Search Results

Search found 9458 results on 379 pages for 'was builder plugin'.

Page 46/379 | < Previous Page | 42 43 44 45 46 47 48 49 50 51 52 53  | Next Page >

  • DocProject vs Sandcastle Help File Builder GUI

    - by Nathan
    I have several C# projects along with some internal library components that I'm trying to document together. Sandcastle seems to be the place to go to generate documentation from C#. I would like to know which of the two, DocProject or Sandcastle Help File Builder GUI is better and supports the features I need. I would like to compile only each projects own part of the document and then have it all integrated together in the end. (i.e. the library components in one documentation project and each project in it's own documentation project, then all of the above in a single root using the Help 2 viewer)

    Read the article

  • Is it possible to nest folders in the Flash Builder bin-debug

    - by ThunderChunky_SF
    I'm trying to setup my bin-debug folder so that the structure looks like this: bin-debug assets img swf main.swf css style.css js swfobject.js index.html I've tried setting the project's output folder to: bin-debug/assets/swf which does get my main.swf where I want it, but then my other source folders get dumped into that swf folder as well. What I would really like is to tell Flash Builder to put my swf into a nested folder and to be able to specify where my build folders' output goes as well. Is this at all possible without resorting to ANT scripts?

    Read the article

  • using getScript to import plugin on page using multiple versions of jQuery

    - by mikez302
    I am developing an app on a page that uses jQuery 1.2.6, but I would like to use jQuery 1.4.2 for my app. I really don't like to use multiple versions of jQuery like this but the copy on the page (1.2.6) is something I have no control over. I decided to isolate my code like this: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html><head> <script type="text/javascript" src="jquery-1.2.6.min.js> <script type="text/javascript" src="pageStuff.js"> </head> <body> Welcome to our page. <div id="app"> <script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.js"></script> <script type="text/javascript" src="myStuff.js"> </div> </body></html> The file myStuff.js has my own code that is supposed to use jQuery 1.4.2, and it looks like this: (function($) { //wrap everything in function to add ability to use $ var with noConflict var jQuery = $; //my code })(jQuery.noConflict(true)); This is an extremely simplified version, but I hope you get the idea of what I did. For a while, everything worked fine. However, I decided to want to use a jQuery plugin in a separate file. I tested it and it acted funny. After some experimentation, I found out that the plugin was using the old version of jQuery, when I wanted it to use the new version. Does anyone know how to import and run a js file from the context within the function wrapping the code in myStuff.js? In case this matters to anyone, here is how I know the plugin is using the old version, and what I did to try to solve the problem: I made a file called test.js, consisting of this line: alert($.fn.jquery); I tried referencing the file in a script tag the way external Javascript is usually included, below myStuff.js, and it came up as 1.2.6, like I expected. I then got rid of that script tag and put this line in myStuff.js: $.getScript("test.js"); and it still came back as 1.2.6. That wasn't a big surprise -- according to jQuery's documentation, scripts included that way are executed in the global context. I then tried doing this instead: var testFn = $.proxy($.getScript, this); testFn("test.js"); and it still came back as 1.2.6. After some tinkering, I found out that the "this" keyword referred to the window, which I assume means the global context. I am looking for something to put in place of "this" to refer to the context of the enclosing function, or some other way to make the code in the file run from the enclosing function. I noticed that if I copy and paste the code, it works fine, but it is a big plugin that is used in many places, and I would prefer not to clutter up my file with their code. I am out of ideas. Does anyone else know how to do this?

    Read the article

  • Google analytics-style custom report builder UI

    - by gregmac
    I'm looking for a reporting engine/UI that can be integrated into a product, which has a UI along the lines of Google Analytics' Custom Reports builder. Is anyone aware of such a thing? The data is in our case is not page views/visitors/etc, but is similar in nature, in that there are limited entities or types of data, but each entity has many attributes/columns and many different ways of aggregating data (or in GA-style speak, metrics and dimensions). The analytics-style UI is very intuitive and allows many reports to be created in powerful ways, without having to know SQL. I have preference for a web-based tool (seeing that it is 2010 and this is a web app -- I mention only because it seems the vast majority of reporting tools still have only a non-web-based creation tool).

    Read the article

  • ASP.NET 4.0 Route expression builder inside Listview control

    - by Carlos Lone
    One of the features of ASP.NET 4.0 is Route Expression builder which allows you to set up hyperlinks like this: <asp:HyperLink runat="server" NavigateUrl="<%$ RouteUrl:RouteName=productos,categoria=Cereales,id=2 %>" >Productos</asp:HyperLink> Now I'm wondering if I can use this sort of syntax inside a ListView Control, I know is possible, but the tricky thing is that I want to genereate de route key value dynamically. So instead to write id=2 I would like to write id=<%# Eval("CategoryID") % . Can I do that?, if so, how should I write it. Thanks for your help!

