Search Results

Search found 20833 results on 834 pages for 'oracle advice'.

Page 472/834 | < Previous Page | 468 469 470 471 472 473 474 475 476 477 478 479  | Next Page >

  • HOWTO Turn off SPARC T4 or Intel AES-NI crypto acceleration.

    - by darrenm
    Since we released hardware crypto acceleration for SPARC T4 and Intel AES-NI support we have had a common question come up: 'How do I test without the hardware crypto acceleration?'. Initially this came up just for development use so developers can do unit testing on a machine that has hardware offload but still cover the code paths for a machine that doesn't (our integration and release testing would run on all supported types of hardware anyway).  I've also seen it asked in a customer context too so that we can show that there is a performance gain from the hardware crypto acceleration, (not just the fact that SPARC T4 much faster performing processor than T3) and measure what it is for their application. With SPARC T2/T3 we could easily disable the hardware crypto offload by running 'cryptoadm disable provider=n2cp/0'.  We can't do that with SPARC T4 or with Intel AES-NI because in both of those classes of processor the encryption doesn't require a device driver instead it is unprivileged user land callable instructions. Turns out there is away to do this by using features of the Solaris runtime loader (ld.so.1). First I need to expose a little bit of implementation detail about how the Solaris Cryptographic Framework is implemented in Solaris 11.  One of the new Solaris 11 features of the linker/loader is the ability to have a single ELF object that has multiple different implementations of the same functions that are selected at runtime based on the capabilities of the machine.  The alternate to this is having the application coded to call getisax() and make the choice itself.  We use this functionality of the linker/loader when we build the userland libraries for the Solaris Cryptographic Framework (specifically libmd.so, and the unfortunately misnamed due to historical reasons libsoftcrypto.so) The Solaris linker/loader allows control of a lot of its functionality via environment variables, we can use that to control the version of the cryptographic functions we run.  To do this we simply export the LD_HWCAP environment variable with values that tell ld.so.1 to not select the HWCAP section matching certain features even if isainfo says they are present.  For SPARC T4 that would be: export LD_HWCAP="-aes -des -md5 -sha256 -sha512 -mont -mpul" and for Intel systems with AES-NI support: export LD_HWCAP="-aes" This will work for consumers of the Solaris Cryptographic Framework that use the Solaris PKCS#11 libraries or use libmd.so interfaces directly.  It also works for the Oracle DB and Java JCE.  However does not work for the default enabled OpenSSL "t4" or "aes-ni" engines (unfortunately) because they do explicit calls to getisax() themselves rather than using multiple ELF cap sections. However we can still use OpenSSL to demonstrate this by explicitly selecting "pkcs11" engine  using only a single process and thread.  $ openssl speed -engine pkcs11 -evp aes-128-cbc ... type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes aes-128-cbc 54170.81k 187416.00k 489725.70k 805445.63k 1018880.00k $ LD_HWCAP="-aes" openssl speed -engine pkcs11 -evp aes-128-cbc ... type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes aes-128-cbc 29376.37k 58328.13k 79031.55k 86738.26k 89191.77k We can clearly see the difference this makes in the case where AES offload to the SPARC T4 was disabled. The "t4" engine is faster than the pkcs11 one because there is less overhead (again on a SPARC T4-1 using only a single process/thread - using -multi you will get even bigger numbers). $ openssl speed -evp aes-128-cbc ... type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes aes-128-cbc 85526.61k 89298.84k 91970.30k 92662.78k 92842.67k Yet another cool feature of the Solaris linker/loader, thanks Rod and Ali. Note these above openssl speed output is not intended to show the actual performance of any particular benchmark just that there is a significant improvement from using hardware acceleration on SPARC T4. For cryptographic performance benchmarks see the http://blogs.oracle.com/BestPerf/ postings.

    Read the article

  • Converting a PV vm back into an HVM vm

    - by wim.coekaerts
    I have been doing some Oracle VM benchmark stuff in the last week or 2 in my off hours and yesterday I wanted to convert one of my VMs that was based on a paravirt kernel into a vm that just boots as a regular hardware virt VM with a standard x86-64 kernel. It took me a little while to figure out the fastest way so now that I have it pretty much down I wanted to share the steps. A PV kernel uses pygrub and a paravirt kernel image that lives on the vm image virtual disk. since this disk image does not have to be bootable it doesn't contain a boot sector and if you just restart the VM in hvm mode the virtual bios will just not do much as it can't start the boot process from disk The first thing I do is make a backup of my vm.cfg file :-) and then edit it as follows : the original file contains : bootloader = '/usr/bin/pygrub' I replace that with : acpi = 1 apic = 1 builder = 'hvm' device_model = '/usr/lib/xen/bin/qemu-dm' kernel = '/usr/lib/xen/boot/hvmloader' then changing the disk files. I change my xvd disks to hd disks and I copy over the iso image of my instal lDVD. In the case of my VM template it was based on OL5U4 So I downloaded Enterprise-R5-U4-Server-x86_64-dvd.iso and added it as a cd device. disk = ['file:/ovs/OVM_EL5U4_X86_64_11202RAC_PVM/System.img,xvda,w', 'file:/ovs/OVM_EL5U4_X86_64_11202RAC_PVM/Oracle11202RAC_x86_64-xvdb.img,xvdb,w', ] to disk = ['file:/ovs/OVM_EL5U4_X86_64_11202RAC_PVM/System.img,hda,w', 'file:/ovs/OVM_EL5U4_X86_64_11202RAC_PVM/Oracle11202RAC_x86_64-xvdb.img,hdb,w', 'file:/ovs/OVM_EL5U4_X86_64_11202RAC_PVM/Enterprise-R5-U4-Server-x86_64-dvd.iso, hdc:cdrom,r', ] boot='d' for the network devices (vifs) I change : vif = ['bridge=xenbr2,type=netfront'] to vif = ['bridge=xenbr2,type=ioemu'] That should do it. Next, inside the VM, I copy over the regular kernel rpm that I want to end up running in hvm mode. In this example case it was : kernel-2.6.18-164.0.0.0.1.el5.x8664.rpm. I will use that later on in the process. I put this kernel simply in /root At this point I just start the vm with xm create vm.cfg and start my vnc console to the vm console. Oracle Linux will boot from the iso image, I just go through the install steps and click on UPgrade existing (not re-install). Because the VM is the same as the ISO the install won't actually do anything and it will run through instantly. When the "Reboot" button pops up, don't reboot. Switch to the command prompt console. hi alt-f2 to go to the shell prompt. Now it's easy : umount /mnt/sysimage/boot cd /mnt/sysimage chroot . mount /dev/hda1 (if that was your /boot partition) export PATH=/sbin:$PATH (just to clean that up) edit /etc/modprobe.conf and comment out the xen modules (just put a # in front) Install grub. if your /boot is hda1 then that is (hd0,0) $ grub root (hd0,0) setup (hd0) exit grub now you have a good bootsector, grub installed and you have your grub.conf file Install the new kernel cd root (this is your old /root in your pv image) rpm -ivh remove (or comment out) boot='d' in your vm.cfg restart the VM and you should be good to go, regular grub should start and load your environment. Caveats : this assumes you used labels for your filesystems. if /etc/fstab were to have devices listed then you would have to rename these device before rebooting as well. If you had a /dev/xvda disk then this would be /dev/hda or /dev/sda. All in all it is a relatively short and simple process.

    Read the article

  • Converting a PV vm back into an HVM vm

    - by wim.coekaerts
    I have been doing some Oracle VM benchmark stuff in the last week or 2 in my off hours and yesterday I wanted to convert one of my VMs that was based on a paravirt kernel into a vm that just boots as a regular hardware virt VM with a standard x86-64 kernel. It took me a little while to figure out the fastest way so now that I have it pretty much down I wanted to share the steps. A PV kernel uses pygrub and a paravirt kernel image that lives on the vm image virtual disk. since this disk image does not have to be bootable it doesn't contain a boot sector and if you just restart the VM in hvm mode the virtual bios will just not do much as it can't start the boot process from disk The first thing I do is make a backup of my vm.cfg file :-) and then edit it as follows : the original file contains : bootloader = '/usr/bin/pygrub' I replace that with : acpi = 1 apic = 1 builder = 'hvm' device_model = '/usr/lib/xen/bin/qemu-dm' kernel = '/usr/lib/xen/boot/hvmloader' then changing the disk files. I change my xvd disks to hd disks and I copy over the iso image of my instal lDVD. In the case of my VM template it was based on OL5U4 So I downloaded Enterprise-R5-U4-Server-x86_64-dvd.iso and added it as a cd device. disk = ['file:/ovs/OVM_EL5U4_X86_64_11202RAC_PVM/System.img,xvda,w', 'file:/ovs/OVM_EL5U4_X86_64_11202RAC_PVM/Oracle11202RAC_x86_64-xvdb.img,xvdb,w', ] to disk = ['file:/ovs/OVM_EL5U4_X86_64_11202RAC_PVM/System.img,hda,w', 'file:/ovs/OVM_EL5U4_X86_64_11202RAC_PVM/Oracle11202RAC_x86_64-xvdb.img,hdb,w', 'file:/ovs/OVM_EL5U4_X86_64_11202RAC_PVM/Enterprise-R5-U4-Server-x86_64-dvd.iso, hdc:cdrom,r', ] boot='d' for the network devices (vifs) I change : vif = ['bridge=xenbr2,type=netfront'] to vif = ['bridge=xenbr2,type=ioemu'] That should do it. Next, inside the VM, I copy over the regular kernel rpm that I want to end up running in hvm mode. In this example case it was : kernel-2.6.18-164.0.0.0.1.el5.x8664.rpm. I will use that later on in the process. I put this kernel simply in /root At this point I just start the vm with xm create vm.cfg and start my vnc console to the vm console. Oracle Linux will boot from the iso image, I just go through the install steps and click on UPgrade existing (not re-install). Because the VM is the same as the ISO the install won't actually do anything and it will run through instantly. When the "Reboot" button pops up, don't reboot. Switch to the command prompt console. hi alt-f2 to go to the shell prompt. Now it's easy : umount /mnt/sysimage/boot cd /mnt/sysimage chroot . mount /dev/hda1 (if that was your /boot partition) export PATH=/sbin:$PATH (just to clean that up) edit /etc/modprobe.conf and comment out the xen modules (just put a # in front) Install grub. if your /boot is hda1 then that is (hd0,0) $ grub root (hd0,0) setup (hd0) exit grub now you have a good bootsector, grub installed and you have your grub.conf file Install the new kernel cd root (this is your old /root in your pv image) rpm -ivh remove (or comment out) boot='d' in your vm.cfg restart the VM and you should be good to go, regular grub should start and load your environment. Caveats : this assumes you used labels for your filesystems. if /etc/fstab were to have devices listed then you would have to rename these device before rebooting as well. If you had a /dev/xvda disk then this would be /dev/hda or /dev/sda. All in all it is a relatively short and simple process.

