Search Results

Search found 12166 results on 487 pages for 'invocation api'.

Page 468/487 | < Previous Page | 464 465 466 467 468 469 470 471 472 473 474 475  | Next Page >

  • Figuring out QuadCurveTo's parameters

    - by Fev
    Could you guys help me figuring out QuadCurveTo's 4 parameters , I tried to find information on http://docs.oracle.com/javafx/2/api/javafx/scene/shape/QuadCurveTo.html, but it's hard for me to understand without picture , I search on google about 'Quadratic Bezier' but it shows me more than 2 coordinates, I'm confused and blind now. I know those 4 parameters draw 2 lines to control the path , but how we know/count exactly which coordinates the object will throught by only knowing those 2 path-controller. Are there some formulas? import javafx.animation.PathTransition; import javafx.animation.PathTransition.OrientationType; import javafx.application.Application; import static javafx.application.Application.launch; import javafx.scene.Group; import javafx.scene.Scene; import javafx.scene.paint.Color; import javafx.scene.shape.MoveTo; import javafx.scene.shape.Path; import javafx.scene.shape.QuadCurveTo; import javafx.scene.shape.Rectangle; import javafx.stage.Stage; import javafx.util.Duration; public class _6 extends Application { public Rectangle r; @Override public void start(final Stage stage) { r = new Rectangle(50, 80, 80, 90); r.setFill(javafx.scene.paint.Color.ORANGE); r.setStrokeWidth(5); r.setStroke(Color.ANTIQUEWHITE); Path path = new Path(); path.getElements().add(new MoveTo(100.0f, 400.0f)); path.getElements().add(new QuadCurveTo(150.0f, 60.0f, 100.0f, 20.0f)); PathTransition pt = new PathTransition(Duration.millis(1000), path); pt.setDuration(Duration.millis(10000)); pt.setNode(r); pt.setPath(path); pt.setOrientation(OrientationType.ORTHOGONAL_TO_TANGENT); pt.setCycleCount(4000); pt.setAutoReverse(true); pt.play(); stage.setScene(new Scene(new Group(r), 500, 700)); stage.show(); } public static void main(String[] args) { launch(args); } } You can find those coordinates on this new QuadCurveTo(150.0f, 60.0f, 100.0f, 20.0f) line, and below is the picture of Quadratic Bezier

    Read the article

  • How can I make Google Maps icon to always appear in the center of map - when clicked?

    - by JHM_67
    For simplicity sake, lets use the XML example on Econym's site. http://econym.org.uk/gmap/example_map3.htm Once clicked, I would like icon balloon to be displayed in the middle of the map. What might I need to add to Mike's code to get this to work? I apologize for asking a lot.. Thanks in advance. <script type="text/javascript"> //<![CDATA[ if (GBrowserIsCompatible()) { side_bar var side_bar_html = ""; var gmarkers = []; function createMarker(point,name,html) { var marker = new GMarker(point); GEvent.addListener(marker, "click", function() { marker.openInfoWindowHtml(html); }); gmarkers.push(marker); side_bar_html += '<a href="javascript:myclick(' + (gmarkers.length-1) + ')">' + name + '<\/a><br>'; return marker; } function myclick(i) { GEvent.trigger(gmarkers[i], "click"); } var map = new GMap2(document.getElementById("map")); map.addControl(new GLargeMapControl()); map.addControl(new GMapTypeControl()); map.setCenter(new GLatLng( 43.907787,-79.359741), 9); GDownloadUrl("example.xml", function(doc) { var xmlDoc = GXml.parse(doc); var markers = xmlDoc.documentElement.getElementsByTagName("marker"); for (var i = 0; i < markers.length; i++) { // obtain the attribues of each marker var lat = parseFloat(markers[i].getAttribute("lat")); var lng = parseFloat(markers[i].getAttribute("lng")); var point = new GLatLng(lat,lng); var html = markers[i].getAttribute("html"); var label = markers[i].getAttribute("label"); var marker = createMarker(point,label,html); map.addOverlay(marker); } document.getElementById("side_bar").innerHTML = side_bar_html; }); } else { alert("Sorry, the Google Maps API is not compatible with this browser"); } //]]> </script>

    Read the article

  • makecontext segfault?

    - by cdietschrun
    I am working on a homework assignment that will be due in the next semester. It requires us to implement our own context switching/thread library using the ucontext API. The professor provides code that does it, but before a thread returns, he manually does some work and calls an ISR that finds another thread to use and swapcontexts to it or if none are left, exits. The point of the assignment is to use the uc_link field of the context so that when it hits a return it takes care of the work. I've created a function (type void/void args) that just does the work the functions did before (clean up and then calls ISR). The professor said he wanted this. So all that's left is to do a makecontext somewhere along the way on the context in the uc_link field so that it runs my thread, right? Well, when I do makecontext on seemingly any combination of ucontext_t's and function, I get a segfault and gdb provides no help.. I can skip the makecontext and my program exist 'normally' when it hits a return in the threads I created because (presumably) the uc_link field is not properly setup (which is what I'm trying to do). I also can't find anything on why makecontext would segfault. Can anyone help? stack2.ss_sp = (void *)(malloc(STACKSIZE)); if(stack2.ss_sp == NULL){ printf("thread failed to get stack space\n"); exit(8); } stack2.ss_size = STACKSIZE; stack2.ss_flags = 0; if(getcontext(&main_context) == -1){ perror("getcontext in t_init, rtn_env"); exit(5); } //main_context.uc_stack = t_state[i].mystk; main_context.uc_stack = stack2; main_context.uc_link = 0; makecontext(&main_context, (void (*)(void))thread_rtn, 0); I've also tried just thread_rtn, &thread_rtn and other things. thread_rtn is declared as void thread_rtn(void). later, in each thread. run_env is of type ucontext_t: ... t_state[i].run_env.uc_link = &main_context;

    Read the article

  • Load php file wth xml header

    - by John Smith
    I have a php file with an xml header and xml code, named test.php. How do I load this file as an xml? The following doesn't work: $xml = simplexml_load_file('test.php'); echo $xml; I just get a white page. The test file is saved as php, as it's dynamic. It's loading data from the tradedoubler api. The xml looks something like this: <voucherList> <voucher> <id>115</id> <programId>111</programId> <programName>Program 111</programName> <code>AF30C5</code> <updateDate>1332422674941</updateDate> <startDate>1332370800000</startDate> <endDate>1363906800000</endDate> <title>Voucher number one</title> <shortDescription>Short description of the voucher.</shortDescription> <description>This is a long version of the voucher description.</description> <voucherTypeId>1</voucherTypeId> <defaultTrackUri>http://clk.tradedoubler.com/click?a(222)p(111)ttid(13)</defaultTrackUri> <siteSpecific>True</siteSpecific> </voucher> <voucher> <id>116</id> <programId>111</programId> <programName>Program 111</programName> <code>F90Z4F</code> <updateDate>1332423212631</updateDate> <startDate>1332370800000</startDate> <endDate>1363906800000</endDate> <title>The second voucher</title> <shortDescription>Short description of the voucher.</shortDescription> <description>This is a long version of the voucher description.</description> <voucherTypeId>1</voucherTypeId> <defaultTrackUri>http://clk.tradedoubler.com/click?a(222)p(111)ttid(13)url(http://www.example.com/product?id=123)</defaultTrackUri> <siteSpecific>False</siteSpecific> <landingUrl>http://www.example.com/product?id=123</landingUrl> </voucher> </voucherList>

    Read the article

  • Cutting down repeating code in c# Class

    - by Tom Gullen
    This is a wrapper for an API I'm working on, am I doing it sort of right? I'm not particularly fond of all the repeating code in the constructor, if someone can show me if I can reduce that it would be very helpful! public class WebWizForumVersion { // Properties of returned data public string Software { get; private set; } public string Version { get; private set; } public string APIVersion { get; private set; } public string Copyright { get; private set; } public string BoardName { get; private set; } public string URL { get; private set; } public string Email { get; private set; } public string Database { get; private set; } public string InstallationID { get; private set; } public bool NewsPad { get; private set; } public string NewsPadURL { get; private set; } public WebWizForumVersion(XmlReader Data) { try { Data.ReadToFollowing("Software"); this.Software = Data.ReadElementContentAsString(); Data.ReadToFollowing("Version"); this.Version = Data.ReadElementContentAsString(); Data.ReadToFollowing("ApiVersion"); this.APIVersion = Data.ReadElementContentAsString(); Data.ReadToFollowing("Copyright"); this.Copyright = Data.ReadElementContentAsString(); Data.ReadToFollowing("BoardName"); this.BoardName = Data.ReadElementContentAsString(); Data.ReadToFollowing("URL"); this.URL = Data.ReadElementContentAsString(); Data.ReadToFollowing("Email"); this.Email = Data.ReadElementContentAsString(); Data.ReadToFollowing("Database"); this.Database = Data.ReadElementContentAsString(); Data.ReadToFollowing("InstallID"); this.InstallationID = Data.ReadElementContentAsString(); Data.ReadToFollowing("NewsPad"); this.NewsPad = bool.Parse(Data.ReadElementContentAsString()); Data.ReadToFollowing("NewsPadURL"); this.NewsPadURL = Data.ReadElementContentAsString(); } catch (Exception e) { } } }

    Read the article

  • gauge chart is not displaying any thing

    - by Sandy
    i am trying to display the latest speed in mysql database on guage chart. i have tried so many things but gauge is not display plz any can help me...my code is attached and php part shows the correct value but dont know why guage is not display <?php $host="localhost"; // Host name $username="root"; // Mysql username $password=""; // Mysql password $db_name="mysql"; // Database name $tbl_name="gpsdb"; // Table name // Connect to server and select database. $con=mysql_connect("$host", "$username")or die("cannot connect"); mysql_select_db("$db_name")or die("cannot select DB"); $data = mysql_query("SELECT speed FROM gpsdb WHERE DeviceId=1234 ORDER BY TIME DESC LIMIT 1") or die(mysql_error()); while ($nt = mysql_fetch_assoc($data)) { $speed = $nt['speed']; $jsonTable = json_encode($speed); echo $jsonTable; } ?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="content-type" content="text/html; charset=utf-8"/> <title> Google Visualization API Sample </title> <script type="text/javascript" src="//www.google.com/jsapi"></script> <script type="text/javascript"> google.load('visualization', '1', {packages: ['gauge']}); </script> <script type="text/javascript"> function drawVisualization() { // Create and populate the data table. var data = new google.visualization.DataTable(<?=$speed?>); // Create and draw the visualization. new google.visualization.Gauge(document.getElementById('visualization')). draw(data); } google.setOnLoadCallback(drawVisualization); </script> </head> <body style="font-family: Arial;border: 0 none;"> <div id="visualization" style="width: 600px; height: 300px;"></div> </body> </html>

    Read the article

  • Terminating a long-executing thread and then starting a new one in response to user changing parameters via UI in an applet

    - by user1817170
    I have an applet which creates music using the JFugue API and plays it for the user. It allows the user to input a music phrase which the piece will be based on, or lets them choose to have a phrase generated randomly. I had been using the following method (successfully) to simply stop and start the music, which runs in a thread using the Player class from JFugue. I generate the music using my classes and user input from the applet GUI...then... private playerThread pthread; private Thread threadPlyr; private Player player; (from variables declaration) public void startMusic(Pattern p) // pattern is a JFugue object which holds the generated music { if (pthread == null) { pthread = new playerThread(); } else { pthread = null; pthread = new playerThread(); } if (threadPlyr == null) { threadPlyr = new Thread(pthread); } else { threadPlyr = null; threadPlyr = new Thread(pthread); } pthread.setPattern(p); threadPlyr.start(); } class playerThread implements Runnable // plays midi using jfugue Player { private Pattern pt; public void setPattern(Pattern p) { pt = p; } @Override public void run() { try { player.play(pt); // takes a couple mins or more to execute resetGUI(); } catch (Exception exception) { } } } And the following to stop music when user presses the stop/start button while Player.isPlaying() is true: public void stopMusic() { threadPlyr.interrupt(); threadPlyr = null; pthread = null; player.stop(); } Now I want to implement a feature which will allow the user to change parameters while the music is playing, create an updated music pattern, and then play THAT pattern. Basically, the idea is to make it simulate "real time" adjustments to the generated music for the user. Well, I have been beating my head against the wall on this for a couple of weeks. I've read all the standard java documentation, researched, read, and searched forums, and I have tried many different ideas, none of which have succeeded. The problem I've run into with all approaches I've tried is that when I start the new thread with the new, updated musical pattern, all the old threads ALSO start, and there is a cacophony of unintelligible noise instead of my desired output. From what I've gathered, the issue seems to be that all the methods I've come across require that the thread is able to periodically check the value of a "flag" variable and then shut itself down from within its "run" block in response to that variable. However, since my thread makes a call that takes several minutes minimum to execute (playing the music), and I need to terminate it WHILE it is executing this, there is really no safe way to do so. So, I'm wondering if there is something I'm missing when it comes to threads, or if perhaps I can accomplish my goal using a totally different approach. Any ideas or guidance is greatly appreciated! Thank you!

