Search Results

Search found 25377 results on 1016 pages for 'development'.

Page 467/1016 | < Previous Page | 463 464 465 466 467 468 469 470 471 472 473 474  | Next Page >

  • How to capture the screen in DirectX 9 to a raw bitmap in memory without using D3DXSaveSurfaceToFile

    - by cloudraven
    I know that in OpenGL I can do something like this glReadBuffer( GL_FRONT ); glReadPixels( 0, 0, _width, _height, GL_RGB, GL_UNSIGNED_BYTE, _buffer ); And its pretty fast, I get the raw bitmap in _buffer. When I try to do this in DirectX. Assuming that I have a D3DDevice object I can do something like this if (SUCCEEDED(D3DDevice->GetBackBuffer(0, 0, D3DBACKBUFFER_TYPE_MONO, &pBackbuffer))) { HResult hr = D3DXSaveSurfaceToFileA(filename, D3DXIFF_BMP, pBackbuffer, NULL, NULL); But D3DXSaveSurfaceToFile is pretty slow, and I don't need to write the capture to disk anyway, so I was wondering if there was a faster way to do this

    Read the article

  • Create a thread in xna Update method to find path?

    - by Dan
    I am trying to create a separate thread for my enemy's A* pathfinder which will give me a list of points to get to the player. I have placed the thread in the update method of my enemy. However this seems to cause jittering in the game every-time the thread is called. I have tried calling just the method and this works fine. Is there any way I can sort this out so that I can have the pathfinder on its own thread? Do I need to remove the thread start from the update and start it in the constructor? Is there any way this can work. Here is the code at the moment: bool running = false; bool threadstarted; System.Threading.Thread thread; public void update() { if (running == false && threadstarted == false) { thread = new System.Threading.Thread(PathThread); //thread.Priority = System.Threading.ThreadPriority.Lowest; thread.IsBackground = true; thread.Start(startandendobj); //PathThread(startandendobj); threadstarted = true; } } public void PathThread(object Startandend) { object[] Startandendarray = (object[])Startandend; Point startpoint = (Point)Startandendarray[0]; Point endpoint = (Point)Startandendarray[1]; bool runnable = true; // Path find from 255, 255 to 0,0 on the map foreach(Tile tile in Map) { if(tile.Color == Color.Red) { if (tile.Position.Contains(endpoint)) { runnable = false; } } } if(runnable == true) { running = true; Pathfinder p = new Pathfinder(Map); pathway = p.FindPath(startpoint, endpoint); running = false; threadstarted = false; } }

    Read the article

  • Projecting onto different size screens by cropping

    - by Jason
    Hi, I am building a phone application which will display a shape on screen. The shape should look the same on different screen sizes. I. Decided the best way to do this is to show more of the background on larger screen keeping the shapes proportion the same on all screens. My problem is I am not sure how to achieve this, I can query the screen size at runtime and calculate how different it is from the six is designed for but I am not sure what to do with this value. What kind of projection should I use for my orthographic matrix an hour will I display more on larger screens and not loose information on smaller screens? Thanks, Jason.

    Read the article

  • What are the parameters of APEX destructible asset / actor, and what are the effect of them?

    - by Semih Kekül
    There are parameters of the NxDestructibleAsset such as: defaultBehaviorGroup.damageToRadius destructibleParameters.fractureImpulseScale p3BodyDescTemplate.density structureSettings.useStressSolver destructibleParameters.runtimeFracture.glass.firstSegmentSize, etc. However, i can not find any document explaining these parameters. Are there any documents/videos or codes (anything) which explains these parameters?

    Read the article

  • Linear search vs Octree (Frustum cull)

    - by Dave
    I am wondering whether I should look into implementing an octree of some kind. I have a very simple game which consists of a 3d plane for the floor. There are multiple objects scattered around on the ground, each one has an aabb in world space. Currently I just do a loop through the list of all these objects and check if its bounding box intersects with the frustum, it works great but I am wondering if if it would be a good investment in an octree. I only have max 512 of these objects on the map and they all contain bounding boxes. I am not sure if an octree would make it faster since I have so little objects in the scene.