    Read the article

  • SJS AS 9.1 U2 (GF v2 U2) - Patch 25 // GF v2.1 - Patch 19 // Sun GlassFish Enterprise Server v2.1.1 Patch 13

    - by arungupta
    SJS AS 9.1 U2 (GF v2 U2) patch 25 is a commercial (Restricted) patch (see Overview of GFv2) available as part of Oracle's Commercial Support for GlassFish. This release is also patch 19 of GlassFish 2.1 and patch 13 of GlassFish 2.1.1. The file-based patches were released onSep 1, 2011; package-based patches were released on Sep 13, 2011. Release Overview Description SJS AS 9.1 U2 (GFv2 U2) - Patch 25 - File and Package-Based Patch for Solaris SPARC, Solaris x86, Linux, Windows and AIX. GlassFish 2.1 - Patch 19 - File and Package-Based Patch for Solaris SPARC, Solaris x86, Linux, Windows and AIX. GlassFish 2.1.1 - Patch 13 - File and Package-Based Patch for Solaris SPARC, Solaris x86, Linux, Windows and AIX. Patch Ids This release comes in 3 different variants: Package-based patches with HADB • Solaris SPARC - [128640-27] • Solarix i586 - [128641-27] • Linux RPM - [128642-27] File-based patches with HADB • Solaris SPARC - [128643-27] • Solaris i586 - [128644-27] • Linux - [128645-27] • Windows - [128646-27] File based patches without HADB • Solaris SPARC - [128647-27] • Solaris i586 - [128648-27] • Linux - [128649-27] • Windows - [128650-27] • AIX - [137916-27] Update Date Nov 23, 2011 Comment Commercial (for-fee) release with regular bug fixes. This is patch 25 for SJS AS 9.1 U2; it is also patch 19 for GlassFish v2.1 and patch 13 for GlassFish v2.1.1. It contains the fixes from the previous patches plus fixes for 18 unique defects. Status CURRENT Bugs Fixed in this Patch: • [12823919]: RESPONSE BYTECHUNK FLUSH WILL GENERATE A MIMEHEADER WHEN SESSION REPLICATION ON • [12818767]: INTEGRATE NEW GRIZZLY 1.0.40 • [12807660]: BUILD, STAGE AND INTEGRATING HADB • [12807643]: INTEGRATE MQ 4.4 U2 P4 • [12802648]: GLASSFISH BUILD FAILED DUE TO METRO INTEGRATION • [12799002]: JNDI RESOURCE NOT ENABLED IF TARGETTING USING ADMIN GUI ON GF 2.1.1 PATCH 11 • [12794672]: ORG.APACHE.JASPER.RUNTIME.BODYCONTENTIMPL DOES NOT COMPACT CB BUFFER • [12772029]: BUG 12308270 - NEED HOTFIX FROM GF RUNNING OPENSSO • [12749346]: VERSION CHANGES FOR GLASSFISH V2.1.1 PATCH 13 • [12749151]: INTEGRATING METRO 1.6.1-B01 INTO GF 2.1.1 P13 • [12719221]: PORTUNIFICATION WSTCPPROTOCOLFINDER.FIND NULLPOINTEREXCEPTION THROWN • [12695620]: HADB: LOGBUFFERSIZE CALCULATED INCORRECTLY FOR VALUES 120 MB AND THE MEMORY FO • [12687345]: ENVIRONMENT VARIABLE PARSING FOR SUN_APPSVR_NOBACKUP CAN FAIL DEPENDING ENV VARS • [12547651]: GLASSFISH DISPLAY BUG • [12359965]: GEREQUESTURI RETURNS URI WITH NULL PREPENDED INTERMITTENT AFTER UPGRADE • [12308270]: SUNBT7020210 ENHANCE JAXRPC SOAP RESPONSE USE PREVIOUS CONFIGURED NAMESPACE PREF • [12308003]: SUNBT7018895 FAILURE TO DEPLOY OR RUN WEBSERVICE AFTER UPDATING TO GF 2.1.1 P07 • [12246256]: SUNBT6739013 [RN]GLASSFISH/SUN APPLICATION INSTALLER CRASHES ON LINUX Additional Notes: More details about these bugs can be found at My Oracle Support.

    Read the article

  • Controlling server configurations with IPS

    - by barts
    I recently received a customer question regarding how they best could control which packages and which versions were used on their production Solaris 11 servers.  They had considered pointing each server at its own software repository - a common initial approach.  A simpler method leverages one of dependency mechanisms we introduced with Solaris 11, but is not immediately obvious to most people. Typically, most internal IT departments qualify particular versions for production use.  What this customer wanted to do was insure that their operations staff only installed internally qualified versions of Solaris on their servers.  The easiest way of doing this is to leverage the 'incorporate' type of dependency in a small package defined for each server type.  From the reference " Packaging and Delivering Software With the Image Packaging System in Oracle® Solaris 11.1":  The incorporate dependency specifies that if the given package is installed, it must be at the given version, to the given version accuracy. For example, if the dependent FMRI has a version of 1.4.3, then no version less than 1.4.3 or greater than or equal to 1.4.4 satisfies the dependency. Version 1.4.3.7 does satisfy this example dependency. The common way to use incorporate dependencies is to put many of them in the same package to define a surface in the package version space that is compatible. Packages that contain such sets of incorporate dependencies are often called incorporations. Incorporations are typically used to define sets of software packages that are built together and are not separately versioned. The incorporate dependency is heavily used in Oracle Solaris to ensurethat compatible versions of software are installed together. An example incorporate dependency is: depend type=incorporate fmri=pkg:/driver/network/ethernet/[email protected],5.11-0.175.0.0.0.2.1 So, to make sure only qualified versions are installed on a server, create a package that will be installed on the machines to be controlled.  This package will contain an incorporate dependency on the "entire" package, which controls the various components used to be build Solaris.  Every time a new version of Solaris has been qualified for production use, create a new version of this package specifying the new version of "entire" that was qualified.  Once this new control package is available in the repositories configured on the production server, the pkg update command will update that system to the specified version.  Unless a new version of the control package is made available, pkg update will report that no updates are available since no version of the control package can be installed that satisfies the incorporate constraint. Note that if desired, the same package can be used to specify which packages must be present on the system by adding either "require" or "group" dependencies; the latter permits removal of some of the packages, the former does not.  More details on this can be found in either the section 5 pkg man page or the previously mentioned reference document. This technique of using package dependencies to constrain system configuration leverages the SAT solver which is at the heart of IPS, and is basic to how we package Solaris itself.  

    Read the article

  • Running a WebLogic Portal (WLP) 10.3.4 Domain as a Windows Service

    - by user647124
    To start a WLP server as a Windows service it is simplest to make your own script based on the provided standard script located at WL_HOME\server\bin\installSvc.cmd. The standard script works fine for a plain WLS domain, but lacks some classpath and options necessary for WLP.Start by making a copy of the installSvc.cmd script and naming it something specific to your domain.Next, just under SETLOCAL you will find where WL_HOME is defined. Here you will add the definitions you would normally add in a script that later calls installSvc.cmd (as per the standard documentation). set DOMAIN_NAME=gnma_test_domainset USERDOMAIN_HOME=D:\my_test_domainset SERVER_NAME=AdminServerset WLS_USER=weblogicset WLS_PW=gnmaAdmin01set PRODUCTION_MODE=trueset MEM_ARGS=-Xms512m –Xmx512mset MW_HOME=C:\Oracle\Middleware Note: I had heard of people using this approach who had issues with the length of the command line. This may be due to their use of the default domain path. In the example above, I use a shorter path.At this point, edit the DOMAIN_HOME\bin\startWebLogic.cmd and set it to echo both the classpath and the options. Then start the domain and capture the output of those echoes, then shut the domain back down. Now REM out the existing CLASSPATH definition, then use the outputs you captured earlier to set the CLASSPATH and JAVA_OPTIONS like this: REM set CLASSPATH=%WEBLOGIC_CLASSPATH%;%CLASSPATH%; C:\Oracle\Middleware\wlportal_10.3\portal\lib\security\wsrp-security-providers.jarset CLASSPATH=%MW_HOME%\patch_wls1034\profiles\default\sys_manifest_classpath\weblogic_patch.jar;%MW_HOME%\patch_wlp1034\profiles\default\sys_manifest_classpath\weblogic_patch.jar;%MW_HOME%\patch_oepe1111\profiles\default\sys_manifest_classpath\weblogic_patch.jar;%MW_HOME%\patch_ocm1033\profiles\default\sys_manifest_classpath\weblogic_patch.jar;%MW_HOME%\JROCKI~1.1-3\lib\tools.jar;%WL_HOME%\server\lib\weblogic_sp.jar;%WL_HOME%\server\lib\weblogic.jar;%MW_HOME%\modules\features\weblogic.server.modules_10.3.4.0.jar;%WL_HOME%\server\lib\webservices.jar;%MW_HOME%\modules\ORGAPA~1.1/lib/ant-all.jar;%MW_HOME%\modules\NETSFA~1.0_1/lib/ant-contrib.jar;%WL_HOME%\common\derby\lib\derbyclient.jar;%WL_HOME%\server\lib\xqrl.jar;%WL_HOME%\server\lib\xquery.jar;%WL_HOME%\server\lib\binxml.jarset JAVA_OPTIONS= -Xverify:none -ea -da:com.bea... -da:javelin... -da:weblogic... -ea:com.bea.wli... -ea:com.bea.broker... -ea:com.bea.sbconsole... -Dplatform.home=%WL_HOME% -Dwls.home=%WL_HOME%\server -Dweblogic.home=%WL_HOME%\server -Dweblogic.wsee.bind.suppressDeployErrorMessage=true -Dweblogic.wsee.skip.async.response=true -Dweblogic.management.discover=true -Dwlw.iterativeDev=true -Dwlw.testConsole=true -Dwlw.logErrorsToConsole=true -Dweblogic.ext.dirs=%MW_HOME%\patch_wls1034\profiles\default\sysext_manifest_classpath;%MW_HOME%\patch_wlp1034\profiles\default\sysext_manifest_classpath;%MW_HOME%\patch_oepe1111\profiles\default\sysext_manifest_classpath;%MW_HOME%\patch_ocm1033\profiles\default\sysext_manifest_classpath;%MW_HOME%\wlportal_10.3\p13n\lib\system;%MW_HOME%\wlportal_10.3\light-portal\lib\system;%MW_HOME%\wlportal_10.3\portal\lib\system;%MW_HOME%\wlportal_10.3\info-mgmt\lib\system;%MW_HOME%\wlportal_10.3\analytics\lib\system;%MW_HOME%\wlportal_10.3\apps\lib\system;%MW_HOME%\wlportal_10.3\info-mgmt\deprecated\lib\system;%MW_HOME%\wlportal_10.3\content-mgmt\lib\system -Dweblogic.alternateTypesDirectory=%MW_HOME%\wlportal_10.3\portal\lib\securityAnd that's it. Looks really simple, but it took me quite some time to gather all the necessary pieces in order to make it work. Hopefully you find this before you went through half as much research.The example here uses a domain with only the Admin server and no managed servers. For a variety of reasons I only want the Admin server to be run as a service. The standard documentation along with the example above should allow you to expand this to include managed servers should you feel the need.