    Read the article

  • c++ builder TClientWinSocket simbol substitution

    - by Vlad
    I have the following problem. I have to send a text telegram over tcp/ip to a host device. Telegram should be terminated using 0x1A (CTRL-Z) character. But when I send it, host told me that there is a wrong symbol in the telegram. When I terminate a telegram with 32 (0x20) everything is ok. I look the transfered data using WireShark and I see that when I send 0x1A it is substituted with 0x16, when I send 32 (0x20) as a terminator it is somehow substituted with 0x1A. Can you explain it please. P.S. I am working on windows 7, using c++builder xe2. Thanks, Vladimir

    Read the article

  • Sql query builder c# for windows mobile

    - by pdiddy
    I'm building a windows mobile app. And using SqlCe. I'm looking for a good sql query builder. So instead of writing "SELECT COLUMNS FROM TABLE WHERE etc... Is there a good free library that can build this sort of query? EDIT: You know when you write your code with ADO.net something like this SqlCeCommand command = new SqlCeCommand(Connection); command.CommandText = "SELECT * FROM Orders WHERE customerId = @customerId"; Well i'm looking for some library that could build that SELECT statement using classes instead of writing it through string. So something like: SqlCeCommand command = new SqlCeCommand(Connection); SqlQueryBuilder query = new SqlQueryBuilder(); query.Table = "Orders"; query.AddWhere("customerId", myValue) command.CommandText = query.toString(); Something like that .... so a class that will build the query..

    Read the article

  • Javascript plugins design pattern like jQuery

    - by Marco Demaio
    Could someone write down a very simple basic example in javascript to conceptualize (and hopefully make me understand) how the jQuery plugin design pattern is done and how it works? I'm not interested in how creating plugin for jQuery (so no jQuery code here at all). I'm interested in a simple explanation (maybe with a bit of Javascript code) to explain how it is done the plugin concept. Plz do not reply me to go and read jQuery code, I tried, but I it's too complex, otherwise I would have not post a question here.

    Read the article

  • Xcode/Interface Builder Mac App Development

    - by user1459546
    Well i want from the drop down menu(Menu Item List) one item to be working as an link, to open an url/website in safari - thats it. When this is so simple, why no one come up with a clue here - I tried many different ways in Xcode, with Apple Xcode Samples... i think i need an AppDelegate.m, drag or link some parts, get actions... i failed to get it going somewhere - now i'm lost. Any advice/help/link/tip would be much appreciate to solve this "simple" issue... Using Xcode/Interface Builder 3.2.6 - Please help or i go totally mad, insane and i will crash my f...ing mac right now - Thanks

    Read the article

  • query in query builder in a Table Adapter

    - by Sony
    I am working with the datasets of .net I have an Oracle Query which is working fine . but I copy the query as sql statement within Table Adapter wizard and after I clicked the Query Builder button ,there is SQL syntax error. The query is below: SELECT lead_id, NAME, ADDRESS, CITY, EMAIL, PHONE, PINCODE, STATE, QUALIFICATION, DOB, status FROM (SELECT l.lead_id, l.NAME, l.ADDRESS, l.CITY, l.EMAIL, l.PHONE, l.PINCODE, l.STATE, l.QUALIFICATION, l.DOB, CASE WHEN s.status IS NULL THEN 'Not Updated !' ELSE s.status END status, row_number() over(PARTITION BY l.lead_id ORDER BY t .CREATED_DATE DESC) rn FROM LEADS l JOIN Leads lc ON l.USER_ID = lc.USER_ID AND l.USER_ID = :iuser_id AND(l.CREATED_DATE BETWEEN (TO_DATE(:ifrom_date , 'dd-mm-yyyy') ) AND (TO_DATE (:ito_date, 'dd-mm-yyyy' ) )) LEFT JOIN LEADTRANSACTION t ON l.lead_id = t .lead_id LEFT JOIN STATUS s ON s.STATUS_ID = t .STATUS_ID) WHERE rn = 1;

    Read the article

  • Query useing two databases in SQL Report Builder

    - by user912447
    I am new to SQL Server Report Builder 2.0 and I need to compare two different databases in one query. Basically I need to check if values from one database table exist in a different database's table. I know I can add multiple Datasources to my report and access each one with Subreports, but each DataSet that I create can only have one query in it. So how can I go about using one query to access two databases? Or if there is another way to somehow join my results from multiple DataSets, that would work too. Also, the databases are on the same server.

    Read the article

  • How do I execute a program using Maven?