    Read the article

  • Behaviour Trees with irregular updates

    - by Robominister
    I'm interested in behaviour trees that aren't iterated every game tick, but every so often. (Edit: the tree could specify how many frames within the main game loop to wait before running its tick function again). Every theoretical implementation I have seen of behaviour trees talks of the tree search being carried out every game update - which seems necessary, because a leaf node (eg a behaviour, like 'return to base') needs to be constantly checked to see if is still running, failed or completed. Can anyone suggest how I might start implementing a tree that isnt run every tick, or point me in the direction of good material specific to this case (I am struggling to find anything)? My thoughts so far: action leaf nodes (when they start) must only push some kind of action object onto a list for an entity, rather than directly calling any code that makes the entity do something. The list of actions for the entity would be run every frame (update any that need to run, pop any that have completed from the list). the return state from a given action must be fed back into the tree, so that when we run the tree iteration again (and reach the same action leaf node - so the tree has so far determined that we ought to still be trying this action) - that the action has completed, or is still running etc. If my actual action code is running from an action list on an entity, then I possibly need to cancel previously running actions in the list - i am thinking that I can just delete the entire stack of queued up actions. I've seen the idea of ActionLists which block lower priority actions when a higher priority one is added, but this seems like very close logic to behaviour trees, and I dont want to be duplicating behaviour. This leaves me with some questions 1) How would I feed the action return state back into the tree? Its obvious I need to store some information relating to 'currently executing actions' on the entity, and check that in the tree tick, but I can't imagine how. 2) Does having a seperate behaviour tree (for deciding behaviour) and action list (for carrying out actual queued up actions) sound like a reasonable approach? 3) Is the approach of updating a behaviour tree irregularly actually used by anyone? It seems like a nice idea for budgeting ai search time when you have a lot of ai entities to process. (Edit) - I am also thinking about storing a single instance of a given behaviour tree in memory, and providing it by reference to any entity that uses it. So any information about what action was last selected for execution on an entity must be stored in a data context relative to the entity (which the tree can check). (I am probably answering my own questions as i go!) I hope I have expressed my questions adequately! Thanks in advance for any help :)

    Read the article

  • Make objects slide across the screen in random positions

    - by user3475907
    I want to make an object appear randomly at the right hand side of the screen and then slide across the screen and disapear at the left hand side. I am working with libgdx. I have this bit of code but it makes items fall from the top down. Please help. public EntityManager(int amount, OrthoCamera camera) { player = new Player(new Vector2(15, 230), new Vector2(0, 0), this, camera); for (int i = 0; i < amount; i++) { float x = MathUtils.random(0, MainGame.HEIGHT - TextureManager.ENEMY.getHeight()); float y = MathUtils.random(MainGame.WIDTH, MainGame.WIDTH * 10); float speed = MathUtils.random(2, 10); addEntity(new Enemy(new Vector2(x, y), new Vector2(-0, -speed))); }

    Read the article

  • GLSL Normals not transforming propertly

    - by instancedName
    I've been stuck on this problem for two days. I've read many articles about transforming normals, but I'm just totaly stuck. I understand choping off W component for "turning off" translation, and doing inverse/traspose transformation for non-uniform scaling problem, but my bug seems to be from a different source. So, I've imported a simple ball into OpenGL. Only transformation that I'm applying is rotation over time. But when my ball rotates, the illuminated part of the ball moves around just as it would if direction light direction was changing. I just can't figure out what is the problem. Can anyone help me with this? Here's the GLSL code: Vertex Shader: #version 440 core uniform mat4 World, View, Projection; layout(location = 0) in vec3 VertexPosition; layout(location = 1) in vec3 VertexColor; layout(location = 2) in vec3 VertexNormal; out vec4 Color; out vec3 Normal; void main() { Color = vec4(VertexColor, 1.0); vec4 n = World * vec4(VertexNormal, 0.0f); Normal = n.xyz; gl_Position = Projection * View * World * vec4(VertexPosition, 1.0); } Fragment Shader: #version 440 core uniform vec3 LightDirection = vec3(0.0, 0.0, -1.0); uniform vec3 LightColor = vec3(1f); in vec4 Color; in vec3 Normal; out vec4 FragColor; void main() { diffuse = max(0.0, dot(normalize(-LightDirection), normalize(Normal))); vec4 scatteredLight = vec4(LightColor * diffuse, 1.0f); FragColor = min(Color * scatteredLight, vec4(1.0)); }

