Search Results

Search found 70675 results on 2827 pages for 'master data management'.

Page 47/2827 | < Previous Page | 43 44 45 46 47 48 49 50 51 52 53 54  | Next Page >

  • Extract wrong data from a frame in C?

    - by ipkiss
    I am writing a program that reads the data from the serial port on Linux. The data are sent by another device with the following frame format: |start | Command | Data | CRC | End | |0x02 | 0x41 | (0-127 octets) | | 0x03| ---------------------------------------------------- The Data field contains 127 octets as shown and octet 1,2 contains one type of data; octet 3,4 contains another data. I need to get these data. Because in C, one byte can only holds one character and in the start field of the frame, it is 0x02 which means STX which is 3 characters. So, in order to test my program, On the sender side, I construct an array as the frame formatted above like: char frame[254]; frame[0] = 0x02; // starting field frame[1] = 0x41; // command field which is character 'A' ..so on.. And, then On the receiver side, I take out the fields like: char result[254]; // read data read(result); printf("command = %c", result[1]); // get the command field of the frame // get other field's values the command field value (result[1]) is not character 'A'. I think, this because the first field value of the frame is 0x02 (STX) occupying 3 first places in the array frame and leading to the wrong results on the receiver side. How can I correct the issue or am I doing something wrong at the sender side? Thanks all. related questions: http://stackoverflow.com/questions/2500567/parse-and-read-data-frame-in-c http://stackoverflow.com/questions/2531779/clear-data-at-serial-port-in-linux-in-c

    Read the article

  • How to remove "Server name" items from history of SQL Server Management Studio

    - by arsenalogy
    When trying to connect to a server in Management Studio (specifically 2008), there is a field where you enter the Server name. That field also has a drop-down list where it shows a history of servers that you have attempted to connect to. I would like to know: How to remove an individual item from that history. How to remove an item from the Login field history for each Server name. Thanks!

    Read the article

  • The Oracle Cash Management Secret Very Few Customers Know About

    - by Theresa Hickman
    Did you know that Oracle Cash Management has a robust positioning feature? I had no idea. I was under the mistaken impression that Oracle Cash Management only did bank statement reconciliations. It seems I am not alone. In fact, many Oracle Financials customers are also not aware of this even though it is delivered for free with the Oracle Financials license. Even better, last week, Oracle released an enhancement to Oracle Cash Management for Release 12 that will greatly help customers with their cash positioning needs. As we all know, credit is tight these days. Companies need better visibility of their cash and other liquidity positions to make better use of their cash resources. Today, many customers are managing their cash positions manually using spreadsheets. We also hear how many of them are maintaining larger than normal balances in numerous bank accounts because they just do not have the visibility, and therefore the comfort they need. Although spreadsheets may work in the short-term, they are not the best way to manage your cash positions for the long-term especially if you have dozens, or even hundreds of bank and brokerage accounts. Also, spreadsheets are a lot more risky because they can be overwritten, deleted, difficult to audit, etc. With the newly enhanced positioning feature in Oracle Cash Management, customers can manage their daily cash positions using an excel-like interface that is very flexible and user-configurable. You can link the worksheet to an unlimited number of bank accounts to automatically retrieve your opening balances, the current/intra-day cash inflows and outflows, as well as your expected cash flows from your Fx, Investment and Debt positions if you have Oracle's Treasury module . Oracle Cash Management also has direct integration with Oracle Receivables, Oracle Payables, and Payroll, which adds to the comprehensive picture of what's happening with your organizations' cash in real-time. Here's a screen shot of what the cash positioning page looks like: View image As you can see, your Treasurers can obtain a holistic view of all cash positions across any number of bank accounts as well as other sources of cash flow movements. Depending on how they manage their accounts, they can also use this feature to initiate or monitor bank account sweeps or transfers between their zero balance accounts (ZBA) or cash pools. The cash position worksheet provide drill down for more detail and the ability to manually enter items directly into the worksheet for even greater flexibility and control. The enhancements to this feature were released last week. The following list the patches for Release 12.0.6 and 12.1.1: For more information, visit the following website. http://launch.oracle.com. PIN: yes2try

