere three weeks away!  Follow these channels to get the latest news about #JavaOne 2012. 

    Read the article

  • Textures do not render on ATI graphics cards?

    - by Mathias Lykkegaard Lorenzen
    I'm rendering textured quads to an orthographic view in XNA through hardware instancing. On Nvidia graphics cards, this all works, tested on 3 machines. On ATI cards, it doesn't work at all, tested on 2 machines. How come? Culling perhaps? My orthographic view is set up like this: Matrix projection = Matrix.CreateOrthographicOffCenter(0, graphicsDevice.Viewport.Width, -graphicsDevice.Viewport.Height, 0, 0, 1); And my elements are rendered with the Z-coordinate 0. Edit: I just figured out something weird. If I do not call this spritebatch code above doing my textured quad rendering code, then it won't work on Nvidia cards either. Could that be due to culling information or something like that? Batch.Instance.SpriteBatch.Begin(SpriteSortMode.Immediate, BlendState.AlphaBlend, SamplerState.LinearClamp, DepthStencilState.Default, RasterizerState.CullNone); ... spriteBatch.End(); Edit 2: Here's the full code for my instancing call. public void DrawTextures() { Batch.Instance.SpriteBatch.Begin(SpriteSortMode.Texture, BlendState.AlphaBlend, SamplerState.LinearClamp, DepthStencilState.Default, RasterizerState.CullNone, textureEffect); while (texturesToDraw.Count > 0) { TextureJob texture = texturesToDraw.Dequeue(); spriteBatch.Draw(texture.Texture, texture.DestinationRectangle, texture.TintingColor); } spriteBatch.End(); #if !NOTEXTUREINSTANCING // no work to do if (positionInBufferTextured > 0) { device.BlendState = BlendState.Opaque; textureEffect.CurrentTechnique = textureEffect.Techniques["Technique1"]; textureEffect.Parameters["Texture"].SetValue(darkTexture); textureEffect.CurrentTechnique.Passes[0].Apply(); if ((textureInstanceBuffer == null) || (positionInBufferTextured > textureInstanceBuffer.VertexCount)) { if (textureInstanceBuffer != null) textureInstanceBuffer.Dispose(); textureInstanceBuffer = new DynamicVertexBuffer(device, texturedInstanceVertexDeclaration, positionInBufferTextured, BufferUsage.WriteOnly); } if (positionInBufferTextured > 0) { textureInstanceBuffer.SetData(texturedInstances, 0, positionInBufferTextured, SetDataOptions.Discard); } device.Indices = textureIndexBuffer; device.SetVertexBuffers(textureGeometryBuffer, new VertexBufferBinding(textureInstanceBuffer, 0, 1)); device.DrawInstancedPrimitives(PrimitiveType.TriangleStrip, 0, 0, textureGeometryBuffer.VertexCount, 0, 2, positionInBufferTextured); // now that we've drawn, it's ok to reset positionInBuffer back to zero, // and write over any vertices that may have been set previously. positionInBufferTextured = 0; } #endif }

    Read the article

  • Is commented out code really always bad?

    - by nikie
    Practically every text on code quality I've read agrees that commented out code is a bad thing. The usual example is that someone changed a line of code and left the old line there as a comment, apparently to confuse people who read the code later on. Of course, that's a bad thing. But I often find myself leaving commented out code in another situation: I write a computational-geometry or image processing algorithm. To understand this kind of code, and to find potential bugs in it, it's often very helpful to display intermediate results (e.g. draw a set of points to the screen or save a bitmap file). Looking at these values in the debugger usually means looking at a wall of numbers (coordinates, raw pixel values). Not very helpful. Writing a debugger visualizer every time would be overkill. I don't want to leave the visualization code in the final product (it hurts performance, and usually just confuses the end user), but I don't want to loose it, either. In C++, I can use #ifdef to conditionally compile that code, but I don't see much differnce between this: /* // Debug Visualization: draw set of found interest points for (int i=0; i<count; i++) DrawBox(pts[i].X, pts[i].Y, 5,5); */ and this: #ifdef DEBUG_VISUALIZATION_DRAW_INTEREST_POINTS for (int i=0; i<count; i++) DrawBox(pts[i].X, pts[i].Y, 5,5); #endif So, most of the time, I just leave the visualization code commented out, with a comment saying what is being visualized. When I read the code a year later, I'm usually happy I can just uncomment the visualization code and literally "see what's going on". Should I feel bad about that? Why? Is there a superior solution? Update: S. Lott asks in a comment Are you somehow "over-generalizing" all commented code to include debugging as well as senseless, obsolete code? Why are you making that overly-generalized conclusion? I recently read Robert Glass' "Clean Code", which says: Few practices are as odious as commenting-out code. Don't do this!. I've looked at the paragraph in the book again (p. 68), there's no qualification, no distinction made between different reasons for commenting out code. So I wondered if this rule is over-generalizing (or if I misunderstood the book) or if what I do is bad practice, for some reason I didn't know.

    Read the article

  • ray collision with rectangle and floating point accuracy

    - by phq
    I'm trying to solve a problem with a ray bouncing on a box. Actually it is a sphere but for simplicity the box dimensions are expanded by the sphere radius when doing the collision test making the sphere a single ray. It is done by projecting the ray onto all faces of the box and pick the one that is closest. However because I'm using floating point variables I fear that the projected point onto the surface might be interpreted as being below in the next iteration, also I will later allow the sphere to move which might make that scenario more likely. Also the bounce coefficient might be as low as zero, making the sphere continue along the surface. So my naive solution is to project not only forwards but backwards to catch those cases. That is where I got into problems shown in the figure: In the first iteration the first black arrow is calculated and we end up at a point on the surface of the box. In the second iteration the "back projection" hits the other surface making the second black arrow bounce on the wrong surface. If there are several boxes close to each other this has further consequences making the sphere fall through them all. So my main question is how to handle possible floating point accuracy when placing the sphere on the box surface so it does not fall through. In writing this question I got the idea to have a threshold to only accept back projections a certain amount much smaller than the box but larger than the possible accuracy limitation, this would only cause the "false" back projection when the sphere hit the box on an edge which would appear naturally. To clarify my original approach, the arrows shown in the image is not only the path the sphere travels but is also representing a single time step in the simulation. In reality the time step is much smaller about 0.05 of the box size. The path traveled is projected onto possible sides to avoid traveling past a thinner object at higher speeds. In normal situations the floating point accuracy is not an issue but there are two situations where I have the concern. When the new position at the end of the time step is located very close to the surface, very unlikely though. When using a bounce factor of 0, here it happens every time the sphere hit a box. To add some loss of accuracy, the motivation for my concern, is that the sphere and box are in different coordinate systems and thus the sphere location is transformed for every test. This last one is why I'm not willing to stand on luck that one floating point value lying on top of the box always will be interpreted the same. I did not know voronoi regions by name, but looking at it I'm not sure how it would be used in a projection scenario that I'm using here.