    Read the article

  • Apache 2.2 and FastCGI stops responding, warnings, crashes

    - by Brett
    I've seen this question posted a few times using a Google search, with no real answers. I have a multi-threaded FastCGI application running with Apache 2.2 on FreeBSD 7.2. There are a few issues with it, and I am unable to really figure out the source of the problem even after poking through a bunch of the mod_fastcgi source code. My FastCGI application gets anywhere from 2 to 15 or so hits per second, and mostly services a back-end API (the majority of web server usage is for this, and not actually serving content). Everything seems to work ok under normal conditions, but recently this problem has been becoming worse. It starts out with the FastCGI process manager apparently trying to close unneeded processes, sending them a SIGTERM signal. I catch the signal, clean up some stuff, and exit (by calling exit()) with status code 0. This process seems to result in three log messages in my httpd error log: [Tue Jun 01 14:03:31 2010] [warn] FastCGI: (dynamic) server "/home/program/wwwroot/domains/www.mydomain.com/cgi-bin/program.cgi" (pid 98182) termination signaled [Tue Jun 01 14:03:31 2010] [warn] FastCGI: (dynamic) server "/home/program/wwwroot/domains/www.mydomain.com/cgi-bin/program.cgi" (pid 98182) terminated by calling exit with status '0' [Tue Jun 01 14:03:31 2010] [warn] FastCGI: (dynamic) server "/home/program/wwwroot/domains/www.mydomain.com/cgi-bin/program.cgi" restarted (pid 98294) I am not sure why it says it is restarting the process, but in any case no core dump is ever generated so I do believe it is the FastCGI process manager doing it's thing. This makes sense because it begins to happen after the initial load increase from restarting Apache. Since it's down for a few seconds, it gets hit with a couple of hundred requests over the first few seconds it's running again (sometimes even hitting the upper limit of MAXCLIENTS in Apache), and this seems to be the process manager doing the work of spawning more processes to handle the increased load. So this all seems fine, but here is where things get weird. There are really two problems that I see. First, my multithreaded FastCGI process spawns 25 worker threads, and all seem to be used according to my internal log files (multiple processes are clearly using multiple threads to do work). However it seems that 3 or 4 FastCGI processes is not enough to handle the 5 to 15 hit per second load, even though the requests take about .02s or so to process internally. In order to be at all responsive, it seems I need 50 or more FastCGI processes, leading me to believe that FastCGI does not realize that my program is multithreaded. I've read the documentation at http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html and do not see any option pertaining to multithreaded-ness, and my internal code is more or less set up just like the examples provided by the FastCGI library. The second problem I am having is that once process termination has happened a bunch of times as above (and seemingly at random), I begin getting a lot of these messages in my error log: [Tue Jun 01 14:06:22 2010] [warn] (32)Broken pipe: FastCGI: write() to PM failed (ignore if a restart or shutdown is pending) The messages occur for about half the hits I get to the server, and it completely kills the responsiveness of my application - it seems FastCGI will look for a working "pipe" until it finds one, and fail to realize that whatever application it is trying to contact is dead. It does still work though, it's just incredibly unresponsive - sometimes taking up to 40 or so seconds to process a request. I recompiled mod_fastcgi with some extra debugging around the point of the error message, and it appears that the error happens when it tries to write() to the application. The call to write() fails with a -1 return code, and sets errno to EPIPE. I am noticing that the issue happens mostly when either a crash occurs in one of the FastCGI processes, or a bunch of them are seemingly terminated by the process manager. I haven't had any core dumps though, except for one, where the backtrace outputted by gdb is just a single call to free() at address 0x0000000000000000 with nothing else in the stack trace, so I don't really know what to make of that. I'm thinking it happens sometime after the SIGTERM signal is caught, maybe some global variable not being cleaned up properly or something.

    Read the article

  • PHP crashing (seg-fault) under mod_fcgi, apache

    - by Andras Gyomrey
    I've been programming a site using: Zend Framework 1.11.5 (complete MVC) PHP 5.3.6 Apache 2.2.19 CentOS 5.6 i686 virtuozzo on vps cPanel WHM 11.30.1 (build 4) Mysql 5.1.56-log Mysqli API 5.1.56 The issue started here http://stackoverflow.com/questions/6769515/php-programming-seg-fault. In brief, php is giving me random segmentation-faults. [Wed Jul 20 17:45:34 2011] [error] mod_fcgid: process /usr/local/cpanel/cgi-sys/php5(11562) exit(communication error), get unexpected signal 11 [Wed Jul 20 17:45:34 2011] [warn] [client 190.78.208.30] (104)Connection reset by peer: mod_fcgid: error reading data from FastCGI server [Wed Jul 20 17:45:34 2011] [error] [client 190.78.208.30] Premature end of script headers: index.php About extensions. When i compile php with "--enable-debug" flag, i have to disable this line: zend_extension="/usr/local/IonCube/ioncube_loader_lin_5.3.so" Otherwise, the server doesn't accept requests and i get a "The connection with the server was reset". It is possible that i have to disable eaccelerator too because of the same reason. I still don't get why apache gets running it some times and some others not: extension="eaccelerator.so" Anyway, after i get httpd running, seg-faults can occurr randomly. If i don't compile php with "--enable-debug" flag, i can get DETERMINISTICALLY a php crash: <?php class Admin_DbController extends Controller_BaseController { public function updateSqlDefinitionsAction() { $db = Zend_Registry::get('db'); $row = $db->fetchRow("SHOW CREATE TABLE 222AFI"); } } ?> BUT if i compile php with "--enable-debug" flag, it's really hard to get this error. I must add some complexity to make it crash. I have to be doing many paralell requests for a few seconds to get a crash: <?php class Admin_DbController extends Controller_BaseController { public function updateSqlDefinitionsAction() { $db = Zend_Registry::get('db'); $tableList = $db->listTables(); foreach ($tableList as $tableName){ $row = $db->fetchRow("SHOW CREATE TABLE " . $db->quoteIdentifier($tableName)); file_put_contents( DB_DEFINITIONS_PATH . '/' . $tableName . '.sql', $row['Create Table'] . ';' ); } } } ?> Please notice this is the same script, but creating DDL for all tables in database rather than for one. It seems that if php is heavy loaded (with extensions and me doing many paralell requests) it's when i get php to crash. About starting httpd with "-X": i've tried. The thing is, it is already hard to make php crash with --enable-debug. With "-X" option (which only enables one child process) i can't do parallel requests. So i haven't been able to create to proper debug backtrace: https://bugs.php.net/bugs-generating-backtrace.php My concrete question is, what do i do to get a coredump? root@GWT4 [~]# httpd -V Server version: Apache/2.2.19 (Unix) Server built: Jul 20 2011 19:18:58 Cpanel::Easy::Apache v3.4.2 rev9999 Server's Module Magic Number: 20051115:28 Server loaded: APR 1.4.5, APR-Util 1.3.12 Compiled using: APR 1.4.5, APR-Util 1.3.12 Architecture: 32-bit Server MPM: Prefork threaded: no forked: yes (variable process count) Server compiled with.... -D APACHE_MPM_DIR="server/mpm/prefork" -D APR_HAS_SENDFILE -D APR_HAS_MMAP -D APR_HAVE_IPV6 (IPv4-mapped addresses enabled) -D APR_USE_SYSVSEM_SERIALIZE -D APR_USE_PTHREAD_SERIALIZE -D SINGLE_LISTEN_UNSERIALIZED_ACCEPT -D APR_HAS_OTHER_CHILD -D AP_HAVE_RELIABLE_PIPED_LOGS -D DYNAMIC_MODULE_LIMIT=128 -D HTTPD_ROOT="/usr/local/apache" -D SUEXEC_BIN="/usr/local/apache/bin/suexec" -D DEFAULT_PIDLOG="logs/httpd.pid" -D DEFAULT_SCOREBOARD="logs/apache_runtime_status" -D DEFAULT_LOCKFILE="logs/accept.lock" -D DEFAULT_ERRORLOG="logs/error_log" -D AP_TYPES_CONFIG_FILE="conf/mime.types" -D SERVER_CONFIG_FILE="conf/httpd.conf"

    Read the article

  • Connection Reset on MySQL query

    - by sunwukung
    OK, I'm flummoxed.(i've asked this question over on Stack too - but I need to get it fixed so I'm asking here too - any help is GREATLY appreciated) I'm trying to execute a query on a database (locally) and I keep getting a connection reset error. I've been using the method below in a generic DAO class to build a query string and pass to Zend_Db API. public function insert($params) { $loop = false; $keys = $values = ''; foreach($params as $k => $v){ if($loop == true){ $keys .= ','; $values .= ','; } $keys .= $this->db->quoteIdentifier($k); $values .= $this->db->quote($v); $loop = true; } $sql = "INSERT INTO " . $this->table_name . " ($keys) VALUES ($values)"; //formatResult returns an array of info regarding the status and any result sets of the query //I've commented that method call out anyway, so I don't think it's that try { $this->db->query($sql); return $this->formatResult(array( true, 'New record inserted into: '.$this->table_name )); }catch(PDOException $e) { return $this->formatResult($e); } } So far, this has worked fine - the errors have been occurring since we generated new tables to record user input. The insert string looks like this: INSERT INTO tablename(`id`,`title`,`summary`,`description`,`keywords`,`type_id`,`categories`) VALUES ('5539','Sample Title','Sample content',' \'Lorem ipsum dolor sit amet, consectetur adipiscing elit. In et pellentesque mauris. Curabitur hendrerit, leo id ultrices pellentesque, est purus mattis ligula, vitae imperdiet neque ligula bibendum sapien. Curabitur aliquet nisi et odio pharetra tincidunt. Phasellus sed iaculis nisl. Fusce commodo mauris et purus vehicula dictum. Nulla feugiat molestie accumsan. Donec fermentum libero in risus tempus elementum aliquam et magna. Fusce vitae sem metus. Aenean commodo pharetra risus, nec pellentesque augue ullamcorper nec. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Nullam vel elit libero. Vestibulum in turpis nunc.\'','this,is,a,sample,array',1,'category title') Here are the parameters it's getting before assembling the query (var_dump): array 'id' => string '1' (length=4) 'title' => string 'Sample Title' (length=12) 'summary' => string 'Sample content' (length=14) 'description' => string '<p>'Lorem ipsum dolor sit amet, consectetur adipiscing elit. In et pellentesque mauris. Curabitur hendrerit, leo id ultrices pellentesque, est purus mattis ligula, vitae imperdiet neque ligula bibendum sapien. Curabitur aliquet nisi et odio pharetra tincidunt. Phasellus sed iaculis nisl. Fusce commodo mauris et purus vehicula dictum. Nulla feugiat molestie accumsan. Donec fermentum libero in risus tempus elementum aliquam et magna. Fusce vitae sem metus. Aenean commodo pharetra risus, nec pellentesque augue'... (length=677) 'keywords' => string 'this,is,a,sample,array' (length=22) 'type_id' => int 1 'categories' => string 'category title' (length=43) The next port of call was checking the limits on the table, since it seems to insert if the length of "description" is around the 300 mark (it varies between 310 - 330). The field limit is set to VARCHAR(1500) and the validation on this field won't allow anything past bigger than 1200 with HTML, 800 without. The real kicker is that if I take this sql string and execute it via the command line, it works fine - so I can't for the life of me figure out what's wrong. I've tried extending the server parameters i.e. http://stackoverflow.com/questions/1964554/unexpected-connection-reset-a-php-or-an-apache-issue So, in a nutshell, I'm stumped. Any ideas?