    - by Will
    I would like to have a Maven goal trigger the execution of a java class. I'm trying to migrate over a Makefile with the lines: neotest: mvn exec:java -Dexec.mainClass="org.dhappy.test.NeoTraverse" And I would like mvn neotest to produce what make neotest does currently. Neither the exec plugin documentation nor the Maven Ant tasks pages had any sort of straightforward example. Currently, I'm at: <plugin> <groupId>org.codehaus.mojo</groupId> <artifactId>exec-maven-plugin</artifactId> <version>1.1</version> <executions><execution> <goals><goal>java</goal></goals> </execution></executions> <configuration> <mainClass>org.dhappy.test.NeoTraverse</mainClass> </configuration> </plugin> I don't know how to trigger the plugin from the command line, though.

    Read the article

  • Drawing lines between windows just like in Interface Builder

    - by Koning Baard
    I have two windows, each with a round NSView: ------------------ ------------ |X-+ Oscillator | |X-+ Mixer | |----------------| |----------| | | | | | O | | O | | | | | | | | | ------------------ ------------ Both windows are in a seperate NIB. I want to be able to draw a line between the two round NSViews at runtime, using drag'n'drop, just like connecting IBOutlets in Interface Builder: ------------------ ------------ |X-+ Oscillator | |X-+ Mixer | |----------------| |----------| | | | | | O-------+-----+-----O | | | | | | | | | ------------------ ------------ I also want to be able to determine to which NSViews the NSViews are connected using the drawn lines. I need this to connect Oscillators to Mixers. I also want to be able to remove the connections by dragging into empty space. Can anyone explain me how to do this? Thanks.