    Read the article

  • Heightmap in Shader not working

    - by CSharkVisibleBasix
    I'm trying to implement GPU based geometry clipmapping and have problems to apply a simple heightmap to my terrain. For the heightmap I use a simple texture with the surface format "single". I've taken the texture from here. To apply it to my terrain, I use the following shader code: texture Heightmap; sampler2D HeightmapSampler = sampler_state { Texture = <Heightmap>; MinFilter = Point; MagFilter = Point; MipFilter = Point; AddressU = Mirror; AddressV = Mirror; }; Vertex Shader: float4 worldPos = mul(float4(pos.x,0.0f,pos.y, 1.0f), worldMatrix); float elevation = tex2Dlod(HeightmapSampler, float4(worldPos.x, worldPos.z,0,0)); worldPos.y = elevation * 128; The complete vertex shader (also containig clipmapping transforms) looks like this: float4x4 View : View; float4x4 Projection : Projection; float3 CameraPos : CameraPosition; float LODscale; //The LOD ring index 0:highest x:lowest float2 Position; //The position of the part in the world texture Heightmap; sampler2D HeightmapSampler = sampler_state { Texture = <Heightmap>; MinFilter = Point; MagFilter = Point; MipFilter = Point; AddressU = Mirror; AddressV = Mirror; }; //Accept only float2 because we extract 3rd dim out of Heightmap float4 wireframe_VS(float2 pos : POSITION) : POSITION{ float4x4 worldMatrix = float4x4( LODscale, 0, 0, 0, 0, LODscale, 0, 0, 0, 0, LODscale, 0, - Position.x * 64 * LODscale + CameraPos.x, 0, Position.y * 64 * LODscale + CameraPos.z, 1); float4 worldPos = mul(float4(pos.x,0.0f,pos.y, 1.0f), worldMatrix); float elevation = tex2Dlod(HeightmapSampler, float4(worldPos.x, worldPos.z,0,0)); worldPos.y = elevation * 128; float4 viewPos = mul(worldPos, View); float4 projPos = mul(viewPos, Projection); return projPos; }

    Read the article

  • Picture rendered from above and below using an Orthographic camera do not match

    - by Roy T.
    I'm using an orthographic camera to render slices of a model (in order to voxelize it). I render each slice both from above and below in order to determine what is inside each slice. I am using an orthographic camera The model I render is a simple 'T' shape constructed from two cubes. The cubes have the same dimensions and have the same Y (height) coordinate. See figure 1 for a render of it in Blender. I render this model once directly from above and once directly from below. My expectation was that I would get exactly the same image (except for mirroring over the y-axis). However when I render using a very low resolution render target (25x25) the position (in pixels) of the 'T' is different when rendered from above as opposed to rendered from below. See figure 2 and 3. The pink blocks are not part of the original rendering but I've added them so you can easily count/see the differences. Figure 2: the T rendered from above Figure 3: the T rendered from below This is probably due to what I've read about pixel and texel coordinates which might be biased to the top-left as seen from the camera. Since I'm using the same 'up' vector for both of my camera's my bias only shows on the x-axis. I've tried to change the position of the camera and it's look-at by, what I thought, should be half a pixel. I've tried both shifting a single camera and shifting both cameras and while I see some effect I am not able to get a pixel-by-pixel perfect copy from both camera's. Here I initialize the camera and compute, what I believe to be, half pixel. boundsDimX and boundsDimZ is a slightly enlarged bounding box around the model which I also use as the width and height of the view volume of the orthographic camera. Matrix projection = Matrix.CreateOrthographic(boundsDimX, boundsDimZ, 0.5f, sliceHeight + 0.5f); Vector3 halfPixel = new Vector3(boundsDimX / (float)renderTarget.Width, 0, boundsDimY / (float)renderTarget.Height) * 0.5f; This is the code where I set the camera position and camera look ats // Position camera if (downwards) { float cameraHeight = bounds.Max.Y + 0.501f - (sliceHeight * i); Vector3 cameraPosition = new Vector3 ( boundsCentre.X, // possibly adjust by half a pixel? cameraHeight, boundsCentre.Z ); camera.Position = cameraPosition; camera.LookAt = new Vector3(cameraPosition.X, cameraHeight - 1.0f, cameraPosition.Z); } else { float cameraHeight = bounds.Max.Y - 0.501f - (sliceHeight * i); Vector3 cameraPosition = new Vector3 ( boundsCentre.X, cameraHeight, boundsCentre.Z ); camera.Position = cameraPosition; camera.LookAt = new Vector3(cameraPosition.X, cameraHeight + 1.0f, cameraPosition.Z); } Main Question Now you've seen all the problems and code you can guess it. My main question is. How do I align both camera's so that they each render exactly the same image (mirrored along the Y axis)? Figure 1 the original model rendered in blender

    Read the article

  • How to do geometric projection shadows?

    - by John Murdoch
    I have decided that since my game world is mostly flat I don't need better shadows than geometric projections - at least for now. The only problem is I don't even know how to do those properly - that is to produce a 4x4 matrix which would render shadows for my objects (that is, I guess, project them on a horizontal XZ plane). I would like a light source at infinity (e.g., the sun at some point in the sky) and thus parallel projection. My current code does something that looks almost right for small flying objects, but actually is a very rude approximation, as it doesn't project the objects onto the ground, but simply moves them there (I think). Also it always wrongly assumes the sun is always on the zenith (projecting straight down). Gdx.gl20.glEnable(GL10.GL_BLEND); Gdx.gl20.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA); //shells shellTexture.bind(); shader.begin(); for (ShellState state : shellStates.values()) { transform.set(camera.combined); transform.mul(state.transform); shader.setUniformMatrix("u_worldView", transform); shader.setUniformi("u_texture", 0); shellMesh.render(shader, GL10.GL_TRIANGLES); } shader.end(); // shadows shader.begin(); for (ShellState state : shellStates.values()) { transform.set(camera.combined); m4.set(state.transform); state.transform.getTranslation(v3); m4.translate(0, -v3.y + 0.5f, 0); // TODO HACK: + 0.5f is a hack to ensure the shadow appears above the ground; this is overall a hack as we are just moving the shell to the surface instead of projecting it on the surface! transform.mul(m4); shader.setUniformMatrix("u_worldView", transform); shader.setUniformi("u_texture", 0); // TODO: make shadow black somehow shellMesh.render(shader, GL10.GL_TRIANGLES); } shader.end(); Gdx.gl.glDisable(GL10.GL_BLEND); So my questions are: a) What is the proper way to produce a Matrix4 to pass to openGL which would render the shadows for my objects? b) I am supposed to use another fragment shader for the shadows which would paint them in semi-transparent grey, correct? c) The limitation of this simplistic approach is that whenever there is some object on the ground (it is not flat) the shadows will not be drawn, correct? d) Do I need to add something very small to the y (up) coordinate to avoid z-fighting with ground textures? Or is the fact they will be semi-transparent enough to resolve that problem?