    Read the article

  • Package Version Numbers, why are they so important

    - by Chris W Beal
    One of the design goals of IPS has been to allow people to easily move forward to a supported "Surface" of component. That is to say, when you  # pkg update your system, you get the latest set of components which all work together, based on the packages you already have installed. During development, this has meant simply you update to the latest "build" of the components. (During development, we build everything and publish everything every two weeks). Now we've released Solaris 11 using the IPS technologies, things are a bit more complicated. We need to be able to reflect all the types of Solaris release we are doing. For example Solaris Development builds, Solaris Update builds and "Support Repository Updates" (the replacement for patches) in the version scheme. So simply saying "151" as the build number isn't sufficient to articulate what you are running, or indeed what is available to update to In my previous blog post I talked about creating your own package, and gave an example FMRI of pkg://tools/[email protected],0.5.11-0.0.0 But it's probably more instructive to look at the FMRI of a Solaris package. The package "core-os" contains all the common utilities and daemons you need to use Solaris.  $ pkg info core-os Name: system/core-os Summary: Core Solaris Description: Operating system core utilities, daemons, and configuration files. Category: System/Core State: Installed Publisher: solaris Version: 0.5.11 Build Release: 5.11 Branch: 0.175.0.0.0.2.1 Packaging Date: Wed Oct 19 07:04:57 2011 Size: 25.14 MB FMRI: pkg://solaris/system/[email protected],5.11-0.175.0.0.0.2.1:20111019T070457Z The FMRI is what we will concentrate on here. In this package "solaris" is the publisher. You can use the pkg publisher command to see where the solaris publisher gets it's bits from $ pkg publisher PUBLISHER TYPE STATUS URI solaris origin online http://pkg.oracle.com/solaris/release/ So we can see we get solaris packages from pkg.oracle.com.  The package name is system/core-os. These can be arbitrary length, just to allow you to group similar packages together. Now on the the interesting? bit, the versions, everything after the @ is part of the version. IPS will only upgrade to a "higher" version. [email protected],5.11-0.175.0.0.0.2.1:20111019T070457Z core-os = Package Name0.5.11 = Component - in this case we're saying it's a SunOS 5.11 package, = separator5.11 = Built on version - to indicate what OS version you built the package on- = another separator0.175.0.0.0.2.1 = Branch Version : = yet another separator20111019T070457Z = Time stamp when the package was published So from that we can see the Branch Version seems rather complex. It is necessarily so, to allow us to describe the hierachy of releases we do In this example we see the following 0.175: is known as the trunkid, and is incremented each build of a new release of Solaris. During Solaris 11 this should not change  0: is the Update release for Solaris. 0 for FCS, 1 for update 1 etc 0: is the SRU for Solaris. 0 for FCS, 1 for SRU 1 etc 0: is reserved for future use 2: Build number of the SRU 1: Nightly ID - only important for Solaris developersTake a hypothetical example [email protected],5.11-0.175.1.5.0.4.1:<something> This would be build 4 of SRU 5 of Update 1 of Solaris 11 This is actually documented in a MOS article 1378134.1 Which you can read if you have a support contract.

    Read the article

  • Rotating WebLogic Server logs to avoid large files using WLST.

    - by adejuanc
    By default, when WebLogic Server instances are started in development mode, the server automatically renames (rotates) its local server log file as SERVER_NAME.log.n.  For the remainder of the server session, log messages accumulate in SERVER_NAME.log until the file grows to a size of 500 kilobytes.Each time the server log file reaches this size, the server renames the log file and creates a new SERVER_NAME.log to store new messages. By default, the rotated log files are numbered in order of creation filenamennnnn, where filename is the name configured for the log file. You can configure a server instance to include a time and date stamp in the file name of rotated log files; for example, server-name-%yyyy%-%mm%-%dd%-%hh%-%mm%.log.By default, when server instances are started in production mode, the server rotates its server log file whenever the file grows to 5000 kilobytes in size. It does not rotate the local server log file when the server is started. For more information about changing the mode in which a server starts, see Change to production mode in the Administration Console Online Help.You can change these default settings for log file rotation. For example, you can change the file size at which the server rotates the log file or you can configure a server to rotate log files based on a time interval. You can also specify the maximum number of rotated files that can accumulate. After the number of log files reaches this number, subsequent file rotations delete the oldest log file and create a new log file with the latest suffix.  Note: WebLogic Server sets a threshold size limit of 500 MB before it forces a hard rotation to prevent excessive log file growth. To Rotate via WLST : #invoke WLSTC:\>java weblogic.WLST#connect WLST to an Administration Serverawls:/offline> connect('username','password')#navigate to the ServerRuntime MBean hierarchywls:/mydomain/serverConfig> serverRuntime()wls:/mydomain/serverRuntime>ls()#navigate to the server LogRuntimeMBeanwls:/mydomain/serverRuntime> cd('LogRuntime/myserver')wls:/mydomain/serverRuntime/LogRuntime/myserver> ls()-r-- Name myserver-r-- Type LogRuntime-r-x forceLogRotation java.lang.Void :#force the immediate rotation of the server log filewls:/mydomain/serverRuntime/LogRuntime/myserver> cmo.forceLogRotation()wls:/mydomain/serverRuntime/LogRuntime/myserver> The server immediately rotates the file and prints the following message: <Mar 2, 2012 3:23:01 PM EST> <Info> <Log Management> <BEA-170017> <The log file C:\diablodomain\servers\myserver\logs\myserver.log will be rotated. Reopen the log file if tailing has stopped. This can happen on some platforms like Windows.><Mar 2, 2012 3:23:01 PM EST> <Info> <Log Management> <BEA-170018> <The log file has been rotated to C:\diablodomain\servers\myserver\logs\myserver.log00001. Log messages will continue to be logged in C:\diablodomain\servers\myserver\logs\myserver.log.> To specify the Location of the archived Log Files The following command specifies the directory location for the archived log files using the -Dweblogic.log.LogFileRotationDir Java startup option: java -Dweblogic.log.LogFileRotationDir=c:\foo-Dweblogic.management.username=installadministrator-Dweblogic.management.password=installadministrator weblogic.Server For more information read the following documentation ; Using the WebLogic Scripting Tool http://download.oracle.com/docs/cd/E13222_01/wls/docs103/config_scripting/using_WLST.html Configuring WebLogic Logging Services http://download.oracle.com/docs/cd/E12840_01/wls/docs103/logging/config_logs.html

    Read the article

  • Get Ready for Anytime, Anywhere Engagement

    - by Christie Flanagan
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Are you ready for 2015?  According to IDC, 2015 is the year when more users are projected to access the internet using mobile devices than with PC’s or other wired devices.  It’s no doubt that mobile devices are a critical means of communication today, and are on track to become increasingly more important in the coming years. However, device formats are so varied that delivering a mobile web experience that will engage site visitors and enhance your brand can be a daunting task. Solutions that empower organizations to easily extend their web presence to the mobile channel, while saving significant time and effort in managing mobile sites, are now essential in our ever connected mobile world. So what are some of the things organizations should look for in such a solution? Mobile device form factors, networks, protocols, and browsers vary widely, and reformatting web content for thousands of different device and software combinations is a prohibitive task. An effective mobile solution can make this process seamless by automatically formatting designated web content for mobile delivery.  By automatically detecting a site visitor’s device configuration, the selected web content can be sized and formatted for optimal display on that particular device. This can save tremendous time involved in building, formatting, and maintaining individual websites or mobile applications for different mobile devices. It’s not enough to simply support the thousands of different mobile device types that are out there. It’s also critical to make it easy for marketers and other business users to manage mobile sites and mobile content. Those responsible for maintaining an organization’s web and mobile experiences need the ability to edit content using rich text editor tools and then preview that content directly in the context of the mobile website and the traditional website, ideally from the same business user interface. Powerful capabilities such as these make managing the web experience for mobile devices easy, even with frequently changing content, across a multitude of different devices. This saves tremendous time involved in building, formatting, and maintaining individual websites or mobile applications for different mobile devices. When content or business needs change, the business user needs only to change site content once, and it is seamlessly deployed to the web and all mobile channels.Geo-location is another critical input to making the online experience engaging and relevant for web visitors who are increasingly mobile. A mobile solution should enable use of device GPS data to deliver location-based content and services to mobile website visitors. Organizations can provide mobile site visitors with location-sensitive search results, location-based offers and recommendations, integration of maps and directions into site content, and much more – all critical for meeting the needs of those on the go.To hear more about how mobile is changing the game, check out our recent webcast with Ted Schadler, Vice President, Principal Analyst, Forrester, where he discussed why mobile is the new face of engagement, or learn more about how to extend your web presence to the mobile channel with Oracle WebCenter Sites and Oracle WebCenter Sites Mobility Server.

