Search Results

Search found 14402 results on 577 pages for 'interface builder'.

Page 47/577 | < Previous Page | 43 44 45 46 47 48 49 50 51 52 53 54  | Next Page >

  • Package SWF into an EXE or APP

    - by Jeremy White
    I am trying to adjust my Flash development workflow so that I am using Flash Builder for all of my coding and multiple FLA files for the user interfaces. I will be creating an ActionScript project in Flash Builder and then having each FLA export a SWC into a resources folder. It is important that I retain the ability to export PC and Mac -- EXE and app, respectively -- projector files. Is there a way of doing this with the Flash compiler or any 3rd party tools?

    Read the article

  • How do you specify a really large character in UIButton?

    - by Epsilon Prime
    I have a series of buttons that have suit symbols on them. Currently I provide these suit symbols as bitmaps. In preparation for iPhone 4 I'd like to use text instead. However Interface Builder rescales the button to account for whitespace underneath the symbol so I can't get the image to fill the button completely. Any hints on getting Interface Builder to behave?

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is called MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been cleaned up so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# level syntax sugar. There is no difference to await a async method or a normal method. A method returning Task will be awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } The above code is already cleaned up, but there are still a lot of things. More clean up can be done, and the state machine can be very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> void IAsyncStateMachine.MoveNext() { try { switch (this.State) { // Orginal code is splitted by "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; IAsyncStateMachine this1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this1.MoveNext()); // Callback break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; IAsyncStateMachine this2 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this2.MoveNext()); // Callback break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync_(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; (multiCallMethodAsyncStateMachine as IAsyncStateMachine).MoveNext(); // Original code are in this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clear - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback Since it is about callback, the simplification  can go even further – the entire state machine can be completely purged. Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is literally pretending to wait. In a await expression, a Task object will be return immediately so that caller is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is named MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine, MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been refactored, so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# language level syntax sugar. There is no difference to await a async method or a normal method. As long as a method returns Task, it is awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } Once again, the above state machine code is already refactored, but it still has a lot of things. More clean up can be done if we only keep the core logic, and the state machine can become very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> public void MoveNext() // IAsyncStateMachine member. { try { switch (this.State) { // Original code is split by "await"s into "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; MultiCallMethodAsyncStateMachine that1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => that1.MoveNext()); break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; MultiCallMethodAsyncStateMachine that2 = this; this.currentTaskToAwait.ContinueWith(_ => that2.MoveNext()); break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] public void SetStateMachine(IAsyncStateMachine stateMachine) // IAsyncStateMachine member. { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; multiCallMethodAsyncStateMachine.MoveNext(); // Original code are moved into this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clean - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback If we focus on the point of callback, the simplification  can go even further – the entire state machine can be completely purged, and we can just keep the code inside MoveNext(). Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is not to wait. In a await expression, a Task object will be return immediately so that execution is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • how does openvpn decide which interface to get IP addrs from

    - by bkrupa
    Using ubuntu 10.04 on both ends. We have a client and server machine on the SAME network attempting to make a vpn connection. We use the config files from here and made minimal changes. The server and client start and seem to connect without any trouble. The server looks like: Wed Feb 23 22:13:22 2011 MULTI: multi_create_instance called Wed Feb 23 22:13:22 2011 192.168.1.55:47166 Re-using SSL/TLS context Wed Feb 23 22:13:22 2011 192.168.1.55:47166 LZO compression initialized Wed Feb 23 22:13:22 2011 192.168.1.55:47166 Control Channel MTU parms [ L:1574 D:138 EF:38 EB:0 ET:0 EL:0 ] Wed Feb 23 22:13:22 2011 192.168.1.55:47166 Data Channel MTU parms [ L:1574 D:1450 EF:42 EB:135 ET:32 EL:0 AF:3/1 ] Wed Feb 23 22:13:22 2011 192.168.1.55:47166 Local Options hash (VER=V4): 'f7df56b8' Wed Feb 23 22:13:22 2011 192.168.1.55:47166 Expected Remote Options hash (VER=V4): 'd79ca330' Wed Feb 23 22:13:22 2011 192.168.1.55:47166 TLS: Initial packet from 192.168.1.55:47166, sid=69112e42 5458135b *...* Wed Feb 23 22:13:22 2011 192.168.1.55:47166 Control Channel: TLSv1, cipher TLSv1/SSLv3 DHE-RSA-AES256-SHA, 1024 bit RSA Wed Feb 23 22:13:22 2011 192.168.1.55:47166 [client1] Peer Connection Initiated with 192.168.1.55:47166 On the client side the connection looks like: Wed Feb 23 22:20:07 2011 [server] Peer Connection Initiated with [AF_INET]192.168.1.41:1194 Wed Feb 23 22:20:10 2011 SENT CONTROL [server]: 'PUSH_REQUEST' (status=1) Wed Feb 23 22:20:10 2011 PUSH: Received control message: 'PUSH_REPLY,route-gateway 10.8.0.4,ping 10,ping-restart 120,ifconfig 10.8.0.50 255.255.255.0' ... Wed Feb 23 22:20:10 2011 /sbin/ifconfig tap0 10.8.0.50 netmask 255.255.255.0 mtu 1500 broadcast 10.8.0.255 Wed Feb 23 22:20:10 2011 Initialization Sequence Completed The openvpn server has been configured to assign ip addresses in the range 10.8.0.* and the client has been given 10.8.0.50. When I run the following nmap from the client: Starting Nmap 5.00 ( http://nmap.org ) at 2011-02-23 22:04 EST Host 10.8.0.50 is up (0.00047s latency). Nmap done: 256 IP addresses (1 host up) scanned in 30.34 seconds Host 192.168.1.1 is up (0.0025s latency). Host 192.168.1.18 is up (0.074s latency). Host 192.168.1.41 is up (0.0024s latency). Host 192.168.1.55 is up (0.00018s latency). Nmap done: 256 IP addresses (4 hosts up) scanned in 6.33 seconds If I run an nmap from the server on 10.8.0.* I get nothing. If the client has two interfaces (wireless and tap device) when you look for a certain ip address, how does it decide which interface to connect on?