    Read the article

  • Difference between the terms Material & Effect

    - by codey
    I'm making an effect system right now (I think, because it may be a material system... or both!). The effects system follows the common (e.g. COLLADA, DirectX) effect framework abstraction of Effects have Techniques, Techniques have Passes, Passes have States & Shader Programs. An effect, according to COLLADA, defines the equations necessary for the visual appearance of geometry and screen-space image processing. Keeping with the abstraction, effects contain techniques. Each effect can contain one or many techniques (i.e. ways to generate the effect), each of which describes a different method for rendering that effect. The technique could be relate to quality (e.g. high precision, high LOD, etc.), or in-game-situation (e.g. night/day, power-up-mode, etc.). Techniques hold a description of the textures, samplers, shaders, parameters, & passes necessary for rendering this effect using one method. Some algorithms require several passes to render the effect. Pipeline descriptions are broken into an ordered collection of Pass objects. A pass provides a static declaration of all the render states, shaders, & settings for "one rendering pipeline" (i.e. one pass). Meshes usually contain a series of materials that define the model. According to the COLLADA spec (again), a material instantiates an effect, fills its parameters with values, & selects a technique. But I see material defined differently in other places, such as just the Lambert, Blinn, Phong "material types/shaded surfaces", or as Metal, Plastic, Wood, etc. In game dev forums, people often talk about implementing a "material/effect system". Is the material not an instance of an effect? Ergo, if I had effect objects, stored in a collection, & each effect instance object with there own parameter setting, then there is no need for the concept of a material... Or am I interpreting it wrong? Please help by contributing your interpretations as I want to be clear on a distinction (if any), & don't want to miss out on the concept of a material if it should be implemented to follow the abstraction of the DirectX FX framework & COLLADA definitions closely.

    Read the article

  • How to Make Objects Fall Faster in a Physics Simulation

    - by David Dimalanta
    I used the collision physics (i.e. Box2d, Physics Body Editor) and implemented onto the java code. I'm trying to make the fall speed higher according to the examples: It falls slower if light object (i.e. feather). It falls faster depending on the object (i.e. pebble, rock, car). I decided to double its falling speed for more excitement. I tried adding the mass but the speed of falling is constant instead of gaining more speed. check my code that something I put under input processor's touchUp() return method under same roof of the class that implements InputProcessor and Screen: @Override public boolean touchUp(int screenX, int screenY, int pointer, int button) { // TODO Touch Up Event if(is_Next_Fruit_Touched) { BodyEditorLoader Fruit_Loader = new BodyEditorLoader(Gdx.files.internal("Shape_Physics/Fruity Physics.json")); Fruit_BD.type = BodyType.DynamicBody; Fruit_BD.position.set(x, y); FixtureDef Fruit_FD = new FixtureDef(); // --> Allows you to make the object's physics. Fruit_FD.density = 1.0f; Fruit_FD.friction = 0.7f; Fruit_FD.restitution = 0.2f; MassData mass = new MassData(); mass.mass = 5f; Fruit_Body[n] = world.createBody(Fruit_BD); Fruit_Body[n].setActive(true); // --> Let your dragon fall. Fruit_Body[n].setMassData(mass); Fruit_Body[n].setGravityScale(1.0f); System.out.println("Eggs... " + n); Fruit_Loader.attachFixture(Fruit_Body[n], Body, Fruit_FD, Fruit_IMG.getWidth()); Fruit_Origin = Fruit_Loader.getOrigin(Body, Fruit_IMG.getWidth()).cpy(); is_Next_Fruit_Touched = false; up = y; Gdx.app.log("Initial Y-coordinate", "Y at " + up); //Once it's touched, the next fruit will set to drag. if(n < 50) { n++; }else{ System.exit(0); } } return true; } And take note, at show() method , the view size from the camera is at 720x1280: camera_1 = new OrthographicCamera(); camera_1.viewportHeight = 1280; camera_1.viewportWidth = 720; camera_1.position.set(camera_1.viewportWidth * 0.5f, camera_1.viewportHeight * 0.5f, 0f); camera_1.update(); I know it's a good idea to add weight to make the falling object falls faster once I released the finger from the touchUp() after I picked the object from the upper right of the screen but the speed remains either constant or slow. How can I solve this? Can you help?

    Read the article

  • Multi Pass Blend

    - by Kirk Patrick
    I am seeking the simplest working example of a two pass HLSL pixel shader. It can do anything really, but the main idea is to perform "ping ponging" to take the output of the first pass and then send it for the second pass. In my example I want to draw to the R channel and then draw to the G channel and produce a simple Venn Diagram in the shader, but need to detect overlap. I can currently detect one or the other but not overlap. There are a red and green circle overlapping, and I want to put a dynamic texture map in the overlap region. I can currently put it in either or. Below is how it looks in the shader. -------------------------------- Texture2D shaderTexture; SamplerState SampleType; ////////////// // TYPEDEFS // ////////////// struct PixelInputType { float4 position : SV_POSITION; float2 tex0 : TEXCOORD0; float2 tex1 : TEXCOORD1; float4 color : COLOR; }; //////////////////////////////////////////////////////////////////////////////// // Pixel Shader //////////////////////////////////////////////////////////////////////////////// float4 main(PixelInputType input) : SV_TARGET { float4 textureColor0; float4 textureColor1; // Sample the pixel color from the texture using the sampler at this texture coordinate location. textureColor0 = shaderTexture.Sample(SampleType, input.tex0); textureColor1 = shaderTexture.Sample(SampleType, input.tex1); if (input.color[0]==1.0f && input.color[1]==1.0f) // Requires multi-pass textureColor0 = textureColor1; return textureColor0; } Here is the calling code (that needs to be modified) m_d3dContext->IASetVertexBuffers(0, 2, vbs, strides, offsets); m_d3dContext->IASetIndexBuffer(m_indexBuffer.Get(), DXGI_FORMAT_R32_UINT,0); m_d3dContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); m_d3dContext->IASetInputLayout(m_inputLayout.Get()); m_d3dContext->VSSetShader(m_vertexShader.Get(), nullptr, 0); m_d3dContext->VSSetConstantBuffers(0, 1, m_constantBuffer.GetAddressOf()); m_d3dContext->PSSetShader(m_pixelShader.Get(), nullptr, 0); m_d3dContext->PSSetShaderResources(0, 1, m_SRV.GetAddressOf()); m_d3dContext->PSSetSamplers(0, 1, m_QuadsTexSamplerState.GetAddressOf());

    Read the article

  • 3D terrain map with Hexagon Grids (XNA)