    Read the article

  • My rhythm game runs choppy even with high frame rate

    - by felipedrl
    I'm coding a rhythm game and the game runs smoothly with uncapped fps. But when I try to cap it around 60 the game updates in little chunks, like hiccups, as if it was skipping frames or at a very low frame rate. The reason I need to cap frame rate is because in some computers I tested, the fps varies a lot (from ~80 - ~250 fps) and those drops are noticeable and degrade response time. Since this is a rhythm game this is very important. This issue is driving me crazy. I've spent a few weeks already on it and still can't figure out the problem. I hope someone more experienced than me could shed some light on it. I'll try to put here all the hints I've tried along with two pseudo codes for game loops I tried, so I apologize if this post gets too lengthy. 1st GameLoop: const uint UPDATE_SKIP = 1000 / 60; uint nextGameTick = SDL_GetTicks(); while(isNotDone) { // only false when a QUIT event is generated! if (processEvents()) { if (SDL_GetTicks() > nextGameTick) { update(UPDATE_SKIP); render(); nextGameTick += UPDATE_SKIP; } } } 2nd Game Loop: const uint UPDATE_SKIP = 1000 / 60; while (isNotDone) { LARGE_INTEGER startTime; QueryPerformanceCounter(&startTime); // process events will return false in case of a QUIT event processed if (processEvents()) { update(frameTime); render(); } LARGE_INTEGER endTime; do { QueryPerformanceCounter(&endTime); frameTime = static_cast<uint>((endTime.QuadPart - startTime.QuadPart) * 1000.0 / frequency.QuadPart); } while (frameTime < UPDATE_SKIP); } [1] At first I thought it was a timer resolution problem. I was using SDL_GetTicks, but even when I switched to QueryPerformanceCounter, supposedly less granular, I saw no difference. [2] Then I thought it could be due to a rounding error in my position computation and since game updates are smaller in high FPS that would be less noticeable. Indeed there is an small error, but from my tests I realized that it is not enough to produce the position jumps I'm getting. Also, another intriguing factor is that if I enable vsync I'll get smooth updates @60fps regardless frame cap code. So why not rely on vsync? Because some computers can force a disable on gfx card config. [3] I started printing the maximum and minimum frame time measured in 1sec span, in the hope that every a few frames one would take a long time but still not enough to drop my fps computation. It turns out that, with frame cap code I always get frame times in the range of [16, 18]ms, and still, the game "does not moves like jagger". [4] My process' priority is set to HIGH (Windows doesn't allow me to set REALTIME for some reason). As far as I know there is only one thread running along with the game (a sound callback, which I really don't have access to it). I'm using AudiereLib. I then disabled Audiere by removing it from the project and still got the issue. Maybe there are some others threads running and one of them is taking too long to come back right in between when I measured frame times, I don't know. Is there a way to know which threads are attached to my process? [5] There are some dynamic data being created during game run. But It is a little bit hard to remove it to test. Maybe I'll have to try harder this one. Well, as I told you I really don't know what to try next. Anything, I mean, anything would be of great help. What bugs me more is why at 60fps & vsync enabled I get an smooth update and at 60fps & no vsync I don't. Is there a way to implement software vsync? I mean, query display sync info? Thanks in advance. I appreciate the ones that got this far and yet again I apologize for the long post. Best Regards from a fellow coder.

    Read the article

  • Per-pixel collision detection - why does XNA transform matrix return NaN when adding scaling?

