Search Results

Search found 3779 results on 152 pages for 'dylan cross'.

Page 47/152 | < Previous Page | 43 44 45 46 47 48 49 50 51 52 53 54  | Next Page >

  • PHP Summarize any URL

    - by Dylan Taylor
    Hey guys, How can I, in PHP, get a summary of any URL? By summary, I mean something similar to the URL descriptions in Google web search results. Is this possible? Is there already some kind of tool I can plug in to so I don't have to generate my own summaries? I don't want to use metadata descriptions if possible. -Dylan

    Read the article

  • Using PHP, how to parse the title and meta tags from a HTML page?

    - by Dylan Taylor
    Hey guys, I need to be able to get the TITLE and DESCIPTION metadata out of a page. I've been trying to do this but I've been getting more errors than actual results. (I have an array of about 10 URLS, usually only about 2 of them give me the descrption. I have yet to get the title). So how do I, in PHP, get the Desc and Title from a remote page, and if there is none or if there's an error, ignore it? -Dylan

    Read the article

  • Cross-thread operation not valid: Control accessed from a thread other than the thread it was create

    - by SilverHorse
    I have a scenario. (Windows Forms, C#, .NET) There is a main form which hosts some user control. The user control does some heavy data operation, such that if I directly call the Usercontrol_Load method the UI become nonresponsive for the duration for load method execution. To overcome this I load data on different thread (trying to change existing code as little as I can) I used a background worker thread which will be loading the data and when done will notify the application that it has done its work. Now came a real problem. All the UI (main form and its child usercontrols) was created on the primary main thread. In the LOAD method of the usercontrol I'm fetching data based on the values of some control (like textbox) on userControl. The pseudocode would look like this: //CODE 1 UserContrl1_LOadDataMethod() { if(textbox1.text=="MyName") <<======this gives exception { //Load data corresponding to "MyName". //Populate a globale variable List<string> which will be binded to grid at some later stage. } } The Exception it gave was Cross-thread operation not valid: Control accessed from a thread other than the thread it was created on. To know more about this I did some googling and a suggestion came up like using the following code //CODE 2 UserContrl1_LOadDataMethod() { if(InvokeRequired) // Line #1 { this.Invoke(new MethodInvoker(UserContrl1_LOadDataMethod)); return; } if(textbox1.text=="MyName") //<<======Now it wont give exception** { //Load data correspondin to "MyName" //Populate a globale variable List<string> which will be binded to grid at some later stage } } BUT BUT BUT... it seems I'm back to square one. The Application again become nonresponsive. It seems to be due to the execution of line #1 if condition. The loading task is again done by the parent thread and not the third that I spawned. I don't know whether I perceived this right or wrong. I'm new to threading. How do I resolve this and also what is the effect of execution of Line#1 if block? The situation is this: I want to load data into a global variable based on the value of a control. I don't want to change the value of a control from the child thread. I'm not going to do it ever from a child thread. So only accessing the value so that the corresponding data can be fetched from the database.

    Read the article

  • How can I get penetration depth from Minkowski Portal Refinement / Xenocollide?