    Read the article

  • Knockout with ASP.Net MVC2 - HTML Extension Helpers for input controls

    - by Renso
    Goal: Defining Knockout-style input controls can be tedious and also may be something that you may find obtrusive, mixing your HTML with data bind syntax as well as binding your aspx, ascx files to Knockout. The goal is to make specifying Knockout specific HTML tags easy, seamless really, as well as being able to remove references to Knockout easily. Environment considerations: ASP.Net MVC2 or later Knockoutjs.js How to:     public static class HtmlExtensions     {         public static string DataBoundCheckBox(this HtmlHelper helper, string name, bool isChecked, object htmlAttributes)         {             var builder = new TagBuilder("input");             var dic = new RouteValueDictionary(htmlAttributes) { { "data-bind", String.Format("checked: {0}", name) } };             builder.MergeAttributes(dic);             builder.MergeAttribute("type", @"checkbox");             builder.MergeAttribute("name", name);             builder.MergeAttribute("value", @"true");             if (isChecked)             {                 builder.MergeAttribute("checked", @"checked");             }             return builder.ToString(TagRenderMode.SelfClosing);         }         public static MvcHtmlString DataBoundSelectList(this HtmlHelper helper, string name, IEnumerable<SelectListItem> selectList, String optionLabel)         {             var attrProperties = new StringBuilder();             attrProperties.Append(String.Format("optionsText: '{0}'", name));             if (!String.IsNullOrEmpty(optionLabel)) attrProperties.Append(String.Format(", optionsCaption: '{0}'", optionLabel));             attrProperties.Append(String.Format(", value: {0}", name));             var dic = new RouteValueDictionary { { "data-bind", attrProperties.ToString() } };             return helper.DropDownList(name, selectList, optionLabel, dic);         }         public static MvcHtmlString DataBoundSelectList(this HtmlHelper helper, string name, IEnumerable<SelectListItem> selectList, String optionLabel, object htmlAttributes)         {             var attrProperties = new StringBuilder();             attrProperties.Append(String.Format("optionsText: '{0}'", name));             if (!String.IsNullOrEmpty(optionLabel)) attrProperties.Append(String.Format(", optionsCaption: '{0}'", optionLabel));             attrProperties.Append(String.Format(", value: {0}", name));             var dic = new RouteValueDictionary(htmlAttributes) {{"data-bind", attrProperties}};             return helper.DropDownList(name, selectList, optionLabel, dic);         }         public static String DataBoundSelectList(this HtmlHelper helper, String options, String optionsText, String value)         {             return String.Format("<select data-bind=\"options: {0},optionsText: '{1}',value: {2}\"></select>", options, optionsText, value);         }         public static MvcHtmlString DataBoundTextBox(this HtmlHelper helper, string name, object value, object htmlAttributes)         {             var dic = new RouteValueDictionary(htmlAttributes);             dic.Add("data-bind", String.Format("value: {0}", name));             return helper.TextBox(name, value, dic);         }         public static MvcHtmlString DataBoundTextBox(this HtmlHelper helper, string name, string observable, object value, object htmlAttributes)         {             var dic = new RouteValueDictionary(htmlAttributes);             dic.Add("data-bind", String.Format("value: {0}", observable));             return helper.TextBox(name, value, dic);         }         public static MvcHtmlString DataBoundTextArea(this HtmlHelper helper, string name, string value, int rows, int columns, object htmlAttributes)         {             var dic = new RouteValueDictionary(htmlAttributes);             dic.Add("data-bind", String.Format("value: {0}", name));             return helper.TextArea(name, value, rows, columns, dic);         }         public static MvcHtmlString DataBoundTextArea(this HtmlHelper helper, string name, string observable, string value, int rows, int columns, object htmlAttributes)         {             var dic = new RouteValueDictionary(htmlAttributes);             dic.Add("data-bind", String.Format("value: {0}", observable));             return helper.TextArea(name, value, rows, columns, dic);         }         public static string BuildUrlFromExpression<T>(this HtmlHelper helper, Expression<Action<T>> action)         {             var values = CreateRouteValuesFromExpression(action);             var virtualPath = helper.RouteCollection.GetVirtualPath(helper.ViewContext.RequestContext, values);             if (virtualPath != null)             {                 return virtualPath.VirtualPath;             }             return null;         }         public static string ActionLink<T>(this HtmlHelper helper, Expression<Action<T>> action, string linkText)         {             return helper.ActionLink(action, linkText, null);         }         public static string ActionLink<T>(this HtmlHelper helper, Expression<Action<T>> action, string linkText, object htmlAttributes)         {             var values = CreateRouteValuesFromExpression(action);             var controllerName = (string)values["controller"];             var actionName = (string)values["action"];             values.Remove("controller");             values.Remove("action");             return helper.ActionLink(linkText, actionName, controllerName, values, new RouteValueDictionary(htmlAttributes)).ToHtmlString();         }         public static MvcForm Form<T>(this HtmlHelper helper, Expression<Action<T>> action)         {             return helper.Form(action, FormMethod.Post);         }         public static MvcForm Form<T>(this HtmlHelper helper, Expression<Action<T>> action, FormMethod method)         {             var values = CreateRouteValuesFromExpression(action);             string controllerName = (string)values["controller"];             string actionName = (string)values["action"];             values.Remove("controller");             values.Remove("action");             return