    Read the article

  • Multichannel Digital Engagement: Find Out How Your Organization Measures Up

    - by Michael Snow
    This article was originally published in the September 2013 Edition of the Oracle Information InDepth Newsletter ORACLE WEBCENTER EDITION Thanks to mobile and social technologies, interactive online experiences are now commonplace. Not only that, they give consumers more choices, influence, and control than ever before. So how can you make your organization stand out? The key building blocks for delivering exceptional cross-channel digital experiences are outlined below. Also, a new assessment tool is available to help you measure your organization's ability to deliver such experiences. A clearly defined digital strategy. The customer journey is growing increasingly complex, encompassing multiple touchpoints and channels. It used to be easy to map marketing efforts to specific offline channels; for example, a direct mail piece with an offer to visit a store for a discounted purchase. Now it is more difficult to cultivate and track such clear cause-and-effect relationships. To deliver an integrated digital experience in this more complex world, organizations need a clearly defined and comprehensive digital marketing strategy that is backed up by an integrated set of software, middleware, and hardware solutions. Strong support for business agility and speed-to-market. As both IT and marketing executives know, speed-to-market and business agility are key to competitive advantage. That means marketers need solutions to support the rapid implementation of online marketing initiatives—plus the flexibility to adapt quickly to a changing marketplace. And IT needs tools with the performance, scalability, and ease of integration to support marketing efforts. Both teams benefit when business users are empowered to implement marketing initiatives on their own, with minimal IT intervention. The ability to deliver relevant, personalized content. Delivering a one-size-fits-all online customer experience is no longer acceptable. Customers expect you to know who they are, including their preferences and past relationship with your brand. That means delivering the most relevant content from the moment a visitor enters your site. To make that happen, you need a powerful rules engine so that marketers and business users can easily define site visitor segments and deliver content accordingly. That includes both implicit targeting that is based on the user’s behavior, and explicit targeting that takes a user’s profile information into account. Ideally, the rules engine can also intelligently weight recommendations when multiple segments apply to a specific customer. Support for social interactivity. With the advent of Facebook and LinkedIn, visitors expect to participate in and contribute to your web presence—and share their experience on their own social networks. That requires easy incorporation of user-generated content such as comments, ratings, reviews, polls, and blogs; seamless integration with third-party social networking sites; and support for social login, which helps to remove barriers to social participation. The ability to deliver connected, multichannel experiences that include powerful, flexible mobile capabilities. By 2015, mobile usage is projected to surpass that of PCs and other wired devices. In other words, mobile is an essential element in delivering exceptional online customer experiences. This requires the creation and management of mobile experiences that are optimized for delivery to the thousands of different devices that are in use today. Just as important, organizations must be able to easily extend their traditional web presence to the mobile channel and deliver highly personalized and relevant multichannel marketing initiatives while also managing to minimize the time and effort required to manage mobile sites. Are you curious to know how your organization measures up when it comes to delivering an engaging, multichannel digital experience? If so, take this brief, 15-question online assessment and see how your organization scores in the areas of digital strategy, digital agility, relevance and personalization, social interactivity, and multichannel experience.

    Read the article

  • High Resolution Timeouts

    - by user12607257
    The default resolution of application timers and timeouts is now 1 msec in Solaris 11.1, down from 10 msec in previous releases. This improves out-of-the-box performance of polling and event based applications, such as ticker applications, and even the Oracle rdbms log writer. More on that in a moment. As a simple example, the poll() system call takes a timeout argument in units of msec: System Calls poll(2) NAME poll - input/output multiplexing SYNOPSIS int poll(struct pollfd fds[], nfds_t nfds, int timeout); In Solaris 11, a call to poll(NULL,0,1) returns in 10 msec, because even though a 1 msec interval is requested, the implementation rounds to the system clock resolution of 10 msec. In Solaris 11.1, this call returns in 1 msec. In specification lawyer terms, the resolution of CLOCK_REALTIME, introduced by POSIX.1b real time extensions, is now 1 msec. The function clock_getres(CLOCK_REALTIME,&res) returns 1 msec, and any library calls whose man page explicitly mention CLOCK_REALTIME, such as nanosleep(), are subject to the new resolution. Additionally, many legacy functions that pre-date POSIX.1b and do not explicitly mention a clock domain, such as poll(), are subject to the new resolution. Here is a fairly comprehensive list: nanosleep pthread_mutex_timedlock pthread_mutex_reltimedlock_np pthread_rwlock_timedrdlock pthread_rwlock_reltimedrdlock_np pthread_rwlock_timedwrlock pthread_rwlock_reltimedwrlock_np mq_timedreceive mq_reltimedreceive_np mq_timedsend mq_reltimedsend_np sem_timedwait sem_reltimedwait_np poll select pselect _lwp_cond_timedwait _lwp_cond_reltimedwait semtimedop sigtimedwait aiowait aio_waitn aio_suspend port_get port_getn cond_timedwait cond_reltimedwait setitimer (ITIMER_REAL) misc rpc calls, misc ldap calls This change in resolution was made feasible because we made the implementation of timeouts more efficient a few years back when we re-architected the callout subsystem of Solaris. Previously, timeouts were tested and expired by the kernel's clock thread which ran 100 times per second, yielding a resolution of 10 msec. This did not scale, as timeouts could be posted by every CPU, but were expired by only a single thread. The resolution could be changed by setting hires_tick=1 in /etc/system, but this caused the clock thread to run at 1000 Hz, which made the potential scalability problem worse. Given enough CPUs posting enough timeouts, the clock thread could be a performance bottleneck. We fixed that by re-implementing the timeout as a per-CPU timer interrupt (using the cyclic subsystem, for those familiar with Solaris internals). This decoupled the clock thread frequency from timeout resolution, and allowed us to improve default timeout resolution without adding CPU overhead in the clock thread. Here are some exceptions for which the default resolution is still 10 msec. The thread scheduler's time quantum is 10 msec by default, because preemption is driven by the clock thread (plus helper threads for scalability). See for example dispadmin, priocntl, fx_dptbl, rt_dptbl, and ts_dptbl. This may be changed using hires_tick. The resolution of the clock_t data type, primarily used in DDI functions, is 10 msec. It may be changed using hires_tick. These functions are only used by developers writing kernel modules. A few functions that pre-date POSIX CLOCK_REALTIME mention _SC_CLK_TCK, CLK_TCK, "system clock", or no clock domain. These functions are still driven by the clock thread, and their resolution is 10 msec. They include alarm, pcsample, times, clock, and setitimer for ITIMER_VIRTUAL and ITIMER_PROF. Their resolution may be changed using hires_tick. Now back to the database. How does this help the Oracle log writer? Foreground processes post a redo record to the log writer, which releases them after the redo has committed. When a large number of foregrounds are waiting, the release step can slow down the log writer, so under heavy load, the foregrounds switch to a mode where they poll for completion. This scales better because every foreground can poll independently, but at the cost of waiting the minimum polling interval. That was 10 msec, but is now 1 msec in Solaris 11.1, so the foregrounds process transactions faster under load. Pretty cool.

    Read the article

  • ?????Java EE??????????(?2?)????

    - by Masa Sasaki
    WebLogic Server?????????????WebLogic Server???????? 2014?6?24?? ??48?WebLogic Server???@??????????? ?????????Java EE???????????????(?4?)??2???? 5?27?????????1? Java EE&WebLogic Server??? ?Web ?????????????Java??????????????????????????? Java EE????????????????WebLogic Server??????????????????????????? WebLogic Server???????????????????????Java EE???????????????????? JSF(JavaServer Faces)??????????????????????????????????? ?2????????????? (?????? Fusion Middleware?????? ??? ??) ?1? Java EE & Oracle WebLogic Server??????????? ????????·????? ??????????????????????????????? ????????????????????? ??????????????????????????? ???????????????????? ???????????????????????????????? ?????????????????????????????????? ??????????????????????????·??????? ???????????????????? ???????????????????????????? ???????????=????????????????????? ????????·??????????????????????? ??????????????????????????? ??????????????????????????? Oracle WebLogic Server??????Java EE 6?????????????? ???????????????Java EE ??????????????? ?????? Java EE 6???????????? Java EE 6?????JSR-000316 JavaTM Platform, Enterprise Edition 6 (Final Release)? ?????????JSF 2.1(??????????????????????????Web????????·???????)?Servlet3.1(?????·???????????????????????Servlet???Ajax??)? EJB3.1(?????·????????????????????????????????)? JAX-RS(??????????????Web????????)? CDI(????????????????????DI???????????)??? ???????????????? ?2???3???4?????Web????????????????2?JSF (JavaServer Faces), ?3?EJB(Enterprise JavaBeans)?CDI(Context Dependency Injection)? ?4?JPA(Java Persistent API)???????????????????????????????? ?????????????????????????????????????????????????????????? WebLogic Server?? ?2???????????????WebLogic Server????????????? ???WebLogic Server???????????????????????????????????? ??????? ???????·?????????????????? ??48?WebLogic Server???@???????????? 2014?6?24?? ??48?WebLogic Server???@?????????????????????????? ???????????????? ??????Java EE??????????????: ?2?JSF??? JSF (JavaServer Faces)??Web????????????????????????????????Web??????????????????JSF????? ????????????????JSF??????????????????????????????????????????Ajax? ?????????? ?????? ??????????? ?? ?? ?OutOfMemoryError ?????/Heap ?????(MAT)????? Java????????????????????(??OOME)?????????????????????????????????? ???????????????????????????????????Eclipse Memory Analyzer(MAT)???????????? ?????????????????? ???????????? ?? ??? ????????Q&A? ?WebLogic Server?????????????????????? (???)WebLogic Server?????? ?????? WebLogic Server??? WebLogic Server?????????WebLogic Server???? ?! WebLogic Server??????(???????????) WebLogic Server???????? WebLogic Server??????