    - by Raven Dreamer
    I recently got an implementation of Minkowski Portal Refinement (MPR) successfully detecting collision. Even better, my implementation returns a good estimate (local minimum) direction for the minimum penetration depth. So I took a stab at adjusting the algorithm to return the penetration depth in an arbitrary direction, and was modestly successful - my altered method works splendidly for face-edge collision resolution! What it doesn't currently do, is correctly provide the minimum penetration depth for edge-edge scenarios, such as the case on the right: What I perceive to be happening, is that my current method returns the minimum penetration depth to the nearest vertex - which works fine when the collision is actually occurring on the plane of that vertex, but not when the collision happens along an edge. Is there a way I can alter my method to return the penetration depth to the point of collision, rather than the nearest vertex? Here's the method that's supposed to return the minimum penetration distance along a specific direction: public static Vector3 CalcMinDistance(List<Vector3> shape1, List<Vector3> shape2, Vector3 dir) { //holding variables Vector3 n = Vector3.zero; Vector3 swap = Vector3.zero; // v0 = center of Minkowski sum v0 = Vector3.zero; // Avoid case where centers overlap -- any direction is fine in this case //if (v0 == Vector3.zero) return Vector3.zero; //always pass in a valid direction. // v1 = support in direction of origin n = -dir; //get the differnce of the minkowski sum Vector3 v11 = GetSupport(shape1, -n); Vector3 v12 = GetSupport(shape2, n); v1 = v12 - v11; //if the support point is not in the direction of the origin if (v1.Dot(n) <= 0) { //Debug.Log("Could find no points this direction"); return Vector3.zero; } // v2 - support perpendicular to v1,v0 n = v1.Cross(v0); if (n == Vector3.zero) { //v1 and v0 are parallel, which means //the direction leads directly to an endpoint n = v1 - v0; //shortest distance is just n //Debug.Log("2 point return"); return n; } //get the new support point Vector3 v21 = GetSupport(shape1, -n); Vector3 v22 = GetSupport(shape2, n); v2 = v22 - v21; if (v2.Dot(n) <= 0) { //can't reach the origin in this direction, ergo, no collision //Debug.Log("Could not reach edge?"); return Vector2.zero; } // Determine whether origin is on + or - side of plane (v1,v0,v2) //tests linesegments v0v1 and v0v2 n = (v1 - v0).Cross(v2 - v0); float dist = n.Dot(v0); // If the origin is on the - side of the plane, reverse the direction of the plane if (dist > 0) { //swap the winding order of v1 and v2 swap = v1; v1 = v2; v2 = swap; //swap the winding order of v11 and v12 swap = v12; v12 = v11; v11 = swap; //swap the winding order of v11 and v12 swap = v22; v22 = v21; v21 = swap; //and swap the plane normal n = -n; } /// // Phase One: Identify a portal while (true) { // Obtain the support point in a direction perpendicular to the existing plane // Note: This point is guaranteed to lie off the plane Vector3 v31 = GetSupport(shape1, -n); Vector3 v32 = GetSupport(shape2, n); v3 = v32 - v31; if (v3.Dot(n) <= 0) { //can't enclose the origin within our tetrahedron //Debug.Log("Could not reach edge after portal?"); return Vector3.zero; } // If origin is outside (v1,v0,v3), then eliminate v2 and loop if (v1.Cross(v3).Dot(v0) < 0) { //failed to enclose the origin, adjust points; v2 = v3; v21 = v31; v22 = v32; n = (v1 - v0).Cross(v3 - v0); continue; } // If origin is outside (v3,v0,v2), then eliminate v1 and loop if (v3.Cross(v2).Dot(v0) < 0) { //failed to enclose the origin, adjust points; v1 = v3; v11 = v31; v12 = v32; n = (v3 - v0).Cross(v2 - v0); continue; } bool hit = false; /// // Phase Two: Refine the portal int phase2 = 0; // We are now inside of a wedge... while (phase2 < 20) { phase2++; // Compute normal of the wedge face n = (v2 - v1).Cross(v3 - v1); n.Normalize(); // Compute distance from origin to wedge face float d = n.Dot(v1); // If the origin is inside the wedge, we have a hit if (d > 0 ) { //Debug.Log("Do plane test here"); float T = n.Dot(v2) / n.Dot(dir); Vector3 pointInPlane = (dir * T); return pointInPlane; } // Find the support point in the direction of the wedge face Vector3 v41 = GetSupport(shape1, -n); Vector3 v42 = GetSupport(shape2, n); v4 = v42 - v41; float delta = (v4 - v3).Dot(n); float separation = -(v4.Dot(n)); if (delta <= kCollideEpsilon || separation >= 0) { //Debug.Log("Non-convergance detected"); //Debug.Log("Do plane test here"); return Vector3.zero; } // Compute the tetrahedron dividing face (v4,v0,v1) float d1 = v4.Cross(v1).Dot(v0); // Compute the tetrahedron dividing face (v4,v0,v2) float d2 = v4.Cross(v2).Dot(v0); // Compute the tetrahedron dividing face (v4,v0,v3) float d3 = v4.Cross(v3).Dot(v0); if (d1 < 0) { if (d2 < 0) { // Inside d1 & inside d2 ==> eliminate v1 v1 = v4; v11 = v41; v12 = v42; } else { // Inside d1 & outside d2 ==> eliminate v3 v3 = v4; v31 = v41; v32 = v42; } } else { if (d3 < 0) { // Outside d1 & inside d3 ==> eliminate v2 v2 = v4; v21 = v41; v22 = v42; } else { // Outside d1 & outside d3 ==> eliminate v1 v1 = v4; v11 = v41; v12 = v42; } } } return Vector3.zero; } }

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Software Engineering Practices &ndash; Different Projects should have different maturity levels