helper.BeginForm(actionName, controllerName, values, method);         }         public static MvcForm Form<T>(this HtmlHelper helper, Expression<Action<T>> action, FormMethod method, object htmlAttributes)         {             var values = CreateRouteValuesFromExpression(action);             string controllerName = (string)values["controller"];             string actionName = (string)values["action"];             values.Remove("controller");             values.Remove("action");             return helper.BeginForm(actionName, controllerName, values, method, new RouteValueDictionary(htmlAttributes));         }         public static string VertCheckBox(this HtmlHelper helper, string name, bool isChecked)         {             return helper.CustomCheckBox(name, isChecked, null);         }          public static string CustomCheckBox(this HtmlHelper helper, string name, bool isChecked, object htmlAttributes)         {             TagBuilder builder = new TagBuilder("input");             builder.MergeAttributes(new RouteValueDictionary(htmlAttributes));             builder.MergeAttribute("type", "checkbox");             builder.MergeAttribute("name", name);             builder.MergeAttribute("value", "true");             if (isChecked)             {                 builder.MergeAttribute("checked", "checked");             }             return builder.ToString(TagRenderMode.SelfClosing);         }         public static string Script(this HtmlHelper helper, string script, object scriptAttributes)         {             var pathForCRMScripts = ScriptsController.GetPathForCRMScripts();             if (ScriptOptimizerConfig.EnableMinimizedFileLoad)             {                 string newPathForCRM = pathForCRMScripts + "Min/";                 ScriptsController.ServerPathMapper = new ServerPathMapper();                 string fullPath = ScriptsController.ServerMapPath(newPathForCRM);                 if (!File.Exists(fullPath + script))                     return null;                 if (!Directory.Exists(fullPath))                     return null;                 pathForCRMScripts = newPathForCRM;             }             var builder = new TagBuilder("script");             builder.MergeAttributes(new RouteValueDictionary(scriptAttributes));             builder.MergeAttribute("type", @"text/javascript");             builder.MergeAttribute("src", String.Format("{0}{1}", pathForCRMScripts.Replace("~", String.Empty), script));             return builder.ToString(TagRenderMode.SelfClosing);         }         private static RouteValueDictionary CreateRouteValuesFromExpression<T>(Expression<Action<T>> action)         {             if (action == null)                 throw new InvalidOperationException("Action must be provided");             var body = action.Body as MethodCallExpression;             if (body == null)             {                 throw new InvalidOperationException("Expression must be a method call");             }             if (body.Object != action.Parameters[0])             {                 throw new InvalidOperationException("Method call must target lambda argument");             }             // This will build up a RouteValueDictionary containing the controller name, action name, and any             // parameters passed as part of the "action" parameter.             string name = body.Method.Name;             string controllerName = typeof(T).Name;             if (controllerName.EndsWith("Controller", StringComparison.OrdinalIgnoreCase))             {                 controllerName = controllerName.Remove(controllerName.Length - 10, 10);             }             var values = BuildParameterValuesFromExpression(body) ?? new RouteValueDictionary();             values.Add("controller", controllerName);             values.Add("action", name);             return values;         }         private static RouteValueDictionary BuildParameterValuesFromExpression(MethodCallExpression call)         {             // Build up a RouteValueDictionary containing parameter names as keys and parameter values             // as values based on the MethodCallExpression passed in.             var values = new RouteValueDictionary();             ParameterInfo[] parameters = call.Method.GetParameters();             // If the passed in method has no parameters, just return an empty dictionary.             if (parameters.Length == 0)             {                 return values;             }             for (int i = 0; i < parameters.Length; i++)             {                 object parameterValue;                 Expression expression = call.Arguments[i];                 // If the current parameter is a constant, just use its value as the parameter value.                 var constant = expression as ConstantExpression;                 if (constant != null)                 {                     parameterValue = constant.Value;                 }                 else                 {                     // Otherwise, compile and execute the expression and use that as the parameter value.                     var function = Expression.Lambda<Func<object>>(Expression.Convert(expression, typeof(object)),                                                                    new ParameterExpression[0]);                     try                     {                         parameterValue = function.Compile()();                     }                     catch                     {                         parameterValue = null;                     }                 }                 values.Add(parameters[i].Name, parameterValue);             }             return values;         }     }   Some observations: The first two DataBoundSelectList overloaded methods are specifically built to load the data right into the drop down box as part of the HTML response stream rather than let Knockout's engine populate the options client-side. The third overloaded method does it client-side via the viewmodel. The first two overloads can be done when you have no requirement to add complex JSON objects to your lists. Furthermore, why render and parse the JSON object when you can have it all built and rendered server-side like any other list control.