    - by JasperS
    I looked at the TransformCollision sample on MSDN and added the Matrix.CreateTranslation part to a property in my collision detection code but I wanted to add scaling. The code works fine when I leave scaling commented out but when I add it and then do a Matrix.Invert() on the created translation matrix the result is NaN ({NaN,NaN,NaN},{NaN,NaN,NaN},...) Can anyone tell me why this is happening please? Here's the code from the sample: // Build the block's transform Matrix blockTransform = Matrix.CreateTranslation(new Vector3(-blockOrigin, 0.0f)) * // Matrix.CreateScale(block.Scale) * would go here Matrix.CreateRotationZ(blocks[i].Rotation) * Matrix.CreateTranslation(new Vector3(blocks[i].Position, 0.0f)); public static bool IntersectPixels( Matrix transformA, int widthA, int heightA, Color[] dataA, Matrix transformB, int widthB, int heightB, Color[] dataB) { // Calculate a matrix which transforms from A's local space into // world space and then into B's local space Matrix transformAToB = transformA * Matrix.Invert(transformB); // When a point moves in A's local space, it moves in B's local space with a // fixed direction and distance proportional to the movement in A. // This algorithm steps through A one pixel at a time along A's X and Y axes // Calculate the analogous steps in B: Vector2 stepX = Vector2.TransformNormal(Vector2.UnitX, transformAToB); Vector2 stepY = Vector2.TransformNormal(Vector2.UnitY, transformAToB); // Calculate the top left corner of A in B's local space // This variable will be reused to keep track of the start of each row Vector2 yPosInB = Vector2.Transform(Vector2.Zero, transformAToB); // For each row of pixels in A for (int yA = 0; yA < heightA; yA++) { // Start at the beginning of the row Vector2 posInB = yPosInB; // For each pixel in this row for (int xA = 0; xA < widthA; xA++) { // Round to the nearest pixel int xB = (int)Math.Round(posInB.X); int yB = (int)Math.Round(posInB.Y); // If the pixel lies within the bounds of B if (0 <= xB && xB < widthB && 0 <= yB && yB < heightB) { // Get the colors of the overlapping pixels Color colorA = dataA[xA + yA * widthA]; Color colorB = dataB[xB + yB * widthB]; // If both pixels are not completely transparent, if (colorA.A != 0 && colorB.A != 0) { // then an intersection has been found return true; } } // Move to the next pixel in the row posInB += stepX; } // Move to the next row yPosInB += stepY; } // No intersection found return false; }

    Read the article

  • Designing a "Grid" like object that contains game objects

    - by liortal
    I am working on a 2D game, where there's a game "board" on which other game objects are placed. This this is 2D, my starting point was to design a class that will internally use a 2d array for the actual stored game objects. This class could be simply accessed by 2 indices: (i, j) to get game objects on it. My problem is that i have no idea how to make the game "board" "propagate" its data onto its children. Design questions i ran into are: Should the children placed on the board have display properties such as size, screen position? Should the board itself dictate this information? How to update children in case the board changes some of its properties? (position, etc). Should the board be aware of the types of objects stored in it ? I have no idea how similar things such as WPF or other UI frameworks go about organizing a "container like" object that can arrange or apply certain UI properties to its children.