    - by Dylan Smith
    I’ve had a lot of discussions at the office lately about the drastically different sets of software engineering practices used on our various projects, if what we are doing is appropriate, and what factors should you be considering when determining what practices are most appropriate in a given context. I wanted to write up my thoughts in a little more detail on this subject, so here we go: If you compare any two software projects (specifically comparing their codebases) you’ll often see very different levels of maturity in the software engineering practices employed. By software engineering practices, I’m specifically referring to the quality of the code and the amount of technical debt present in the project. Things such as Test Driven Development, Domain Driven Design, Behavior Driven Development, proper adherence to the SOLID principles, etc. are all practices that you would expect at the mature end of the spectrum. At the other end of the spectrum would be the quick-and-dirty solutions that are done using something like an Access Database, Excel Spreadsheet, or maybe some quick “drag-and-drop coding”. For this blog post I’m going to refer to this as the Software Engineering Maturity Spectrum (SEMS). I believe there is a time and a place for projects at every part of that SEMS. The risks and costs associated with under-engineering solutions have been written about a million times over so I won’t bother going into them again here, but there are also (unnecessary) costs with over-engineering a solution. Sometimes putting multiple layers, and IoC containers, and abstracting out the persistence, etc is complete overkill if a one-time use Access database could solve the problem perfectly well. A lot of software developers I talk to seem to automatically jump to the very right-hand side of this SEMS in everything they do. A common rationalization I hear is that it may seem like a small trivial application today, but these things always grow and stick around for many years, then you’re stuck maintaining a big ball of mud. I think this is a cop-out. Sure you can’t always anticipate how an application will be used or grow over its lifetime (can you ever??), but that doesn’t mean you can’t manage it and evolve the underlying software architecture as necessary (even if that means having to toss the code out and re-write it at some point…maybe even multiple times). My thoughts are that we should be making a conscious decision around the start of each project approximately where on the SEMS we want the project to exist. I believe this decision should be based on 3 factors: 1. Importance - How important to the business is this application? What is the impact if the application were to suddenly stop working? 2. Complexity - How complex is the application functionality? 3. Life-Expectancy - How long is this application expected to be in use? Is this a one-time use application, does it fill a short-term need, or is it more strategic and is expected to be in-use for many years to come? Of course this isn’t an exact science. You can’t say that Project X should be at the 73% mark on the SEMS and expect that to be helpful. My point is not that you need to precisely figure out what point on the SEMS the project should be at then translate that into some prescriptive set of practices and techniques you should be using. Rather my point is that we need to be aware that there is a spectrum, and that not everything is going to be (or should be) at the edges of that spectrum, indeed a large number of projects should probably fall somewhere within the middle; and different projects should adopt a different level of software engineering practices and maturity levels based on the needs of that project. To give an example of this way of thinking from my day job: Every couple of years my company plans and hosts a large event where ~400 of our customers all fly in to one location for a multi-day event with various activities. We have some staff whose job it is to organize the logistics of this event, which includes tracking which flights everybody is booked on, arranging for transportation to/from airports, arranging for hotel rooms, name tags, etc The last time we arranged this event all these various pieces of data were tracked in separate spreadsheets and reconciliation and cross-referencing of all the data was literally done by hand using printed copies of the spreadsheets and several people sitting around a table going down each list row by row. Obviously there is some room for improvement in how we are using software to manage the event’s logistics. The next time this event occurs we plan to provide the event planning staff with a more intelligent tool (either an Excel spreadsheet or probably an Access database) that can track all the information in one location and make sure that the various pieces of data are properly linked together (so for example if a person cancels you only need to delete them from one place, and not a dozen separate lists). This solution would fall at or near the very left end of the SEMS meaning that we will just quickly create something with very little attention paid to using mature software engineering practices. If we examine this project against the 3 criteria I listed above for determining it’s place within the SEMS we can see why: Importance – If this application were to stop working the business doesn’t grind to a halt, revenue doesn’t stop, and in fact our customers wouldn’t even notice since it isn’t a customer facing application. The impact would simply be more work for our event planning staff as