    Read the article

  • How to expose service contract interfaces with multiple inheritance in WCF service on single endpoin

    - by Vaibhav Gawali
    I have only simple data types in method signature of service (such as int, string). My service class implements single ServiceContract interface say IMathService, and this interface in turn inherits from some other base interface say IAdderService. I want to expose the MathService using interface contract IAdderService as a service on a single endpoint. However some of the clinet's which know about IMathService should be able to access the extra services provided by IMathService on that single endpoint i.e. by just typecasting IAdderService to IMathService. //Interfaces and classes at server side [ServiceContract] public interface IAdderService { [OperationContract] int Add(int num1, int num2); } [ServiceContract] public interface IMathService : IAdderService { [OperationContract] int Substract(int num1, int num2); } public class MathService : IMathService { #region IMathService Members public int Substract(int num1, int num2) { return num1 - num2; } #endregion #region IAdderService Members public int Add(int num1, int num2) { return num1 + num2; } #endregion } //Run WCF service as a singleton instace MathService mathService = new MathService(); ServiceHost host = new ServiceHost(mathService); host.Open(); Server side Configuration: <configuration> <system.serviceModel> <services> <service name="IAdderService" behaviorConfiguration="AdderServiceServiceBehavior"> <endpoint address="net.pipe://localhost/AdderService" binding="netNamedPipeBinding" bindingConfiguration="Binding1" contract="TestApp.IAdderService" /> <endpoint address="mex" binding="mexNamedPipeBinding" contract="IMetadataExchange" /> <host> <baseAddresses> <add baseAddress="net.pipe://localhost/AdderService"/> </baseAddresses> </host> </service> </services> <bindings> <netNamedPipeBinding> <binding name="Binding1" > <security mode = "None"> </security> </binding > </netNamedPipeBinding> </bindings> <behaviors> <serviceBehaviors> <behavior name="AdderServiceServiceBehavior"> <serviceMetadata /> <serviceDebug includeExceptionDetailInFaults="True" /> </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> </configuration> Client Side imeplementation: IAdderService adderService = new ChannelFactory<IAdderService>("AdderService").CreateChannel(); int result = adderService.Add(10, 11); IMathService mathService = adderService as IMathService; result = mathService.Substract(100, 9); Client side configuration: <configuration> <system.serviceModel> <client> <endpoint name="AdderService" address="net.pipe://localhost/AdderService" binding="netNamedPipeBinding" bindingConfiguration="Binding1" contract="TestApp.IAdderService" /> </client> <bindings> <netNamedPipeBinding> <binding name="Binding1" maxBufferSize="65536" maxConnections="10"> <security mode = "None"> </security> </binding > </netNamedPipeBinding> </bindings> </system.serviceModel> </configuration> Using above code and configuration I am not able to typecast IAdderService instnace to IMathService, it fails and I get null instance of IMathService at client side. My observation is if server exposes IMathService to client then client can safely typecast to IAdderService and vice versa is also possible. However if server exposes IAdderService then the typecast fails. Is there any solution to this? or am I doing it in a wrong way.

    Read the article

  • Mapping interface or abstract class component

    - by Yann Trevin
    Please consider the following simple use case: public class Foo { public virtual int Id { get; protected set; } public virtual IBar Bar { get; set; } } public interface IBar { string Text { get; set; } } public class Bar : IBar { public virtual string Text { get; set; } } And the fluent-nhibernate map class: public class FooMap : ClassMap<Foo> { public FooMap() { Id(x => x.Id); Component(x => x.Bar, m => { m.Map(x => x.Text); }); } } While running any query with configuration, I get the following exception: NHibernate.InstantiationException: "Cannot instantiate abstract class or interface: NHMappingTest.IBar" It seems that NHibernate tries to instantiate an IBar object instead of the Bar concrete class. How to let Fluent-NHibernate know which concrete class to instantiate when the property returns an interface or an abstract base class? EDIT: Explicitly specify the type of component by writing Component<Bar> (as suggested by Sly) has no effect and causes the same exception to occur. EDIT2: Thanks to vedklyv and Paul Batum: such a mapping should be soon is now possible.

    Read the article

  • Understanding Flash SWC's imported into Flex Builder 3 and key framed animation

    - by Hank Scorpio
    I am trying to understand what is going on in a SWC that I am importing from Flash CS4 into Flex Builder 3. Specifically I am using a SWC supplied by a Designer as the animation for a custom preloader (a subclassed DownloadProgressBar). The issue I am trying to understand is, once the FlexEvent.INIT_COMPLETE is fired, I cleanup by removing the swc by running this : removeChild(myPreloader); myPreloader = null; though even after I have removed this (which is successful, as I have checked by comparing this.numChildren before and after the call) the key framed animation still continues to run (not visibly). This has been detected by the Designer placing a trace in the time line of the animation (in Flash). Can anyone tell me why is it, that even after I have removed the animation from the subclassed DownloadProgressBar, it still keeps running ? Also, is it standard practice when importing SWCs to manage the cleanup of resources from the Flash side of things (much like releasing memory in obj-c). I find it counter intuitive that removing the child from the Flex side does not stop the animation. Any clues to this would be greatly appreciated.