    Read the article

  • Nagios notifications definitions

    - by Colin
    I am trying to monitor a web server in such a way that I want to search for a particular string on a page via http. The command is defined in command.cfg as follows # 'check_http-mysite command definition' define command { command_name check_http-mysite command_line /usr/lib/nagios/plugins/check_http -H mysite.example.com -s "Some text" } # 'notify-host-by-sms' command definition define command { command_name notify-host-by-sms command_line /usr/bin/send_sms $CONTACTPAGER$ "Nagios - $NOTIFICATIONTYPE$ :Host$HOSTALIAS$ is $HOSTSTATE$ ($OUTPUT$)" } # 'notify-service-by-sms' command definition define command { command_name notify-service-by-sms command_line /usr/bin/send_sms $CONTACTPAGER$ "Nagios - $NOTIFICATIONTYPE$: $HOSTALIAS$/$SERVICEDESC$ is $SERVICESTATE$ ($OUTPUT$)" } Now if nagios doesn't find "Some text" on the home page mysite.example.com, nagios should notify a contact via sms through the Clickatell http API which I have a script for that that I have tested and found that it works fine. Whenever I change the command definition to search for a string which is not on the page, and restart nagios, I can see on the web interface that the string was not found. What I don't understand is why isn't the notification sent though I have defined the host, hostgroup, contact, contactgroup and service and so forth. What I'm I missing, these are my definitions, In my web access through the cgi I can see that I have notifications have been defined and enabled though I don't get both email and sms notifications during hard status changes. host.cfg define host { use generic-host host_name HAL alias IBM-1 address xxx.xxx.xxx.xxx check_command check_http-mysite } *hostgroups_nagios2.cfg* # my website define hostgroup{ hostgroup_name my-servers alias All My Servers members HAL } *contacts_nagios2.cfg* define contact { contact_name colin alias Colin Y service_notification_period 24x7 host_notification_period 24x7 service_notification_options w,u,c,r,f,s host_notification_options d,u,r,f,s service_notification_commands notify-service-by-email,notify-service-by-sms host_notification_commands notify-host-by-email,notify-host-by-sms email [email protected] pager +254xxxxxxxxx } define contactgroup{ contactgroup_name site_admin alias Site Administrator members colin } *services_nagios2.cfg* # check for particular string in page via http define service { hostgroup_name my-servers service_description STRING CHECK check_command check_http-mysite use generic-service notification_interval 0 ; set > 0 if you want to be renotified contacts colin contact_groups site_admin } Could someone please tell me where I'm going wrong. Here are the generic-host and generic-service definitions *generic-service_nagios2.cfg* # generic service template definition define service{ name generic-service ; The 'name' of this service template active_checks_enabled 1 ; Active service checks are enabled passive_checks_enabled 1 ; Passive service checks are enabled/accepted parallelize_check 1 ; Active service checks should be parallelized (disabling this can lead to major performance problems) obsess_over_service 1 ; We should obsess over this service (if necessary) check_freshness 0 ; Default is to NOT check service 'freshness' notifications_enabled 1 ; Service notifications are enabled event_handler_enabled 1 ; Service event handler is enabled flap_detection_enabled 1 ; Flap detection is enabled failure_prediction_enabled 1 ; Failure prediction is enabled process_perf_data 1 ; Process performance data retain_status_information 1 ; Retain status information across program restarts retain_nonstatus_information 1 ; Retain non-status information across program restarts notification_interval 0 ; Only send notifications on status change by default. is_volatile 0 check_period 24x7 normal_check_interval 5 retry_check_interval 1 max_check_attempts 4 notification_period 24x7 notification_options w,u,c,r contact_groups site_admin register 0 ; DONT REGISTER THIS DEFINITION - ITS NOT A REAL SERVICE, JUST A TEMPLATE! } *generic-host_nagios2.cfg* define host{ name generic-host ; The name of this host template notifications_enabled 1 ; Host notifications are enabled event_handler_enabled 1 ; Host event handler is enabled flap_detection_enabled 1 ; Flap detection is enabled failure_prediction_enabled 1 ; Failure prediction is enabled process_perf_data 1 ; Process performance data retain_status_information 1 ; Retain status information across program restarts retain_nonstatus_information 1 ; Retain non-status information across program restarts max_check_attempts 10 notification_interval 0 notification_period 24x7 notification_options d,u,r contact_groups site_admin register 1 ; DONT REGISTER THIS DEFINITION - ITS NOT A REAL HOST, JUST A TEMPLATE! }

    Read the article

  • Configuring dhcp module in FreeRadius (3.0.2 - Centos 6.5)

    - by mixja
    I am using the REST module to authorise a DHCP request. I would like to send an explicit DHCP NAK if the authorisation fails, however the DHCP module seems to return immediately if there is a failure and just ignores the DHCP request without any response. Here is my DHCP module configuration - if rest.authorize is successful, the if (ok) control block is hit, but if rest.authorize fails the if (fail) is never hit. dhcp DHCP-Discover { rest.authorize if (fail) { update reply { DHCP-Message-Type = DHCP-Nak } } if (ok) { update reply { DHCP-Message-Type = DHCP-Offer } update reply { DHCP-Domain-Name-Server = x.x.x.x DHCP-Domain-Name-Server = x.x.x.x DHCP-Subnet-Mask = 255.255.255.0 DHCP-Router-Address = x.x.x.x DHCP-IP-Address-Lease-Time = 3600 DHCP-DHCP-Server-Identifier = x.x.x.x } mac2ip } } Below is the output after a 401 Unauthorized is received. I am wanting to achieve a temporary block on DHCP for a specified (small) period of time. However the FreeRADIUS behaviour is to ignore duplicate requests for same DHCP transaction, meaning DHCP on client is blocked until it begins a new transaction. If a DHCP NAK can be sent, the DHCP client will initiate a new transaction after each NAK (i.e. DHCP Discover), meaning FreeRADIUS will process each DHCP Discover from the client, and the block will be removed much closer to the desired block time. Tue Jun 3 03:00:57 2014 : Debug: (3) rest : Sending HTTP GET to "http://xxxxxx//api/v1/dhcp/80%3Aea%3A96%3A2a%3Ab6%3Aaa" Tue Jun 3 03:00:57 2014 : Debug: (3) rest : Processing response header Tue Jun 3 03:00:57 2014 : Debug: (3) rest : Status : 401 (Unauthorized) Tue Jun 3 03:00:57 2014 : Debug: (3) rest : Skipping attribute processing, no body data received Tue Jun 3 03:00:57 2014 : Debug: rlm_rest (rest): Released connection (4) Tue Jun 3 03:00:57 2014 : Debug: (3) modsingle[authorize]: returned from rest (rlm_rest) for request 3 Tue Jun 3 03:00:57 2014 : Debug: (3) [rest.authorize] = fail Tue Jun 3 03:00:57 2014 : Debug: (3) } # dhcp DHCP-Discover = fail Tue Jun 3 03:00:57 2014 : Debug: (3) Finished request 3. Tue Jun 3 03:00:57 2014 : Debug: Waking up in 0.2 seconds. Tue Jun 3 03:00:58 2014 : Debug: Waking up in 4.6 seconds. Received DHCP-Discover of id 7b0fb2de from 172.19.0.9:67 to 172.19.0.12:67 Tue Jun 3 03:00:59 2014 : Debug: (3) No reply. Ignoring retransmit. Tue Jun 3 03:00:59 2014 : Debug: Waking up in 2.9 seconds. Received DHCP-Discover of id 7b0fb2de from 172.19.0.9:67 to 172.19.0.12:67 Tue Jun 3 03:01:02 2014 : Debug: (3) No reply. Ignoring retransmit. Tue Jun 3 03:01:02 2014 : Debug: Waking up in 0.4 seconds. Tue Jun 3 03:01:02 2014 : Debug: (2) Cleaning up request packet ID 2064626397 with timestamp +56 Tue Jun 3 03:01:02 2014 : Debug: Waking up in 1999991.0 seconds. Received DHCP-Discover of id 7b0fb2de from 172.19.0.9:67 to 172.19.0.12:67 Tue Jun 3 03:01:06 2014 : Debug: (3) No reply. Ignoring retransmit. Tue Jun 3 03:01:06 2014 : Debug: Waking up in 3999983.1 seconds. Received DHCP-Discover of id 7b0fb2de from 172.19.0.9:67 to 172.19.0.12:67 Tue Jun 3 03:01:15 2014 : Debug: (3) No reply. Ignoring retransmit. Tue Jun 3 03:01:15 2014 : Debug: Waking up in 7999966.3 seconds. Received DHCP-Discover of id 7b0fb2de from 172.19.0.9:67 to 172.19.0.12:67 Tue Jun 3 03:01:23 2014 : Debug: (3) No reply. Ignoring retransmit. Tue Jun 3 03:01:23 2014 : Debug: Waking up in 15999942.1 seconds.

    Read the article

  • Pushing DNSSEC updates with offline keys

    - by eggyal
    In a non-professional capacity, I look after the DNS of some 18 domains: mostly personal/vanity domains for immediate family. I outsource the whole shebang to an inexpensive managed hosting provider with a web interface through which I manage the zones; since the provider also offers DNSSEC, I have successfully deployed that too. These domains are so unimportant that an attack targetted against them seems much less likely than a general compromise of my provider's systems, at which point the records of all their customers might be changed to misdirect traffic (perhaps with extremely long TTLs). DNSSEC could protect against such an attack, but only if the zone's private keys are not held by the hosting provider. So, I wonder: how can one keep DNSSEC private keys offline yet still transfer signed zones to an outsourced DNS host? The most obvious answer (to me, at least) is to run one's own shadow/hidden master (from which the provider can slave) and then copy offline-signed zonefiles to the master as required. The problem is that the only machine I (want to*) control is my personal laptop, which usually connects from a typical home ADSL (behind NAT over a dynamically-assigned IP address). Having them slave from that (e.g. with a very long Expiry time on the zone for periods when my laptop is offline/unavailable) would not only require a Dynamic DNS record from which they can slave (if indeed they can slave from a named host rather than a static IP address), but would also involve me running a DNS server on my laptop and opening both it and my home network up to the incoming zone transfer requests: not ideal. I would prefer a much more push-oriented design, whereby my laptop initiates transfer of offline-signed zonefiles/updates to the provider's servers. I looked into whether nsupdate could fit the bill: documentation is a little sketchy, but my testing (with BIND 9.7) suggests it can indeed update DNSSEC zones, but only where the server holds the keys to perform the zone signing; I have not found a way to have it take an update including the relevant RRSIG/NSEC/etc. records and have the server accept them. Is this a supported use-case? If not, I suspect the only solutions which could fit the bill will involve non-DNS-based transfer of the zone updates and would welcome recommendations that are supported by (hopefully inexpensive) hosting providers: SFTP/SCP? rsync? RDBMS replication? Proprietary API? Finally, what would be the practical implications of such a setup? Key rotation is jumping out at me as being an obvious difficulty, especially if my laptop is offline for extended periods. But the zones are extremely stable, so perhaps I could get away with long-lived ZSKs**...? * Whilst I could run a shadow/hidden master on e.g. an outsourced VPS, I dislike the overhead of having to secure / manage / monitor / maintain yet another system; not to mention the additional financial costs of so doing. ** Okay, this would enable a concerted attacker to replay outdated records—but the risk and impact of such are both tolerable in the case of these domains.