    Read the article

  • Fraud Detection with the SQL Server Suite Part 1

    - by Dejan Sarka
    While working on different fraud detection projects, I developed my own approach to the solution for this problem. In my PASS Summit 2013 session I am introducing this approach. I also wrote a whitepaper on the same topic, which was generously reviewed by my friend Matija Lah. In order to spread this knowledge faster, I am starting a series of blog posts which will at the end make the whole whitepaper. Abstract With the massive usage of credit cards and web applications for banking and payment processing, the number of fraudulent transactions is growing rapidly and on a global scale. Several fraud detection algorithms are available within a variety of different products. In this paper, we focus on using the Microsoft SQL Server suite for this purpose. In addition, we will explain our original approach to solving the problem by introducing a continuous learning procedure. Our preferred type of service is mentoring; it allows us to perform the work and consulting together with transferring the knowledge onto the customer, thus making it possible for a customer to continue to learn independently. This paper is based on practical experience with different projects covering online banking and credit card usage. Introduction A fraud is a criminal or deceptive activity with the intention of achieving financial or some other gain. Fraud can appear in multiple business areas. You can find a detailed overview of the business domains where fraud can take place in Sahin Y., & Duman E. (2011), Detecting Credit Card Fraud by Decision Trees and Support Vector Machines, Proceedings of the International MultiConference of Engineers and Computer Scientists 2011 Vol 1. Hong Kong: IMECS. Dealing with frauds includes fraud prevention and fraud detection. Fraud prevention is a proactive mechanism, which tries to disable frauds by using previous knowledge. Fraud detection is a reactive mechanism with the goal of detecting suspicious behavior when a fraudster surpasses the fraud prevention mechanism. A fraud detection mechanism checks every transaction and assigns a weight in terms of probability between 0 and 1 that represents a score for evaluating whether a transaction is fraudulent or not. A fraud detection mechanism cannot detect frauds with a probability of 100%; therefore, manual transaction checking must also be available. With fraud detection, this manual part can focus on the most suspicious transactions. This way, an unchanged number of supervisors can detect significantly more frauds than could be achieved with traditional methods of selecting which transactions to check, for example with random sampling. There are two principal data mining techniques available both in general data mining as well as in specific fraud detection techniques: supervised or directed and unsupervised or undirected. Supervised techniques or data mining models use previous knowledge. Typically, existing transactions are marked with a flag denoting whether a particular transaction is fraudulent or not. Customers at some point in time do report frauds, and the transactional system should be capable of accepting such a flag. Supervised data mining algorithms try to explain the value of this flag by using different input variables. When the patterns and rules that lead to frauds are learned through the model training process, they can be used for prediction of the fraud flag on new incoming transactions. Unsupervised techniques analyze data without prior knowledge, without the fraud flag; they try to find transactions which do not resemble other transactions, i.e. outliers. In both cases, there should be more frauds in the data set selected for checking by using the data mining knowledge compared to selecting the data set with simpler methods; this is known as the lift of a model. Typically, we compare the lift with random sampling. The supervised methods typically give a much better lift than the unsupervised ones. However, we must use the unsupervised ones when we do not have any previous knowledge. Furthermore, unsupervised methods are useful for controlling whether the supervised models are still efficient. Accuracy of the predictions drops over time. Patterns of credit card usage, for example, change over time. In addition, fraudsters continuously learn as well. Therefore, it is important to check the