    - by Rob
    I'm working on a hobby project (I'm a web/backend developer by day) and I want to create a 3D Tile (terrain) engine. I'm using XNA, but I can use MonoGame, OpenGL, or straight DirectX, so the answer does not have to be XNA specific. I'm more looking for some high level advice on how to approach this problem. I know about creating height maps and such, there are thousands of references out there on the net for that, this is a bit more specific. I'm more concerned with is the approach to get a 3D hexagon tile grid out of my terrain (since the terrain, and all 3d objects, are basically triangles). The first approach I thought about is to basically draw the triangles on the screen in the following order (blue numbers) to give me the triangles for terrain (black triangles) and then make hexes out of the triangles (red hex). http://screencast.com/t/ebrH2g5V This approach seems complicated to me since i'm basically having to draw 4 different types of triangles. The next approach I thought of was to use the existing triangles like I did for a square grid and get my hexes from 6 triangles as follows http://screencast.com/t/w9b7qKzVJtb8 This seems like the easier approach to me since there are only 2 types of triangles (i would have to play with the heights and widths to get a "perfect" hexagon, but the idea is the same. So I'm looking for: 1) Any suggestions on which approach I should take, and why. 2) How would I translate mouse position to a hexagon grid position (especially when moving the camera around), for example in the second image if the mouse pointer were the green circle, how would I determine to highlight that hexagon and then translating that into grid coordinates (assuming it is 0,0)? 3) Any references, articles, books, etc - to get me going in the right direction. Note: I've done hex grid's and mouse-grid coordinate conversion before in 2d. looking for some pointers on how to do the same in 3d. The result I would like to achieve is something similar to the following: http :// www. youtube .com / watch?v=Ri92YkyC3fw (sorry about the youtube link, but it will only let me post 2 links in this post... same rep problem i mention below...) Thanks for any help! P.S. Sorry for not posting the images inline, I apparently don't have enough rep on this stack exchange site.

    Read the article

  • How to detect which edges of a rectange touch when they collide in iOS

    - by Mike King
    I'm creating a basic "game" in iOS 4.1. The premise is simple, there is a green rectangle ("disk") that moves/bounces around the screen, and red rectangle ("bump") that is stationary. The user can move the red "bump" by touching another coordinate on the screen, but that's irrelevant to this question. Each rectangle is a UIImageView (I will replace them with some kind of image/icon once I get the mechanics down). I've gotten as far as detecting when the rectangles collide, and I'm able to reverse the direction of the green "disk" on the Y axis if they do. This works well when the green "disk" approaches the red "bump" from top or bottom, it bounces off in the other direction. But when it approaches from the side, the bounce is incorrect; I need to reverse the X direction instead. Here's the timer I setup: - (void)viewDidLoad { xSpeed = 3; ySpeed = -3; gameTimer = [NSTimer scheduledTimerWithTimeInterval:0.05 target:self selector:@selector(mainGameLoop:) userInfo:nil repeats:YES]; [super viewDidLoad]; } Here's the main game loop: - (void) mainGameLoop:(NSTimer *)theTimer { disk.center = CGPointMake(disk.center.x + xSpeed, disk.center.y + ySpeed); // make sure the disk does not travel off the edges of the screen // magic number values based on size of disk's frame // startAnimating causes the image to "pulse" if (disk.center.x < 55 || disk.center.x > 265) { xSpeed = xSpeed * -1; [disk startAnimating]; } if (disk.center.y < 55 || disk.center.y > 360) { ySpeed = ySpeed * -1; [disk startAnimating]; } // check to see if the disk collides with the bump if (CGRectIntersectsRect(disk.frame, bump.frame)) { NSLog(@"Collision detected..."); if (! [disk isAnimating]) { ySpeed = ySpeed * -1; [disk startAnimating]; } } } So my question is: how can I detect whether I need to flip the X speed or the Y speed? ie: how can I calculate which edge of the bump was collided with?

    Read the article

  • OpenGL position from depth is wrong

    - by CoffeeandCode
    My engine is currently implemented using a deferred rendering technique, and today I decided to change it up a bit. First I was storing 5 textures as so: DEPTH24_STENCIL8 - Depth and stencil RGBA32F - Position RGBA10_A2 - Normals RGBA8 x 2 - Specular & Diffuse I decided to minimize it and reconstruct positions from the depth buffer. Trying to figure out what is wrong with my method currently has not been fun :/ Currently I get this: which changes whenever I move the camera... weird Vertex shader really simple #version 150 layout(location = 0) in vec3 position; layout(location = 1) in vec2 uv; out vec2 uv_f; void main(){ uv_f = uv; gl_Position = vec4(position, 1.0); } Fragment shader Where the fun (and not so fun) stuff happens #version 150 uniform sampler2D depth_tex; uniform sampler2D normal_tex; uniform sampler2D diffuse_tex; uniform sampler2D specular_tex; uniform mat4 inv_proj_mat; uniform vec2 nearz_farz; in vec2 uv_f; ... other uniforms and such ... layout(location = 3) out vec4 PostProcess; vec3 reconstruct_pos(){ float z = texture(depth_tex, uv_f).x; vec4 sPos = vec4(uv_f * 2.0 - 1.0, z, 1.0); sPos = inv_proj_mat * sPos; return (sPos.xyz / sPos.w); } void main(){ vec3 pos = reconstruct_pos(); vec3 normal = texture(normal_tex, uv_f).rgb; vec3 diffuse = texture(diffuse_tex, uv_f).rgb; vec4 specular = texture(specular_tex, uv_f); ... do lighting ... PostProcess = vec4(pos, 1.0); // Just for testing } Rendering code probably nothing wrong here, seeing as though it always worked before this->gbuffer->bind(); gl::Clear(gl::COLOR_BUFFER_BIT | gl::DEPTH_BUFFER_BIT); gl::Enable(gl::DEPTH_TEST); gl::Enable(gl::CULL_FACE); ... bind geometry shader and draw models and shiz ... gl::Disable(gl::DEPTH_TEST); gl::Disable(gl::CULL_FACE); gl::Enable(gl::BLEND); ... bind textures and lighting shaders shown above then draw each light ... gl::BindFramebuffer(gl::FRAMEBUFFER, 0); gl::Clear(gl::COLOR_BUFFER_BIT | gl::DEPTH_BUFFER_BIT); gl::Disable(gl::BLEND); ... bind screen shaders and draw quad with PostProcess texture ... Rinse_and_repeat(); // not actually a function ;) Why are my positions being output like they are?