    Read the article

  • Multiplayer online game engine/pipeline

    - by Slav
    I am implementing online multiplayer game where client must be written in AS3 (Flash) to embed game into browser and server in C++ (abstract part of which is already written and used with other games). Networking models may differ from each other, but currently I'm looking toward game's logic run on both client and server parts but they're written on different languages while it's not the main problem. My previous game (pretty big one - was implemented with efforts of ~5 programmers in 1.5 years) was mainly "written" within electronic tables as structured objects with implemented inheritance: was written standalone tool which generated AS3 and C++ (languages of platforms to which the game was published) using specified electronic tables file (.xls or .ods). That file contained ~50 tables with ~50 rows and ~50 columns each and was mainly written by game designers which do not know any programming languages. But that game was single-player. Having declared problem with my currently implementing MMO, I'm looking toward some vast pipeline, where will be resolved such problems like: game objects descriptions (which starships exist within game, how much HP they have, how fast move, what damage deal...) actions descriptions (what players or NPCs can do: attack each other, collect resources, build structures, move, teleport, cast spells) - actions are transmitted through server between clients influences (what happens when specified action applied on specified object, e.i "Ship A attacked Ship B: field "HP" of Ship B reduced by amount of field "damage" of Ship A" Influences can be much more difficult, yes, e.i. "damage is twice it's size when Ship has =5 allies around him in a 200 units range during night" and so on. If to be able to write such logic within some "design document" it will be easily possible to: let designers to do their job without programmer's intervention or any bug-prone programming validate described logic transfer (transform, convert) to any programming language where it will be executed Did somebody worked on something like that? Is there some tools/engines/pipelines which concernes with it? How to handle all of this problems simultaneously in a best way or do I properly imagine my tasks and problems to myself?

    Read the article

  • How to make an Actor follow my finger

    - by user48352
    I'm back with another question that may be really simple. I've a texture drawn on my spritebatch and I'm making it move up or down (y-axis only) with Libgdx's Input Handler: touchDown and touchUp. @Override public boolean touchDown(int screenX, int screenY, int pointer, int button) { myWhale.touchDownY = screenY; myWhale.isTouched = true; return true; } @Override public boolean touchUp(int screenX, int screenY, int pointer, int button) { myWhale.isTouched = false; return false; } myWhale is an object from Whale Class where I move my texture position: public void update(float delta) { this.delta = delta; if(isTouched){ dragWhale(); } } public void dragWhale() { if(Gdx.input.getY(0) - touchDownY < 0){ if(Gdx.input.getY(0)<position.y+height/2){ position.y = position.y - velocidad*delta; } } else{ if(Gdx.input.getY(0)>position.y+height/2){ position.y = position.y + velocidad*delta; } } } So the object moves to the center of the position where the person is pressing his/her finger and most of the time it works fine but the object seems to take about half a second to move up or down and sometimes when I press my finger it wont move. Maybe there's another simplier way to do this. I'd highly appreciate if someone points me on the right direction.

    Read the article

  • What is the best type of c# timer to use with a Unity game that uses many timers simultaneously?

    - by Kyle Seidlitz
    I am developing a stand-alone 3d game in Unity that will have anywhere from 1 to 200 timers running simultaneously. There will be a GameObject containing 1 timer. For this game timer durations will range from 5 minutes to 4 days. There will not be any countdown displays or any UI for the timers. Each object is a prefab, with all the necessary materials included. An attached script will handle the timer and all the necessary code to change the materials and make any sound effects. Once the timer is expired, the user will then click on the object again, and the object will be destroyed, and the user's inventory will be adjusted. If the user wants to save or end the game before all the timers are done, the start value of the still running timers is to be saved to an XML file such that when the game is started again, any still running timers will be checked to see if they have expired, where the object's materials will be changed appropriately. I am still trying to figure out what type of timer to use, and see also if there are any suggestions for saving and calculating times over several days. What class(es) of timers should I use? Are there any special issues I should look out for in terms of performance?

    Read the article

  • LOD in modern games

    - by Firas Assaad
    I'm currently working on my master's thesis about LOD and mesh simplification, and I've been reading many academic papers and articles about the subject. However, I can't find enough information about how LOD is being used in modern games. I know many games use some sort of dynamic LOD for terrain, but what about elsewhere? Level of Detail for 3D Graphics for example points out that discrete LOD (where artists prepare several models in advance) is widely used because of the performance overhead of continuous LOD. That book was published in 2002 however, and I'm wondering if things are different now. There has been some research in performing dynamic LOD using the geometry shader (this paper for example, with its implementation in ShaderX6), would that be used in a modern game? To summarize, my question is about the state of LOD in modern video games, what algorithms are used and why? In particular, is view dependent continuous simplification used or does the runtime overhead make using discrete models with proper blending and impostors a more attractive solution? If discrete models are used, is an algorithm used (e.g. vertex clustering) to generate them offline, do artists manually create the models, or perhaps a combination of both methods is used?