    Read the article

  • Make JAXWS-based webservice implement interface and unmarshall to known POJOs

    - by John K
    Given a Java SE 6 client, I would like to provide a configurable back-end: either directly to a database or through a web service which connects to a centralized DB. To that end, I've created some JPA- and JAXB-annotated entity classes and a DAO interface in a POJO library like the following: public interface MyDaoInterface { public MyEntity doSomething(); } @javax.persistence.Entity @javax.xml.bind.annotation.XmlRootElement public class MyEntity { private int a; .... } Now, I would like to have my auto-generated web service stubs implement that interface and interact with my defined entity classes, rather than the generated classes provided via the JAX-B unmarshaller. So, the client-side pseudo code would be something like MyDaoInterface dao; if (usingWebservice) dao = new WebserviceDao(); else dao = new JpaDao(); MyEntity e = dao.doSomething(); Is this possible with JPA, JAXB, JAXWS? Is this even advisable? Currently we achieve this through a slow manual process of massaging code, copying generating classes, and doing other things that seem just plain wrong to me.

    Read the article

  • Query notation for the sitecore 'source' field in template builder

    - by M.R.
    I am trying to set the the source field of a template using the query notation (or xpath - whichever works), but none of them seems to be working. My content tree is a multisite content tree: France --Page 1 ----Page1A -------Page1AA --Page 2 --Page 3 --METADATA ----Regions US --Page 1 ----Page1A -------Page1AA --Page 2 --Page 3 --METADATA ----Regions Each site has its own METADATA folder, and I want it so that when adding a page inside each of the main country nodes, I want the values to reflect whatever is in the METADATA of that site. I have two different fields for now - a droplink and a treelistex field. So I thought I can just get the parent item that is a country site, and get the metadata folder for that. When I put the following query in both the fields, I get different results: query:./ancestor::*[@@templatename='CountryHome']/METADATA/Regions/* For the droplink field, I get only the first Region (one item) For the treelistex field, I get the entire content tree I then tried to modify the query a little bit and took the 'query' notation out ./ancestor::*[@@templatename='CountryHome']/METADATA/Regions/* If I go to the developer center/xpath builder, and set the context node to any item underneath the main country site, it returns me exactly what I need, but when I put this in the source, I get the entire content tree in both the cases. Help!

    Read the article

  • Tablet interface for the physically disabled?

    - by Glenn
    My sister has Cerebral Palsy, which in her case means she has only gross motor control and her speech is slurred. Implications should be obvious: traditional computer/phone/tablet interfaces won't work for her and she can't speak clearly enough for speech recognition software to help her at all. She enjoys reading but has difficulty holding the book and/or turning a page. There are a few options for helping her use a computer, but nothing for tablets or eReaders. That's where you come in. I would like to make (or buy, if such a thing exists) a better interface to an Android tablet that would work for someone with little to no physical dexterity or speech ability. I'd also be interested in work on the Kindle or iPad, but I'm most familiar with Android so I'm starting there. I know Android has Bluetooth capability. Is it possible to interface a joystick to control the Android device? By "control", I mean the entire operating system - selecting an app, launching it, controlling the menus, etc. I want to give her control over the whole thing, not just a specific app. On a PC this can be accomplished by creating a generic USB HID interface and an arcade joystick to move the mouse over the screen and click on thigns. Is it possible to do something like that in Android? Any help you can offer would be greatly appreciated. Thanks!

    Read the article

  • Implementation/interface inheritance design question.

    - by Neil G
    I would like to get the stackoverflow community's opinion on the following three design patterns. The first is implementation inheritance; the second is interface inheritance; the third is a middle ground. My specific question is: Which is best? implementation inheritance: class Base { X x() const = 0; void UpdateX(A a) { y_ = g(a); } Y y_; } class Derived: Base { X x() const { return f(y_); } } interface inheritance: class Base { X x() const = 0; void UpdateX(A a) = 0; } class Derived: Base { X x() const { return x_; } void UpdateX(A a) { x_ = f(g(a)); } X x_; } middle ground: class Base { X x() const { return x_; } void UpdateX(A a) = 0; X x_; } class Derived: Base { void UpdateX(A a) { x_ = f(g(a)); } } I know that many people prefer interface inheritance to implementation inheritance. However, the advantage of the latter is that with a pointer to Base, x() can be inlined and the address of x_ can be statically calculated.

    Read the article

  • Derived interface from generic method

    - by Sunit
    I'm trying to do this: public interface IVirtualInterface{ } public interface IFabricationInfo : IVirtualInterface { int Type { get; set; } int Requirement { get; set; } } public interface ICoatingInfo : IVirtualInterface { int Type { get; set; } int Requirement { get; set; } } public class FabInfo : IFabricationInfo { public int Requirement { get { return 1; } set { } } public int Type { get {return 1;} set{} } } public class CoatInfo : ICoatingInfo { public int Type { get { return 1; } set { } } public int Requirement { get { return 1; } set { } } } public class BusinessObj { public T VirtualInterface<T>() where T : IVirtualInterface { Type targetInterface = typeof(T); if (targetInterface.IsAssignableFrom(typeof(IFabricationInfo))) { var oFI = new FabInfo(); return (T)oFI; } if (targetInterface.IsAssignableFrom(typeof(ICoatingInfo))) { var oCI = new CoatInfo(); return (T)oCI; } return default(T); } } But getting a compiler error: Canot convert type 'GenericIntf.FabInfo' to T How do I fix this? thanks Sunit

    Read the article

  • IntelliJ Doesn't Notice Changes in Interface

    - by yar
    [I've decided to give IntelliJ another go (to replace Eclipse), since its Groovy support is supposed to be the best. But back to Java...] I have an Interface that defines a constant public static final int CHANNEL_IN = 1; and about 20 classes in my Module that implement that interface. I've decided that this constant was a bad idea so I did what I do in Eclipse: I deleted the entire line. This should cause the Project tree to light up like a Christmas tree and all classes that implement that interface and use that constant to break. Instead, this is not happening. If I don't actually double-click on the relevant classes -- which I find using grep -- the module even builds correctly (using Build - Make Module). If I double-click on a relevant class, the error is shown both in the Project Tree and in the Editor. I am not able to replicate this behavior in small tests, but in large modules it works (incorrectly) this way. Is there some relevant setting in IntelliJ for this?