they revert back to the previous way of doing things (assuming we don’t have any data loss). Complexity – The use cases for this project are pretty straightforward. It simply needs to manage several lists of data, and link them together appropriately. Precisely the task that access (and/or Excel) can do with minimal custom development required. Life-Expectancy – For this specific project we’re only planning to create something to be used for the one event (we only hold these events every 2 years). If it works well this may change (see below). Let’s assume we hack something out quickly and it works great when we plan the next event. We may decide that we want to make some tweaks to the tool and adopt it for planning all future events of this nature. In that case we should examine where the current application is on the SEMS, and make a conscious decision whether something needs to be done to move it further to the right based on the new objectives and goals for this application. This may mean scrapping the access database and re-writing it as an actual web or windows application. In this case, the life-expectancy changed, but let’s assume the importance and complexity didn’t change all that much. We can still probably get away with not adopting a lot of the so-called “best practices”. For example, we can probably still use some of the RAD tooling available and might have an Autonomous View style design that connects directly to the database and binds to typed datasets (we might even choose to simply leave it as an access database and continue using it; this is a decision that needs to be made on a case-by-case basis). At Anvil Digital we have aspirations to become a primarily product-based company. So let’s say we use this tool to plan a handful of events internally, and everybody loves it. Maybe a couple years down the road we decide we want to package the tool up and sell it as a product to some of our customers. In this case the project objectives/goals change quite drastically. Now the tool becomes a source of revenue, and the impact of it suddenly stopping working is significantly less acceptable. Also as we hold focus groups, and gather feedback from customers and potential customers there’s a pretty good chance the feature-set and complexity will have to grow considerably from when we were using it only internally for planning a small handful of events for one company. In this fictional scenario I would expect the target on the SEMS to jump to the far right. Depending on how we implemented the previous release we may be able to refactor and evolve the existing codebase to introduce a more layered architecture, a robust set of automated tests, introduce a proper ORM and IoC container, etc. More likely in this example the jump along the SEMS would be so large we’d probably end up scrapping the current code and re-writing. Although, if it was a slow phased roll-out to only a handful of customers, where we collected feedback, made some tweaks, and then rolled out to a couple more customers, we may be able to slowly refactor and evolve the code over time rather than tossing it out and starting from scratch. The key point I’m trying to get across is not that you should be throwing out your code and starting from scratch all the time. But rather that you should be aware of when and how the context and objectives around a project changes and periodically re-assess where the project currently falls on the SEMS and whether that needs to be adjusted based on changing needs. Note: There is also the idea of “spectrum decay”. Since our industry is rapidly evolving, what we currently accept as mature software engineering practices (the right end of the SEMS) probably won’t be the same 3 years from now. If you have a project that you were to assess at somewhere around the 80% mark on the SEMS today, but don’t touch the code for 3 years and come back and re-assess its position, it will almost certainly have changed since the right end of the SEMS will have moved farther out (maybe the project is now only around 60% due to decay). Developer Skills Another important aspect to this whole discussion is around the skill sets of your architects and lead developers. When talking about the progression of a developers skills from junior->intermediate->senior->… they generally start by only being able to write code that belongs on the left side of the SEMS and as they gain more knowledge and skill they become capable of working at a higher and higher level along the SEMS. We all realize that the learning never stops, but eventually you’ll get to the point where you can comfortably develop at the right-end of the SEMS (the exact practices and techniques that translates to is constantly changing, but that’s not the point here). A critical skill that I’d love to see more evidence of in our industry is the most senior guys not only being able to work at the right-end of the SEMS, but more importantly be able to consciously work at any point along the SEMS as project needs dictate. An even more valuable skill would be if you could make the conscious decision to move a projects code further right on the SEMS (based on changing needs) and do so in an incremental manner without having to start from scratch. An exercise that I’m planning to go through with all of our projects here at Anvil in the near future is to map out where I believe each project currently falls within this SEMS, where I believe the project *should* be on the SEMS based on the business needs, and for those that don’t match up (i.e. most of them) come up with a plan to improve the situation.