    Read the article

  • Resolving collisions between dynamic game objects

    - by TheBroodian
    I've been building a 2D platformer for some time now, I'm getting to the point where I am adding dynamic objects to the stage for testing. This has prompted me to consider how I would like my character and other objects to behave when they collide. A typical staple in many 2D platformer type games is that the player takes damage upon touching an enemy, and then essentially becomes able to pass through enemies during a period of invulnerability, and at the same time, enemies are able to pass through eachother freely. I personally don't want to take this approach, it feels strange to me that the player should receive arbitrary damage for harmless contact to an enemy, despite whether the enemy is attacking or not, and I would like my enemies' interactions between each other (and my player) to be a little more organic, so to speak. In my head I sort of have this idea where a game object (player, or non player) would be able to push other game objects around by manner of 'pushing' each other out of one anothers' bounding boxes if there is an intersection, and maybe correlate the repelling force to how much their bounding boxes are intersecting. The problem I'm experiencing is I have no idea what the math might look like for something like this? I'll show what work I've done so far, it sort of works, but it's jittery, and generally not quite what I would pass in a functional game: //Clears the anti-duplicate buffer collisionRecord.Clear(); //pick a thing foreach (GameObject entity in entities) { //pick another thing foreach (GameObject subject in entities) { //check to make sure both things aren't the same thing if (!ReferenceEquals(entity, subject)) { //check to see if thing2 is in semi-near proximity to thing1 if (entity.WideProximityArea.Intersects(subject.CollisionRectangle) || entity.WideProximityArea.Contains(subject.CollisionRectangle)) { //check to see if thing2 and thing1 are colliding. if (entity.CollisionRectangle.Intersects(subject.CollisionRectangle) || entity.CollisionRectangle.Contains(subject.CollisionRectangle) || subject.CollisionRectangle.Contains(entity.CollisionRectangle)) { //check if we've already resolved their collision or not. if (!collisionRecord.ContainsKey(entity.GetHashCode())) { //more duplicate resolution checking. if (!collisionRecord.ContainsKey(subject.GetHashCode())) { //if thing1 is traveling right... if (entity.Velocity.X > 0) { //if it isn't too far to the right... if (subject.CollisionRectangle.Contains(new Microsoft.Xna.Framework.Rectangle(entity.CollisionRectangle.Right, entity.CollisionRectangle.Y, 1, entity.CollisionRectangle.Height)) || subject.CollisionRectangle.Intersects(new Microsoft.Xna.Framework.Rectangle(entity.CollisionRectangle.Right, entity.CollisionRectangle.Y, 1, entity.CollisionRectangle.Height))) { //Find how deep thing1 is intersecting thing2's collision box; float offset = entity.CollisionRectangle.Right - subject.CollisionRectangle.Left; //Move both things in opposite directions half the length of the intersection, pushing thing1 to the left, and thing2 to the right. entity.Velocities.Add(new Vector2(-(((offset * 4) * (float)gameTime.ElapsedGameTime.TotalMilliseconds)), 0)); subject.Velocities.Add(new Vector2((((offset * 4) * (float)gameTime.ElapsedGameTime.TotalMilliseconds)), 0)); } } //if thing1 is traveling left... if (entity.Velocity.X < 0) { //if thing1 isn't too far left... if (entity.CollisionRectangle.Contains(new Microsoft.Xna.Framework.Rectangle(subject.CollisionRectangle.Right, subject.CollisionRectangle.Y, 1, subject.CollisionRectangle.Height)) || entity.CollisionRectangle.Intersects(new Microsoft.Xna.Framework.Rectangle(subject.CollisionRectangle.Right, subject.CollisionRectangle.Y, 1, subject.CollisionRectangle.Height))) { //Find how deep thing1 is intersecting thing2's collision box; float offset = subject.CollisionRectangle.Right - entity.CollisionRectangle.Left; //Move both things in opposite directions half the length of the intersection, pushing thing1 to the right, and thing2 to the left. entity.Velocities.Add(new Vector2((((offset * 4) * (float)gameTime.ElapsedGameTime.TotalMilliseconds)), 0)); subject.Velocities.Add(new Vector2(-(((offset * 4) * (float)gameTime.ElapsedGameTime.TotalMilliseconds)), 0)); } } //Make record that thing1 and thing2 have interacted and the collision has been solved, so that if thing2 is picked next in the foreach loop, it isn't checked against thing1 a second time before the next update. collisionRecord.Add(entity.GetHashCode(), subject.GetHashCode()); } } } } } } } } One of the biggest issues with my code aside from the jitteriness is that if one character were to land on top of another character, it very suddenly and abruptly resolves the collision, whereas I would like a more subtle and gradual resolution. Any thoughts or ideas are incredibly welcome and helpful.