efficiency of the predictive models with the undirected ones. When the difference between the lift of the supervised models and the lift of the unsupervised models drops, it is time to refine the supervised models. However, the unsupervised models can become obsolete as well. It is also important to measure the overall efficiency of both, supervised and unsupervised models, over time. We can compare the number of predicted frauds with the total number of frauds that include predicted and reported occurrences. For measuring behavior across time, specific analytical databases called data warehouses (DW) and on-line analytical processing (OLAP) systems can be employed. By controlling the supervised models with unsupervised ones and by using an OLAP system or DW reports to control both, a continuous learning infrastructure can be established. There are many difficulties in developing a fraud detection system. As has already been mentioned, fraudsters continuously learn, and the patterns change. The exchange of experiences and ideas can be very limited due to privacy concerns. In addition, both data sets and results might be censored, as the companies generally do not want to publically expose actual fraudulent behaviors. Therefore it can be quite difficult if not impossible to cross-evaluate the models using data from different companies and different business areas. This fact stresses the importance of continuous learning even more. Finally, the number of frauds in the total number of transactions is small, typically much less than 1% of transactions is fraudulent. Some predictive data mining algorithms do not give good results when the target state is represented with a very low frequency. Data preparation techniques like oversampling and undersampling can help overcome the shortcomings of many algorithms. SQL Server suite includes all of the software required to create, deploy any maintain a fraud detection infrastructure. The Database Engine is the relational database management system (RDBMS), which supports all activity needed for data preparation and for data warehouses. SQL Server Analysis Services (SSAS) supports OLAP and data mining (in version 2012, you need to install SSAS in multidimensional and data mining mode; this was the only mode in previous versions of SSAS, while SSAS 2012 also supports the tabular mode, which does not include data mining). Additional products from the suite can be useful as well. SQL Server Integration Services (SSIS) is a tool for developing extract transform–load (ETL) applications. SSIS is typically used for loading a DW, and in addition, it can use SSAS data mining models for building intelligent data flows. SQL Server Reporting Services (SSRS) is useful for presenting the results in a variety of reports. Data Quality Services (DQS) mitigate the occasional data cleansing process by maintaining a knowledge base. Master Data Services is an application that helps companies maintaining a central, authoritative source of their master data, i.e. the most important data to any organization. For an overview of the SQL Server business intelligence (BI) part of the suite that includes Database Engine, SSAS and SSRS, please refer to Veerman E., Lachev T., & Sarka D. (2009). MCTS Self-Paced Training Kit (Exam 70-448): Microsoft® SQL Server® 2008 Business Intelligence Development and Maintenance. MS Press. For an overview of the enterprise information management (EIM) part that includes SSIS, DQS and MDS, please refer to Sarka D., Lah M., & Jerkic G. (2012). Training Kit (Exam 70-463): Implementing a Data Warehouse with Microsoft® SQL Server® 2012. O'Reilly. For details about SSAS data mining, please refer to MacLennan J., Tang Z., & Crivat B. (2009). Data Mining with Microsoft SQL Server 2008. Wiley. SQL Server Data Mining Add-ins for Office, a free download for Office versions 2007, 2010 and 2013, bring the power of data mining to Excel, enabling advanced analytics in Excel. Together with PowerPivot for Excel, which is also freely downloadable and can be used in Excel 2010, is already included in Excel 2013. It brings OLAP functionalities directly into Excel, making it possible for an advanced analyst to build a complete learning infrastructure using a familiar tool. This way, many more people, including employees in subsidiaries, can contribute to the learning process by examining local transactions and quickly identifying new patterns.