    Read the article

  • HTML5 Form Validation

    - by Stephen.Walther
    The latest versions of Google Chrome (16+), Mozilla Firefox (8+), and Internet Explorer (10+) all support HTML5 client-side validation. It is time to take HTML5 validation seriously. The purpose of the blog post is to describe how you can take advantage of HTML5 client-side validation regardless of the type of application that you are building. You learn how to use the HTML5 validation attributes, how to perform custom validation using the JavaScript validation constraint API, and how to simulate HTML5 validation on older browsers by taking advantage of a jQuery plugin. Finally, we discuss the security issues related to using client-side validation. Using Client-Side Validation Attributes The HTML5 specification discusses several attributes which you can use with INPUT elements to perform client-side validation including the required, pattern, min, max, step, and maxlength attributes. For example, you use the required attribute to require a user to enter a value for an INPUT element. The following form demonstrates how you can make the firstName and lastName form fields required: <!DOCTYPE html> <html > <head> <title>Required Demo</title> </head> <body> <form> <label> First Name: <input required title="First Name is Required!" /> </label> <label> Last Name: <input required title="Last Name is Required!" /> </label> <button>Register</button> </form> </body> </html> If you attempt to submit this form without entering a value for firstName or lastName then you get the validation error message: Notice that the value of the title attribute is used to display the validation error message “First Name is Required!”. The title attribute does not work this way with the current version of Firefox. If you want to display a custom validation error message with Firefox then you need to include an x-moz-errormessage attribute like this: <input required title="First Name is Required!" x-moz-errormessage="First Name is Required!" /> The pattern attribute enables you to validate the value of an INPUT element against a regular expression. For example, the following form includes a social security number field which includes a pattern attribute: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Pattern</title> </head> <body> <form> <label> Social Security Number: <input required pattern="^d{3}-d{2}-d{4}$" title="###-##-####" /> </label> <button>Register</button> </form> </body> </html> The regular expression in the form above requires the social security number to match the pattern ###-##-####: Notice that the input field includes both a pattern and a required validation attribute. If you don’t enter a value then the regular expression is never triggered. You need to include the required attribute to force a user to enter a value and cause the value to be validated against the regular expression. Custom Validation You can take advantage of the HTML5 constraint validation API to perform custom validation. You can perform any custom validation that you need. The only requirement is that you write a JavaScript function. For example, when booking a hotel room, you might want to validate that the Arrival Date is in the future instead of the past: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Constraint Validation API</title> </head> <body> <form> <label> Arrival Date: <input id="arrivalDate" type="date" required /> </label> <button>Submit Reservation</button> </form> <script type="text/javascript"> var arrivalDate = document.getElementById("arrivalDate"); arrivalDate.addEventListener("input", function() { var value = new Date(arrivalDate.value); if (value < new Date()) { arrivalDate.setCustomValidity("Arrival date must be after now!"); } else { arrivalDate.setCustomValidity(""); } }); </script> </body> </html> The form above contains an input field named arrivalDate. Entering a value into the arrivalDate field triggers the input event. The JavaScript code adds an event listener for the input event and checks whether the date entered is greater than the current date. If validation fails then the validation error message “Arrival date must be after now!” is assigned to the arrivalDate input field by calling the setCustomValidity() method of the validation constraint API. Otherwise, the validation error message is cleared by calling setCustomValidity() with an empty string. HTML5 Validation and Older Browsers But what about older browsers? For example, what about Apple Safari and versions of Microsoft Internet Explorer older than Internet Explorer 10? What the world really needs is a jQuery plugin which provides backwards compatibility for the HTML5 validation attributes. If a browser supports the HTML5 validation attributes then the plugin would do nothing. Otherwise, the plugin would add support for the attributes. Unfortunately, as far as I know, this plugin does not exist. I have not been able to find any plugin which supports both the required and pattern attributes for older browsers, but does not get in the way of these attributes in the case of newer browsers. There are several jQuery plugins which provide partial support for the HTML5 validation attributes including: · jQuery Validation — http://docs.jquery.com/Plugins/Validation · html5Form — http://www.matiasmancini.com.ar/jquery-plugin-ajax-form-validation-html5.html · h5Validate — http://ericleads.com/h5validate/ The jQuery Validation plugin – the most popular JavaScript validation library – supports the HTML5 required attribute, but it does not support the HTML5 pattern attribute. Likewise, the html5Form plugin does not support the pattern attribute. The h5Validate plugin provides the best support for the HTML5 validation attributes. The following page illustrates how this plugin supports both the required and pattern attributes: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>h5Validate</title> <style type="text/css"> .validationError { border: solid 2px red; } .validationValid { border: solid 2px green; } </style> </head> <body> <form id="customerForm"> <label> First Name: <input id="firstName" required /> </label> <label> Social Security Number: <input id="ssn" required pattern="^d{3}-d{2}-d{4}$" title="Expected pattern is ###-##-####" /> </label> <input type="submit" /> </form> <script type="text/javascript" src="Scripts/jquery-1.4.4.min.js"></script> <script type="text/javascript" src="Scripts/jquery.h5validate.js"></script> <script type="text/javascript"> // Enable h5Validate plugin $("#customerForm").h5Validate({ errorClass: "validationError", validClass: "validationValid" }); // Prevent form submission when errors $("#customerForm").submit(function (evt) { if ($("#customerForm").h5Validate("allValid") === false) { evt.preventDefault(); } }); </script> </body> </html> When an input field fails validation, the validationError CSS class is applied to the field and the field appears with a red border. When an input field passes validation, the validationValid CSS class is applied to the field and the field appears with a green border. From the perspective of HTML5 validation, the h5Validate plugin is the best of the plugins. It adds support for the required and pattern attributes to browsers which do not natively support these attributes such as IE9. However, this plugin does not include everything in my wish list for a perfect HTML5 validation plugin. Here’s my wish list for the perfect back compat HTML5 validation plugin: 1. The plugin would disable itself when used with a browser which natively supports HTML5 validation attributes. The plugin should not be too greedy – it should not handle validation when a browser could do the work itself. 2. The plugin should simulate the same user interface for displaying validation error messages as the user interface displayed by browsers which natively support HTML5 validation. Chrome, Firefox, and Internet Explorer all display validation errors in a popup. The perfect plugin would also display a popup. 3. Finally, the plugin would add support for the setCustomValidity() method and the other methods of the HTML5 validation constraint API. That way, you could implement custom validation in a standards compatible way and you would know that it worked across all browsers both old and new. Security It would be irresponsible of me to end this blog post without mentioning the issue of security. It is important to remember that any client-side validation — including HTML5 validation — can be bypassed. You should use client-side validation with the intention to create a better user experience. Client validation is great for providing a user with immediate feedback when the user is in the process of completing a form. However, client-side validation cannot prevent an evil hacker from submitting unexpected form data to your web server. You should always enforce your validation rules on the server. The only way to ensure that a required field has a value is to verify that the required field has a value on the server. The HTML5 required attribute does not guarantee anything. Summary The goal of this blog post was to describe the support for validation contained in the HTML5 standard. You learned how to use both the required and the pattern attributes in an HTML5 form. We also discussed how you can implement custom validation by taking advantage of the setCustomValidity() method. Finally, I discussed the available jQuery plugins for adding support for the HTM5 validation attributes to older browsers. Unfortunately, I am unaware of any jQuery plugin which provides a perfect solution to the problem of backwards compatibility.