    Read the article

  • mySQL Optimization Suggestions

    - by Brian Schroeter
    I'm trying to optimize our mySQL configuration for our large Magento website. The reason I believe that mySQL needs to be configured further is because New Relic has shown that our SELECT queries are taking a long time (20,000+ ms) in some categories. I ran MySQLTuner 1.3.0 and got the following results... (Disclaimer: I restarted mySQL earlier after tweaking some settings, and so the results here may not be 100% accurate): >> MySQLTuner 1.3.0 - Major Hayden <[email protected]> >> Bug reports, feature requests, and downloads at http://mysqltuner.com/ >> Run with '--help' for additional options and output filtering [OK] Currently running supported MySQL version 5.5.37-35.0 [OK] Operating on 64-bit architecture -------- Storage Engine Statistics ------------------------------------------- [--] Status: +ARCHIVE +BLACKHOLE +CSV -FEDERATED +InnoDB +MRG_MYISAM [--] Data in MyISAM tables: 7G (Tables: 332) [--] Data in InnoDB tables: 213G (Tables: 8714) [--] Data in PERFORMANCE_SCHEMA tables: 0B (Tables: 17) [--] Data in MEMORY tables: 0B (Tables: 353) [!!] Total fragmented tables: 5492 -------- Security Recommendations ------------------------------------------- [!!] User '@host5.server1.autopartsnetwork.com' has no password set. [!!] User '@localhost' has no password set. [!!] User 'root@%' has no password set. -------- Performance Metrics ------------------------------------------------- [--] Up for: 5h 3m 4s (5M q [317.443 qps], 42K conn, TX: 18B, RX: 2B) [--] Reads / Writes: 95% / 5% [--] Total buffers: 35.5G global + 184.5M per thread (1024 max threads) [!!] Maximum possible memory usage: 220.0G (174% of installed RAM) [OK] Slow queries: 0% (6K/5M) [OK] Highest usage of available connections: 5% (61/1024) [OK] Key buffer size / total MyISAM indexes: 512.0M/3.1G [OK] Key buffer hit rate: 100.0% (102M cached / 45K reads) [OK] Query cache efficiency: 66.9% (3M cached / 5M selects) [!!] Query cache prunes per day: 3486361 [OK] Sorts requiring temporary tables: 0% (0 temp sorts / 812K sorts) [!!] Joins performed without indexes: 1328 [OK] Temporary tables created on disk: 11% (126K on disk / 1M total) [OK] Thread cache hit rate: 99% (61 created / 42K connections) [!!] Table cache hit rate: 19% (9K open / 49K opened) [OK] Open file limit used: 2% (712/25K) [OK] Table locks acquired immediately: 100% (5M immediate / 5M locks) [!!] InnoDB buffer pool / data size: 32.0G/213.4G [OK] InnoDB log waits: 0 -------- Recommendations ----------------------------------------------------- General recommendations: Run OPTIMIZE TABLE to defragment tables for better performance MySQL started within last 24 hours - recommendations may be inaccurate Reduce your overall MySQL memory footprint for system stability Enable the slow query log to troubleshoot bad queries Increasing the query_cache size over 128M may reduce performance Adjust your join queries to always utilize indexes Increase table_cache gradually to avoid file descriptor limits Read this before increasing table_cache over 64: http://bit.ly/1mi7c4C Variables to adjust: *** MySQL's maximum memory usage is dangerously high *** *** Add RAM before increasing MySQL buffer variables *** query_cache_size (> 512M) [see warning above] join_buffer_size (> 128.0M, or always use indexes with joins) table_cache (> 12288) innodb_buffer_pool_size (>= 213G) My my.cnf configuration is as follows... [client] port = 3306 [mysqld_safe] nice = 0 [mysqld] tmpdir = /var/lib/mysql/tmp user = mysql port = 3306 skip-external-locking character-set-server = utf8 collation-server = utf8_general_ci event_scheduler = 0 key_buffer = 512M max_allowed_packet = 64M thread_stack = 512K thread_cache_size = 512 sort_buffer_size = 24M read_buffer_size = 8M read_rnd_buffer_size = 24M join_buffer_size = 128M # for some nightly processes client sessions set the join buffer to 8 GB auto-increment-increment = 1 auto-increment-offset = 1 myisam-recover = BACKUP max_connections = 1024 # max connect errors artificially high to support behaviors of NetScaler monitors max_connect_errors = 999999 concurrent_insert = 2 connect_timeout = 5 wait_timeout = 180 net_read_timeout = 120 net_write_timeout = 120 back_log = 128 # this table_open_cache might be too low because of MySQL bugs #16244691 and #65384) table_open_cache = 12288 tmp_table_size = 512M max_heap_table_size = 512M bulk_insert_buffer_size = 512M open-files-limit = 8192 open-files = 1024 query_cache_type = 1 # large query limit supports SOAP and REST API integrations query_cache_limit = 4M # larger than 512 MB query cache size is problematic; this is typically ~60% full query_cache_size = 512M # set to true on read slaves read_only = false slow_query_log_file = /var/log/mysql/slow.log slow_query_log = 0 long_query_time = 0.2 expire_logs_days = 10 max_binlog_size = 1024M binlog_cache_size = 32K sync_binlog = 0 # SSD RAID10 technically has a write capacity of 10000 IOPS innodb_io_capacity = 400 innodb_file_per_table innodb_table_locks = true innodb_lock_wait_timeout = 30 # These servers have 80 CPU threads; match 1:1 innodb_thread_concurrency = 48 innodb_commit_concurrency = 2 innodb_support_xa = true innodb_buffer_pool_size = 32G innodb_file_per_table innodb_flush_log_at_trx_commit = 1 innodb_log_buffer_size = 2G skip-federated [mysqldump] quick quote-names single-transaction max_allowed_packet = 64M I have a monster of a server here to power our site because our catalog is very large (300,000 simple SKUs), and I'm just wondering if I'm missing anything that I can configure further. :-) Thanks!

    Read the article

  • How does the Cloud compare to Colocation? And development too

    - by David
    Currently I/we run a SaaS web application where each subscriber has their own physical instance of the application in addition to their own database. The setup has each web application instance deployed on two different IIS boxes both for load-balancing and redundancy (the machines have their Windows Update install times 12 hours apart, for example). Databases are mirrored on two different SQL Server 2012 machines with AlwaysOn for uptime. I don't make use of SQL Server clustering (as it doesn't provide storage-level failover: we don't have a shared storage box). Because it's a Windows setup it means there are two Domain Controllers (we cheat: they're both Mac Minis, 17W each, which keeps our colo power costs low). Finally there's also an Exchange server (Mailbox, Hub Transport and Client Access). One of the SQL Servers also doubles-up as an Exchange Hub Transport. Running costs are about $700 a month for our quarter-rack colocation (which includes power and peering/transfer), then there's about $150 a month for SPLA licensing, so $850 a month in total. Then there's the hard-to-quantify cost of administration, but I reckon I spend a couple of hours a week checking-in on the servers: reviewing event logs, etc. I keep getting bombarded by ads and manufactured news stories about how great "the cloud" is. Back in 2008 when the cloud was taking off I was reading up about the proper "cloud" services like Google AppEngine, where you write in Python against Google's API and that's how they scale your application across servers and also use their database provider for scaling storage. Simple enough to understand. Then came along Amazon, and I understand how Amazon Storage works, but I'm not sure how Amazon Compute works: web application pages don't take much CPU time to compute, how do you even quantify usage anyway? Finally, RackSpace gets in the act and now I'm really confused. RackSpace advertise "Cloud" SQL Server 2012 available for about "$0.70 per hour", going by how they advertise it I thought the "hour" meant the sum of CPU time, IO blocking time, maybe time spent transferring data, so for a low-intensity application that works out pretty cheap then? Nope. I went on to a Sales Chat window and spoke to one of their advisors. They told me the $0.70/hour was actually for every hour the SQL Server is running... but who wants a SQL Server for only a few hours? You're going to need it available 24 hours a day for months on end. $0.70 * 24 * 31 works out at $520 a month, which is rediculously expensive for SQL Server. An SPLA license for SQL Server is only $50 a month or so. That $520 a month does not include "fanatical support", and you also need to stack on top the costs of the host Windows server instance too. From what I can tell, Rackspace's "Cloud" products seem like like an cynical rebranding of an overpriced VPS service, but priced by the hour. I have the same confusion about Windows Azure which uses similar terms to describe the products available, but I think that's because Azure offers both traditional shared webhosting in addition to their own APIs you can target for scalable applications.

    Read the article

  • The dynamic Type in C# Simplifies COM Member Access from Visual FoxPro

    - by Rick Strahl
    I’ve written quite a bit about Visual FoxPro interoperating with .NET in the past both for ASP.NET interacting with Visual FoxPro COM objects as well as Visual FoxPro calling into .NET code via COM Interop. COM Interop with Visual FoxPro has a number of problems but one of them at least got a lot easier with the introduction of dynamic type support in .NET. One of the biggest problems with COM interop has been that it’s been really difficult to pass dynamic objects from FoxPro to .NET and get them properly typed. The only way that any strong typing can occur in .NET for FoxPro components is via COM type library exports of Visual FoxPro components. Due to limitations in Visual FoxPro’s type library support as well as the dynamic nature of the Visual FoxPro language where few things are or can be described in the form of a COM type library, a lot of useful interaction between FoxPro and .NET required the use of messy Reflection code in .NET. Reflection is .NET’s base interface to runtime type discovery and dynamic execution of code without requiring strong typing. In FoxPro terms it’s similar to EVALUATE() functionality albeit with a much more complex API and corresponiding syntax. The Reflection APIs are fairly powerful, but they are rather awkward to use and require a lot of code. Even with the creation of wrapper utility classes for common EVAL() style Reflection functionality dynamically access COM objects passed to .NET often is pretty tedious and ugly. Let’s look at a simple example. In the following code I use some FoxPro code to dynamically create an object in code and then pass this object to .NET. An alternative to this might also be to create a new object on the fly by using SCATTER NAME on a database record. How the object is created is inconsequential, other than the fact that it’s not defined as a COM object – it’s a pure FoxPro object that is passed to .NET. Here’s the code: *** Create .NET COM InstanceloNet = CREATEOBJECT('DotNetCom.DotNetComPublisher') *** Create a Customer Object Instance (factory method) loCustomer = GetCustomer() loCustomer.Name = "Rick Strahl" loCustomer.Company = "West Wind Technologies" loCustomer.creditLimit = 9999999999.99 loCustomer.Address.StreetAddress = "32 Kaiea Place" loCustomer.Address.Phone = "808 579-8342" loCustomer.Address.Email = "[email protected]" *** Pass Fox Object and echo back values ? loNet.PassRecordObject(loObject) RETURN FUNCTION GetCustomer LOCAL loCustomer, loAddress loCustomer = CREATEOBJECT("EMPTY") ADDPROPERTY(loCustomer,"Name","") ADDPROPERTY(loCustomer,"Company","") ADDPROPERTY(loCUstomer,"CreditLimit",0.00) ADDPROPERTY(loCustomer,"Entered",DATETIME()) loAddress = CREATEOBJECT("Empty") ADDPROPERTY(loAddress,"StreetAddress","") ADDPROPERTY(loAddress,"Phone","") ADDPROPERTY(loAddress,"Email","") ADDPROPERTY(loCustomer,"Address",loAddress) RETURN loCustomer ENDFUNC Now prior to .NET 4.0 you’d have to access this object passed to .NET via Reflection and the method code to do this would looks something like this in the .NET component: public string PassRecordObject(object FoxObject) { // *** using raw Reflection string Company = (string) FoxObject.GetType().InvokeMember( "Company", BindingFlags.GetProperty,null, FoxObject,null); // using the easier ComUtils wrappers string Name = (string) ComUtils.GetProperty(FoxObject,"Name"); // Getting Address object – then getting child properties object Address = ComUtils.GetProperty(FoxObject,"Address");    string Street = (string) ComUtils.GetProperty(FoxObject,"StreetAddress"); // using ComUtils 'Ex' functions you can use . Syntax     string StreetAddress = (string) ComUtils.GetPropertyEx(FoxObject,"AddressStreetAddress"); return Name + Environment.NewLine + Company + Environment.NewLine + StreetAddress + Environment.NewLine + " FOX"; } Note that the FoxObject is passed in as type object which has no specific type. Since the object doesn’t exist in .NET as a type signature the object is passed without any specific type information as plain non-descript object. To retrieve a property the Reflection APIs like Type.InvokeMember or Type.GetProperty().GetValue() etc. need to be used. I made this code a little simpler by using the Reflection Wrappers I mentioned earlier but even with those ComUtils calls the code is pretty ugly requiring passing the objects for each call and casting each element. Using .NET 4.0 Dynamic Typing makes this Code a lot cleaner Enter .NET 4.0 and the dynamic type. Replacing the input parameter to the .NET method from type object to dynamic makes the code to access the FoxPro component inside of .NET much more natural: public string PassRecordObjectDynamic(dynamic FoxObject) { // *** using raw Reflection string Company = FoxObject.Company; // *** using the easier ComUtils class string Name = FoxObject.Name; // *** using ComUtils 'ex' functions to use . Syntax string Address = FoxObject.Address.StreetAddress; return Name + Environment.NewLine + Company + Environment.NewLine + Address + Environment.NewLine + " FOX"; } As you can see the parameter is of type dynamic which as the name implies performs Reflection lookups and evaluation on the fly so all the Reflection code in the last example goes away. The code can use regular object ‘.’ syntax to reference each of the members of the object. You can access properties and call methods this way using natural object language. Also note that all the type casts that were required in the Reflection code go away – dynamic types like var can infer the type to cast to based on the target assignment. As long as the type can be inferred by the compiler at compile time (ie. the left side of the expression is strongly typed) no explicit casts are required. Note that although you get to use plain object syntax in the code above you don’t get Intellisense in Visual Studio because the type is dynamic and thus has no hard type definition in .NET . The above example calls a .NET Component from VFP, but it also works the other way around. Another frequent scenario is an .NET code calling into a FoxPro COM object that returns a dynamic result. Assume you have a FoxPro COM object returns a FoxPro Cursor Record as an object: DEFINE CLASS FoxData AS SESSION OlePublic cAppStartPath = "" FUNCTION INIT THIS.cAppStartPath = ADDBS( JustPath(Application.ServerName) ) SET PATH TO ( THIS.cAppStartpath ) ENDFUNC FUNCTION GetRecord(lnPk) LOCAL loCustomer SELECT * FROM tt_Cust WHERE pk = lnPk ; INTO CURSOR TCustomer IF _TALLY < 1 RETURN NULL ENDIF SCATTER NAME loCustomer MEMO RETURN loCustomer ENDFUNC ENDDEFINE If you call this from a .NET application you can now retrieve this data via COM Interop and cast the result as dynamic to simplify the data access of the dynamic FoxPro type that was created on the fly: int pk = 0; int.TryParse(Request.QueryString["id"],out pk); // Create Fox COM Object with Com Callable Wrapper FoxData foxData = new FoxData(); dynamic foxRecord = foxData.GetRecord(pk); string company = foxRecord.Company; DateTime entered = foxRecord.Entered; This code looks simple and natural as it should be – heck you could write code like this in days long gone by in scripting languages like ASP classic for example. Compared to the Reflection code that previously was necessary to run similar code this is much easier to write, understand and maintain. For COM interop and Visual FoxPro operation dynamic type support in .NET 4.0 is a huge improvement and certainly makes it much easier to deal with FoxPro code that calls into .NET. Regardless of whether you’re using COM for calling Visual FoxPro objects from .NET (ASP.NET calling a COM component and getting a dynamic result returned) or whether FoxPro code is calling into a .NET COM component from a FoxPro desktop application. At one point or another FoxPro likely ends up passing complex dynamic data to .NET and for this the dynamic typing makes coding much cleaner and more readable without having to create custom Reflection wrappers. As a bonus the dynamic runtime that underlies the dynamic type is fairly efficient in terms of making Reflection calls especially if members are repeatedly accessed. © Rick Strahl, West Wind Technologies, 2005-2010Posted in COM  FoxPro  .NET  CSharp  