    Read the article

  • Oracle Data Integrator at Oracle OpenWorld 2012: Demonstrations

    - by Irem Radzik
    By Mike Eisterer Oracle OpenWorld is just a few days away and  we look forward to showing Oracle Data Integrator' comprehensive data integration platform, which delivers critical data integration requirements: from high-volume, high-performance batch loads, to event-driven, trickle-feed integration processes, to SOA-enabled data services.  Several Oracle Data Integrator demonstrations will be available October 1st through the3rd : Oracle Data Integrator and Oracle GoldenGate for Oracle Applications, in Moscone South, Right - S-240 Oracle Data Integrator and Service Integration, in Moscone South, Right - S-235 Oracle Data Integrator for Big Data, in Moscone South, Right - S-236 Oracle Data Integrator for Enterprise Data Warehousing, in Moscone South, Right - S-238 Additional information about OOW 2012 may be found for the following demonstrations. If you are not able to attend OpenWorld, please check out our latest resources for Data Integration.  

    Read the article

  • SQL Management Studio - Execute current line

    - by mawaldne
    In SQL Server 2008 Management studio, I can hit F5 to execute everything in the current query window. I can also highlight a query, and hit F5 to run that highlighted query. Instead of having to highlight a query, is there a way I can run the single query my cursor is on, or run a query my cursor is on up to a the first ';'?

    Read the article

  • Which algorithms/data structures should I "recognize" and know by name?

    - by Earlz
    I'd like to consider myself a fairly experienced programmer. I've been programming for over 5 years now. My weak point though is terminology. I'm self-taught, so while I know how to program, I don't know some of the more formal aspects of computer science. So, what are practical algorithms/data structures that I could recognize and know by name? Note, I'm not asking for a book recommendation about implementing algorithms. I don't care about implementing them, I just want to be able to recognize when an algorithm/data structure would be a good solution to a problem. I'm asking more for a list of algorithms/data structures that I should "recognize". For instance, I know the solution to a problem like this: You manage a set of lockers labeled 0-999. People come to you to rent the locker and then come back to return the locker key. How would you build a piece of software to manage knowing which lockers are free and which are in used? The solution, would be a queue or stack. What I'm looking for are things like "in what situation should a B-Tree be used -- What search algorithm should be used here" etc. And maybe a quick introduction of how the more complex(but commonly used) data structures/algorithms work. I tried looking at Wikipedia's list of data structures and algorithms but I think that's a bit overkill. So I'm looking more for what are the essential things I should recognize?

    Read the article

  • Understanding Data Science: Recent Studies

    - by Joe Lamantia
    If you need such a deeper understanding of data science than Drew Conway's popular venn diagram model, or Josh Wills' tongue in cheek characterization, "Data Scientist (n.): Person who is better at statistics than any software engineer and better at software engineering than any statistician." two relatively recent studies are worth reading.   'Analyzing the Analyzers,' an O'Reilly e-book by Harlan Harris, Sean Patrick Murphy, and Marck Vaisman, suggests four distinct types of data scientists -- effectively personas, in a design sense -- based on analysis of self-identified skills among practitioners.  The scenario format dramatizes the different personas, making what could be a dry statistical readout of survey data more engaging.  The survey-only nature of the data,  the restriction of scope to just skills, and the suggested models of skill-profiles makes this feel like the sort of exercise that data scientists undertake as an every day task; collecting data, analyzing it using a mix of statistical techniques, and sharing the model that emerges from the data mining exercise.  That's not an indictment, simply an observation about the consistent feel of the effort as a product of data scientists, about data science.  And the paper 'Enterprise Data Analysis and Visualization: An Interview Study' by researchers Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffery Heer considers data science within the larger context of industrial data analysis, examining analytical workflows, skills, and the challenges common to enterprise analysis efforts, and identifying three archetypes of data scientist.  As an interview-based study, the data the researchers collected is richer, and there's correspondingly greater depth in the synthesis.  The scope of the study included a broader set of roles than data scientist (enterprise analysts) and involved questions of workflow and organizational context for analytical efforts in general.  I'd suggest this is useful as a primer on analytical work and workers in enterprise settings for those who need a baseline understanding; it also offers some genuinely interesting nuggets for those already familiar with discovery work. We've undertaken a considerable amount of research into discovery, analytical work/ers, and data science over the past three years -- part of our programmatic approach to laying a foundation for product strategy and highlighting innovation opportunities -- and both studies complement and confirm much of the direct research into data science that we conducted. There were a few important differences in our findings, which I'll share and discuss in upcoming posts.