    Read the article

  • HTML5 Form Validation

    - by Stephen.Walther
    The latest versions of Google Chrome (16+), Mozilla Firefox (8+), and Internet Explorer (10+) all support HTML5 client-side validation. It is time to take HTML5 validation seriously. The purpose of the blog post is to describe how you can take advantage of HTML5 client-side validation regardless of the type of application that you are building. You learn how to use the HTML5 validation attributes, how to perform custom validation using the JavaScript validation constraint API, and how to simulate HTML5 validation on older browsers by taking advantage of a jQuery plugin. Finally, we discuss the security issues related to using client-side validation. Using Client-Side Validation Attributes The HTML5 specification discusses several attributes which you can use with INPUT elements to perform client-side validation including the required, pattern, min, max, step, and maxlength attributes. For example, you use the required attribute to require a user to enter a value for an INPUT element. The following form demonstrates how you can make the firstName and lastName form fields required: <!DOCTYPE html> <html > <head> <title>Required Demo</title> </head> <body> <form> <label> First Name: <input required title="First Name is Required!" /> </label> <label> Last Name: <input required title="Last Name is Required!" /> </label> <button>Register</button> </form> </body> </html> If you attempt to submit this form without entering a value for firstName or lastName then you get the validation error message: Notice that the value of the title attribute is used to display the validation error message “First Name is Required!”. The title attribute does not work this way with the current version of Firefox. If you want to display a custom validation error message with Firefox then you need to include an x-moz-errormessage attribute like this: <input required title="First Name is Required!" x-moz-errormessage="First Name is Required!" /> The pattern attribute enables you to validate the value of an INPUT element against a regular expression. For example, the following form includes a social security number field which includes a pattern attribute: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Pattern</title> </head> <body> <form> <label> Social Security Number: <input required pattern="^\d{3}-\d{2}-\d{4}$" title="###-##-####" /> </label> <button>Register</button> </form> </body> </html> The regular expression in the form above requires the social security number to match the pattern ###-##-####: Notice that the input field includes both a pattern and a required validation attribute. If you don’t enter a value then the regular expression is never triggered. You need to include the required attribute to force a user to enter a value and cause the value to be validated against the regular expression. Custom Validation You can take advantage of the HTML5 constraint validation API to perform custom validation. You can perform any custom validation that you need. The only requirement is that you write a JavaScript function. For example, when booking a hotel room, you might want to validate that the Arrival Date is in the future instead of the past: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Constraint Validation API</title> </head> <body> <form> <label> Arrival Date: <input id="arrivalDate" type="date" required /> </label> <button>Submit Reservation</button> </form> <script type="text/javascript"> var arrivalDate = document.getElementById("arrivalDate"); arrivalDate.addEventListener("input", function() { var value = new Date(arrivalDate.value); if (value < new Date()) { arrivalDate.setCustomValidity("Arrival date must be after now!"); } else { arrivalDate.setCustomValidity(""); } }); </script> </body> </html> The form above contains an input field named arrivalDate. Entering a value into the arrivalDate field triggers the input event. The JavaScript code adds an event listener for the input event and checks whether the date entered is greater than the current date. If validation fails then the validation error message “Arrival date must be after now!” is assigned to the arrivalDate input field by calling the setCustomValidity() method of the validation constraint API. Otherwise, the validation error message is cleared by calling setCustomValidity() with an empty string. HTML5 Validation and Older Browsers But what about older browsers? For example, what about Apple Safari and versions of Microsoft Internet Explorer older than Internet Explorer 10? What the world really needs is a jQuery plugin which provides backwards compatibility for the HTML5 validation attributes. If a browser supports the HTML5 validation attributes then the plugin would do nothing. Otherwise, the plugin would