    Read the article

  • ??????DataGuard?????????

    - by JaneZhang(???)
         ??????Apply,???log_archive_dest_n ?????“DELAY=",??:DELAY=360(?????),????360??(6??)???:SQL>alter system set log_archive_dest_2='SERVICE=standby LGWR SYNC AFFIRM DELAY=360 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) COMPRESSION=ENABLE  DB_UNIQUE_NAME=standby';    ??????DELAY??,??????????,???30???    ??????,?????????????(real-time apply ),DELAY????????,????????????,??,????alert log?????????????:WARNING: Managed Standby Recovery started with USING CURRENT LOGFILEDELAY 360 minutes specified at primary ignored <<<<<<<<<    ?????,??????????,?????????MRP,??:SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT FROM SESSION; ???????????:1. ?????????:SQL> show parameter log_archive_dest_2 NAME                                 TYPE        VALUE------------------------------------ ----------- ------------------------------log_archive_dest_2                   string      SERVICE=STANDBY LGWR SYNC AFFI                                                RM VALID_FOR=(ONLINE_LOGFILES,                                                PRIMARY_ROLE) DB_UNIQUE_NAME=S                                                TANDBY 2. ???????5??:SQL> alter system set log_archive_dest_2='SERVICE=STANDBY LGWR SYNC AFFIRM delay=5 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=STANDBY'; 3. ??????: ????:SQL> alter system switch logfile;System altered. SQL>  select max(sequence#) from v$archived_log; MAX(SEQUENCE#)--------------           28 ??:Wed Jun 13 19:48:53 2012Archived Log entry 14 added for thread 1 sequence 28 ID 0x4c9d8928 dest 1:ARCb: Archive log thread 1 sequence 28 available in 5 minute(s)Wed Jun 13 19:48:54 2012Media Recovery Delayed for 5 minute(s) (thread 1 sequence 28) <<<<<<<<????Wed Jun 13 19:53:54 2012Media Recovery Log /home/oracle/arch1/standby/1_28_757620395.arc<<<<<5??????????Media Recovery Waiting for thread 1 sequence 29 (in transit) ?????,???????:http://docs.oracle.com/cd/E11882_01/server.112/e25608/log_apply.htmOracle® Data Guard Concepts and Administration11g Release 2 (11.2)Part Number E25608-03

    Read the article

  • Need advice about pointers and time elapsed program. How to fix invalid operands and cannot convert errors?

    - by user1781382
    I am trying to write a program that tells the difference between the two times the user inputs. I am not sure how to go about this. I get the errors : Line 27|error: invalid operands of types 'int' and 'const MyTime*' to binary 'operator-'| Line |39|error: cannot convert 'MyTime' to 'const MyTime*' for argument '1' to 'int DetermineElapsedTime(const MyTime*, const MyTime*)'| I also need a lot of help in this problem. I don't have a good curriculum, and my class textbook is like cliffnotes for programming. This will be my last class at this university. The C++ teztbook I use(my own not for class) is Sam's C++ One hour a day. #include <iostream> #include<cstdlib> #include<cstring> using namespace std; struct MyTime { int hours, minutes, seconds; }; int DetermineElapsedTime(const MyTime *t1, const MyTime *t2); long t1, t2; int DetermineElapsedTime(const MyTime *t1, const MyTime *t2) { return((int)t2-t1); } int main(void) { char delim1, delim2; MyTime tm, tm2; cout << "Input two formats for the time. Separate each with a space. Ex: hr:min:sec\n"; cin >> tm.hours >> delim1 >> tm.minutes >> delim2 >> tm.seconds; cin >> tm2.hours >> delim1 >> tm2.minutes >> delim2 >> tm2.seconds; DetermineElapsedTime(tm, tm2); return 0; } I have to fix the errors first. Anyone have any ideas??