    Read the article

  • IOMEGA 500GB hard disk data reccovery

    - by Vineeth
    Last year by November I bought an IOMEGA 500GB Prestige hard disk. Yesterday, unfortunately the hard disk fell down from my table. After that incident, when I connect my disk, Windows asks me to format the disk to use, but I didn't format it yet. Actually, on that hard disk I have about 320GB of data. I tried all my possible ways to access my disk. I tried using DOS. It shows "data error (Cyclic redundancy check)". I have a 3 year warranty. Will I be covered under warranty if I report this issue to IOMEGA? Can I get my data back?

    Read the article

  • how to find a good data center?

    - by drewda
    At my start-up, we're getting to the point where we should be hosting our servers at a data center. I'd appreciate any tips and tricks y'all can offer on finding a reputable place to colocate our racks. Are there any Web sites with customer reviews of data centers or should I just be asking around at techie events? Are unlimited bandwidth plans a gimmick or becoming the norm? Is it worth establishing a redundant set of machines at a second data center from Day One? Or just do offsite back-ups? Thanks for your suggestions.

    Read the article

  • Using Barcode ID for Event Management

    - by Nimbuz
    I have a barcode scanner and laptop (ofcourse :)), I'm looking for simple event management app that can process the input from the barcode scanner and keep attendance record for our frequent private meetings. I wonder if there's an open source software available that'd allow me to manage events using code 128 barcode id cards? Many thanks for your help.

    Read the article

  • Appending column to a data frame - R

    - by darkie15
    Is it possible to append a column to data frame in the following scenario? dfWithData <- data.frame(start=c(1,2,3), end=c(11,22,33)) dfBlank <- data.frame() ..how to append column start from dfWithData to dfBlank? It looks like the data should be added when data frame is being initialized. I can do this: dfBlank <- data.frame(dfWithData[1]) but I am more interested if it is possible to append columns to an empty (but inti)

    Read the article

  • Protecting Consolidated Data on Engineered Systems

    - by Steve Enevold
    In this time of reduced budgets and cost cutting measures in Federal, State and Local governments, the requirement to provide services continues to grow. Many agencies are looking at consolidating their infrastructure to reduce cost and meet budget goals. Oracle's engineered systems are ideal platforms for accomplishing these goals. These systems provide unparalleled performance that is ideal for running applications and databases that traditionally run on separate dedicated environments. However, putting multiple critical applications and databases in a single architecture makes security more critical. You are putting a concentrated set of sensitive data on a single system, making it a more tempting target.  The environments were previously separated by iron so now you need to provide assurance that one group, department, or application's information is not visible to other personnel or applications resident in the Exadata system. Administration of the environments requires formal separation of duties so an administrator of one application environment cannot view or negatively impact others. Also, these systems need to be in protected environments just like other critical production servers. They should be in a data center protected by physical controls, network firewalls, intrusion detection and prevention, etc Exadata also provides unique security benefits, including a reducing attack surface by minimizing packages and services to only those required. In addition to reducing the possible system areas someone may attempt to infiltrate, Exadata has the following features: 1.    Infiniband, which functions as a secure private backplane 2.    IPTables  to perform stateful packet inspection for all nodes               Cellwall implements firewall services on each cell using IPTables 3.    Hardware accelerated encryption for data at rest on storage cells Oracle is uniquely positioned to provide the security necessary for implementing Exadata because security has been a core focus since the company's beginning. In addition to the security capabilities inherent in Exadata, Oracle security products are all certified to run in an Exadata environment. Database Vault Oracle Database Vault helps organizations increase the security of existing applications and address regulatory mandates that call for separation-of-duties, least privilege and other preventive controls to ensure data integrity and data privacy. Oracle Database Vault proactively protects application data stored in the Oracle database from being accessed by privileged database users. A unique feature of Database Vault is the ability to segregate administrative tasks including when a command can be executed, or that the DBA can manage the health of the database and objects, but may not see the data Advanced Security  helps organizations comply with privacy and regulatory mandates by transparently encrypting all application data or specific sensitive columns, such as credit cards, social security numbers, or personally identifiable information (PII). By encrypting data at rest and whenever it leaves the database over the network or via backups, Oracle Advanced Security provides the most cost-effective solution for comprehensive data protection. Label Security  is a powerful and easy-to-use tool for classifying data and mediating access to data based on its classification. Designed to meet public-sector requirements for multi-level security and mandatory access control, Oracle Label Security provides a flexible framework that both government and commercial entities worldwide can use to manage access to data on a "need to know" basis in order to protect data privacy and achieve regulatory compliance  Data Masking reduces the threat of someone in the development org taking data that has been copied from production to the development environment for testing, upgrades, etc by irreversibly replacing the original sensitive data with fictitious data so that production data can be shared safely with IT developers or offshore business partners  Audit Vault and Database Firewall Oracle Audit Vault and Database Firewall serves as a critical detective and preventive control across multiple operating systems and database platforms to protect against the abuse of legitimate access to databases responsible for almost all data breaches and cyber attacks.  Consolidation, cost-savings, and performance can now be achieved without sacrificing security. The combination of built in protection and Oracle’s industry-leading data protection solutions make Exadata an ideal platform for Federal, State, and local governments and agencies.