add support for the attributes. Unfortunately, as far as I know, this plugin does not exist. I have not been able to find any plugin which supports both the required and pattern attributes for older browsers, but does not get in the way of these attributes in the case of newer browsers. There are several jQuery plugins which provide partial support for the HTML5 validation attributes including: · jQuery Validation — http://docs.jquery.com/Plugins/Validation · html5Form — http://www.matiasmancini.com.ar/jquery-plugin-ajax-form-validation-html5.html · h5Validate — http://ericleads.com/h5validate/ The jQuery Validation plugin – the most popular JavaScript validation library – supports the HTML5 required attribute, but it does not support the HTML5 pattern attribute. Likewise, the html5Form plugin does not support the pattern attribute. The h5Validate plugin provides the best support for the HTML5 validation attributes. The following page illustrates how this plugin supports both the required and pattern attributes: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>h5Validate</title> <style type="text/css"> .validationError { border: solid 2px red; } .validationValid { border: solid 2px green; } </style> </head> <body> <form id="customerForm"> <label> First Name: <input id="firstName" required /> </label> <label> Social Security Number: <input id="ssn" required pattern="^\d{3}-\d{2}-\d{4}$" title="Expected pattern is ###-##-####" /> </label> <input type="submit" /> </form> <script type="text/javascript" src="Scripts/jquery-1.4.4.min.js"></script> <script type="text/javascript" src="Scripts/jquery.h5validate.js"></script> <script type="text/javascript"> // Enable h5Validate plugin $("#customerForm").h5Validate({ errorClass: "validationError", validClass: "validationValid" }); // Prevent form submission when errors $("#customerForm").submit(function (evt) { if ($("#customerForm").h5Validate("allValid") === false) { evt.preventDefault(); } }); </script> </body> </html> When an input field fails validation, the validationError CSS class is applied to the field and the field appears with a red border. When an input field passes validation, the validationValid CSS class is applied to the field and the field appears with a green border. From the perspective of HTML5 validation, the h5Validate plugin is the best of the plugins. It adds support for the required and pattern attributes to browsers which do not natively support these attributes such as IE9. However, this plugin does not include everything in my wish list for a perfect HTML5 validation plugin. Here’s my wish list for the perfect back compat HTML5 validation plugin: 1. The plugin would disable itself when used with a browser which natively supports HTML5 validation attributes. The plugin should not be too greedy – it should not handle validation when a browser could do the work itself. 2. The plugin should simulate the same user interface for displaying validation error messages as the user interface displayed by browsers which natively support HTML5 validation. Chrome, Firefox, and Internet Explorer all display validation errors in a popup. The perfect plugin would also display a popup. 3. Finally, the plugin would add support for the setCustomValidity() method and the other methods of the HTML5 validation constraint API. That way, you could implement custom validation in a standards compatible way and you would know that it worked across all browsers both old and new. Security It would be irresponsible of me to end this blog post without mentioning the issue of security. It is important to remember that any client-side validation — including HTML5 validation — can be bypassed. You should use client-side validation with the intention to create a better user experience. Client validation is great for providing a user with immediate feedback when the user is in the process of completing a form. However, client-side validation cannot prevent an evil hacker from submitting unexpected form data to your web server. You should always enforce your validation rules on the server. The only way to ensure that a required field has a value is to verify that the required field has a value on the server. The HTML5 required attribute does not guarantee anything. Summary The goal of this blog post was to describe the support for validation contained in the HTML5 standard. You learned how to use both the required and the pattern attributes in an HTML5 form. We also discussed how you can implement custom validation by taking advantage of the setCustomValidity() method. Finally, I discussed the available jQuery plugins for adding support for the HTM5 validation attributes to older browsers. Unfortunately, I am unaware of any jQuery plugin which provides a perfect solution to the problem of backwards compatibility.