    Read the article

  • Precise Touch Screen Dragging Issue: Trouble Aligning with the Finger due to Different Screen Resolution

    - by David Dimalanta
    Please, I need your help. I'm trying to make a game that will drag-n-drop a sprite/image while my finger follows precisely with the image without being offset. When I'm trying on a 900x1280 (in X [900] and Y [1280]) screen resolution of the Google Nexus 7 tablet, it follows precisely. However, if I try testing on a phone smaller than 900x1280, my finger and the image won't aligned properly and correctly except it still dragging. This is the code I used for making a sprite dragging with my finger under touchDragged(): x = ((screenX + Gdx.input.getX())/2) - (fruit.width/2); y = ((camera_2.viewportHeight * multiplier) - ((screenY + Gdx.input.getY())/2) - (fruit.width/2)); This code above will make the finger and the image/sprite stays together in place while dragging but only works on 900x1280. You'll be wondering there's camera_2.viewportHeight in my code. Here are for two reasons: to prevent inverted drag (e.g. when you swipe with your finger downwards, the sprite moves upward instead) and baseline for reading coordinate...I think. Now when I'm adding another orthographic camera named camera_1 and changing its setting, I recently used it for adjusting the falling object by meter per pixel. Also, it seems effective independently for smartphones that has smaller resolution and this is what I used here: show() camera_1 = new OrthographicCamera(); camera_1.viewportHeight = 280; // --> I set it to a smaller view port height so that the object would fall faster, decreasing the chance of drag force. camera_1.viewportWidth = 196; // --> Make it proportion to the original screen view size as possible. camera_1.position.set(camera_1.viewportWidth * 0.5f, camera_1.viewportHeight * 0.5f, 0f); camera_1.update(); touchDragged() x = ((screenX + (camera_1.viewportWidth/Gdx.input.getX()))/2) - (fruit.width/2); y = ((camera_1.viewportHeight * multiplier) - ((screenY + (camera_1.viewportHeight/Gdx.input.getY()))/2) - (fruit.width/2)); But the result instead of just following the image/sprite closely to my finger, it still has a space/gap between the sprite/image and the finger. It is possibly dependent on coordinates based on the screen resolution. I'm trying to drag the blueberry sprite with my finger. My expectation did not met since I want my finger and the sprite/image (blueberry) to stay close together while dragging until I release it. Here's what it looks like: I got to figure it out how to make independent on all screen sizes by just following the image/sprite closely to my finger while dragging even on most different screen sizes instead.

    Read the article

  • Correct use of VAO's in OpenGL ES2 for iOS?

    - by sak
    I'm migrating to OpenGL ES2 for one of my iOS projects, and I'm having trouble to get any geometry to render successfully. Here's where I'm setting up the VAO rendering: void bindVAO(int vertexCount, struct Vertex* vertexData, GLushort* indexData, GLuint* vaoId, GLuint* indexId){ //generate the VAO & bind glGenVertexArraysOES(1, vaoId); glBindVertexArrayOES(*vaoId); GLuint positionBufferId; //generate the VBO & bind glGenBuffers(1, &positionBufferId); glBindBuffer(GL_ARRAY_BUFFER, positionBufferId); //populate the buffer data glBufferData(GL_ARRAY_BUFFER, vertexCount, vertexData, GL_STATIC_DRAW); //size of verte position GLsizei posTypeSize = sizeof(kPositionVertexType); glVertexAttribPointer(kVertexPositionAttributeLocation, kVertexSize, kPositionVertexTypeEnum, GL_FALSE, sizeof(struct Vertex), (void*)offsetof(struct Vertex, position)); glEnableVertexAttribArray(kVertexPositionAttributeLocation); //create & bind index information glGenBuffers(1, indexId); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, *indexId); glBufferData(GL_ELEMENT_ARRAY_BUFFER, vertexCount, indexData, GL_STATIC_DRAW); //restore default state glBindVertexArrayOES(0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glBindBuffer(GL_ARRAY_BUFFER, 0); } And here's the rendering step: //bind the frame buffer for drawing glBindFramebuffer(GL_FRAMEBUFFER, outputFrameBuffer); glClear(GL_COLOR_BUFFER_BIT); //use the shader program glUseProgram(program); glClearColor(0.4, 0.5, 0.6, 0.5); float aspect = fabsf(320.0 / 480.0); GLKMatrix4 projectionMatrix = GLKMatrix4MakePerspective(GLKMathDegreesToRadians(65.0f), aspect, 0.1f, 100.0f); GLKMatrix4 modelViewMatrix = GLKMatrix4MakeTranslation(0.0f, 0.0f, -1.0f); GLKMatrix4 mvpMatrix = GLKMatrix4Multiply(projectionMatrix, modelViewMatrix); //glUniformMatrix4fv(projectionMatrixUniformLocation, 1, GL_FALSE, projectionMatrix.m); glUniformMatrix4fv(modelViewMatrixUniformLocation, 1, GL_FALSE, mvpMatrix.m); glBindVertexArrayOES(vaoId); glDrawElements(GL_TRIANGLE_FAN, kVertexCount, GL_FLOAT, &indexId); //bind the color buffer glBindRenderbuffer(GL_RENDERBUFFER, colorRenderBuffer); [context presentRenderbuffer:GL_RENDERBUFFER]; The screen is rendering the color passed to glClearColor correctly, but not the shape passed into bindVAO. Is my VAO being built correctly? Thanks!

    Read the article

  • SFX Played Once per Collision or Hit

    - by David Dimalanta
    I have a question about using Box2D (engine for LibGDX used to make realistic physics). I observed on the code that I've made for the physics here below: @Override public boolean touchUp(int screenX, int screenY, int pointer, int button) { // TODO Touch Up Event if(is_Next_Fruit_Touched) { BodyEditorLoader Fruit_Loader = new BodyEditorLoader(Gdx.files.internal("Shape_Physics/Fruity Physics.json")); Fruit_BD.type = BodyType.DynamicBody; Fruit_BD.position.set(x, y); FixtureDef Fruit_FD = new FixtureDef(); // --> Allows you to make the object's physics. Fruit_FD.density = 1.0f; Fruit_FD.friction = 0.7f; Fruit_FD.restitution = 0.2f; MassData mass = new MassData(); mass.mass = 5f; Fruit_Body[n] = world.createBody(Fruit_BD); Fruit_Body[n].setActive(true); // --> Let your dragon fall. Fruit_Body[n].setMassData(mass); Fruit_Body[n].setGravityScale(1.0f); System.out.println("Eggs... " + n); Fruit_Loader.attachFixture(Fruit_Body[n], Body, Fruit_FD, Fruit_IMG.getWidth()); Fruit_Origin = Fruit_Loader.getOrigin(Body, Fruit_IMG.getWidth()).cpy(); is_Next_Fruit_Touched = false; up = y; Gdx.app.log("Initial Y-coordinate", "Y at " + up); //Once it's touched, the next fruit will set to drag. if(n < 50) { n++; }else{ System.exit(0); } } return true; } Now, I'm thinking which part o line should I implement for the sound effects. My objectives to make SFX played once for every collision (Or should I say "SFX played once per collision"?) on the following: SFX played once if they hit on the objects of its kind. (e.g. apple vs. apple) SFX played once on a different sound when it hit on the ground. (e.g. apple land on the mud) Take note that I'm using Box2D for the Java programming version thanks to LibGDX via Box2D engine and I edited the physics body using Physics Body Editor before I implement it to code. I tried to check every available methods for body, fixture definition, or body definition to code for the SFX when hit but it seems only for the gravity and weight. Is there possibly available on the document for SFX played when collision happens if possible?