    Read the article

  • Delphi memory management design strategies : Object or Interface ?

    - by Pierre-Jean Coudert
    Regarding Delphi memory management, what are your design strategies ? What are the use cases where you prefer to create and release Objects manually ? What are the uses cases where Interfaces, InterfacedObjects, and their reference counting mechanism will be prefered ? Do you have identified some traps or difficulties with reference counted objects ? Thanks for sharing your experience here.

    Read the article

  • WebCenter Customer Spotlight: Hitachi Data Systems

    - by me
    Author: Peter Reiser - Social Business Evangelist, Oracle WebCenter Watch this Webcast to see a live demo on how HDS creates multilingual content for their 35+ regional websites  Solution SummaryHitachi Data Systems (HDS) provides mid-range and high-end storage systems, software and services. It is a wholly owned subsidiary of Hitachi Ltd. HDS is based in Santa Clara, California, and has over 5,300 employees in more then 100 countries and regions. HDS's main objectives were to provide a consistent message across all their sites, to maintain a tight governance structure across their messages and related content, expand the use of the existing content management systems and implement a centralized translation management system. HDS implemented a global web content management system based on Oracle WebCenter Content and integrated the Lingotek translation management system to manage their multilingual content. The implemented solution provides each Geo with the ability to expand their web offering to meet local market needs, while staying aligned with the Corporate Web Guidelines Company OverviewHitachi Data Systems (HDS) provides mid-range and high-end storage systems, software and services. It is a wholly owned subsidiary of Hitachi Ltd. and part of the Hitachi Information Systems & Telecommunications Division. The company sells through direct and indirect channels in more than 170 countries and regions. Its customers include of 50 percent of the Fortune 100 companies. HDS is based in Santa Clara California and has over 5,300 employees in more than 100 countries and regions. Business ChallengesHDS has over 35 global websites and the lack of global web capabilities led to inconsistency of messaging, slower time to market and failed to address local language needs. There was an extensive operational overhead due to manual and redundant processes. Translation efforts where superficial, inconsistent and wasteful and the lack of translation automation tools discouraged localization.  HDS's main objectives were to provide a consistent message across all their sites, to maintain a tight governance structure across their messages and related content, expand the use of the existing content management systems and implement a centralized translation management system. Solution DeployedHDS implemented a global web content management system based on Oracle WebCenter Content. The solution supports decentralized publishing for their 35+ global sites to address local market needs while ensuring editorial and brand review trough embedded review processes. They integrated the Lingotek translation management system into Oracle WebCenter Content to manage their multilingual content. Business Results Provides each Geo with the ability to expand their web offering to meet local market needs, while staying aligned with the Corporate Web Guidelines Enables end-to-end content lifecycle management across multiple languages Leverage translation memory for reuse and consistency Reduce time to market with central repository of translated content Additional Information HDS Webcast Oracle WebCenter Content Lingotek website