    Read the article

  • PHP array taking up too much memory

    - by Dylan Taylor
    I have a multidimensional array. The array itself is fine. My problem is that the script takes up monster amounts of memory, and since I'm running this on my MAMP install on my iBook G4, my computer freezes up. Below is the full script. $query = "SELECT * FROM posts ORDER BY id DESC LIMIT 10"; $result = mysql_query($query); $posts = array(); while($row = mysql_fetch_array($result)){ $posts[$row["id"]]['post_id'] = $row["id"]; $posts[$row["id"]]['post_title'] = $row["title"]; $posts[$row["id"]]['post_text'] = $row["text"]; $posts[$row["id"]]['post_tags'] = $row["tags"]; $posts[$row["id"]]['post_category'] = $row["category"]; foreach ($posts as $post) { echo $post["post_id"]; } Is there a workaround that still achieves my goal (to export the MySQL query rows to an array)? -Dylan

    Read the article

  • PHP array taking up to much memory

    - by Dylan Taylor
    I have a multidimensional array. The array itself is fine. My problem is that the script takes up monster amounts of memory, and since I'm running this on my MAMP install on my iBook G4, my computer freezes up. Below is the full script. $query = "SELECT * FROM posts ORDER BY id DESC LIMIT 10"; $result = mysql_query($query); $posts = array(); while($row = mysql_fetch_array($result)){ $posts[$row["id"]]['post_id'] = $row["id"]; $posts[$row["id"]]['post_title'] = $row["title"]; $posts[$row["id"]]['post_text'] = $row["text"]; $posts[$row["id"]]['post_tags'] = $row["tags"]; $posts[$row["id"]]['post_category'] = $row["category"]; foreach ($posts as $post) { echo $post["post_id"]; } Is there a workaround that still achieves my goal (to export the MySQL query rows to an array)? -Dylan

    Read the article

  • Multiple vulnerabilities in Oracle Java Web Console

    - by RitwikGhoshal
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2007-5333 Information Exposure vulnerability 5.0 Apache Tomcat Solaris 10 SPARC: 147673-04 X86: 147674-04 CVE-2007-5342 Permissions, Privileges, and Access Controls vulnerability 6.4 CVE-2007-6286 Request handling vulnerability 4.3 CVE-2008-0002 Information disclosure vulnerability 5.8 CVE-2008-1232 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability 4.3 CVE-2008-1947 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability 4.3 CVE-2008-2370 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') vulnerability 5.0 CVE-2008-2938 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') vulnerability 4.3 CVE-2008-5515 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') vulnerability 5.0 CVE-2009-0033 Improper Input Validation vulnerability 5.0 CVE-2009-0580 Information Exposure vulnerability 4.3 CVE-2009-0781 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability 4.3 CVE-2009-0783 Information Exposure vulnerability 4.6 CVE-2009-2693 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') vulnerability 5.8 CVE-2009-2901 Permissions, Privileges, and Access Controls vulnerability 4.3 CVE-2009-2902 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') vulnerability 4.3 CVE-2009-3548 Credentials Management vulnerability 7.5 CVE-2010-1157 Information Exposure vulnerability 2.6 CVE-2010-2227 Improper Restriction of Operations within the Bounds of a Memory Buffer vulnerability 6.4 CVE-2010-3718 Directory traversal vulnerability 1.2 CVE-2010-4172 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability 4.3 CVE-2010-4312 Configuration vulnerability 6.4 CVE-2011-0013 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability 4.3 CVE-2011-0534 Resource Management Errors vulnerability 5.0 CVE-2011-1184 Permissions, Privileges, and Access Controls vulnerability 5.0 CVE-2011-2204 Information Exposure vulnerability 1.9 CVE-2011-2526 Improper Input Validation vulnerability 4.4 CVE-2011-3190 Permissions, Privileges, and Access Controls vulnerability 7.5 CVE-2011-4858 Resource Management Errors vulnerability 5.0 CVE-2011-5062 Permissions, Privileges, and Access Controls vulnerability 5.0 CVE-2011-5063 Improper Authentication vulnerability 4.3 CVE-2011-5064 Cryptographic Issues vulnerability 4.3 CVE-2012-0022 Numeric Errors vulnerability 5.0 This notification describes vulnerabilities fixed in third-party components that are included in Oracle's product distributions.Information about vulnerabilities affecting Oracle products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • i want to have some cross browser consistency on my fieldsets, do you know how can i do it?

    - by Omar
    i have this problem with fieldsets... have a look at http://i.imgur.com/IRrXB.png is it possible to achieve what i want with css??? believe me, i tried! as you can see on the img, i just want the look of the legend to be consistent across browsers, i want it to use the width of the fieldset no more (like chrome and ie) no less (like firefox), dont worry about the rounded corners and other issues, thats taken care of. heres the the core i'm using. CSS <style type="text/css"> fieldset {margin: 0 0 10px 0;padding: 0; border:1px solid silver; background-color: #f9f9f9; -moz-border-radius:5px; -webkit-border-radius:5px; border-radius:5px} fieldset p{clear:both;margin:.3em 0;overflow:hidden;} fieldset label{float:left;width:140px;display:block;text-align:right;padding-right:8px;margin-right: 2px;color: #4a4a4a;} fieldset input, fieldset textarea {margin:0;border:1px solid #ddd;padding:3px 5px 3px 5px;} fieldset legend { background: #C6D1E8; position:relative; left: -1px; margin: 0; width: 100%; padding: 0px 5px; font-size: 1.11em; font-weight: bold; text-align:left; border: 1px solid silver; -webkit-border-top-left-radius: 5px; -webkit-border-top-right-radius: 5px; -moz-border-radius-topleft: 5px; -moz-border-radius-topright: 3px; border-top-left-radius: 5px; border-top-right-radius: 5px; } #md {width: 400px;} </style> HTML <div id="md"> <fieldset> <legend>some title</legend> <p> <label>Login</label> <input type="text" /> </p> <p> <label>Password</label> <input type="text" /> </p> <p><label>&nbsp;</label> <input type="submit"> </p> </fieldset> </div>