    Read the article

  • How to use custom UITableViewCell from Interface Builder?

    - by Krumelur
    I want to be able to design my own UITableViewCell in IB. But I keep getting a null ref exception when trying to access the label I defined in IB. Here's what I'm doing: In Interface Builder: I removed the "View" and added a UITableViewCell instead. Changed the class of the UITableViewCell to "TestCellView". Added a UILabel to the cell. Added an outlet "oLblText" to TestCellView and connected the UILabel to it. Changed the identifier of the class to "TestCellView". Implement TestCellView.xib.cs public partial class TestCellView : UITableViewCell { public TestCellView(string sKey) : base(UITableViewCellStyle.Default, sKey) { } public TestCellView(IntPtr oHandle) : base(oHandle) { } public string TestText { get { return this.oLblText.Text; } set { // HERE I get the null ref exception! this.oLblText.Text = value; } } } ** The TestCellView.designer.cs** [MonoTouch.Foundation.Register("TestCellView")] public partial class TestCellView { private MonoTouch.UIKit.UILabel __mt_oLblText; #pragma warning disable 0169 [MonoTouch.Foundation.Connect("oLblText")] private MonoTouch.UIKit.UILabel oLblText { get { this.__mt_oLblText = ((MonoTouch.UIKit.UILabel)(this.GetNativeField("oLblText"))); return this.__mt_oLblText; } set { this.__mt_oLblText = value; this.SetNativeField("oLblText", value); } } } In my table's source: public override UITableViewCell GetCell (UITableView tableView, NSIndexPath indexPath) { TestCellView oCell = (TestCellView)tableView.DequeueReusableCell("myCell"); if(oCell == null) { // I suppose this is wrong but how to do it correctly? // this == my UITableViewSource. NSBundle.MainBundle.LoadNib("TestCellView", this, null); oCell = new TestCellView("myCell"); } oCell.TestText = "Cell " + indexPath.Row; return oCell; } Please note that I do NOT want a solution that involves a UIViewController for every cell. I have seen a couple of examples on the web doing this. I just think it is total overkill. What am I doing wrong?

    Read the article

  • What is the purpose of unit testing an interface repository

    - by ahsteele
    I am unit testing an ICustomerRepository interface used for retrieving objects of type Customer. As a unit test what value am I gaining by testing the ICustomerRepository in this manner? Under what conditions would the below test fail? For tests of this nature is it advisable to do tests that I know should fail? i.e. look for id 4 when I know I've only placed 5 in the repository I am probably missing something obvious but it seems the integration tests of the class that implements ICustomerRepository will be of more value. [TestClass] public class CustomerTests : TestClassBase { private Customer SetUpCustomerForRepository() { return new Customer() { CustId = 5, DifId = "55", CustLookupName = "The Dude", LoginList = new[] { new Login { LoginCustId = 5, LoginName = "tdude" }, new Login { LoginCustId = 5, LoginName = "tdude2" } } }; } [TestMethod] public void CanGetCustomerById() { // arrange var customer = SetUpCustomerForRepository(); var repository = Stub<ICustomerRepository>(); // act repository.Stub(rep => rep.GetById(5)).Return(customer); // assert Assert.AreEqual(customer, repository.GetById(5)); } } Test Base Class public class TestClassBase { protected T Stub<T>() where T : class { return MockRepository.GenerateStub<T>(); } } ICustomerRepository and IRepository public interface ICustomerRepository : IRepository<Customer> { IList<Customer> FindCustomers(string q); Customer GetCustomerByDifID(string difId); Customer GetCustomerByLogin(string loginName); } public interface IRepository<T> { void Save(T entity); void Save(List<T> entity); bool Save(T entity, out string message); void Delete(T entity); T GetById(int id); ICollection<T> FindAll(); }