    Read the article

  • Integrate SharePoint 2010 with Team Foundation Server 2010

    - by Martin Hinshelwood
    Our client is using a brand new shiny installation of SharePoint 2010, so we need to integrate our upgraded Team Foundation Server 2010 instance into it. In order to do that you need to run the Team Foundation Server 2010 install on the SharePoint 2010 server and choose to install only the “Extensions for SharePoint Products and Technologies”. We want out upgraded Team Project Collection to create any new portal in this SharePoint 2010 server farm. There a number of goodies above and beyond a solution file that requires the install, with the main one being the TFS2010 client API. These goodies allow proper integration with the creation and viewing of Work Items from SharePoint a new feature with TFS 2010. This works in both SharePoint 2007 and SharePoint 2010 with the level of integration dependant on the version of SharePoint that you are running. There are three levels of integration with “SharePoint Services 3.0” or “SharePoint Foundation 2010” being the lowest. This level only offers reporting services framed integration for reporting along with Work Item Integration and document management. The highest is Microsoft Office SharePoint Services (MOSS) Enterprise with Excel Services integration providing some lovely dashboards. Figure: Dashboards take the guessing out of Project Planning and estimation. Plus writing these reports would be boring!   The Extensions that you need are on the same installation media as the main TFS install and the only difference is the options you pick during the install. Figure: Installing the TFS 2010 Extensions for SharePoint Products and Technologies onto SharePoint 2010   Annoyingly you may need to reboot a couple of times, but on this server the process was MUCH smother than on our internal server. I think this was mostly to do with this being a clean install. Once it is installed you need to run the configuration. This will add all of the Solution and Templates that are needed for SharePoint to work properly with TFS. Figure: This is where all the TFS 2010 goodies are added to your SharePoint 2010 server and the TFS 2010 object model is installed.   Figure: All done, you have everything installed, but you still need to configure it Now that we have the TFS 2010 SharePoint Extensions installed on our SharePoint 2010 server we need to configure them both so that they will talk happily to each other. Configuring the SharePoint 2010 Managed path for Team Foundation Server 2010 In order for TFS to automatically create your project portals you need a wildcard managed path setup. This is where TFS will create the portal during the creation of a new Team project. To find the managed paths page for any application you need to first select the “Managed web applications”  link from the SharePoint 2010 Central Administration screen. Figure: Find the “Manage web applications” link under the “Application Management” section. On you are there you will see that the “Managed Paths” are there, they are just greyed out and selecting one of the applications will enable it to be clicked. Figure: You need to select an application for the SharePoint 2010 ribbon to activate.   Figure: You need to select an application before you can get to the Managed Paths for that application. Now we need to add a managed path for TFS 2010 to create its portals under. I have gone for the obvious option of just calling the managed path “TFS02” as the TFS 2010 server is the second TFS server that the client has installed, TFS 2008 being the first. This links the location to the server name, and as you can’t have two projects of the same name in two separate project collections there is unlikely to be any conflicts. Figure: Add a “tfs02” wildcard inclusion path to your SharePoint site. Configure the Team Foundation Server 2010 connection to SharePoint 2010 In order to have you new TFS 2010 Server talk to and create sites in SharePoint 2010 you need to tell the TFS server where to put them. As this TFS 2010 server was installed in out-of-the-box mode it has a SharePoint Services 3.0 (the free one) server running on the same box. But we want to change that so we can use the external SharePoint 2010 instance. Just open the “Team Foundation Server Administration Console” and navigate to the “SharePoint Web Applications” section. Here you click “Add” and enter the details for the Managed path we just created. Figure: If you have special permissions on your SharePoint you may need to add accounts to the “Service Accounts” section.    Before we can se this new SharePoint 2010 instance to be the default for our upgraded Team Project Collection we need to configure SharePoint to take instructions from our TFS server. Configure SharePoint 2010 to connect to Team Foundation Server 2010 On your SharePoint 2010 server open the Team Foundation Server Administration Console and select the “Extensions for SharePoint Products and Technologies” node. Here we need to “grant access” for our TFS 2010 server to create sites. Click the “Grant access” link and  fill out the full URL to the  TFS server, for example http://servername.domain.com:8080/tfs, and if need be restrict the path that TFS sites can be created on. Remember that when the users create a new team project they can change the default and point it anywhere they like as long as it is an authorised SharePoint location. Figure: Grant access for your TFS 2010 server to create sites in SharePoint 2010 Now that we have an authorised location for our team project portals to be created we need to tell our Team Project Collection that this is where it should stick sites by default for any new Team Projects created. Configure the Team Foundation Server 2010 Team Project Collection to create new sites in SharePoint 2010 Back on out TFS 2010 server we need to setup the defaults for our upgraded Team Project Collection to the new SharePoint 2010 integration we have just set up. On the TFS 2010 server open up the “Team Foundation Server Administration Console” again and navigate to the “Team Project Collections” node. Once you are there you will see a list of all of your TPC’s and in our case we have a DefaultCollection as well as out named and Upgraded collection for TFS 2008. If you select the “SharePoint Site” tab we can see that it is not currently configured. Figure: Our new Upgrade TFS2008 Team Project Collection does not have SharePoint configured Select to “Edit Default Site Location” and select the new integration point that we just set up for SharePoint 2010. Once you have selected the “SharePoint Web Application” (the thing we just configured) then it will give you an example based on that configuration point and the name of the Team Project Collection that we are configuring. Figure: Set the default location for new Team Project Portals to be created for this Team Project Collection This is where the reason for configuring the Extensions on the SharePoint 2010 server before doing this last bit becomes apparent. TFS 2010 is going to create a site at our http://sharepointserver/tfs02/ location called http://sharepointserver/tfs02/[TeamProjectCollection], or whatever we had specified, and it would have had difficulty doing this if we had not given it permission first. Figure: If there is no Team Project Collection site at this location the TFS 2010 server is going to create one This will create a nice Team Project Collection parent site to contain the Portals for any new Team Projects that are created. It is with noting that it will not create portals for existing Team Projects as this process is run during the Team Project Creation wizard. Figure: Just a basic parent site to host all of your new Team Project Portals as sub sites   You will need to add all of the users that will be creating Team Projects to be Administrators of this site so that they will not get an error during the Project Creation Wizard. You may also want to customise this as a proper portal to your projects if you are going to be having lots of them, but it is really just a default placeholder so you have a top level site that you can backup and point at. You have now integrated SharePoint 2010 and team Foundation Server 2010! You can now go forth and multiple your Team Projects for this Team Project Collection or you can continue to add portals to your other Collections.   Technorati Tags: TFS 2010,Sharepoint 2010,VS ALM

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • CodePlex Daily Summary for Friday, February 19, 2010