    Read the article

  • Can Windows handle inheritance cross the 32-bit/64-bit boundary?

    - by TheBeardyMan
    Is it possible for a child process to inherit a handle from its parent process if one process is 32-bit and the other is 64-bit? HANDLE is a 64 bit type on Win64 and a 32 bit type on Win32, which suggests that even it were supposed to be possible in all cases, there would be some cases where it would fail: a 64-bit parent process, a 32-bit child process, and a handle that can't be represented in 32 bits. Or is naming the object the only way for a 32-bit process and a 64-bit process to get a handle for the same object?

    Read the article

  • How do I process the configure file when cross-compiling with mingw?

    - by vy32
    I have a small open source program that builds with an autoconf configure script. I ran configure I tried to compile with: make CC="/opt/local/bin/i386-mingw32-g++" That didn't work because the configure script found include files that were not available to the mingw system. So then I tried: ./configure CC="/opt/local/bin/i386-mingw32-g++" But that didn't work; the configure script gives me this error: ./configure: line 5209: syntax error near unexpected token `newline' ./configure: line 5209: ` *_cv_*' Because of this code: # The following way of writing the cache mishandles newlines in values, # but we know of no workaround that is simple, portable, and efficient. # So, we kill variables containing newlines. # Ultrix sh set writes to stderr and can't be redirected directly, # and sets the high bit in the cache file unless we assign to the vars. ( for ac_var in `(set) 2>&1 | sed -n 's/^\(a-zA-Z_a-zA-Z0-9_*\)=.*/\1/p'`; do eval ac_val=\$$ac_var case $ac_val in #( *${as_nl}*) case $ac_var in #( *_cv_* fi Which is generated then the AC_OUTPUT is called. Any thoughts? Is there a correct way to do this?

    Read the article

  • How to setup Lighttpd as a proxy for cross-site requests?

    - by NilColor
    I want to setup my lighttpd server to proxy some requests (for ex. RSS requests) to other domains so i can fetch data using javascript. For example i'd like to fetch Atmo feed from internal Redmine (say http://code.internal.acme) to developer dashboard (say http://dashboard.internal.acme). I'd like to fetch it using JavaScript but i cant use something like JSONP and i don't want to use Flash for that. Currently i have this in my lighttpd.conf proxy.server = ( "/http-bind/" => ( ( "host" => "10.0.100.52", "port" => 5280 ) ) ) This way i can connect to our internal jabber server via Javascript. But i want more generic way... Something like proxy.server = ( "/proxy/{1}" => ( ( "url" => {1} ) ) )

    Read the article

  • What technology should I concentrate on for mobile development? [closed]

    - by Rob2211
    Firstly, I have many years experience with C# & .NET and some with Java. But, rather than committing to Java and developing native applications for Andriod I have been researching cross-platform deployment technologies. Currently, the most powerful cross-platform technology seems to be Flash, using Adobe AIR to package software as native applications. But given Adobe's announcement that it will discontinue support for the Flash Player on mobile devices it seems foolish (at this late stage) to invest in Flash and ActionScript as a developer. There has been speculation that Microsoft are also planning their exit strategy for Silverlight in favour of HTML5. So, my questions are; What is the most appropriate technology to invest in and learn in order to build cross-platform mobile applications / games while future proofing my skills as a developer? Is HTML5 mature enough to fill the 'Flash void' and be used to start building cross-platform, rich, interactive, networked mobile applications / games now? N.B. For HTML5 read (HTML5/CSS3/JavaScript)

    Read the article

  • What languages allow cross-platform native executables to be created?