    Read the article

  • C# -Fluent interface implementation Help

    - by nettguy
    I am implementing the following piece of code using Fluent Interface design in C# 3.0. The code is working fine. public interface ITrainable { ITrainable AddSkill(string _skill); } public interface ISearchSkill { ISearchSkill SearchSkill(SoftwareEngineer emp,string[] _skills); } public abstract class Person { public Person(){} protected string Name { get; set; } } public class SoftwareEngineer:Person,ITrainable { protected internal List<string> skillSet { get; set; } public SoftwareEngineer() { } public SoftwareEngineer(string name) { Name=name; skillSet = new List<string>(); } public ITrainable AddSkill(string _skill) { skillSet.Add(_skill); return this; } } public class HRExecutive :Person,ISearchSkill { SoftwareEngineer _employee; public HRExecutive() { _employee=new SoftwareEngineer(); } public ISearchSkill SearchSkill(SoftwareEngineer _employee,string[] skills) { this._employee= _employee; foreach (string _skill in skills) { if (_employee.skillSet.Contains(_skill)) { Console.WriteLine(Name + " is trained on " + _skill); } else { Console.WriteLine(Name + " is not trained on " + _skill); } } return this; } } Execution SoftwareEngineer emp1 = new SoftwareEngineer("JonSkeet"); emp1.AddSkill("java").AddSkill("C#").AddSkill("F#"); HRExecutive hr = new HRExecutive(); hr.SearchSkill(emp1, new string[] { "java", "C#" }). SearchSkill(emp1, new string[] { "Oracle", "F#" }); Question : I don't want the skillSet of SoftwareEngineer being accessed by some XXX class.It could be accessed by limited classes.But protected internal List<string> skillSet { get; set; } is the only option (i think) i can declare in order to access the skillSet from HRExecutive.If i do so other XXX class can still access it. How to rewrite the code to prevent it?

    Read the article

  • Compare values in serialized column in Doctrine with Query Builder

    - by ReynierPM
    I'm building a FormType for a Symfony2 project but I need some Query Builder on the field since I need to compare some values with the one stored on DB and show the results. This is what I have: .... ->add('servicio', 'entity', array( 'mapped' => false, 'class' => 'ComunBundle:TipoServicio', 'property' => 'nombre', 'required' => true, 'label' => false, 'expanded' => true, 'multiple' => true, 'query_builder' => function (EntityRepository $er) { return $er->createQueryBuilder('ts') ->where('ts.tipo_usuario = (:tipo)') ->setParameter('tipo', 1); } )) .... But tipo_usuario at DB table is stored as serialized text for example: record1: value1 | a:1:{i:0;s:1:"1";} record2: value2 | a:4:{i:0;s:1:"1";i:1;s:1:"2";i:2;s:1:"3";i:3;s:1:"4";} I'll have two different forms (I don't know how to pass the Request to a form) in the first one I'll only show the first record and for the second one the first and second record for example: First form will show: checkbox: value1 Second form will show: checkbox: value1 checkbox: value2 I achieve this? Any help?

    Read the article

  • Best way to organize a Go interface

    - by Metropolis
    Hey Everyone, Its been a long time since I have programmed in C++, and if I remember correctly the best way to organize classes was to create your class in the .h file, and then your implementation in your .cpp file. Well I am trying to learn Go now and I was reading over the Go for C++ Programmers article when I came upon interfaces. The article explains that interfaces in Go essentially take the place of classes, and shows how to set them up pretty well. What I am trying to figure out though is how should I organize an interface into files? For instance, should the interface be in one file while the implementation is in another? myInterface.go type myInterface interface { get() int set(i int) } myImplementation.go type myType struct { i int } func (p *myType) set(i int) { p.i = i } func (p *myType) get() int { return p.i } My code here may be wrong since I do not completely know what I am doing yet (and if I am wrong please correct me), but would this be the best way to set this up? Im having a very hard time trying to wrap my head around how to organize code in Go so any help is appreciated! Metropolis

    Read the article

  • Remote interface lookup-problem in Glassfish3

    - by andersmo
    I have deployed a war-file, with actionclasses and a facade, and a jar-file with ejb-components (a stateless bean, a couple of entities and a persistence.xml) on glassfish3. My problem is that i cant find my remote interface to the stateless bean from my facade. My bean and interface looks like: @Remote public interface RecordService {... @Stateless(name="RecordServiceBean", mappedName="ejb/RecordServiceJNDI") public class RecordServiceImpl implements RecordService { @PersistenceContext(unitName="record_persistence_ctx") private EntityManager em;... and if i look in the server.log the portable jndi looks like: Portable JNDI names for EJB RecordServiceBean : [java:global/recordEjb/RecordServiceBean, java:global/recordEjb/RecordServiceBean!domain.service.RecordService]|#] and my facade: ...InitialContext ctx= new InitialContext(); try{ recordService = (RecordService) ctx.lookup("java:global/recordEjb/RecordServiceBean!domain.service.RecordService"); } catch(Throwable t){ System.out.println("ooops"); try{ recordService = (RecordService)ctx.lookup("java:global/recordEjb/RecordServiceImpl"); } catch(Throwable t2){ System.out.println("noooo!"); }... } and when the facade makes the first call this exception occur: javax.naming.NamingException: Lookup failed for 'java:global/recordEjb/RecordServiceBean!domain.service.RecordService' in SerialContext [Root exception is javax.naming.NamingException: ejb ref resolution error for remote business interfacedomain.service.RecordService [Root exception is java.lang.ClassNotFoundException: domain.service.RecordService]] and the second call: javax.naming.NamingException: Lookup failed for 'java:global/recordEjb/RecordServiceBean' in SerialContext [Root exception is javax.naming.NamingException: ejb ref resolution error for remote business interfacedomain.service.RecordService [Root exception is java.lang.ClassNotFoundException: domain.service.RecordService]] I have also tested to inject the bean with the @EJB-annotation: @EJB(name="RecordServiceBean") private RecordService recordService; But that doesnt work either. What have i missed? I tried with an ejb-jar.xml but that shouldnt be nessesary. Is there anyone who can tell me how to fix this problem?