    Read the article

  • As the current draft stands, what is the most significant change the "National Strategy for Trusted Identities in Cyberspace" will provoke?

    - by mfg
    A current draft of the "National Strategy for Trusted Identities in Cyberspace" has been posted by the Department of Homeland Security. This question is not asking about privacy or constitutionality, but about how this act will impact developers' business models and development strategies. When the post was made I was reminded of Jeff's November blog post regarding an internet driver's license. Whether that is a perfect model or not, both approaches are attempting to handle a shared problem (of both developers and end users): How do we establish an online identity? The question I ask here is, with respect to the various burdens that would be imposed on developers and users, what are some of the major, foreseeable implementation issues that will arise from the current U.S. Government's proposed solution? For a quick primer on the setup, jump to page 12 for infrastructure components, here are two stand-outs: An Identity Provider (IDP) is responsible for the processes associated with enrolling a subject, and establishing and maintaining the digital identity associated with an individual or NPE. These processes include identity vetting and proofing, as well as revocation, suspension, and recovery of the digital identity. The IDP is responsible for issuing a credential, the information object or device used during a transaction to provide evidence of the subject’s identity; it may also provide linkage to authority, roles, rights, privileges, and other attributes. The credential can be stored on an identity medium, which is a device or object (physical or virtual) used for storing one or more credentials, claims, or attributes related to a subject. Identity media are widely available in many formats, such as smart cards, security chips embedded in PCs, cell phones, software based certificates, and USB devices. Selection of the appropriate credential is implementation specific and dependent on the risk tolerance of the participating entities. Here are the first considered actionable components of the draft: Action 1: Designate a Federal Agency to Lead the Public/Private Sector Efforts Associated with Achieving the Goals of the Strategy Action 2: Develop a Shared, Comprehensive Public/Private Sector Implementation Plan Action 3:Accelerate the Expansion of Federal Services, Pilots, and Policies that Align with the Identity Ecosystem Action 4:Work Among the Public/Private Sectors to Implement Enhanced Privacy Protections Action 5:Coordinate the Development and Refinement of Risk Models and Interoperability Standards Action 6: Address the Liability Concerns of Service Providers and Individuals Action 7: Perform Outreach and Awareness Across all Stakeholders Action 8: Continue Collaborating in International Efforts Action 9: Identify Other Means to Drive Adoption of the Identity Ecosystem across the Nation

    Read the article

  • Pathfinding for fleeing

    - by Philipp
    As you know there are plenty of solutions when you wand to find the best path in a 2-dimensional environment which leads from point A to point B. But how do I calculate a path when an object is at point A, and wants to get away from point B, as fast and far as possible? A bit of background information: My game uses a 2d environment which isn't tile-based but has floating point accuracy. The movement is vector-based. The pathfinding is done by partitioning the game world into rectangles which are walkable or non-walkable and building a graph out of their corners. I already have pathfinding between points working by using Dijkstras algorithm. The use-case for the fleeing algorithm is that in certain situations, actors in my game should perceive another actor as a danger and flee from it. The trivial solution would be to just move the actor in a vector in the direction which is opposite from the threat until a "safe" distance was reached or the actor reaches a wall where it then covers in fear. The problem with this approach is that actors will be blocked by small obstacles they could easily get around. As long as moving along the wall wouldn't bring them closer to the threat they could do that, but it would look smarter when they would avoid obstacles in the first place: Another problem I see is with dead ends in the map geometry. In some situations a being must choose between a path which gets it faster away now but ends in a dead end where it would be trapped, or another path which would mean that it wouldn't get that far away from the danger at first (or even a bit closer) but on the other hand would have a much greater long-term reward in that it would eventually get them much further away. So the short-term reward of getting away fast must be somehow valued against the long-term reward of getting away far. There is also another rating problem for situations where an actor should accept to move closer to a minor threat to get away from a much larger threat. But completely ignoring all minor threats would be foolish, too (that's why the actor in this graphic goes out of its way to avoid the minor threat in the upper right area): Are there any standard solutions for this problem?

    Read the article

  • Zooming in isometric engine using XNA

    - by Yheeky
    I´m currently working on an isometric game engine and right now I´m looking for help concerning my zoom function. On my tilemap there are several objects, some of them are selectable. When a house (texture size 128 x 256) is placed on the map I create an array containing all pixels (= 32768 pixels). Therefore each pixel has an alpha value I check if the value is bigger than 200 so it seems to be a pixel which belongs to the building. So if the mouse cursor is on this pixel the building will be selected - PixelCollision. Now I´ve already implemented my zooming function which works quite well. I use a scale variable which will change my calculation on drawing all map items. What I´m looking for right now is a precise way to find out if a zoomed out/in house is selected. My formula works for values like 0,5 (zoomed out) or 2 (zoomed in) but not for in between. Here is the code I use for the pixel index: var pixelIndex = (int)(((yPos / (Scale * Scale)) * width) + (xPos / Scale) + 1); Example: Let´s assume my mouse is over pixel coordinate 38/222 on the original house texture. Using the code above we get the following pixel index. var pixelIndex = ((222 / (1 * 1)) * 128) + (38 / 1) + 1; = (222 * 128) + 39 = 28416 + 39 = 28455 If we now zoom out to scale 0,5, the texture size will change to 64 x 128 and the amount of pixels will decrease from 32768 to 8192. Of course also our mouse point changes by the scale to 19/111. The formula makes it easy to calculate the original pixelIndex using our new coordinates: var pixelIndex = ((111 / (0.5 * 0.5)) * 64) + (19 / 0.5) + 1; = (444 * 64) + 39 = 28416 + 39 = 28455 But now comes the problem. If I zoom out just to scale 0.75 it does not work any more. The pixel amount changes from 32768 to 18432 pixels since texture size is 96 x 192. Mouse point is transformed to point 28/166. The formula gives me a wrong pixelIndex. var pixelIndex = ((166 / (0.75 * 0.75)) * 96) + (28 / 0.75) + 1; = (295.11 * 96) + 38.33 = 28330.66 + 38.33 = 28369 Does anyone have a clue what´s wrong in my code? Must be the first part (28330.66) which causes the calculation problem. Thanks! Yheeky

    Read the article

  • Create a kind of Interface c++ [migrated]