    - by JT
    I'm frustrated to discover that Java lacks an acceptable solution for creating programs that will run via double-click. Other than .NET for Windows, what modern and high-level programming languages can I write code in that can be compiled for various platforms and run as a native/binary in each (Windows, Linux, OSX (optional)) Assuming I wanted to write code in python, for instance, is there a cohesive way that I could distribute my software which wouldn't require users to do anything special to get it to run? I want to write and distribute software for computer-illiterate and Java has turned out to be a real pain in this respect.

    Read the article

  • Migrating from CVS to Mercurial - how to handle cross-repo symbolic links?

    - by NVRAM
    I have a project that is stored in CVS as numerous modules/repositories. In several of the modules the CVS tree has symbolic links to the files in another tree. For example, the internal support tools have links to binary files (DLL, EXE) that are created and stored in the C# module. In all cases, the files are modified only in in the module where the files exist and are treated as read-only in the tree where the symbolic link exists. More often than not, the files are pulled to machines running MSWindows so the use of symbolic links on the developer machine is not an option. My question is this: Is there a mechanism in Mercurial that can provide the same capabilities?

    Read the article

  • Cross-site request forgery protections: Where do I put all these lines?

    - by brilliant
    Hello, I was looking for a python code that would be able to log in from "Google App Engine" to some of my accounts on some websites (like yahoo or eBay) and was given this code: import urllib, urllib2, cookielib url = "https://login.yahoo.com/config/login?" form_data = {'login' : 'my-login-here', 'passwd' : 'my-password-here'} jar = cookielib.CookieJar() opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(jar)) form_data = urllib.urlencode(form_data) # data returned from this pages contains redirection resp = opener.open(url, form_data) # yahoo redirects to http://my.yahoo.com, so lets go there instead resp = opener.open('http://mail.yahoo.com') print resp.read() Unfortunately, this code didn't work, so I asked another question here and one supporter among other things said this: "You send MD5 hash and not plain password. Also you'd have to play along with all kinds of CSRF protections etc. that they're implementing. Look: <input type="hidden" name=".tries" value="1"> <input type="hidden" name=".src" value="ym"> <input type="hidden" name=".md5" value=""> <input type="hidden" name=".hash" value=""> <input type="hidden" name=".js" value=""> <input type="hidden" name=".last" value=""> <input type="hidden" name="promo" value=""> <input type="hidden" name=".intl" value="us"> <input type="hidden" name=".bypass" value=""> <input type="hidden" name=".partner" value=""> <input type="hidden" name=".u" value="bd5tdpd5rf2pg"> <input type="hidden" name=".v" value="0"> <input type="hidden" name=".challenge" value="5qUiIPGVFzRZ2BHhvtdGXoehfiOj"> <input type="hidden" name=".yplus" value=""> <input type="hidden" name=".emailCode" value=""> <input type="hidden" name="pkg" value=""> <input type="hidden" name="stepid" value=""> <input type="hidden" name=".ev" value=""> <input type="hidden" name="hasMsgr" value="0"> <input type="hidden" name=".chkP" value="Y"> <input type="hidden" name=".done" value="http://mail.yahoo.com"> <input type="hidden" name=".pd" value="ym_ver=0&c=&ivt=&sg="> I am not quite sure where he got all these lines from and where in my code I am supposed to add them. Do You have any idea? I know I was supposed to ask him this question first, and I did, but he never returned, so I decided to ask a separate question here.

    Read the article

  • Is there server-side code which is not cross browser compatible?

    - by Ygam
    Was there a case in any server-side language where a code did not work in a browser while it did work in the rest? I am asking this because I can't imagine such a scenario because server-side code runs in the server, not in the browser but I have seen discussions where, as said, there were "server-side browser compatibility issues". I can't seem to recall where I have read it. Thanks in advance :)

    Read the article

  • What is the best free cross-platform OpenGL GUI library for a video game?

    - by Jim Buck
    It must come with source. I've looked at these which look semi-promising: glgooey, guichan, and cegui. I've come across others that look more Windows-y than game-y, but that's not the direction I am looking to go in. I would like some simple functionality of typical controls (lists, dropdown box, etc.) but with support for graphical widgets that you would normally find in game frontends. Mouse clicking, dragging, dropping, etc. and sound effect hooks would be nice. (These libs often leave hooks for the external system to tell it when/where mouse events are occurring.) It would get rendered on top of what my own 3D engine is rendering for the game, so it must be able to play nicely with rendering code outside of the lib. The best criteria is whether or not a reasonable 2D game could be implemented just with the GUI library and minimal glue code. (By glue code, I mean init code, hooking up the mouse, and game logic.) I am creating a 3D game, but this criteria gives a pretty solid idea of what level of interactivity I would like in the GUI.