    Read the article

  • Elfsign Object Signing on Solaris

    - by danx
    Elfsign Object Signing on Solaris Don't let this happen to you—use elfsign! Solaris elfsign(1) is a command that signs and verifies ELF format executables. That includes not just executable programs (such as ls or cp), but other ELF format files including libraries (such as libnvpair.so) and kernel modules (such as autofs). Elfsign has been available since Solaris 10 and ELF format files distributed with Solaris, since Solaris 10, are signed by either Sun Microsystems or its successor, Oracle Corporation. When an ELF file is signed, elfsign adds a new section the ELF file, .SUNW_signature, that contains a RSA public key signature and other information about the signer. That is, the algorithm used, algorithm OID, signer CN/OU, and time stamp. The signature section can later be verified by elfsign or other software by matching the signature in the file agains the ELF file contents (excluding the signature). ELF executable files may also be signed by a 3rd-party or by the customer. This is useful for verifying the origin and authenticity of executable files installed on a system. The 3rd-party or customer public key certificate should be installed in /etc/certs/ to allow verification by elfsign. For currently-released versions of Solaris, only cryptographic framework plugin libraries are verified by Solaris. However, all ELF files may be verified by the elfsign command at any time. Elfsign Algorithms Elfsign signatures are created by taking a digest of the ELF section contents, then signing the digest with RSA. To verify, one takes a digest of ELF file and compares with the expected digest that's computed from the signature and RSA public key. Originally elfsign took a MD5 digest of a SHA-1 digest of the ELF file sections, then signed the resulting digest with RSA. In Solaris 11.1 then Solaris 11.1 SRU 7 (5/2013), the elfsign crypto algorithms available have been expanded to keep up with evolving cryptography. The following table shows the available elfsign algorithms: Elfsign Algorithm Solaris Release Comments elfsign sign -F rsa_md5_sha1   S10, S11.0, S11.1 Default for S10. Not recommended* elfsign sign -F rsa_sha1 S11.1 Default for S11.1. Not recommended elfsign sign -F rsa_sha256 S11.1 patch SRU7+   Recommended ___ *Most or all CAs do not accept MD5 CSRs and do not issue MD5 certs due to MD5 hash collision problems. RSA Key Length. I recommend using RSA-2048 key length with elfsign is RSA-2048 as the best balance between a long expected "life time", interoperability, and performance. RSA-2048 keys have an expected lifetime through 2030 (and probably beyond). For details, see Recommendation for Key Management: Part 1: General, NIST Publication SP 800-57 part 1 (rev. 3, 7/2012, PDF), tables 2 and 4 (pp. 64, 67). Step 1: create or obtain a key and cert The first step in using elfsign is to obtain a key and cert from a public Certificate Authority (CA), or create your own self-signed key and cert. I'll briefly explain both methods. Obtaining a Certificate from a CA To obtain a cert from a CA, such as Verisign, Thawte, or Go Daddy (to name a few random examples), you create a private key and a Certificate Signing Request (CSR) file and send it to the CA, following the instructions of the CA on their website. They send back a signed public key certificate. The public key cert, along with the private key you created is used by elfsign to sign an ELF file. The public key cert is distributed with the software and is used by elfsign to verify elfsign signatures in ELF files. You need to request a RSA "Class 3 public key certificate", which is used for servers and software signing. Elfsign uses RSA and we recommend RSA-2048 keys. The private key and CSR can be generated with openssl(1) or pktool(1) on Solaris. Here's a simple example that uses pktool to generate a private RSA_2048 key and a CSR for sending to a CA: $ pktool gencsr keystore=file format=pem outcsr=MYCSR.p10 \ subject="CN=canineswworks.com,OU=Canine SW object signing" \ outkey=MYPRIVATEKEY.key $ openssl rsa -noout -text -in MYPRIVATEKEY.key Private-Key: (2048 bit) modulus: 00:d2:ef:42:f2:0b:8c:96:9f:45:32:fc:fe:54:94: . . . [omitted for brevity] . . . c9:c7 publicExponent: 65537 (0x10001) privateExponent: 26:14:fc:49:26:bc:a3:14:ee:31:5e:6b:ac:69:83: . . . [omitted for brevity] . . . 81 prime1: 00:f6:b7:52:73:bc:26:57:26:c8:11:eb:6c:dc:cb: . . . [omitted for brevity] . . . bc:91:d0:40:d6:9d:ac:b5:69 prime2: 00:da:df:3f:56:b2:18:46:e1:89:5b:6c:f1:1a:41: . . . [omitted for brevity] . . . f3:b7:48:de:c3:d9:ce:af:af exponent1: 00:b9:a2:00:11:02:ed:9a:3f:9c:e4:16:ce:c7:67: . . . [omitted for brevity] . . . 55:50:25:70:d3:ca:b9:ab:99 exponent2: 00:c8:fc:f5:57:11:98:85:8e:9a:ea:1f:f2:8f:df: . . . [omitted for brevity] . . . 23:57:0e:4d:b2:a0:12:d2:f5 coefficient: 2f:60:21:cd:dc:52:76:67:1a:d8:75:3e:7f:b0:64: . . . [omitted for brevity] . . . 06:94:56:d8:9d:5c:8e:9b $ openssl req -noout -text -in MYCSR.p10 Certificate Request: Data: Version: 2 (0x2) Subject: OU=Canine SW object signing, CN=canineswworks.com Subject Public Key Info: Public Key Algorithm: rsaEncryption Public-Key: (2048 bit) Modulus: 00:d2:ef:42:f2:0b:8c:96:9f:45:32:fc:fe:54:94: . . . [omitted for brevity] . . . c9:c7 Exponent: 65537 (0x10001) Attributes: Signature Algorithm: sha1WithRSAEncryption b3:e8:30:5b:88:37:68:1c:26:6b:45:af:5e:de:ea:60:87:ea: . . . [omitted for brevity] . . . 06:f9:ed:b4 Secure storage of RSA private key. The private key needs to be protected if the key signing is used for production (as opposed to just testing). That is, protect the key to protect against unauthorized signatures by others. One method is to use a PIN-protected PKCS#11 keystore. The private key you generate should be stored in a secure manner, such as in a PKCS#11 keystore using pktool(1). Otherwise others can sign your signature. Other secure key storage mechanisms include a SCA-6000 crypto card, a USB thumb drive stored in a locked area, a dedicated server with restricted access, Oracle Key Manager (OKM), or some combination of these. I also recommend secure backup of the private key. Here's an example of generating a private key protected in the PKCS#11 keystore, and a CSR. $ pktool setpin # use if PIN not set yet Enter token passphrase: changeme Create new passphrase: Re-enter new passphrase: Passphrase changed. $ pktool gencsr keystore=pkcs11 label=MYPRIVATEKEY \ format=pem outcsr=MYCSR.p10 \ subject="CN=canineswworks.com,OU=Canine SW object signing" $ pktool list keystore=pkcs11 Enter PIN for Sun Software PKCS#11 softtoken: Found 1 asymmetric public keys. Key #1 - RSA public key: MYPRIVATEKEY Here's another example that uses openssl instead of pktool to generate a private key and CSR: $ openssl genrsa -out cert.key 2048 $ openssl req -new -key cert.key -out MYCSR.p10 Self-Signed Cert You can use openssl or pktool to create a private key and a self-signed public key certificate. A self-signed cert is useful for development, testing, and internal use. The private key created should be stored in a secure manner, as mentioned above. The following example creates a private key, MYSELFSIGNED.key, and a public key cert, MYSELFSIGNED.pem, using pktool and displays the contents with the openssl command. $ pktool gencert keystore=file format=pem serial=0xD06F00D lifetime=20-year \ keytype=rsa hash=sha256 outcert=MYSELFSIGNED.pem outkey=MYSELFSIGNED.key \ subject="O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com" $ pktool list keystore=file objtype=cert infile=MYSELFSIGNED.pem Found 1 certificates. 1. (X.509 certificate) Filename: MYSELFSIGNED.pem ID: c8:24:59:08:2b:ae:6e:5c:bc:26:bd:ef:0a:9c:54:de:dd:0f:60:46 Subject: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Issuer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Not Before: Oct 17 23:18:00 2013 GMT Not After: Oct 12 23:18:00 2033 GMT Serial: 0xD06F00D0 Signature Algorithm: sha256WithRSAEncryption $ openssl x509 -noout -text -in MYSELFSIGNED.pem Certificate: Data: Version: 3 (0x2) Serial Number: 3496935632 (0xd06f00d0) Signature Algorithm: sha256WithRSAEncryption Issuer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Validity Not Before: Oct 17 23:18:00 2013 GMT Not After : Oct 12 23:18:00 2033 GMT Subject: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Subject Public Key Info: Public Key Algorithm: rsaEncryption Public-Key: (2048 bit) Modulus: 00:bb:e8:11:21:d9:4b:88:53:8b:6c:5a:7a:38:8b: . . . [omitted for brevity] . . . bf:77 Exponent: 65537 (0x10001) Signature Algorithm: sha256WithRSAEncryption 9e:39:fe:c8:44:5c:87:2c:8f:f4:24:f6:0c:9a:2f:64:84:d1: . . . [omitted for brevity] . . . 5f:78:8e:e8 $ openssl rsa -noout -text -in MYSELFSIGNED.key Private-Key: (2048 bit) modulus: 00:bb:e8:11:21:d9:4b:88:53:8b:6c:5a:7a:38:8b: . . . [omitted for brevity] . . . bf:77 publicExponent: 65537 (0x10001) privateExponent: 0a:06:0f:23:e7:1b:88:62:2c:85:d3:2d:c1:e6:6e: . . . [omitted for brevity] . . . 9c:e1:e0:0a:52:77:29:4a:75:aa:02:d8:af:53:24: c1 prime1: 00:ea:12:02:bb:5a:0f:5a:d8:a9:95:b2:ba:30:15: . . . [omitted for brevity] . . . 5b:ca:9c:7c:19:48:77:1e:5d prime2: 00:cd:82:da:84:71:1d:18:52:cb:c6:4d:74:14:be: . . . [omitted for brevity] . . . 5f:db:d5:5e:47:89:a7:ef:e3 exponent1: 32:37:62:f6:a6:bf:9c:91:d6:f0:12:c3:f7:04:e9: . . . [omitted for brevity] . . . 97:3e:33:31:89:66:64:d1 exponent2: 00:88:a2:e8:90:47:f8:75:34:8f:41:50:3b:ce:93: . . . [omitted for brevity] . . . ff:74:d4:be:f3:47:45:bd:cb coefficient: 4d:7c:09:4c:34:73:c4:26:f0:58:f5:e1:45:3c:af: . . . [omitted for brevity] . . . af:01:5f:af:ad:6a:09:bf Step 2: Sign the ELF File object By now you should have your private key, and obtained, by hook or crook, a cert (either from a CA or use one you created (a self-signed cert). The next step is to sign one or more objects with your private key and cert. Here's a simple example that creates an object file, signs, verifies, and lists the contents of the ELF signature. $ echo '#include <stdio.h>\nint main(){printf("Hello\\n");}'>hello.c $ make hello cc -o hello hello.c $ elfsign verify -v -c MYSELFSIGNED.pem -e hello elfsign: no signature found in hello. $ elfsign sign -F rsa_sha256 -v -k MYSELFSIGNED.key -c MYSELFSIGNED.pem -e hello elfsign: hello signed successfully. format: rsa_sha256. signer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com. signed on: October 17, 2013 04:22:49 PM PDT. $ elfsign list -f format -e hello rsa_sha256 $ elfsign list -f signer -e hello O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com $ elfsign list -f time -e hello October 17, 2013 04:22:49 PM PDT $ elfsign verify -v -c MYSELFSIGNED.key -e hello elfsign: verification of hello failed. format: rsa_sha256. signer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com. signed on: October 17, 2013 04:22:49 PM PDT. Signing using the pkcs11 keystore To sign the ELF file using a private key in the secure pkcs11 keystore, replace "-K MYSELFSIGNED.key" in the "elfsign sign" command line with "-T MYPRIVATEKEY", where MYPRIVATKEY is the pkcs11 token label. Step 3: Install the cert and test on another system Just signing the object isn't enough. You need to copy or install the cert and the signed ELF file(s) on another system to test that the signature is OK. Your public key cert should be installed in /etc/certs. Use elfsign verify to verify the signature. Elfsign verify checks each cert in /etc/certs until it finds one that matches the elfsign signature in the file. If one isn't found, the verification fails. Here's an example: $ su Password: # rm /etc/certs/MYSELFSIGNED.key # cp MYSELFSIGNED.pem /etc/certs # exit $ elfsign verify -v hello elfsign: verification of hello passed. format: rsa_sha256. signer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com. signed on: October 17, 2013 04:24:20 PM PDT. After testing, package your cert along with your ELF object to allow elfsign verification after your cert and object are installed or copied. Under the Hood: elfsign verification Here's the steps taken to verify a ELF file signed with elfsign. The steps to sign the file are similar except the private key exponent is used instead of the public key exponent and the .SUNW_signature section is written to the ELF file instead of being read from the file. Generate a digest (SHA-256) of the ELF file sections. This digest uses all ELF sections loaded in memory, but excludes the ELF header, the .SUNW_signature section, and the symbol table Extract the RSA signature (RSA-2048) from the .SUNW_signature section Extract the RSA public key modulus and public key exponent (65537) from the public key cert Calculate the expected digest as follows:     signaturepublicKeyExponent % publicKeyModulus Strip the PKCS#1 padding (most significant bytes) from the above. The padding is 0x00, 0x01, 0xff, 0xff, . . ., 0xff, 0x00. If the actual digest == expected digest, the ELF file is verified (OK). Further Information elfsign(1), pktool(1), and openssl(1) man pages. "Signed Solaris 10 Binaries?" blog by Darren Moffat (2005) shows how to use elfsign. "Simple CLI based CA on Solaris" blog by Darren Moffat (2008) shows how to set up a simple CA for use with self-signed certificates. "How to Create a Certificate by Using the pktool gencert Command" System Administration Guide: Security Services (available at docs.oracle.com)