    CodePlex Daily Summary for Friday, February 19, 2010New ProjectsApplication Management Library: Application Management makes your application life easier. It will automatic do memory management, handle and log unhandled exceptions, profiling y...Audio Service - Play Wave Files From Windows Service: This is a windows service that Check a registry key, when the key is updated with a new wave file path the service plays the wave file.Aviamodels: 3d drawing AviamodelsControl of payment proofs program for Greek citizens: This is a program that is used for Greek citizens who want to keep track of their payment proofs.Cover Creator: Cover Creator gives you the possibility to create and print CD covers. Content of CD is taken from http://www.freedb.org/ or can be added/modyfied ...DevBoard: DevBoard is a webbased scrum tool that helps developers/team get a clear overview of the project progress. It's developed in C# and silverlight.Flex AdventureWorks: The is mostly a skunk-works application to help me get acclimated to CodePlex. The long term goal is to integrate a Flex UI with the AdventureWor...GRE Wordlist: An intuitive and customizable word list for GRE aspirants. Developed in Java using a word list similar to Barron's.Indexer: A desktop file Index and Search tool which allows you to choose a list of folders to index, and then search on later. It is based on Lucene.net an...Project Management Office (PMO) for SharePoint: Sample web part for the Code Mastery event in Boston, February 11, 2010.Restart SQL Audit Policy and Job: Resolve SQL 2008 Audit Network Connectivity Issue.Rounded Corners / DIV Container: The RoundedDiv round corners container is a skin-able, CSS compliant UI control. Select which corners should be rounded, collapse and expand the c...Silverlight Google Search Application: The Silverlight Google Search Application uses Google Search API and behaves like Internet Search Application with option to preview desired page i...Weather Forecast Control: MyWeather forecast control pulls up to date weather forecast information from The Weather Channel for your website.New ReleasesApplication Management Library: ApplicationManagement v1.0: First ReleaseAudio Service - Play Wave Files From Windows Service: Audio Service v1.0: This is a working version of the Audio Service. Please use as you need to.AutoMapper: 1.0.1 for Silverlight 3.0 Alpha: AutoMapper for Silverlight 3.0. Features not supported: IDataReader mapping IListSource mapping All other features are supported.Buzz Dot Net: Buzz Dot Net v.1.10219: Buzz Dot Net Library (Parser & Objects) + WPF Example (using MVVM & Threading)Canvas VSDOC Intellisense: V 1.0.0.0a: This release contains two JavaScript files: canvas-utils.js (can be referenced in both runtime and development environment) canvas-vsdoc.js (must ...Control of payment proofs program for Greek citizens: Payment Proofs: source codeCourier: Beta 2: Added Rx Framework support and re-factored how message registration and un-registration works Blog post explaining the updates and re-factoring c...Cover Creator: Initial release: This is initial stable release. For now only in Polish language.Employee Scheduler: Employee Scheduler 2.2: Small Bug found. Small total hour calculation bug. See http://employeescheduler.codeplex.com/WorkItem/View.aspx?WorkItemId=6059 Extract the files...EnhSim: Release v1.9.7.1: Release v1.9.7.1Implemented Dislodged Foreign Object trinket Whispering Fanged Skull now also procs off Flame shock dots You can toggle bloodlust o...Extend SmallBasic: Teaching Extensions v.007: added SimpleSquareTest added Tortoise.Approve() for virtual proctor how to use virtual proctor: change the path in the proctor.txt file (located i...FolderSize: FolderSize.Win32.1.0.1.0: FolderSize.Win32.1.0.1.0 A simple utility intended to be used to scan harddrives for the folders that take most place and display this to the user...GLB Virtual Player Builder: v0.4.0 Beta: Allows for user to import and use archetypes for building players. The archetypes are contained in the file "archetypes.xml". This file is editab...Google Map WebPart from SharePoint List: GMap Stable Release: GMap Stable ReleaseHenge3D Physics Library for XNA: Henge3D Source (2010-02 R2): Fixed a build error related to an assembly attribute in XBOX 360 builds. Tweaked the controls in the sample when targeting the 360. Reduced the...Indexer: Beta Release 1: Just the initial/rough cut.NukeCS: NukeCS 5.2.3 Source Code: update version to 5.2.3ODOS: ODOS STABLE 1.5.0: Thank you for your patience while we develop this version. Not that much has been added, though. Just doing some sub-conscious stuff to make life...PoshBoard: PoshBoard 3.0 Beta 1: Welcome to the first beta release of PoshBoard 3.0 ! IMPORTANT WARNING : this release is absolutly not feature complete and is error-prone. Okay, ...Restart SQL Audit Policy and Job: Restart SQL 2008 Audit Policy and Job: This folder contains three pieces of source code: Server Audit Status (Started).xml - Import this on-schedule policy into your server's Policy-Ba...SAL- Self Artificial Learning: Artificial Learning 2AQV Working Proof Of Concept: This is the Simulation proof of concept version that comes after the 1aq version. AQ stands for Anwering Questions.SharePoint 2010 Word Automation: SP 2010 Word Automation - Workflow Actions 1.1: This release includes two new custom workflow activities for SharePoint designer Convert Folder Convert Library More information about these new...SharePoint Outlook Connector: Version 1.0.1.1: Exception Logging has been improved.Sharpy: Sharpy 1.2 Alpha: This is the third Sharpy release. A change has been made to allow overriding the master page from the controller. The release contains the single ...Silverlight Google Search Application: SL Google Search App Alpha: This is just a first alpha version of the application, as it looks like when I uploaded it to CodePlex. The application works, requires Silverlight...Starter Kit Mytrip.Mvc.Entity: Mytrip.Mvc.Entity 1.0 RC: EF Membership UserManager FileManager Localization Captcha ClientValidation Theme CrossBrowser VS 2010 RC MVC 2 RC db MSSQL2008thinktecture WSCF.blue: WSCF.blue V1 Update (1.0.6): This release is an update for WSCF.blue V1. Below are the bug fixes made since the V1.0.5 release: The data contract type filter was not including...TS3QueryLib.Net: TS3QueryLib.Net Version 0.18.13.0: Changelog Added overloads to all methods of QueryRunenr class handling permission tasks to allow passing of permission name instead of permissionid...Umbraco CMS: Umbraco 4.1 Beta 2: This is the second beta of Umbraco 4.1. Umbraco 4.1 is more advanced than ever, yet faster, lighter and simpler to use than ever. We, on behalf of...VCC: Latest build, v2.1.30218.0: Automatic drop of latest buildZack's Fiasco - Code Generated DAL: v1.2.4: Enhancements: SQL Server CRUD Stored Procedures added option for USE <db> added option to create or not create INSERT sprocs added option to cr...Most Popular ProjectsRawrWBFS ManagerAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitWindows Presentation Foundation (WPF)Image Resizer Powertoy Clone for WindowsASP.NETMicrosoft SQL Server Community & SamplesDotNetNuke® Community EditionMost Active ProjectsRawrSharpyDinnerNow.netBlogEngine.NETjQuery Library for SharePoint Web ServicesNB_Store - Free DotNetNuke Ecommerce Catalog Modulepatterns & practices – Enterprise LibraryPHPExcelFacebook Developer ToolkitFluent Ribbon Control Suite

    Read the article

  • Parallelism in .NET – Part 14, The Different Forms of Task

    - by Reed
    Before discussing Task creation and actual usage in concurrent environments, I will briefly expand upon my introduction of the Task class and provide a short explanation of the distinct forms of Task.  The Task Parallel Library includes four distinct, though related, variations on the Task class. In my introduction to the Task class, I focused on the most basic version of Task.  This version of Task, the standard Task class, is most often used with an Action delegate.  This allows you to implement for each task within the task decomposition as a single delegate. Typically, when using the new threading constructs in .NET 4 and the Task Parallel Library, we use lambda expressions to define anonymous methods.  The advantage of using a lambda expression is that it allows the Action delegate to directly use variables in the calling scope.  This eliminates the need to make separate Task classes for Action<T>, Action<T1,T2>, and all of the other Action<…> delegate types.  As an example, suppose we wanted to make a Task to handle the ”Show Splash” task from our earlier decomposition.  Even if this task required parameters, such as a message to display, we could still use an Action delegate specified via a lambda: // Store this as a local variable string messageForSplashScreen = GetSplashScreenMessage(); // Create our task Task showSplashTask = new Task( () => { // We can use variables in our outer scope, // as well as methods scoped to our class! this.DisplaySplashScreen(messageForSplashScreen); }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This provides a huge amount of flexibility.  We can use this single form of task for any task which performs an operation, provided the only information we need to track is whether the task has completed successfully or not.  This leads to my first observation: Use a Task with a System.Action delegate for any task for which no result is generated. This observation leads to an obvious corollary: we also need a way to define a task which generates a result.  The Task Parallel Library provides this via the Task<TResult> class. Task<TResult> subclasses the standard Task class, providing one additional feature – the ability to return a value back to the user of the task.  This is done by switching from providing an Action delegate to providing a Func<TResult> delegate.  If we decompose our problem, and we realize we have one task where its result is required by a future operation, this can be handled via Task<TResult>.  For example, suppose we want to make a task for our “Check for Update” task, we could do: Task<bool> checkForUpdateTask = new Task<bool>( () => { return this.CheckWebsiteForUpdate(); }); Later, we would start this task, and perform some other work.  At any point in the future, we could get the value from the Task<TResult>.Result property, which will cause our thread to block until the task has finished processing: // This uses Task<bool> checkForUpdateTask generated above... // Start the task, typically on a background thread checkForUpdateTask.Start(); // Do some other work on our current thread this.DoSomeWork(); // Discover, from our background task, whether an update is available // This will block until our task completes bool updateAvailable = checkForUpdateTask.Result; This leads me to my second observation: Use a Task<TResult> with a System.Func<TResult> delegate for any task which generates a result. Task and Task<TResult> provide a much cleaner alternative to the previous Asynchronous Programming design patterns in the .NET framework.  Instead of trying to implement IAsyncResult, and providing BeginXXX() and EndXXX() methods, implementing an asynchronous programming API can be as simple as creating a method that returns a Task or Task<TResult>.  The client side of the pattern also is dramatically simplified – the client can call a method, then either choose to call task.Wait() or use task.Result when it needs to wait for the operation’s completion. While this provides a much cleaner model for future APIs, there is quite a bit of infrastructure built around the current Asynchronous Programming design patterns.  In order to provide a model to work with existing APIs, two other forms of Task exist.  There is a constructor for Task which takes an Action<Object> and a state parameter.  In addition, there is a constructor for creating a Task<TResult> which takes a Func<Object, TResult> as well as a state parameter.  When using these constructors, the state parameter is stored in the Task.AsyncState property. While these two overloads exist, and are usable directly, I strongly recommend avoiding this for new development.  The two forms of Task which take an object state parameter exist primarily for interoperability with traditional .NET Asynchronous Programming methodologies.  Using lambda expressions to capture variables from the scope of the creator is a much cleaner approach than using the untyped state parameters, since lambda expressions provide full type safety without introducing new variables.

    Read the article

  • Anunciando Windows Azure Mobile Services (Serviços Móveis da Windows Azure)

    - by Leniel Macaferi
    Estou animado para anunciar uma nova capacidade que estamos adicionando à Windows Azure hoje: Windows Azure Mobile Services (Serviços Móveis da Windows Azure) Os Serviços Móveis da Windows Azure tornam incrivelmente fácil conectar um backend da nuvem escalável em suas aplicações clientes e móveis. Estes serviços permitem que você facilmente armazene dados estruturados na nuvem que podem abranger dispositivos e usuários, integrando tais dados com autenticação do usuário. Você também pode enviar atualizações para os clientes através de notificações push. O lançamento de hoje permite que você adicione essas capacidades em qualquer aplicação Windows 8 em literalmente minutos, e fornece uma maneira super produtiva para que você transforme rapidamente suas ideias em aplicações. Também vamos adicionar suporte para permitir esses mesmos cenários para o Windows Phone, iOS e dispositivos Android em breve. Leia este tutorial inicial (em Inglês) que mostra como você pode construir (em menos de 5 minutos) uma simples aplicação Windows 8 "Todo List" (Lista de Tarefas) que é habilitada para a nuvem usando os Serviços Móveis da Windows Azure. Ou assista este vídeo (em Inglês) onde mostro como construí-la passo a passo. Começando Se você ainda não possui uma conta na Windows Azure, você pode se inscrever usando uma assinatura gratuita sem compromisso. Uma vez inscrito, clique na seção "preview features" logo abaixo da tab "account" (conta) no website www.windowsazure.com e ative sua conta para ter acesso ao preview dos "Mobile Services" (Serviços Móveis). Instruções sobre como ativar estes novos recursos podem ser encontradas aqui (em Inglês). Depois de habilitar os Serviços Móveis, entre no Portal da Windows Azure, clique no botão "New" (Novo) e escolha o novo ícone "Mobile Services" (Serviços Móveis) para criar o seu primeiro backend móvel. Uma vez criado, você verá uma página de início rápido como a mostrada a seguir com instruções sobre como conectar o seu serviço móvel a uma aplicação Windows 8 cliente já existente, a qual você já tenha começado a implementar, ou como criar e conectar uma nova aplicação Windows 8 cliente ao backend móvel: Leia este tutorial inicial (em Inglês) com explicações passo a passo sobre como construir (em menos de 5 minutos) uma simples aplicação Windows 8 "Todo List" (Lista de Tarefas) que armazena os dados na Windows Azure. Armazenamento Dados na Nuvem Armazenar dados na nuvem com os Serviços Móveis da Windows Azure é incrivelmente fácil. Quando você cria um Serviço Móvel da Windows Azure, nós automaticamente o associamos com um banco de dados SQL dentro da Windows Azure. O backend do Serviço Móvel da Windows Azure então fornece suporte nativo para permitir que aplicações remotas armazenem e recuperem dados com segurança através dele (usando end-points REST seguros, através de um formato OData baseado em JSON) - sem que você tenha que escrever ou implantar qualquer código personalizado no servidor. Suporte integrado para o gerenciamento do backend é fornecido dentro do Portal da Windows Azure para a criação de novas tabelas, navegação pelos dados, criação de índices, e controle de permissões de acesso. Isto torna incrivelmente fácil conectar aplicações clientes na nuvem, e permite que os desenvolvedores de aplicações desktop que não têm muito conhecimento sobre código que roda no servidor sejam produtivos desde o início. Eles podem se concentrar na construção da experiência da aplicação cliente, tirando vantagem dos Serviços Móveis da Windows Azure para fornecer os serviços de backend da nuvem que se façam necessários.  A seguir está um exemplo de código Windows 8 C#/XAML do lado do cliente que poderia ser usado para consultar os dados de um Serviço Móvel da Windows Azure. Desenvolvedores de aplicações que rodam no cliente e que usam C# podem escrever consultas como esta usando LINQ e objetos fortemente tipados POCO, os quais serão mais tarde traduzidos em consultas HTTP REST que são executadas em um Serviço Móvel da Windows Azure. Os desenvolvedores não precisam escrever ou implantar qualquer código personalizado no lado do servidor para permitir que o código do lado do cliente mostrado a seguir seja executado de forma assíncrona preenchendo a interface (UI) do cliente: Como os Serviços Móveis fazem parte da Windows Azure, os desenvolvedores podem escolher mais tarde se querem aumentar ou estender sua solução adicionando funcionalidades no lado do servidor bem como lógica de negócio mais avançada, se quiserem. Isso proporciona o máximo de flexibilidade, e permite que os desenvolvedores ampliem suas soluções para atender qualquer necessidade. Autenticação do Usuário e Notificações Push Os Serviços Móveis da Windows Azure também tornam incrivelmente fácil integrar autenticação/autorização de usuários e notificações push em suas aplicações. Você pode usar esses recursos para habilitar autenticação e controlar as permissões de acesso aos dados que você armazena na nuvem de uma maneira granular. Você também pode enviar notificações push para os usuários/dispositivos quando os dados são alterados. Os Serviços Móveis da Windows Azure suportam o conceito de "scripts do servidor" (pequenos pedaços de script que são executados no servidor em resposta a ações), os quais tornam a habilitação desses cenários muito fácil. A seguir estão links para alguns tutoriais (em Inglês) no formato passo a passo para cenários comuns de autenticação/autorização/push que você pode utilizar com os Serviços Móveis da Windows Azure e aplicações Windows 8: Habilitando Autenticação do Usuário Autorizando Usuários  Começando com Push Notifications Push Notifications para múltiplos Usuários Gerencie e Monitore seu Serviço Móvel Assim como todos os outros serviços na Windows Azure, você pode monitorar o uso e as métricas do backend de seu Serviço Móvel usando a tab "Dashboard" dentro do Portal da Windows Azure. A tab Dashboard fornece uma visão de monitoramento que mostra as chamadas de API, largura de banda e ciclos de CPU do servidor consumidos pelo seu Serviço Móvel da Windows Azure. Você também usar a tab "Logs" dentro do portal para ver mensagens de erro.  Isto torna fácil monitorar e controlar como sua aplicação está funcionando. Aumente a Capacidade de acordo com o Crescimento do Seu Negócio Os Serviços Móveis da Windows Azure agora permitem que cada cliente da Windows Azure crie e execute até 10 Serviços Móveis de forma gratuita, em um ambiente de hospedagem compartilhado com múltiplos banco de dados (onde o backend do seu Serviço Móvel será um dos vários aplicativos sendo executados em um conjunto compartilhado de recursos do servidor). Isso fornece uma maneira fácil de começar a implementar seus projetos sem nenhum custo algum (nota: cada conta gratuita da Windows Azure também inclui um banco de dados SQL de 1GB que você pode usar com qualquer número de aplicações ou Serviços Móveis da Windows Azure). Se sua aplicação cliente se tornar popular, você pode clicar na tab "Scale" (Aumentar Capacidade) do seu Serviço Móvel e mudar de "Shared" (Compartilhado) para o modo "Reserved" (Reservado). Isso permite que você possa isolar suas aplicações de maneira que você seja o único cliente dentro de uma máquina virtual. Isso permite que você dimensione elasticamente a quantidade de recursos que suas aplicações consomem - permitindo que você aumente (ou diminua) sua capacidade de acordo com o tráfego de dados: Com a Windows Azure você paga por capacidade de processamento por hora - o que te permite dimensionar para cima e para baixo seus recursos para atender apenas o que você precisa. Isso permite um modelo super flexível que é ideal para novos cenários de aplicações móveis, bem como para novas empresas que estão apenas começando. Resumo Eu só toquei na superfície do que você pode fazer com os Serviços Móveis da Windows Azure - há muito mais recursos para explorar. Com os Serviços Móveis da Windows Azure, você será capaz de construir cenários de aplicações móveis mais rápido do que nunca, permitindo experiências de usuário ainda melhores - conectando suas aplicações clientes na nuvem. Visite o centro de desenvolvimento dos Serviços Móveis da Windows Azure (em Inglês) para aprender mais, e construa sua primeira aplicação Windows 8 conectada à Windows Azure hoje. E leia este tutorial inicial (em Inglês) com explicações passo a passo que mostram como você pode construir (em menos de 5 minutos) uma simples aplicação Windows 8 "Todo List" (Lista de Tarefas) habilitada para a nuvem usando os Serviços Móveis da Windows Azure. Espero que ajude, - Scott P.S. Além do blog, eu também estou utilizando o Twitter para atualizações rápidas e para compartilhar links. Siga-me em: twitter.com/ScottGu Texto traduzido do post original por Leniel Macaferi.