    Read the article

  • Depth buffer values reset on change shader?

    - by bobobobo
    I have 2 different shaders, and when I change the shader (glUseProgram), it seems that the depth information is lost, because everything drawn with the 2nd shader appears completely on top of anything drawn by the first shader. If I switch the order of shader use/drawing, then it's the same (the last drawn object always appears on top of the first drawn object if there is a shader change between the 2 objects, even if the last drawn object is further away)

    Read the article

  • OpenGL ES 2. How do I Create a Basic Fading Streak Effect?

    - by dugla
    For the iPad app I am writing using OpenGL ES 2 I have a single quad - shaded using GLSL - that is dragged around the screen. Very basic. This works fine. But is rather boring. I want to increase the coolness a bit in the following way: when the user drags the quad it leaves a streak behind that fades over time. Continuous dragging would be a bit like a streaking comet across the night sky. What is the simplest way to implement this? Thanks.

    Read the article

  • Best way to implement a simple bullet trajectory

    - by AirieFenix
    I searched and searched and although it's a fair simple question, I don't find the proper answer but general ideas (which I already have). I have a top-down game and I want to implement a gun which shoots bullets that follow a simple path (no physics nor change of trajectory, just go from A to B thing). a: vector of the position of the gun/player. b: vector of the mouse position (cross-hair). w: the vector of the bullet's trajectory. So, w=b-a. And the position of the bullet = [x=x0+speed*time*normalized w.x , y=y0+speed*time * normalized w.y]. I have the constructor: public Shot(int shipX, int shipY, int mouseX, int mouseY) { //I get mouse with Gdx.input.getX()/getY() ... this.shotTime = TimeUtils.millis(); this.posX = shipX; this.posY = shipY; //I used aVector = aVector.nor() here before but for some reason didn't work float tmp = (float) (Math.pow(mouseX-shipX, 2) + Math.pow(mouseY-shipY, 2)); tmp = (float) Math.sqrt(Math.abs(tmp)); this.vecX = (mouseX-shipX)/tmp; this.vecY = (mouseY-shipY)/tmp; } And here I update the position and draw the shot: public void drawShot(SpriteBatch batch) { this.lifeTime = TimeUtils.millis() - this.shotTime; //position = positionBefore + v*t this.posX = this.posX + this.vecX*this.lifeTime*speed*Gdx.graphics.getDeltaTime(); this.posY = this.posY + this.vecY*this.lifeTime*speed*Gdx.graphics.getDeltaTime(); ... } Now, the behavior of the bullet seems very awkward, not going exactly where my mouse is (it's like the mouse is 30px off) and with a random speed. I know I probably need to open the old algebra book from college but I'd like somebody says if I'm in the right direction (or points me to it); if it's a calculation problem, a code problem or both. Also, is it possible that Gdx.input.getX() gives me non-precise position? Because when I draw the cross-hair it also draws off the cursor position. Sorry for the long post and sorry if it's a very basic question. Thanks!

    Read the article

  • What is the most efficient way to add and removed Slick2D sprites?