    Read the article

  • what does calling ´this´ outside of a jquery plugin refer to

    - by Richard
    Hi, I am using the liveTwitter plugin The problem is that I need to stop the plugin from hitting the Twitter api. According to the documentation I need to do this $("#tab1 .container_twitter_status").each(function(){ this.twitter.stop(); }); Already, the each does not make sense on an id and what does this refer to? Anyway, I get an undefined error. I will paste the plugin code and hope it makes sense to somebody MY only problem thusfar with this plugin is that I need to be able to stop it. thanks in advance, Richard /* * jQuery LiveTwitter 1.5.0 * - Live updating Twitter plugin for jQuery * * Copyright (c) 2009-2010 Inge Jørgensen (elektronaut.no) * Licensed under the MIT license (MIT-LICENSE.txt) * * $Date: 2010/05/30$ */ /* * Usage example: * $("#twitterSearch").liveTwitter('bacon', {limit: 10, rate: 15000}); */ (function($){ if(!$.fn.reverse){ $.fn.reverse = function() { return this.pushStack(this.get().reverse(), arguments); }; } $.fn.liveTwitter = function(query, options, callback){ var domNode = this; $(this).each(function(){ var settings = {}; // Handle changing of options if(this.twitter) { settings = jQuery.extend(this.twitter.settings, options); this.twitter.settings = settings; if(query) { this.twitter.query = query; } this.twitter.limit = settings.limit; this.twitter.mode = settings.mode; if(this.twitter.interval){ this.twitter.refresh(); } if(callback){ this.twitter.callback = callback; } // ..or create a new twitter object } else { // Extend settings with the defaults settings = jQuery.extend({ mode: 'search', // Mode, valid options are: 'search', 'user_timeline' rate: 15000, // Refresh rate in ms limit: 10, // Limit number of results refresh: true }, options); // Default setting for showAuthor if not provided if(typeof settings.showAuthor == "undefined"){ settings.showAuthor = (settings.mode == 'user_timeline') ? false : true; } // Set up a dummy function for the Twitter API callback if(!window.twitter_callback){ window.twitter_callback = function(){return true;}; } this.twitter = { settings: settings, query: query, limit: settings.limit, mode: settings.mode, interval: false, container: this, lastTimeStamp: 0, callback: callback, // Convert the time stamp to a more human readable format relativeTime: function(timeString){ var parsedDate = Date.parse(timeString); var delta = (Date.parse(Date()) - parsedDate) / 1000; var r = ''; if (delta < 60) { r = delta + ' seconds ago'; } else if(delta < 120) { r = 'a minute ago'; } else if(delta < (45*60)) { r = (parseInt(delta / 60, 10)).toString() + ' minutes ago'; } else if(delta < (90*60)) { r = 'an hour ago'; } else if(delta < (24*60*60)) { r = '' + (parseInt(delta / 3600, 10)).toString() + ' hours ago'; } else if(delta < (48*60*60)) { r = 'a day ago'; } else { r = (parseInt(delta / 86400, 10)).toString() + ' days ago'; } return r; }, // Update the timestamps in realtime refreshTime: function() { var twitter = this; $(twitter.container).find('span.time').each(function(){ $(this).html(twitter.relativeTime(this.timeStamp)); }); }, // Handle reloading refresh: function(initialize){ var twitter = this; if(this.settings.refresh || initialize) { var url = ''; var params = {}; if(twitter.mode == 'search'){ params.q = this.query; if(this.settings.geocode){ params.geocode = this.settings.geocode; } if(this.settings.lang){ params.lang = this.settings.lang; } if(this.settings.rpp){ params.rpp = this.settings.rpp; } else { params.rpp = this.settings.limit; } // Convert params to string var paramsString = []; for(var param in params){ if(params.hasOwnProperty(param)){ paramsString[paramsString.length] = param + '=' + encodeURIComponent(params[param]); } } paramsString = paramsString.join("&"); url = "http://search.twitter.com/search.json?"+paramsString+"&callback=?"; } else if(twitter.mode == 'user_timeline') { url = "http://api.twitter.com/1/statuses/user_timeline/"+encodeURIComponent(this.query)+".json?count="+twitter.limit+"&callback=?"; } else if(twitter.mode == 'list') { var username = encodeURIComponent(this.query.user); var listname = encodeURIComponent(this.query.list); url = "http://api.twitter.com/1/"+username+"/lists/"+listname+"/statuses.json?per_page="+twitter.limit+"&callback=?"; } $.getJSON(url, function(json) { var results = null; if(twitter.mode == 'search'){ results = json.results; } else { results = json; } var newTweets = 0; $(results).reverse().each(function(){ var screen_name = ''; var profile_image_url = ''; if(twitter.mode == 'search') { screen_name = this.from_user; profile_image_url = this.profile_image_url; created_at_date = this.created_at; } else { screen_name = this.user.screen_name; profile_image_url = this.user.profile_image_url; // Fix for IE created_at_date = this.created_at.replace(/^(\w+)\s(\w+)\s(\d+)(.*)(\s\d+)$/, "$1, $3 $2$5$4"); } var userInfo = this.user; var linkified_text = this.text.replace(/[A-Za-z]+:\/\/[A-Za-z0-9-_]+\.[A-Za-z0-9-_:%&\?\/.=]+/, function(m) { return m.link(m); }); linkified_text = linkified_text.replace(/@[A-Za-z0-9_]+/g, function(u){return u.link('http://twitter.com/'+u.replace(/^@/,''));}); linkified_text = linkified_text.replace(/#[A-Za-z0-9_\-]+/g, function(u){return u.link('http://search.twitter.com/search?q='+u.replace(/^#/,'%23'));}); if(!twitter.settings.filter || twitter.settings.filter(this)) { if(Date.parse(created_at_date) > twitter.lastTimeStamp) { newTweets += 1; var tweetHTML = '<div class="tweet tweet-'+this.id+'">'; if(twitter.settings.showAuthor) { tweetHTML += '<img width="24" height="24" src="'+profile_image_url+'" />' + '<p class="text"><span class="username"><a href="http://twitter.com/'+screen_name+'">'+screen_name+'</a>:</span> '; } else { tweetHTML += '<p class="text"> '; } tweetHTML += linkified_text + ' <span class="time">'+twitter.relativeTime(created_at_date)+'</span>' + '</p>' + '</div>'; $(twitter.container).prepend(tweetHTML); var timeStamp = created_at_date; $(twitter.container).find('span.time:first').each(function(){ this.timeStamp = timeStamp; }); if(!initialize) { $(twitter.container).find('.tweet-'+this.id).hide().fadeIn(); } twitter.lastTimeStamp = Date.parse(created_at_date); } } }); if(newTweets > 0) { // Limit number of entries $(twitter.container).find('div.tweet:gt('+(twitter.limit-1)+')').remove(); // Run callback if(twitter.callback){ twitter.callback(domNode, newTweets); } // Trigger event $(domNode).trigger('tweets'); } }); } }, start: function(){ var twitter = this; if(!this.interval){ this.interval = setInterval(function(){twitter.refresh();}, twitter.settings.rate); this.refresh(true); } }, stop: function(){ if(this.interval){ clearInterval(this.interval); this.interval = false; } } }; var twitter = this.twitter; this.timeInterval = setInterval(function(){twitter.refreshTime();}, 5000); this.twitter.start(); } }); return this; }; })(jQuery);