    Read the article

  • Protecting a WebCenter app with OAM 11g - the Webcenter side

    - by Martin Deh
    Recently, there was a customer requirment to enable a WebCenter custom portal application to have multiple login-type pages and have the authentication be handle through Oracle Access Manager (OAM) As my security colleagues would tell me, this is fully supported through OAM.  Basically, all that would have to be done is to define in OAM individual resources (directories, URLS , .etc) that needed to be secured. Once that was done, OAM would handle the rest and the user would typically then be prompted by a login page, which was provided by OAM.  I am not going to discuss talking about OAM security in this blog.  In addition, my colleague Chris Johnson (ATEAM security) has already blogged his side of the story here:  http://fusionsecurity.blogspot.com/2012/06/protecting-webcenter-app-with-oam-11g.html .  What I am going to cover is what was done on the WebCenter/ADF side of things. In the test application, basically the structure of pages defined in the pages.xml are as follows:  In this screenshot, notice that "Delegated Security" has been selected, and of the absence for the anonymous-role for the "secured" page (A - B is the same)  This essentially in the WebCenter world means that each of these pages are protected, and only accessible by those define by the applications "role".  For more information on how WebCenter handles security, which by the way extends from ADF security, please refer to the documentation.  The (default) navigation model was configured.  You can see that with this set up, a user will be able to view the "links", where the links define navigation to the respective page:   Note from this dialog, you could also set some security on each link via the "visible" property.  However, the recommended best practice is to set the permissions through the page hierarchy (pages.xml).  Now based on this set up, the expected behavior is that I could only see the link for secured A page only if I was already authenticated (logged in).  But, this is not the use case of the requirement, since any user (anonymous) should be able to view (and click on the link).  So how is this accomplished?  There is now a patch that enables this.  In addition, the portal application's web.xml will need an additional context parameter: <context-param>     <param-name>oracle.webcenter.navigationframework.SECURITY_LEVEL</param-name>     <param-value>public</param-value>  </context-param>  As Chris mentions in his part of the blog, the code that is responsible for displaying the "links" is based upon the retrieval of the navigation model "node" prettyURL.  The prettyURL is a generated URL that also includes the adf.ctrl-state token, which is very important to the ADF framework runtime.  URLs that are void of this token, get new tokens from the ADF runtime.  This can lead to potential memory issues.  <af:forEach var="node" varStatus="vs"    items="#{navigationContext.defaultNavigationModel.listModel['startNode=/,includeStartNode=false']}">                 <af:spacer width="10" height="10" id="s1"/>                 <af:panelGroupLayout id="pgl2" layout="vertical"                                      inlineStyle="border:blue solid 1px">                   <af:goLink id="pt_gl1" text="#{node.title}"                              destination="#{node.goLinkPrettyUrl}"                              targetFrame="#{node.attributes['Target']}"                              inlineStyle="font-size:large;#{node.selected ? 'font-weight:bold;' : ''}"/>                   <af:spacer width="10" height="10" id="s2"/>                   <af:outputText value="#{node.goLinkPrettyUrl}" id="ot2"                                  inlineStyle="font-size:medium; font-weight:bold;"/>                 </af:panelGroupLayout>               </af:forEach>  So now that the links are visible to all, clicking on a secure link will be intercepted by OAM.  Since the OAM can also configure in the Authentication Scheme, the challenging URL (the login page(s)) can also come from anywhere.  In this case the each login page have been defined in the custom portal application.  This was another requirement as well, since this login page also needed to have ADF based content.  This would not be possible if the login page came from OAM.  The following is the example login page: <?xml version='1.0' encoding='UTF-8'?> <jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"           xmlns:f="http://java.sun.com/jsf/core"           xmlns:h="http://java.sun.com/jsf/html"           xmlns:af="http://xmlns.oracle.com/adf/faces/rich">   <jsp:directive.page contentType="text/html;charset=UTF-8"/>   <f:view>     <af:document title="Settings" id="d1">       <af:panelGroupLayout id="pgl1" layout="vertical"/>       <af:outputText value="LOGIN FORM FOR A" id="ot1"/>       <form id="loginform" name="loginform" method="POST"             action="XXXXXXXX:14100/oam/server/auth_cred_submit">         <table>           <tr>             <td align="right">username:</td>             <td align="left">               <input name="username" type="text"/>             </td>           </tr>                      <tr>             <td align="right">password:</td>             <td align="left">               <input name="password" type="password"/>             </td>           </tr>                      <tr>             <td colspan="2" align="center">               <input value=" login " type="submit"/>             </td>           </tr>         </table>         <input name="request_id" type="hidden" value="${param['request_id']}"                id="itsss"/>       </form>     </af:document>   </f:view> </jsp:root> As you can see the code is pretty straight forward.  The most important section is in the form tag, where the submit is a POST to the OAM server.  This example page is mostly HTML, however, it is valid to have adf tags mixed in as well.  As a side note, this solution is really to tailored for a specific requirement.  Normally, there would be only one login page (or dialog/popup), and the OAM challenge resource would be /adfAuthentication.  This maps to the adfAuthentication servlet.  Please see the documentation for more about ADF security here. 

    Read the article

  • Securing an ADF Application using OES11g: Part 2

    - by user12587121
    To validate the integration with OES we need a sample ADF Application that is rich enough to allow us to test securing the various ADF elements.  To achieve this we can add some items including bounded task flows to the application developed in this tutorial. A sample JDeveloper 11.1.1.6 project is available here. It depends on the Fusion Order Demo (FOD) database schema which is easily created using the FOD build scripts.In the deployment we have chosen to enable only ADF Authentication as we will delegate Authorization, mostly, to OES.The welcome page of the application with all the links exposed looks as follows: The Welcome, Browse Products, Browse Stock and System Administration links go to pages while the Supplier Registration and Update Stock are bounded task flows.  The Login link goes to a basic login page and once logged in a link is presented that goes to a logout page.  Only the Browse Products and Browse Stock pages are really connected to the database--the other pages and task flows do not really perform any operations on the database. Required Security Policies We make use of a set of test users and roles as decscribed on the welcome page of the application.  In order to exercise the different authorization possibilities we would like to enforce the following sample policies: Anonymous users can see the Login, Welcome and Supplier Registration links. They can also see the Welcome page, the Login page and follow the Supplier Registration task flow.  They can see the icon adjacent to the Login link indicating whether they have logged in or not. Authenticated users can see the Browse Product page. Only staff granted the right can see the Browse Product page cost price value returned from the database and then only if the value is below a configurable limit. Suppliers and staff can see the Browse Stock links and pages.  Customers cannot. Suppliers can see the Update Stock link but only those with the update permission are allowed to follow the task flow that it launches.  We could hide the link but leave it exposed here so we can easily demonstrate the method call activity protecting the task flow. Only staff granted the right can see the System Administration link and the System Administration page it accesses. Implementing the required policies In order to secure the application we will make use of the following techniques: EL Expressions and Java backing beans: JSF has the notion of EL expressions to reference data from backing Java classes.  We use these to control the presentation of links on the navigation page which respect the security contraints.  So a user will not see links that he is not allowed to click on into. These Java backing beans can call on to OES for an authorization decision.  Important Note: naturally we would configure the WLS domain where our ADF application is running as an OES WLS SM, which would allow us to efficiently query OES over the PEP API.  However versioning conflicts between OES 11.1.1.5 and ADF 11.1.1.6 mean that this is not possible.  Nevertheless, we can make use of the OES RESTful gateway technique from this posting in order to call into OES. You can easily create and manage backing beans in Jdeveloper as follows: Custom ADF Phase Listener: ADF extends the JSF page lifecycle flow and allows one to hook into the flow to intercept page rendering.  We use this to put a check prior to rendering any protected pages, again calling on to OES via the backing bean.  Phase listeners are configured in the adf-settings.xml file.  See the MyPageListener.java class in the project.  Here, for example,  is the code we use in the listener to check for allowed access to the sysadmin page, navigating back to the welcome page if authorization is not granted:                         if (page != null && (page.equals("/system.jspx") || page.equals("/system"))){                             System.out.println("MyPageListener: Checking Authorization for /system");                             if (getValue("#{oesBackingBean.UIAccessSysAdmin}").toString().equals("false") ){                                   System.out.println("MyPageListener: Forcing navigation away from system" +                                       "to welcome");                                 NavigationHandler nh = fc.getApplication().getNavigationHandler();                                   nh.handleNavigation(fc, null, "welcome");                               } else {                                 System.out.println("MyPageListener: access allowed");                              }                         } Method call activity: our app makes use of bounded task flows to implement the sequence of pages that update the stock or allow suppliers to self register.  ADF takes care of ensuring that a bounded task flow can be entered by only one page.  So a way to protect all those pages is to make a call to OES in the first activity and then either exit the task flow or continue depending on the authorization decision.  The method call returns a String which contains the name of the transition to effect. This is where we configure the method call activity in JDeveloper: We implement each of the policies using the above techniques as follows: Policies 1 and 2: as these policies concern the coarse grained notions of controlling access to anonymous and authenticated users we can make use of the container’s security constraints which can be defined in the web.xml file.  The allPages constraint is added automatically when we configure Authentication for the ADF application.  We have added the “anonymousss” constraint to allow access to the the required pages, task flows and icons: <security-constraint>    <web-resource-collection>      <web-resource-name>anonymousss</web-resource-name>      <url-pattern>/faces/welcome</url-pattern>      <url-pattern>/afr/*</url-pattern>      <url-pattern>/adf/*</url-pattern>      <url-pattern>/key.png</url-pattern>      <url-pattern>/faces/supplier-reg-btf/*</url-pattern>      <url-pattern>/faces/supplier_register_complete</url-pattern>    </web-resource-collection>  </security-constraint> Policy 3: we can place an EL expression on the element representing the cost price on the products.jspx page: #{oesBackingBean.dataAccessCostPrice}. This EL Expression references a method in a Java backing bean that will call on to OES for an authorization decision.  In OES we model the authorization requirement by requiring the view permission on the resource /MyADFApp/data/costprice and granting it only to the staff application role.  We recover any obligations to determine the limit.  Policy 4: is implemented by putting an EL expression on the Browse Stock link #{oesBackingBean.UIAccessBrowseStock} which checks for the view permission on the /MyADFApp/ui/stock resource. The stock.jspx page is protected by checking for the same permission in a custom phase listener—if the required permission is not satisfied then we force navigation back to the welcome page. Policy 5: the Update Stock link is protected with the same EL expression as the Browse Link: #{oesBackingBean.UIAccessBrowseStock}.  However the Update Stock link launches a bounded task flow and to protect it the first activity in the flow is a method call activity which will execute an EL expression #{oesBackingBean.isUIAccessSupplierUpdateTransition}  to check for the update permission on the /MyADFApp/ui/stock resource and either transition to the next step in the flow or terminate the flow with an authorization error. Policy 6: the System Administration link is protected with an EL Expression #{oesBackingBean.UIAccessSysAdmin} that checks for view access on the /MyADF/ui/sysadmin resource.  The system page is protected in the same way at the stock page—the custom phase listener checks for the same permission that protects the link and if not satisfied we navigate back to the welcome page. Testing the Application To test the application: deploy the OES11g Admin to a WLS domain deploy the OES gateway in a another domain configured to be a WLS SM. You must ensure that the jps-config.xml file therein is configured to allow access to the identity store, otherwise the gateway will not b eable to resolve the principals for the requested users.  To do this ensure that the following elements appear in the jps-config.xml file: <serviceProvider type="IDENTITY_STORE" name="idstore.ldap.provider" class="oracle.security.jps.internal.idstore.ldap.LdapIdentityStoreProvider">             <description>LDAP-based IdentityStore Provider</description>  </serviceProvider> <serviceInstance name="idstore.ldap" provider="idstore.ldap.provider">             <property name="idstore.config.provider" value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvider"/>             <property name="CONNECTION_POOL_CLASS" value="oracle.security.idm.providers.stdldap.JNDIPool"/></serviceInstance> <serviceInstanceRef ref="idstore.ldap"/> download the sample application and change the URL to the gateway in the MyADFApp OESBackingBean code to point to the OES Gateway and deploy the application to an 11.1.1.6 WLS domain that has been extended with the ADF JRF files. You will need to configure the FOD database connection to point your database which contains the FOD schema. populate the OES Admin and OES Gateway WLS LDAP stores with the sample set of users and groups.  If  you have configured the WLS domains to point to the same LDAP then it would only have to be done once.  To help with this there is a directory called ldap_scripts in the sample project with ldif files for the test users and groups. start the OES Admin console and configure the required OES authorization policies for the MyADFApp application and push them to the WLS SM containing the OES Gateway. Login to the MyADFApp as each of the users described on the login page to test that the security policy is correct. You will see informative logging from the OES Gateway and the ADF application to their respective WLS consoles. Congratulations, you may now login to the OES Admin console and change policies that will control the behaviour of your ADF application--change the limit value in the obligation for the cost price for example, or define Role Mapping policies to determine staff access to the system administration page based on user profile attributes. ADF Development Notes Some notes on ADF development which are probably typical gotchas: May need this on WLS startup in order to allow us to overwrite credentials for the database, the signal here is that there is an error trying to access the data base: -Djps.app.credential.overwrite.allowed=true Best to call Bounded Task flows via a CommandLink (as opposed to a go link) as you cannot seem to start them again from a go link, even having completed the task flow correctly with a return activity. Once a bounded task flow (BTF) is initated it must complete correctly  via a return activity—attempting to click on any other link whilst in the context of a  BTF has no effect.  See here for example: When using the ADF Authentication only security approach it seems to be awkward to allow anonymous access to the welcome and registration pages.  We can achieve anonymous access using the web.xml security constraint shown above (where no auth-constraint is specified) however it is not clear what needs to be listed in there….for example the /afr/* and /adf/* are in there by trial and error as sometimes the welcome page will not render if we omit those items.  I was not able to use the default allPages constraint with for example the anonymous-role or the everyone WLS group in order to be able to allow anonymous access to pages. The ADF security best practice advises placing all pages under the public_html/WEB-INF folder as then ADF will not allow any direct access to the .jspx pages but will only allow acces via a link of the form /faces/welcome rather than /faces/welcome.jspx.  This seems like a very good practice to follow as having multiple entry points to data is a source of confusion in a web application (particulary from a security point of view). In Authentication+Authorization mode only pages with a Page definition file are protected.  In order to add an emty one right click on the page and choose Go to Page Definition.  This will create an empty page definition and now the page will require explicit permission to be seen. It is advisable to give a unique context root via the weblogic.xml for the application, as otherwise the application will clash with any other application with the same context root and it will not deploy