    - by Liuka
    I'm writing a little 2d rendering framework with managers for input and resources like textures and meshes (for 2d geometry models, like quads) and they are all contained in a class "engine" that interacts with them and with a directX class. So each class have some public methods like init or update. They are called by the engine class to render the resources, create them, but a lot of them should not be called by the user: //in pseudo c++ //the textures manager class class TManager { private: vector textures; .... public: init(); update(); renderTexture(); //called by the "engine class" loadtexture(); gettexture(); //called by the user } class Engine { private: Tmanager texManager; public: Init() { //initialize all the managers } Render(){...} Update(){...} Tmanager* GetTManager(){return &texManager;} //to get a pointer to the manager //if i want to create or get textures } In this way the user, calling Engine::GetTmanager will have access to all the public methods of Tmanager, including init update and rendertexture, that must be called only by Engine inside its init, render and update functions. So, is it a good idea to implement a user interface in the following way? //in pseudo c++ //the textures manager class class TManager { private: vector textures; .... public: init(); update(); renderTexture(); //called by the "engine class" friend class Tmanager_UserInterface; operator Tmanager_UserInterface*(){return reinterpret_cast<Tmanager_UserInterface*>(this)} } class Tmanager_UserInterface : private Tmanager { //delete constructor //in this class there will be only methods like: loadtexture(); gettexture(); } class Engine { private: Tmanager texManager; public: Init() Render() Update() Tmanager_UserInterface* GetTManager(){return texManager;} } //in main function //i need to load a texture //i always have access to Engine class engine-GetTmanger()-LoadTexture(...) //i can just access load and get texture; In this way i can implement several interface for each object, keeping visible only the functions i (and the user) will need. There are better ways to do the same?? Or is it just useless(i dont hide the "framework private functions" and the user will learn to dont call them)? Before i have used this method: class manager { public: //engine functions userfunction(); } class engine { private: manager m; public: init(){//call manager init function} manageruserfunciton() { //call manager::userfunction() } } in this way i have no access to the manager class but it's a bad way because if i add a new feature to the manager i need to add a new method in the engine class and it takes a lot of time. sorry for the bad english.

    Read the article

  • OpenGL ES 2 jittery camera movement

    - by user16547
    First of all, I am aware that there's no camera in OpenGL (ES 2), but from my understanding proper manipulation of the projection matrix can simulate the concept of a camera. What I'm trying to do is make my camera follow my character. My game is 2D, btw. I think the principle is the following (take Super Mario Bros or Doodle Jump as reference - actually I'm trying to replicate the mechanics of the latter): when the caracter goes beyond the center of the screen (in the positive axis/direction), update the camera to be centred on the character. Else keep the camera still. I did accomplish that, however the camera movement is noticeably jittery and I ran out of ideas how to make it smoother. First of all, my game loop (following this article): private int TICKS_PER_SECOND = 30; private int SKIP_TICKS = 1000 / TICKS_PER_SECOND; private int MAX_FRAMESKIP = 5; @Override public void run() { loops = 0; if(firstLoop) { nextGameTick = SystemClock.elapsedRealtime(); firstLoop = false; } while(SystemClock.elapsedRealtime() > nextGameTick && loops < MAX_FRAMESKIP) { step(); nextGameTick += SKIP_TICKS; loops++; } interpolation = ( SystemClock.elapsedRealtime() + SKIP_TICKS - nextGameTick ) / (float)SKIP_TICKS; draw(); } And the following code deals with moving the camera. I was unsure whether to place it in step() or draw(), but it doesn't make a difference to my problem at the moment, as I tried both and neither seemed to fix it. center just represents the y coordinate of the centre of the screen at any time. Initially it is 0. The camera object is my own custom "camera" which basically is a class that just manipulates the view and projection matrices. if(character.getVerticalSpeed() >= 0) { //only update camera if going up float[] projectionMatrix = camera.getProjectionMatrix(); if( character.getY() > center) { center += character.getVerticalSpeed(); cameraBottom = center + camera.getBottom(); cameraTop = center + camera.getTop(); Matrix.orthoM(projectionMatrix, 0, camera.getLeft(), camera.getRight(), center + camera.getBottom(), center + camera.getTop(), camera.getNear(), camera.getFar()); } } Any thought about what I should try or what I am doing wrong? Update 1: I think I updated every value you can see on screen to check whether the jittery movement is affected by that, but nothing changed, so something must be fundamentally flawed with my approach/calculations.

    Read the article

  • Why are my scene's depth values not being written to my DepthStencilView?

    - by dotminic
    I'm rendering to a depth map in order to use it as a shader resource view, but when I sample the depth map in my shader, the red component has a value of 1 while all other channels have a value of 0. The Texture2D I use to create the DepthStencilView is bound with the D3D11_BIND_DEPTH_STENCIL | D3D11_BIND_SHADER_RESOURCE flags, the DepthStencilView has the DXGI_FORMAT_D32_FLOAT format, and the ShaderResourceView's format is D3D11_SRV_DIMENSION_TEXTURE2D. I'm setting the depth map render target, then i'm drawing my scene, and once that is done, I'm the back buffer render target and depth stencil are set on the output merger, and I'm using the depth map shader resource view as a texture in my shader, but the depth value in the red channel is constantly 1. I'm not getting any runtime errors from D3D, and no compile time warning or anything. I'm not sure what I'm missing here at all. I have the impression the depth value is always being set to 1. I have not set any depth/stencil states, and AFAICT depth writing is enabled by default. The geometry is being rendered correctly so I'm pretty sure depth writing is enabled. The device is created with the appropriate debug flags; #if defined(DEBUG) || defined(_DEBUG) deviceFlags |= D3D11_CREATE_DEVICE_DEBUG | D3D11_RLDO_DETAIL; #endif This is how I create my depth map. I've omitted error checking for the sake of brevity D3D11_TEXTURE2D_DESC td; td.Width = width; td.Height = height; td.MipLevels = 1; td.ArraySize = 1; td.Format = DXGI_FORMAT_R32_TYPELESS; td.SampleDesc.Count = 1; td.SampleDesc.Quality = 0; td.Usage = D3D11_USAGE_DEFAULT; td.BindFlags = D3D11_BIND_DEPTH_STENCIL | D3D11_BIND_SHADER_RESOURCE; td.CPUAccessFlags = 0; td.MiscFlags = 0; _device->CreateTexture2D(&texDesc, 0, &this->_depthMap); D3D11_DEPTH_STENCIL_VIEW_DESC dsvd; ZeroMemory(&dsvd, sizeof(dsvd)); dsvd.Format = DXGI_FORMAT_D32_FLOAT; dsvd.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2D; dsvd.Texture2D.MipSlice = 0; _device->CreateDepthStencilView(this->_depthMap, &dsvd, &this->_dmapDSV); D3D11_SHADER_RESOURCE_VIEW_DESC srvd; srvd.Format = DXGI_FORMAT_R32_FLOAT; srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2D; srvd.Texture2D.MipLevels = texDesc.MipLevels; srvd.Texture2D.MostDetailedMip = 0; _device->CreateShaderResourceView(this->_depthMap, &srvd, &this->_dmapSRV);