    Read the article

  • Book Review (Book 12) - 20 Master Plots

    - by BuckWoody
    This is a continuation of the books I challenged myself to read to help my career - one a month, for a year. You can read my first book review here, and the entire list is here. The book I chose for May 2012 was:20 Master Plots by Ronald B. Tobias. This is my final book review - at least for this year. I'll explain what I've learned in this book in particular, and in the last twelve months in general. Why I chose this book: Stories and themes are part of software, presenting, and working in teams. This book claims there are only 20 plots, ever. I wanted to find out. What I learned: Probably my most favorite read of the year. Deceptively small, amazingly insightful. The premise is that there are only a few "base" themes, and that once you learn them you can put together an interesting set of stories on most any topic. Yes, the author admits that this number has been different throughout history - some have said 50, others 14, and still others claim only one or two basic plots. This doesn't change the fact that you can build very complex stories from a simple set of circumstances and characters. Be warned - if you read this book it takes away much of the wonder from almost every movie or book you'll read from here on! I loved it. My favorite part is that the author gives you exercises to build stories, right from the start. I've actually used these as the start of a meeting to foster creativity. Amazing stuff. One of my favorite sections of the book deals with plot and story. Plot: The king died, and the queen died. Story: The king died, and the queen died of heartbreak. Add one or two words, and you have the essence of storytelling. A highly recommended read, for all folks of all ages. You'll like it, your spouse will like it, and your kids will like it. I learned to be a better storyteller, and it helped me understand that plots and stories are not just things in books - they are a direct reflection of human nature. That makes me a better manager of myself and others.   And this is the last of the reviews - at least for this year. I probably won't post many more book reviews here, but I will keep up the practice. As a reminder, the goal was to select 12 books that will help you reach your career goals. They don't have to be technical, or even apply directly to your job - but they do need to be books that you mindfully select as getting you closer to what you want to be. Each month, jot down what you learned from the work. And see if it doesn't in fact get you closer to your goals. These readings helped me - I got a promotion this year, and I attribute at least some of that to the things I learned.

    Read the article

  • using core data with web services

    - by Jayshree
    Hi. i am a noob in xcode. I am developing an iphone app where i need to send and receive data from a web service. And i need to store them temporarily in my app. i dont want to use sqlite. so i was wondering if i should use core data for this purpose. I read some articles but i still dont have a clear picture of how to do it, coz i have used core data only with sqlite. I want to do the following things : Will receive table data from a web service. Have to perform certain calculations on those fields. Will send the data back in xml format to the server. How do i convert the xml data into int, date or any other data type? and how do i store it in managed data objects? Can anyone please help me with this??? thnx for your time.

    Read the article

  • Book Review (Book 12) - 20 Master Plots

    - by BuckWoody
    This is a continuation of the books I challenged myself to read to help my career - one a month, for a year. You can read my first book review here, and the entire list is here. The book I chose for May 2012 was:20 Master Plots by Ronald B. Tobias. This is my final book review - at least for this year. I'll explain what I've learned in this book in particular, and in the last twelve months in general. Why I chose this book: Stories and themes are part of software, presenting, and working in teams. This book claims there are only 20 plots, ever. I wanted to find out. What I learned: Probably my most favorite read of the year. Deceptively small, amazingly insightful. The premise is that there are only a few "base" themes, and that once you learn them you can put together an interesting set of stories on most any topic. Yes, the author admits that this number has been different throughout history - some have said 50, others 14, and still others claim only one or two basic plots. This doesn't change the fact that you can build very complex stories from a simple set of circumstances and characters. Be warned - if you read this book it takes away much of the wonder from almost every movie or book you'll read from here on! I loved it. My favorite part is that the author gives you exercises to build stories, right from the start. I've actually used these as the start of a meeting to foster creativity. Amazing stuff. One of my favorite sections of the book deals with plot and story. Plot: The king died, and the queen died. Story: The king died, and the queen died of heartbreak. Add one or two words, and you have the essence of storytelling. A highly recommended read, for all folks of all ages. You'll like it, your spouse will like it, and your kids will like it. I learned to be a better storyteller, and it helped me understand that plots and stories are not just things in books - they are a direct reflection of human nature. That makes me a better manager of myself and others.   And this is the last of the reviews - at least for this year. I probably won't post many more book reviews here, but I will keep up the practice. As a reminder, the goal was to select 12 books that will help you reach your career goals. They don't have to be technical, or even apply directly to your job - but they do need to be books that you mindfully select as getting you closer to what you want to be. Each month, jot down what you learned from the work. And see if it doesn't in fact get you closer to your goals. These readings helped me - I got a promotion this year, and I attribute at least some of that to the things I learned.