    Read the article

  • SQL Azure Reporting Limited CTP Arrived

    - by Shaun
    It’s about 3 months later when I registered the SQL Azure Reporting CTP on the Microsoft Connect after TechED 2010 China. Today when I checked my mailbox I found that the SQL Azure team had just accepted my request and sent the activation code over to me. So let’s have a look on the new SQL Azure Reporting.   Concept The SQL Azure Reporting provides cloud-based reporting as a service, built on SQL Server Reporting Services and SQL Azure technologies. Cloud-based reporting solutions such as SQL Azure Reporting provide many benefits, including rapid provisioning, cost-effective scalability, high availability, and reduced management overhead for report servers; and secure access, viewing, and management of reports. By using the SQL Azure Reporting service, we can do: Embed the Visual Studio Report Viewer ADO.NET Ajax control or Windows Form control to view the reports deployed on SQL Azure Reporting Service in our web or desktop application. Leverage the SQL Azure Reporting SOAP API to manage and retrieve the report content from any kinds of application. Use the SQL Azure Reporting Service Portal to navigate and view the reports deployed on the cloud. Since the SQL Azure Reporting was built based on the SQL Server 2008 R2 Reporting Service, we can use any tools we are familiar with, such as the SQL Server Integration Studio, Visual Studio Report Viewer. The SQL Azure Reporting Service runs as a remote SQL Server Reporting Service just on the cloud rather than on a server besides us.   Establish a New SQL Azure Reporting Let’s move to the windows azure deveploer portal and click the Reporting item from the left side navigation bar. If you don’t have the activation code you can click the Sign Up button to send a requirement to the Microsoft Connect. Since I already recieved the received code mail I clicked the Provision button. Then after agree the terms of the service I will select the subscription for where my SQL Azure Reporting CTP should be provisioned. In this case I selected my free Windows Azure Pass subscription. Then the final step, paste the activation code and enter the password of our SQL Azure Reporting Service. The user name of the SQL Azure Reporting will be generated by SQL Azure automatically. After a while the new SQL Azure Reporting Server will be shown on our developer portal. The Reporting Service URL and the user name will be shown as well. We can reset the password from the toolbar button.   Deploy Report to SQL Azure Reporting If you are familiar with SQL Server Reporting Service you will find this part will be very similar with what you know and what you did before. Firstly we open the SQL Server Business Intelligence Development Studio and create a new Report Server Project. Then we will create a shared data source where the report data will be retrieved from. This data source can be SQL Azure but we can use local SQL Server or other database if it opens the port up. In this case we use a SQL Azure database located in the same data center of our reporting service. In the Credentials tab page we entered the user name and password to this SQL Azure database. The SQL Azure Reporting CTP only available at the North US Data Center now so that the related SQL Server and hosted service might be better to select the same data center to avoid the external data transfer fee. Then we create a very simple report, just retrieve all records from a table named Members and have a table in the report to list them. In the data source selection step we choose the shared data source we created before, then enter the T-SQL to select all records from the Member table, then put all fields into the table columns. The report will be like this as following In order to deploy the report onto the SQL Azure Reporting Service we need to update the project property. Right click the project node from the solution explorer and select the property item. In the Target Server URL item we will specify the reporting server URL of our SQL Azure Reporting. We can go back to the developer portal and select the reporting node from the left side, then copy the Web Service URL and paste here. But notice that we need to append “/reportserver” after pasted. Then just click the Deploy menu item in the context menu of the project, the Visual Studio will compile the report and then upload to the reporting service accordingly. In this step we will be prompted to input the user name and password of our SQL Azure Reporting Service. We can get the user name from the developer portal, just next to the Web Service URL in the SQL Azure Reporting page. And the password is the one we specified when created the reporting service. After about one minute the report will be deployed succeed.   View the Report in Browser SQL Azure Reporting allows us to view the reports which deployed on the cloud from a standard browser. We copied the Web Service URL from the reporting service main page and appended “/reportserver” in HTTPS protocol then we will have the SQL Azure Reporting Service login page. After entered the user name and password of the SQL Azure Reporting Service we can see the directories and reports listed. Click the report will launch the Report Viewer to render the report.   View Report in a Web Role with the Report Viewer The ASP.NET and Windows Form Report Viewer works well with the SQL Azure Reporting Service as well. We can create a ASP.NET Web Role and added the Report Viewer control in the default page. What we need to change to the report viewer are Change the Processing Mode to Remote. Specify the Report Server URL under the Server Remote category to the URL of the SQL Azure Reporting Web Service URL with “/reportserver” appended. Specify the Report Path to the report which we want to display. The report name should NOT include the extension name. For example my report was in the SqlAzureReportingTest project and named MemberList.rdl then the report path should be /SqlAzureReportingTest/MemberList. And the next one is to specify the SQL Azure Reporting Credentials. We can use the following class to wrap the report server credential. 1: private class ReportServerCredentials : IReportServerCredentials 2: { 3: private string _userName; 4: private string _password; 5: private string _domain; 6:  7: public ReportServerCredentials(string userName, string password, string domain) 8: { 9: _userName = userName; 10: _password = password; 11: _domain = domain; 12: } 13:  14: public WindowsIdentity ImpersonationUser 15: { 16: get 17: { 18: return null; 19: } 20: } 21:  22: public ICredentials NetworkCredentials 23: { 24: get 25: { 26: return null; 27: } 28: } 29:  30: public bool GetFormsCredentials(out Cookie authCookie, out string user, out string password, out string authority) 31: { 32: authCookie = null; 33: user = _userName; 34: password = _password; 35: authority = _domain; 36: return true; 37: } 38: } And then in the Page_Load method, pass it to the report viewer. 1: protected void Page_Load(object sender, EventArgs e) 2: { 3: ReportViewer1.ServerReport.ReportServerCredentials = new ReportServerCredentials( 4: "<user name>", 5: "<password>", 6: "<sql azure reporting web service url>"); 7: } Finally deploy it to Windows Azure and enjoy the report.   Summary In this post I introduced the SQL Azure Reporting CTP which had just available. Likes other features in Windows Azure, the SQL Azure Reporting is very similar with the SQL Server Reporting. As you can see in this post we can use the existing and familiar tools to build and deploy the reports and display them on a website. But the SQL Azure Reporting is just in the CTP stage which means It is free. There’s no support for it. Only available at the North US Data Center. You can get more information about the SQL Azure Reporting CTP from the links following SQL Azure Reporting Limited CTP at MSDN SQL Azure Reporting Samples at TechNet Wiki You can download the solutions and the projects used in this post here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Interesting articles and blogs on SPARC T4