    Read the article

  • interface variables are final and static by default and methods are public and abstract

    - by sap
    The question is why it's been decided to have variable as final and static and methods as public and abstract by default. Is there any particular reason for making them implicit,variable as final and static and methods as public and abstract. Why they are not allowing static method but allowing static variable? We have interface to have feature of multiple inheritance in Java and to avoid diamond problem. But how it solves diamond problem,since it does not allow static methods. In the following program, both interfaces have method with the same name..but while implementing only one we implement...is this how diamond problem is solved? interface testInt{ int m = 0; void testMethod(); } interface testInt1{ int m = 10; void testMethod(); } public class interfaceCheck implements testInt, testInt1{ public void testMethod(){ System . out . println ( "m is"+ testInt.m ); System . out . println ( "Hi World!" ); } }

    Read the article

  • Eclipse Ant Builder problem

    - by styx777
    I made a custom ant script to automatically create a jar file each time I do a build. This is how it looks like: <?xml version="1.0" encoding="UTF-8"?> <project name="TestProj" basedir="." default="jar"> <property name="dist" value="dist" /> <property name="build" value="bin/test/testproj" /> <target name="jar"> <jar destfile="${dist}/TestProj.jar"> <manifest> <attribute name="Main-Class" value="test.testproj.TestProj" /> </manifest> <fileset dir="${build}" /> </jar> </target> </project> I added it by Right clicking my project properties builders clicked new Ant builder then I specified the location of the above xml file. However, when I run it by doing: java -jar TestProj.jar I get a NoClassDefFoundError test/testproj/TestProj I'm using Eclipse in Ubuntu. TestProj is the name of the class and it's in package test.testproj I'm pretty sure there's something wrong with the manifest and probably the location of the xml file as well but I'm not sure how to fix this. Any ideas?

    Read the article

  • How string accepting interface should look like?

    - by ybungalobill
    Hello, This is a follow up of this question. Suppose I write a C++ interface that accepts or returns a const string. I can use a const char* zero-terminated string: void f(const char* str); // (1) The other way would be to use an std::string: void f(const string& str); // (2) It's also possible to write an overload and accept both: void f(const char* str); // (3) void f(const string& str); Or even a template in conjunction with boost string algorithms: template<class Range> void f(const Range& str); // (4) My thoughts are: (1) is not C++ish and may be less efficient when subsequent operations may need to know the string length. (2) is bad because now f("long very long C string"); invokes a construction of std::string which involves a heap allocation. If f uses that string just to pass it to some low-level interface that expects a C-string (like fopen) then it is just a waste of resources. (3) causes code duplication. Although one f can call the other depending on what is the most efficient implementation. However we can't overload based on return type, like in case of std::exception::what() that returns a const char*. (4) doesn't work with separate compilation and may cause even larger code bloat. Choosing between (1) and (2) based on what's needed by the implementation is, well, leaking an implementation detail to the interface. The question is: what is the preffered way? Is there any single guideline I can follow? What's your experience?

    Read the article

  • Fortran pointer as an argument to interface procedure

    - by icarusthecow
    Im trying to use interfaces to call different subroutines with different types, however, it doesnt seem to work when i use the pointer attribute. for example, take this sample code MODULE ptr_types TYPE, abstract :: parent INTEGER :: q END TYPE TYPE, extends(parent) :: child INTEGER :: m END TYPE INTERFACE ptr_interface MODULE PROCEDURE do_something END INTERFACE CONTAINS SUBROUTINE do_something(atype) CLASS(parent), POINTER :: atype ! code determines that this allocation is correct from input ALLOCATE(child::atype) WRITE (*,*) atype%q END SUBROUTINE END MODULE PROGRAM testpass USE ptr_types CLASS(child), POINTER :: ctype CALL ptr_interface(ctype) END PROGRAM This gives error Error: There is no specific subroutine for the generic 'ptr_interface' at (1) however if i remove the pointer attribute in the subroutine it compiles fine. Now, normally this wouldnt be a problem, but for my use case i need to be able to treat that argument as a pointer, mainly so i can allocate it if necessary. Any suggestions? Mind you I'm new to fortran so I may have missed something edit: forgot to put the allocation in the parents subroutine, the initial input is unallocated EDIT 2 this is my second attempt, with caller side casting MODULE ptr_types TYPE, abstract :: parent INTEGER :: q END TYPE TYPE, extends(parent) :: child INTEGER :: m END TYPE TYPE, extends(parent) :: second INTEGER :: meow END TYPE CONTAINS SUBROUTINE do_something(this, type_num) CLASS(parent), POINTER :: this INTEGER type_num IF (type_num == 0) THEN ALLOCATE (child::this) ELSE IF (type_num == 1) THEN ALLOCATE (second::this) ENDIF END SUBROUTINE END MODULE PROGRAM testpass USE ptr_types CLASS(child), POINTER :: ctype SELECT TYPE(ctype) CLASS is (parent) CALL do_something(ctype, 0) END SELECT WRITE (*,*) ctype%q END PROGRAM however this still fails. in the select statement it complains that parent must extend child. Im sure this is due to restrictions when dealing with the pointer attribute, for type safety, however, im looking for a way to convert a pointer into its parent type for generic allocation. Rather than have to write separate allocation functions for every type and hope they dont collide in an interface or something. hopefully this example will illustrate a little more clearly what im trying to achieve, if you know a better way let me know

    Read the article

< Previous Page | 43 44 45 46 47 48 49 50 51 52 53 54  | Next Page >