    Read the article

  • How to cleanly add after-the-fact commits from the same feature into git tree

    - by Dennis
    I am one of two developers on a system. I make most of the commits at this time period. My current git workflow is as such: there is master branch only (no develop/release) I make a new branch when I want to do a feature, do lots of commits, and then when I'm done, I merge that branch back into master, and usually push it to remote. ...except, I am usually not done. I often come back to alter one thing or another and every time I think it is done, but it can be 3-4 commits before I am really done and move onto something else. Problem The problem I have now is that .. my feature branch tree is merged and pushed into master and remote master, and then I realize that I am not really done with that feature, as in I have finishing touches I want to add, where finishing touches may be cosmetic only, or may be significant, but they still belong to that one feature I just worked on. What I do now Currently, when I have extra after-the-fact commits like this, I solve this problem by rolling back my merge, and re-merging my feature branch into master with my new commits, and I do that so that git tree looks clean. One clean feature branch branched out of master and merged back into it. I then push --force my changes to origin, since my origin doesn't see much traffic at the moment, so I can almost count that things will be safe, or I can even talk to other dev if I have to coordinate. But I know it is not a good way to do this in general, as it rewrites what others may have already pulled, causing potential issues. And it did happen even with my dev, where git had to do an extra weird merge when our trees diverged. Other ways to solve this which I deem to be not so great Next best way is to just make those extra commits to the master branch directly, be it fast-forward merge, or not. It doesn't make the tree look as pretty as in my current way I'm solving this, but then it's not rewriting history. Yet another way is to wait. Maybe wait 24 hours and not push things to origin. That way I can rewrite things as I see fit. The con of this approach is time wasted waiting, when people may be waiting for a fix now. Yet another way is to make a "new" feature branch every time I realize I need to fix something extra. I may end up with things like feature-branch feature-branch-html-fix, feature-branch-checkbox-fix, and so on, kind of polluting the git tree somewhat. Is there a way to manage what I am trying to do without the drawbacks I described? I'm going for clean-looking history here, but maybe I need to drop this goal, if technically it is not a possibility.

    Read the article

  • What is the recommended way to output values to FBO targets? (OpenGL 3.3 + GLSL 330)

    - by datSilencer
    I'll begin by apologizing for any dumb assumptions you might find in the code below since I'm still pretty much green when it comes to OpenGL programming. I'm currently trying to implement deferred shading by using FBO's and their associated targets (textures in my case). I have a simple (I think :P) geometry+fragment shader program and I'd like to write its Fragment Shader stage output to three different render targets (previously bound by a call to glDrawBuffers()), like so: #version 330 in vec3 WorldPos0; in vec2 TexCoord0; in vec3 Normal0; in vec3 Tangent0; layout(location = 0) out vec3 WorldPos; layout(location = 1) out vec3 Diffuse; layout(location = 2) out vec3 Normal; uniform sampler2D gColorMap; uniform sampler2D gNormalMap; vec3 CalcBumpedNormal() { vec3 Normal = normalize(Normal0); vec3 Tangent = normalize(Tangent0); Tangent = normalize(Tangent - dot(Tangent, Normal) * Normal); vec3 Bitangent = cross(Tangent, Normal); vec3 BumpMapNormal = texture(gNormalMap, TexCoord0).xyz; BumpMapNormal = 2 * BumpMapNormal - vec3(1.0, 1.0, -1.0); vec3 NewNormal; mat3 TBN = mat3(Tangent, Bitangent, Normal); NewNormal = TBN * BumpMapNormal; NewNormal = normalize(NewNormal); return NewNormal; } void main() { WorldPos = WorldPos0; Diffuse = texture(gColorMap, TexCoord0).xyz; Normal = CalcBumpedNormal(); } If my render target textures are configured as: RT1:(GL_RGB32F, GL_RGB, GL_FLOAT, GL_TEXTURE0, GL_COLOR_ATTACHMENT0) RT2:(GL_RGB32F, GL_RGB, GL_FLOAT, GL_TEXTURE1, GL_COLOR_ATTACHMENT1) RT3:(GL_RGB32F, GL_RGB, GL_FLOAT, GL_TEXTURE2, GL_COLOR_ATTACHMENT2) And assuming that each texture has an internal format capable of contaning the incoming data, will the fragment shader write the corresponding values to the expected texture targets? On a related note, do the textures need to be bound to the OpenGL context when they are Multiple Render Targets? From some Googling, I think there are two other ways to output to MRTs: 1: Output each component to gl_FragData[n]. Some forum posts say this method is deprecated. However, looking at the latest OpenGL 3.3 and 4.0 specifications at opengl.org, the core profiles still mention this approach. 2: Use a typed output array variable for the expected type. In this case, I think it would be something like this: out vec3 [3] output; void main() { output[0] = WorldPos0; output[1] = texture(gColorMap, TexCoord0).xyz; output[2] = CalcBumpedNormal(); } So which is then the recommended approach? Is there a recommended approach at all if I plan to code on top of OpenGL 3.3? Thanks for your time and help!

    Read the article

  • How do I create weapon attachments?

    - by Tron86
    My question is; I am developing a game for XNA and I am trying to create a weapon attachment for my player model. My player model loads the .md3 format and reads tags for attachment points. I am able to get the tag of my model's hand. And I am also able to get the tag of my weapon's handle. Each tag I am able to get the rotation and position of and this is how I am calculating it: Model.worldMatrix = Matrix.CreateScale(Model.scale) * Matrix.CreateRotationX(-MathHelper.PiOver2) * Matrix.CreateRotationY(MathHelper.PiOver2); Pretty simple, the player model has a scale and its orientation(it loads on its side so I just use a 90 degree X axis rotation, and a Y axis rotation to face away from the camera). I then calculate the torso tag on the lower body, which gives me a local coordinate at the waist. Then I take that matrix and calculate the tag_weapon in the upper body. This gives me the hand position in local space. I also get the rotation matrix from that tag that I store for later use. All this seems to work fine. Now I move onto my weapon: Matrix weaponWorld = Matrix.CreateScale(CurrentWeapon.scale) * Matrix.CreateRotationX(-MathHelper.PiOver2) * TagRotationMatrix * Matrix.CreateTranslation(HandTag.Position) * Matrix.CreateRotationY(PlayerRotation) * Matrix.CreateTranslation(CollisionBody.Position) * You may notice the weapon matrix gets rotated by 90 degress on the X axis as well. This is because they load in on their sides. Once again this seems pretty simple and follows the SRT order I keep reading about. My TagRotation matrix is the hand's rotation. HandTag.Position is its position in local space. CreateRotationY(PlayerRotation) is the player's rotation in world space, and the CollisionBody.Position is the player's world location. Everything seems to be in order, and almost works in game. However when the gun spawns and follows the player's hand it seems to be flipped on an axis every couple frames. Almost like the X or Y axis is being inversed then put right back. Its hard to explain and I am totally stumped. Even removing all my X axis fixes does nothing to solve the problem. Hopefully I explained everything enough as I am a bit new to this! Thanks!

    Read the article

< Previous Page | 42 43 44 45 46 47 48 49 50 51 52 53  | Next Page >