    Read the article

  • Quels outils de construction d'interfaces graphiques (GUI-Builder) pour la plateforme Java SE préférez-vous ? Partagez votre expérience

    Nous vous proposons un sondage consacré aux outils pour la construction d'interfaces graphiques (couramment nommés en anglais GUI-Builder) pour les boîtes à outils graphiques de la plateforme Java SE. A noter que ces outils peuvent supporter une ou plusieurs boîtes à outils graphiques. Que cela soit pour les boîtes à outils AWT/Swing, SWT/JFace, Java FX... l'objectif reste le même c'est-à-dire qu'ils tentent de faciliter et d'accélérer la construction des interfaces graphiques. Sans être exhaustif, les plus connus de ces outils sont : Eclipse WindowBuilder Swing GUI Builder Netbeans

    Read the article

  • Flex puts _docs_ folder into the bin. Can that be stopped?

    - by picardo
    I started using Flex Builder 3 only recently. There is a behavior I want to change. Flex apparently looks for folders that have underscore in front of their names inside the libraries on the project path, and transfers them to the bin directory. This often results in several megabytes of junk in my bin, and I want to change this behavior. Does anyone know how to do that?

    Read the article

  • Package SWF into an EXE or APP

    - by Jeremy White
    I am trying to adjust my Flash development workflow so that I am using Flash Builder for all of my coding and multiple FLA files for the user interfaces. I will be creating an ActionScript project in Flash Builder and then having each FLA export a SWC into a resources folder. It is important that I retain the ability to export PC and Mac -- EXE and app, respectively -- projector files. Is there a way of doing this with the Flash compiler or any 3rd party tools?

    Read the article

  • Getting started on a stream interface driver

    - by Ranhiru
    I want to build a stream interface driver for testing purposes but I am completely lost. I don't know which IDE to use VS2008 or Platform Builder. Platform Builder is whopping 20GB to download :( Can anyone guide me on how i create the .dll file and include XXX_Open, XXX_Close, XXX_Write, XXX_Read in the dll file? Should i write the .dll file in C++ or can i write it in C#? Please guide me through the basics :) Thanx a lot :)

    Read the article

  • Designing the iPhone interface in a nib or in code?

    - by Jacob Relkin
    I've been pondering over this question for a long time already. On the one hand, Interface Builder offers a really easy way to design the interface and wire the elements up with objects in code. On the other hand, in larger projects, Interface Builder becomes a hassle to maintain. Any suggestions would be greatly appreciated.

    Read the article

  • How do you specify a really large character in UIButton?

    - by Epsilon Prime
    I have a series of buttons that have suit symbols on them. Currently I provide these suit symbols as bitmaps. In preparation for iPhone 4 I'd like to use text instead. However Interface Builder rescales the button to account for whitespace underneath the symbol so I can't get the image to fill the button completely. Any hints on getting Interface Builder to behave?

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is called MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been cleaned up so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# level syntax sugar. There is no difference to await a async method or a normal method. A method returning Task will be awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } The above code is already cleaned up, but there are still a lot of things. More clean up can be done, and the state machine can be very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> void IAsyncStateMachine.MoveNext() { try { switch (this.State) { // Orginal code is splitted by "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; IAsyncStateMachine this1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this1.MoveNext()); // Callback break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; IAsyncStateMachine this2 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this2.MoveNext()); // Callback break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync_(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; (multiCallMethodAsyncStateMachine as IAsyncStateMachine).MoveNext(); // Original code are in this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clear - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback Since it is about callback, the simplification  can go even further – the entire state machine can be completely purged. Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is literally pretending to wait. In a await expression, a Task object will be return immediately so that caller is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is named MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine, MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been refactored, so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# language level syntax sugar. There is no difference to await a async method or a normal method. As long as a method returns Task, it is awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } Once again, the above state machine code is already refactored, but it still has a lot of things. More clean up can be done if we only keep the core logic, and the state machine can become very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> public void MoveNext() // IAsyncStateMachine member. { try { switch (this.State) { // Original code is split by "await"s into "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; MultiCallMethodAsyncStateMachine that1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => that1.MoveNext()); break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; MultiCallMethodAsyncStateMachine that2 = this; this.currentTaskToAwait.ContinueWith(_ => that2.MoveNext()); break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] public void SetStateMachine(IAsyncStateMachine stateMachine) // IAsyncStateMachine member. { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; multiCallMethodAsyncStateMachine.MoveNext(); // Original code are moved into this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clean - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback If we focus on the point of callback, the simplification  can go even further – the entire state machine can be completely purged, and we can just keep the code inside MoveNext(). Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is not to wait. In a await expression, a Task object will be return immediately so that execution is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

< Previous Page | 42 43 44 45 46 47 48 49 50 51 52 53  | Next Page >