    - by kirchhoff
    I'm making a game in Java with Slick2D and I want to create planes which shoots: int maxBullets = 40; static int bullet = 0; Missile missile[] = new Missile[maxBullets]; I want to create/move my missiles in the most efficient way, I would appreciate your advise: public void shoot() throws SlickException{ if(bullet<maxBullets){ if(missile[bullet] != null){ missile[bullet].resetLocation(plane.getCentreX(), plane.getCentreY(), plane.image.getRotation()); }else{ missile[bullet] = new Missile("resources/missile.png", plane.getCentreX(), plane.getCentreY(), plane.image.getRotation()); } }else{ bullet = 0; missile[bullet].resetLocation(plane.getCentreX(), plane.getCentreY(), plane.image.getRotation()); } bullet++; } I created the method resetLocation in my Missile class in order to avoid loading again the resource. Is it correct? In the update method I've got this to move all the missiles: if(bullet > 0 && bullet < maxBullets){ float hyp = 0.4f * delta; if(bullet == 1){ missile[0].move(hyp); }else{ for(int x = 0; x<bullet; x++){ missile[x].move(hyp); } } }

    Read the article

  • Camera doesn't move

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but I couldn't make it move. #define PI_OVER_180 0.0174532925f #define GL_CLAMP_TO_EDGE 0x812F #include "metinalifeyyaz.h" #include <GL/glu.h> #include <GL/glut.h> #include <QTimer> #include <cmath> #include <QKeyEvent> #include <QWidget> #include <QDebug> metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • What is the purpose of bitdepth for the several components of the framebuffer in glfwWindowHint function of GLFW3?

    - by Rui d'Orey
    I would like to know what are the following "framebuffer related hints" of GLFW3 function glfwWindowHint : GLFW_RED_BITS GLFW_GREEN_BITS GLFW_BLUE_BITS GLFW_ALPHA_BITS GLFW_DEPTH_BITS GLFW_STENCIL_BITS What is the purpose of this? Usually their default values are enough? Where are those bits stored? In a buffer in the GPU? What do they affect? And by that I mean in what way Thank you in advance!

    Read the article

  • [JOGL] my program is too slow, ho can i profile with Eclipse?

    - by nkint
    hi juys my simple opengl program is really toooo slow and not fluid i'm rendering 30 sphere with simple illumination and simple material. the only hard(?) computing stuffs i do is a collision detection between ray-mouse and spheres (that works ok and i do it only in mouseMoved) i have no thread only animator to move spheres how can i profile my jogl project? or mayebe (most probable..) i have some opengl instruction that i don't understand and make render particular accurate (or back face rendering that i don't need or whatever i don't know exctly i'm just entered in opengl world)

    Read the article

  • Trouble using Ray.Intersect method on bounding boxes in a 2D XNA game

    - by getsauce
    I am trying to use a ray and bounding box to determine if a box is between the player and the mouse pointer in 2D space. When I try testing the code, the collision will return true when pointed at the box but it also returns true under other circumstances where it shouldn't. For instance. If I have a player on the left and a box directly to the right, I can put the mouse pointer a few hundred pixels above the box or a few hundred below and it will still return true. Also, I can put my mouse pointer to the left of the player and in a certain area it will still return true. Does anyone have any idea what might cause this? I have left out definitions for some of my members and properties just to make this code sample easier to read. The position property is just a Vector2 for where each object is located. ray = new Ray(new Vector3(player.Position, 0), new Vector3(mouse.Position, 0); box = new BoundingBox(new Vector3(box.Position, 0), new Vector3( new Vector2(box.Position + box.Width, box.Position + box.Height), 0); if (ray.Intersects(box) != null) collision = true; else collision = false;

    Read the article

  • How should bots be recognised in a game?

    - by Bane
    I'm interested in how bots are usually written. Here's my situation: I plan to make an online 2D mecha game in HTML5, and the server-side will be done with node. It is intended to be multiplayer, but I also want to make bots in case there aren't enough players. How does my game logic see them, as players or as bots? Is there a standard by which I should make them? Also, any general tips and hints will be OK.

    Read the article

< Previous Page | 463 464 465 466 467 468 469 470 471 472 473 474  | Next Page >