    Read the article

  • Cross-browser method for hiding page elements until all content is loaded to prevent layout from appearing broken during load?

    - by Ryan
    I have an issue where due to some elements loading faster than others, the page looks broken for a few seconds at the start. An example is the CSS Pie behavior that allows me to do curved corners in IE, it appears before it becomes curved which looks bad. What would be ideal would be it somehow knowing when everything is loaded and then appear all at once, possibly including some kind of elegant visual way of not making the user feel impatient... any ideas or common tricks for doing this?

    Read the article

  • Ideas on implementing threads and cross process communication. - C

    - by Jamie Keeling
    Hello all! I have an application consisting of two windows, one communicates to the other and sends it a struct constaining two integers (In this case two rolls of a dice). I will be using events for the following circumstances: Process a sends data to process b, process b displays data Process a closes, in turn closing process b Process b closes a, in turn closing process a I have noticed that if the second process is constantly waiting for the first process to send data then the program will be just sat waiting, which is where the idea of implementing threads on each process occured. I have already implemented a thread on the first process which currently creates the data to send to the second process and makes it available to the second process. The problem i'm having is that I don't exactly have a lot of experience with threads and events so I'm not sure of the best way to actually implement what I want to do. Following is a small snippet of what I have so far in the producer application; Rolling the dice and sending the data: case IDM_FILE_ROLLDICE: { hDiceRoll = CreateThread( NULL, // lpThreadAttributes (default) 0, // dwStackSize (default) ThreadFunc(hMainWindow), // lpStartAddress NULL, // lpParameter 0, // dwCreationFlags &hDiceID // lpThreadId (returned by function) ); } break; The data being sent to the other process: DWORD WINAPI ThreadFunc(LPVOID passedHandle) { HANDLE hMainHandle = *((HANDLE*)passedHandle); WCHAR buffer[256]; LPCTSTR pBuf; LPVOID lpMsgBuf; LPVOID lpDisplayBuf; struct diceData storage; HANDLE hMapFile; DWORD dw; //Roll dice and store results in variable storage = RollDice(); hMapFile = CreateFileMapping( (HANDLE)0xFFFFFFFF, // use paging file NULL, // default security PAGE_READWRITE, // read/write access 0, // maximum object size (high-order DWORD) BUF_SIZE, // maximum object size (low-order DWORD) szName); // name of mapping object if (hMapFile == NULL) { dw = GetLastError(); MessageBox(hMainHandle,L"Could not create file mapping object",L"Error",MB_OK); return 1; } pBuf = (LPTSTR) MapViewOfFile(hMapFile, // handle to map object FILE_MAP_ALL_ACCESS, // read/write permission 0, 0, BUF_SIZE); if (pBuf == NULL) { MessageBox(hMainHandle,L"Could not map view of file",L"Error",MB_OK); CloseHandle(hMapFile); return 1; } CopyMemory((PVOID)pBuf, &storage, (_tcslen(szMsg) * sizeof(TCHAR))); //_getch(); MessageBox(hMainHandle,L"Completed!",L"Success",MB_OK); UnmapViewOfFile(pBuf); return 0; } I'd like to think I am at least on the right lines, although for some reason when the application finishes creating the thread it hits the return DefWindowProc(hMainWindow, message, wParam, lParam); it crashes saying there's no more source code for the current location. I know there are certain ways to implement things but as I've mentioned I'm not sure if i'm doing this the right way, has anybody else tried to do the same thing? Thanks!

    Read the article

  • Is there an open source cross-platform push server?

    - by Ian
    I'm currently in need of a (preferably open-source) free push server, that supports both linux and windows. I need something similar to the Ajax Push Engine, but that project unfortunatelly does not work on windows (I could use a virtual machine, but that's not what I'm looking for). I need to be able to push information to/from a python daemon, from a php script, to/from javascript and to a Blackberry application (built with java). Is there any tool that could help me with that? I've also looked into the Orbited project but frankly it lacks a lot of documentation and it's been very complicated to understand it. I'm not sure if it could work for me since it isn't actually a push server, but rather a proxy for it's built in MorbidQ server (or am I wrong?). Would a technology like Advanced Message Queing Protocol work for a project like this? Something like RabbitMQ or ActiveMQ? Thank you very much for the help.

    Read the article

< Previous Page | 43 44 45 46 47 48 49 50 51 52 53 54  | Next Page >