    Read the article

  • Why CFOs Should Care About Big Data

    - by jmorourke
    The topic of “big data” clearly has reached a tipping point in 2012.  With plenty of coverage over the past few years in the IT press, we are now starting to see the topic of “big data” covered in mainstream business press, including a cover story in the October 2012 issue of the Harvard Business Review.  To help customers understand the challenges of managing “big data” as well as the opportunities that can be created by leveraging “big data”, Oracle has recently run and published the results of a customer survey, as well as white papers and articles on this topic.  Most recently, we commissioned a white paper titled “Mastering Big Data: CFO Strategies to Transform Insight into Opportunity”. The premise here is that “big data” is not just a topic that CIOs should pay attention to, but one that CFOs should understand and take advantage of as well.  Clearly, whoever masters the art and science of big data will be positioned for competitive advantage in their industries or markets.  That’s why smart CFOs are taking control of big data and business analytics projects, not just to uncover new ways to drive growth in a slowing global economy, but also to be a catalyst for change in the enterprise.  With an increasing number of CFOs now responsible for overseeing IT investments and providing strategic insight to the board, CFOs will be increasingly called upon to take a leadership role in assessing the value of “big data” initiatives, building on their traditional skills in reporting and helping managers analyze data to support decision making. Here’s a link to the white paper referenced above, which is posted on the Oracle C-Central/CFO web site, as well as some other resources that can help CFOs master the topic of “big data”: White Paper “Mastering Big Data:  CFO Strategies to Transform Insight into Opportunity CFO Market Watch article:  “Does Big Data Affect the CFO?” Oracle Survey Report:  “From Overload to Impact – An Industry Scorecard on Big Data Industry Challenges” Upcoming Big Data Webcast with Andrew McAfee Here’s a general link to Oracle C-Central/CFO in case you want to start there: www.oracle.com/c-central/cfo Feel free to contact me if you have any questions or need additional information:  [email protected]

    Read the article

  • Presenting Loading Data Warehouse Partitions with SSIS 2012 at SQL Saturday DC!

    - by andyleonard
    Join Darryll Petrancuri and me as we present Loading Data Warehouse Partitions with SSIS 2012 Saturday 8 Dec 2012 at SQL Saturday 173 in DC ! SQL Server 2012 table partitions offer powerful Big Data solutions to the Data Warehouse ETL Developer. In this presentation, Darryll Petrancuri and Andy Leonard demonstrate one approach to loading partitioned tables and managing the partitions using SSIS 2012, and reporting partition metrics using SSRS 2012. Objectives A practical solution for loading Big...(read more)

    Read the article

  • Having a generic data type for a database table column, is it "good" practice?

    - by Yanick Rochon
    I'm working on a PHP project where some object (class member) may contain different data type. For example : class Property { private $_id; // (PK) private $_ref_id; // the object reference id (FK) private $_name; // the name of the property private $_type; // 'string', 'int', 'float(n,m)', 'datetime', etc. private $_data; // ... // ..snip.. public getters/setters } Now, I need to perform some persistence on these objects. Some properties may be a text data type, but nothing bigger than what a varchar may hold. Also, later on, I need to be able to perform searches and sorting. Is it a good practice to use a single database table for this (ie. is there a non negligible performance impact)? If it's "acceptable", then what could be the data type for the data column?

    Read the article

< Previous Page | 43 44 45 46 47 48 49 50 51 52 53 54  | Next Page >