    - by mv
    Interesting articles and blogs on SPARC T4 processor   I have consolidated all the interesting information I could get on SPARC T4 processor and its hardware cryptographic capabilities.  Hope its useful. 1. Advantages of SPARC T4 processor  Most important points in this T4 announcement are : "The SPARC T4 processor was designed from the ground up for high speed security and has a cryptographic stream processing unit (SPU) integrated directly into each processor core. These accelerators support 16 industry standard security ciphers and enable high speed encryption at rates 3 to 5 times that of competing processors. By integrating encryption capabilities directly inside the instruction pipeline, the SPARC T4 processor eliminates the performance and cost barriers typically associated with secure computing and makes it possible to deliver high security levels without impacting the user experience." Data Sheet has more details on these  : "New on-chip Encryption Instruction Accelerators with direct non-privileged support for 16 industry-standard cryptographic algorithms plus random number generation in each of the eight cores: AES, Camellia, CRC32c, DES, 3DES, DH, DSA, ECC, Kasumi, MD5, RSA, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512" I ran "isainfo -v" command on Solaris 11 Sparc T4-1 system. It shows the new instructions as expected  : $ isainfo -v 64-bit sparcv9 applications crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5 camellia kasumi des aes ima hpc vis3 fmaf asi_blk_init vis2 vis popc 32-bit sparc applications crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5 camellia kasumi des aes ima hpc vis3 fmaf asi_blk_init vis2 vis popc v8plus div32 mul32  2.  Dan Anderson's Blog have some interesting points about how these can be used : "New T4 crypto instructions include: aes_kexpand0, aes_kexpand1, aes_kexpand2,         aes_eround01, aes_eround23, aes_eround01_l, aes_eround_23_l, aes_dround01, aes_dround23, aes_dround01_l, aes_dround_23_l.       Having SPARC T4 hardware crypto instructions is all well and good, but how do we access it ?      The software is available with Solaris 11 and is used automatically if you are running Solaris a SPARC T4.  It is used internally in the kernel through kernel crypto modules.  It is available in user space through the PKCS#11 library." 3.   Dans' Blog on Where's the Crypto Libraries? Although this was written in 2009 but still is very useful  "Here's a brief tour of the major crypto libraries shown in the digraph:   The libpkcs11 library contains the PKCS#11 API (C_\*() functions, such as C_Initialize()). That in turn calls library pkcs11_softtoken or pkcs11_kernel, for userland or kernel crypto providers. The latter is used mostly for hardware-assisted cryptography (such as n2cp for Niagara2 SPARC processors), as that is performed more efficiently in kernel space with the "kCF" module (Kernel Crypto Framework). Additionally, for Solaris 10, strong crypto algorithms were split off in separate libraries, pkcs11_softtoken_extra libcryptoutil contains low-level utility functions to help implement cryptography. libsoftcrypto (OpenSolaris and Solaris Nevada only) implements several symmetric-key crypto algorithms in software, such as AES, RC4, and DES3, and the bignum library (used for RSA). libmd implements MD5, SHA, and SHA2 message digest algorithms" 4. Difference in T3 and T4 Diagram in this blog is good and self explanatory. Jeff's blog also highlights the differences  "The T4 servers have improved crypto acceleration, described at https://blogs.oracle.com/DanX/entry/sparc_t4_openssl_engine. It is "just built in" so administrators no longer have to assign crypto accelerator units to domains - it "just happens". Every physical or virtual CPU on a SPARC-T4 has full access to hardware based crypto acceleration at all times. .... For completeness sake, it's worth noting that the T4 adds more crypto algorithms, and accelerates Camelia, CRC32c, and more SHA-x." 5. About performance counters In this blog, performance counters are explained : "Note that unlike T3 and before, T4 crypto doesn't require kernel modules like ncp or n2cp, there is no visibility of crypto hardware with kstats or cryptoadm. T4 does provide hardware counters for crypto operations.  You can see these using cpustat: cpustat -c pic0=Instr_FGU_crypto 5 You can check the general crypto support of the hardware and OS with the command "isainfo -v". Since T4 crypto's implementation now allows direct userland access, there are no "crypto units" visible to cryptoadm.  " For more details refer Martin's blog as well. 6. How to turn off  SPARC T4 or Intel AES-NI crypto acceleration  I found this interesting blog from Darren about how to turn off  SPARC T4 or Intel AES-NI crypto acceleration. "One of the new Solaris 11 features of the linker/loader is the ability to have a single ELF object that has multiple different implementations of the same functions that are selected at runtime based on the capabilities of the machine.   The alternate to this is having the application coded to call getisax(2) system call and make the choice itself.  We use this functionality of the linker/loader when we build the userland libraries for the Solaris Cryptographic Framework (specifically libmd.so and libsoftcrypto.so) The Solaris linker/loader allows control of a lot of its functionality via environment variables, we can use that to control the version of the cryptographic functions we run.  To do this we simply export the LD_HWCAP environment variable with values that tell ld.so.1 to not select the HWCAP section matching certain features even if isainfo says they are present.  This will work for consumers of the Solaris Cryptographic Framework that use the Solaris PKCS#11 libraries or use libmd.so interfaces directly.  For SPARC T4 : export LD_HWCAP="-aes -des -md5 -sha256 -sha512 -mont -mpul" .. For Intel systems with AES-NI support: export LD_HWCAP="-aes"" Note that LD_HWCAP is explained in  http://docs.oracle.com/cd/E23823_01/html/816-5165/ld.so.1-1.html "LD_HWCAP, LD_HWCAP_32, and LD_HWCAP_64 -  Identifies an alternative hardware capabilities value... A “-” prefix results in the capabilities that follow being removed from the alternative capabilities." 7. Whitepaper on SPARC T4 Servers—Optimized for End-to-End Data Center Computing This Whitepaper on SPARC T4 Servers—Optimized for End-to-End Data Center Computing explains more details.  It has DTrace scripts which may come in handy : "To ensure the hardware-assisted cryptographic acceleration is configured to use and working with the security scenarios, it is recommended to use the following Solaris DTrace script. #!/usr/sbin/dtrace -s pid$1:libsoftcrypto:yf*:entry, pid$target:libsoftcrypto:rsa*:entry, pid$1:libmd:yf*:entry { @[probefunc] = count(); } tick-1sec { printa(@ops); trunc(@ops); }" Note that I have slightly modified the D Script to have RSA "libsoftcrypto:rsa*:entry" as well as per recommendations from Chi-Chang Lin. 8. References http://www.oracle.com/us/corporate/features/sparc-t4-announcement-494846.html http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t4-1-ds-487858.pdf https://blogs.oracle.com/DanX/entry/sparc_t4_openssl_engine https://blogs.oracle.com/DanX/entry/where_s_the_crypto_libraries https://blogs.oracle.com/darren/entry/howto_turn_off_sparc_t4 http://docs.oracle.com/cd/E23823_01/html/816-5165/ld.so.1-1.html   https://blogs.oracle.com/hardware/entry/unleash_the_power_of_cryptography https://blogs.oracle.com/cmt/entry/t4_crypto_cheat_sheet https://blogs.oracle.com/martinm/entry/t4_performance_counters_explained  https://blogs.oracle.com/jsavit/entry/no_mau_required_on_a http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t4-business-wp-524472.pdf

    Read the article

  • Cloud MBaaS : The Next Big Thing in Enterprise Mobility

    - by shiju
    In this blog post, I will take a look at Cloud Mobile Backend as a Service (MBaaS) and how we can leverage Cloud based Mobile Backend as a Service for building enterprise mobile apps. Today, mobile apps are incredibly significant in both consumer and enterprise space and the demand for the mobile apps is unbelievably increasing in day to day business. An enterprise can’t survive in business without a proper mobility strategy. A better mobility strategy and faster delivery of your mobile apps will give you an extra mileage for your business and IT strategy. So organizations and mobile developers are looking for different strategy for meeting this demand and adopting different development strategy for their mobile apps. Some developers are adopting hybrid mobile app development platforms, for delivering their products for multiple platforms, for fast time-to-market. Others are adopting a Mobile enterprise application platform (MEAP) such as Kony for their enterprise mobile apps for fast time-to-market and better business integration. The Challenges of Enterprise Mobility The real challenge of enterprise mobile apps, is not about creating the front-end environment or developing front-end for multiple platforms. The most important thing of enterprise mobile apps is to expose your enterprise data to mobile devices where the real pain is your business data might be residing in lot of different systems including legacy systems, ERP systems etc., and these systems will be deployed with lot of security restrictions. Exposing your data from the on-premises servers, is not a easy thing for most of the business organizations. Many organizations are spending too much time for their front-end development strategy, but they are really lacking for building a strategy on their back-end for exposing the business data to mobile apps. So building a REST services layer and mobile back-end services, on the top of legacy systems and existing middleware systems, is the key part of most of the enterprise mobile apps, where multiple mobile platforms can easily consume these REST services and other mobile back-end services for building mobile apps. For some mobile apps, we can’t predict its user base, especially for products where customers can gradually increase at any time. And for today’s mobile apps, faster time-to-market is very critical so that spending too much time for mobile app’s scalability, will not be worth. The real power of Cloud is the agility and on-demand scalability, where we can scale-up and scale-down our applications very easily. It would be great if we could use the power of Cloud to mobile apps. So using Cloud for mobile apps is a natural fit, where we can use Cloud as the storage for mobile apps and hosting mechanism for mobile back-end services, where we can enjoy the full power of Cloud with greater level of on-demand scalability and operational agility. So Cloud based Mobile Backend as a Service is great choice for building enterprise mobile apps, where enterprises can enjoy the massive scalability power of their mobile apps, provided by public cloud vendors such as Microsoft Windows Azure. Mobile Backend as a Service (MBaaS) We have discussed the key challenges of enterprise mobile apps and how we can leverage Cloud for hosting mobile backend services. MBaaS is a set of cloud-based, server-side mobile services for multiple mobile platforms and HTML5 platform, which can be used as a backend for your mobile apps with the scalability power of Cloud. The information below provides the key features of a typical MBaaS platform: Cloud based storage for your application data. Automatic REST API services on the application data, for CRUD operations. Native push notification services with massive scalability power. User management services for authenticate users. User authentication via Social accounts such as Facebook, Google, Microsoft, and Twitter. Scheduler services for periodically sending data to mobile devices. Native SDKs for multiple mobile platforms such as Windows Phone and Windows Store, Android, Apple iOS, and HTML5, for easily accessing the mobile services from mobile apps, with better security.  Typically, a MBaaS platform will provide native SDKs for multiple mobile platforms so that we can easily consume the server-side mobile services. MBaaS based REST APIs can use for integrating to enterprise backend systems. We can use the same mobile services for multiple platform so hat we can reuse the application logic to multiple mobile platforms. Public cloud vendors are building the mobile services on the top of their PaaS offerings. Windows Azure Mobile Services is a great platform for a MBaaS offering that is leveraging Windows Azure Cloud platform’s PaaS capabilities. Hybrid mobile development platform Titanium provides their own MBaaS services. LoopBack is a new MBaaS service provided by Node.js consulting firm StrongLoop, which can be hosted on multiple cloud platforms and also for on-premises servers. The Challenges of MBaaS Solutions If you are building your mobile apps with a new data storage, it will be very easy, since there is not any integration challenges you have to face. But most of the use cases, you have to extract your application data in which stored in on-premises servers which might be under VPNs and firewalls. So exposing these data to your MBaaS solution with a proper security would be a big challenge. The capability of your MBaaS vendor is very important as you have to interact with your legacy systems for many enterprise mobile apps. So you should be very careful about choosing for MBaaS vendor. At the same time, you should have a proper strategy for mobilizing your application data which stored in on-premises legacy systems, where your solution architecture and strategy is more important than platforms and tools.  Windows Azure Mobile Services Windows Azure Mobile Services is an MBaaS offerings from Windows Azure cloud platform. IMHO, Microsoft Windows Azure is the best PaaS platform in the Cloud space. Windows Azure Mobile Services extends the PaaS capabilities of Windows Azure, to mobile devices, which can be used as a cloud backend for your mobile apps, which will provide global availability and reach for your mobile apps. Windows Azure Mobile Services provides storage services, user management with social network integration, push notification services and scheduler services and provides native SDKs for all major mobile platforms and HTML5. In Windows Azure Mobile Services, you can write server-side scripts in Node.js where you can enjoy the full power of Node.js including the use of NPM modules for your server-side scripts. In the previous section, we had discussed some challenges of MBaaS solutions. You can leverage Windows Azure Cloud platform for solving many challenges regarding with enterprise mobility. The entire Windows Azure platform can play a key role for working as the backend for your mobile apps where you can leverage the entire Windows Azure platform for your mobile apps. With Windows Azure, you can easily connect to your on-premises systems which is a key thing for mobile backend solutions. Another key point is that Windows Azure provides better integration with services like Active Directory, which makes Windows Azure as the de facto platform for enterprise mobility, for enterprises, who have been leveraging Microsoft ecosystem for their application and IT infrastructure. Windows Azure Mobile Services  is going to next evolution where you can expect some exciting features in near future. One area, where Windows Azure Mobile Services should definitely need an improvement, is about the default storage mechanism in which currently it is depends on SQL Server. IMHO, developers should be able to choose multiple default storage option when creating a new mobile service instance. Let’s say, there should be a different storage providers such as SQL Server storage provider and Table storage provider where developers should be able to choose their choice of storage provider when creating a new mobile services project. I have been used Windows Azure and Windows Azure Mobile Services as the backend for production apps for mobile, where it performed very well. MBaaS Over MEAP Recently, many larger enterprises has been adopted Mobile enterprise application platform (MEAP) for their mobile apps. I haven’t worked on any production MEAP solution, but I heard that developers are really struggling with MEAP in different way. The learning curve for a proprietary MEAP platform is very high. I am completely against for using larger proprietary ecosystem for mobile apps. For enterprise mobile apps, I highly recommend to use native iOS/Android/Windows Phone or HTML5  for front-end with a cloud hosted MBaaS solution as the middleware. A MBaaS service can be consumed from multiple mobile apps where REST APIs are using to integrating with enterprise backend systems. Enterprise mobility should start with exposing REST APIs on the enterprise backend systems and these REST APIs can host on Cloud where we can enjoy the power of Cloud for our services. If you are having REST APIs for your enterprise data, then you can easily build mobile frontends for multiple platforms.   You can follow me on Twitter @shijucv

    Read the article

< Previous Page | 464 465 466 467 468 469 470 471 472 473 474 475  | Next Page >