    Read the article

  • Less Useful Soft Skills

    - by andyleonard
    Introduction This post is the fifty-sixth part of a ramble-rant about the software business. The current posts in this series can be found on the series landing page . Over a career that spans decades, one encounters useful and “less useful” soft skills in the modern enterprise. I thought I would share a few of the less useful variety: Free Advice If someone asks another for advice, that’s a cool compliment. The person asking has seen something that compels them to seek information about how-another-does-or-sees-things....(read more)

    Read the article

  • How To Do Graphic Design Like A Pro

    Tips and advice to being a good graphic designer. Coming from several years of experience in graphic design, I will give you advice on becoming a pro in no time. So you want to be a graphic designer... [Author: William Carlson - Web Design and Development - April 02, 2010]

    Read the article

  • A good resource to get the most out of Google Analytics

    - by glinch
    I was wondering if any one could offer me some advice as to the best resources out there (ideally books) on google analytics. I have a basic understanding but have a lot of room for improvement. The following book "Advanced Web Metrics with Google Analytics" by Brian Clifton, appears to be a good starting but but is already quite dated, even though published in march 2010. Any advice would be greatly appreciated.

    Read the article

  • Social Networking at Professional Events

    Dr. Masha Petrova compresses, into a small space, much good advice on networking with other professional people. She draws from her own experience as a technical expert to provide a detailed checklist of things you should and shouldn't do at conferences or tradeshows to be a successful 'networker'. As usual, she delivers sage advice with a dash of humour.

    Read the article

  • Should you promise to deliver a feature that you aren't sure if its implementable?

    - by user476
    In an article from HN, I came across the following advice: Always tell your customer/user "yes", even if you're not sure. 90% of the time, you'll find a way to do it. 10% of the time, you'll go back and apologize. Small price to pay for major personal growth But I've always thought that one should do a feasibility analysis before making any kind of promises to a customer/user, so that they aren't misled at any point. At what circumstances, then, should the above advice applicable?

    Read the article

  • Can't access external USB storage after updating to 12.10

    - by user99252
    I installed Ubuntu 12.04 after Windows failed me and Samsung got a bit pissy about providing any help. I then upgraded to 12.10 after a week or two and suddenly my external USB devices no longer work. The same devices I plugged in are no longer recognised. As I say, I'm only a user of Ubuntu for a fortnight, so any advice and directions to very simple instructions, would be appreciated greatly. I've seen this asked elsewhere, but the advice was to ask again if you needed clarification.

    Read the article

  • Webcast: Attack of the Customers- The rise of the Empowered Consumer

    - by Richard Lefebvre
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Watch Paul Gillin, author of “Attack of the Customers: Why Critics Assault Brands Online and How to Avoid Becoming a Victim,” and Oracle Social Cloud Vice President Erika Brookes, talk about the rise of the empowered consumer. Watch now! /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";}

    Read the article

  • Creating Descriptive Flex Field (DFF) Bean in OAF

    - by Manoj Madhusoodanan
    In this blog I will explain how to add a custom DFF in a custom OAF page.I am using XXCUST_DFF_DEMO table to store the DFF values.Also I am using custom DFF named XXCUST_PERSON_DFF.  Following steps needs to be performed to create this solution. 1) Register the custom table in Oracle Application2) Register the DFF3) Define the segments of DFF4) Create BC4J components for OAF and OA Page which holds the DFF I will explain the steps in detail below. Register the custom table in Oracle Application I am using custom DFF here so I have to register the custom table which I am going to capture the values.Please click here to see the table script. I am using the AD_DD package to register the custom table.Please click here to see the table registration script. Please verify the table has registered successfully. Navigation: Application Developer > Application > Database > Table Table has registered successfully. Register the DFF Next step is to register the DFF. Navigate to Application Developer > Flex Field > Descriptive > Register. Give details as below. Click on Reference Fields and set the Reference Field as ATTRIBUTE_CATEGORY. Click on the Columns button to verify that the columns ATTRIBUTE_CATEGORY,ATTRIBUTE1 .... ATTRIBUTE30 are enabled. DFF has registered successfully. Define the segments of DFF Here I am going to define the segments of the DFF.Navigate to Application Developer > Flex Field > Descriptive > Segments.Query for "XXCUST - Person DFF". Uncheck "Freeze Flexfield Definition". In my DFF the reference field I want to display a value set which has values "Permanent" and "Contractor". So define a value set  XXCUST_EMPLOYMENT_TYPE. Navigation: Application Developer > Flex Field > Descriptive > Validation > Sets After that assign the values to above created value sets. Navigation: Application Developer > Flex Field > Descriptive > Validation > Values Assign XXCUST_EMPLOYMENT_TYPE to Context Field Valueset. Setup the Context Field Values based on below table. Context Code Segments Global Data Elements Phone Number Email Fax Contractor Manager Extension Number CSP Name Permanent Extension Number Access Card Number Phone Number,Email and Fax displays always.When user choose Context Value as "Contractor" Manager Extension Number and CSP Name will show.In case of "Permanent" Extension Number and Access Card Number will show.  Assign value set also as follows. For Global Data Elements following are the segments. For "Contractor" following are the segments. For "Permanent" following are the segments. Check the "Freeze Flexfield Definition" check box and save.Standard concurrent program "Flexfield View Generator" will generate XXCUST_DFF_DEMO_DFV view which we mentioned in the DFF registration step.  Now the DFF has created successfully and ready to use. Create BC4J components for OAF and OA Page which holds the DFF Create the BC4J components ( EO,VO and AM) appropriately.Create the page based on the created VO.For DFF create an item of type "flex" with following property.  Note: You cannot create a flex item directly under a messageComponentLayout region, but you can create a messageLayout region under the messageComponentLayout region and add the flex item under the messageLayout region. In the Segment List property give the segment names which you want to display.The syntax of this is Global Data Elements|SEGMENT 1|...|SEGMENT N||[Context Code1]|SEGMENT 1|...|SEGMENT N||[Context Code2]|SEGMENT 1|...|SEGMENT N||... Eg: Global Data Elements|Phone Number|Email|Fax||Contractor|Manager Extension Number|CSP Name||Permanent|Extension Number|Access Card Number When you change the Context Value corresponding segments will display automatically by PPR in the page. You can attach partial action to the DFF bean programmatically so that you can identify the action related to DFF. pageContext.getParameter(EVENT_PARAM) will return "FLEX_CONTEXT_CHANGEDPersonDFF" when you change the DFF Context. Page is ready and you can test. When you choose "Contract" following output you can see. When you choose "Permanent" following output you can see.  Give proper values and press Apply.You can see values populated in the table.

    Read the article

< Previous Page | 468 469 470 471 472 473 474 475 476 477 478 479  | Next Page >