Search Results

Search found 14719 results on 589 pages for 'optimization level'.

Page 48/589 | < Previous Page | 44 45 46 47 48 49 50 51 52 53 54 55  | Next Page >

  • Help w/ iPad 1 performance for tile-based DOM Javascript game

    - by butr0s
    I've made a 2D tile-based game with DOM/Javascript. For each level, the map data is loaded and parsed, then lots of tiles ( elements) are drawn onto a larger "map" element. The map is inside of a container that hides overflow, so I can move the map element around by positioning it absolutely. Works a treat on desktop browsers, and my iPad 2. My problem is that performance is really bad on iPad 1. The performance hit is directly related to all the tile elements in my map, because when I remove or reduce the number of tiles drawn, performance improves. Optimizing my collision detection loop has no effect. My first thought was to batch groups of tiles into containers, then hide/show them based on proximity to the player, however this still causes a huge hiccup when the player moves and a new group of tiles is displayed (offscreen). Actually removing the out-of-sight elements from the DOM, then re-adding them as necessary is no faster. Anyone know of any tips that might speed up DOM performance here? My map is 1920 x 1920 pixels, so as far as I know should be within the WebKit texture limit on iOS 5/iPad. The map is being moved with CSS3 transforms, and I've picked all the other obvious low-hanging fruit.

    Read the article

  • Which version management design methodology to be used in a Dependent System nodes?

    - by actiononmail
    This is my first question so please indicate if my question is too vague and not understandable. My question is more related to High Level Design. We have a system (specifically an ATCA Chassis) configured in a Star Topology, having Master Node (MN) and other sub-ordinate nodes(SN). All nodes are connected via Ethernet and shall run on Linux OS with other proprietary applications. I have to build a recovery Framework Design so that any software entity, whether its Linux, Ramdisk or application can be rollback to previous good versions if something bad happens. Thus I think of maintaining a State Version Matrix over MN, where each State(1,2....n) represents Good Kernel, Ramdisk and application versions for each SN. It may happen that one SN version can dependent on other SN's version. Please see following diagram:- So I am in dilemma whether to use Package Management Methodology used by Debian Distributions (Like Ubuntu) or GIT repository methodology; in order to do a Rollback to previous good versions on either one SN or on all the dependent SNs. The method should also be easier for upgrading SNs along with MNs. Some of the features which I am trying to achieve:- 1) Upgrade of even single software entity is achievable without hindering others. 2) Dependency checks must be done before applying rollback or upgrade on each of the SN 3) User Prompt should be given in case dependency fails.If User still go for rollback, all the SNs should get notification to rollback there own releases (if required). 4) The binaries should be distributed on SNs accordingly so that recovery process is faster; rather fetching every time from MN. 5) Release Patches from developer for bug fixes, feature enhancement can be applied on running system. 6) Each version can be easily tracked and distinguishable. Thanks

    Read the article

  • Structuring Access Control In Hierarchical Object Graph

    - by SB2055
    I have a Folder entity that can be Moderated by users. Folders can contain other folders. So I may have a structure like this: Folder 1 Folder 2 Folder 3 Folder 4 I have to decide how to implement Moderation for this entity. I've come up with two options: Option 1 When the user is given moderation privileges to Folder 1, define a moderator relationship between Folder 1 and User 1. No other relationships are added to the db. To determine if the user can moderate Folder 3, I check and see if User 1 is the moderator of any parent folders. This seems to alleviate some of the complexity of handling updates / moved entities / additions under Folder 1 after the relationship has been defined, and reverting the relationship means I only have to deal with one entity. Option 2 When the user is given moderation privileges to Folder 1, define a new relationship between User 1 and Folder 1, and all child entities down to the grandest of grandchildren when the relationship is created, and if it's ever removed, iterate back down the graph to remove the relationship. If I add something under Folder 2 after this relationship has been made, I just copy all Moderators into the new Entity. But when I need to show only the top-level Folders that a user is Moderating, I need to query all folders that have a parent folder that the user does not moderate, as opposed to option 1, where I just query any items that the user is moderating. Thoughts I think it comes down to determining if users will be querying for all parent items more than they'll be querying child items... if so, then option 1 seems better. But I'm not sure. Is either approach better than the other? Why? Or is there another approach that's better than both? I'm using Entity Framework in case it matters.

    Read the article

  • SQL SERVER – Update Statistics are Sampled By Default

    - by pinaldave
    After reading my earlier post SQL SERVER – Create Primary Key with Specific Name when Creating Table on Statistics, I have received another question by a blog reader. The question is as follows: Question: Are the statistics sampled by default? Answer: Yes. The sampling rate can be specified by the user and it can be anywhere between a very low value to 100%. Let us do a small experiment to verify if the auto update on statistics is left on. Also, let’s examine a very large table that is created and statistics by default- whether the statistics are sampled or not. USE [AdventureWorks] GO -- Create Table CREATE TABLE [dbo].[StatsTest]( [ID] [int] IDENTITY(1,1) NOT NULL, [FirstName] [varchar](100) NULL, [LastName] [varchar](100) NULL, [City] [varchar](100) NULL, CONSTRAINT [PK_StatsTest] PRIMARY KEY CLUSTERED ([ID] ASC) ) ON [PRIMARY] GO -- Insert 1 Million Rows INSERT INTO [dbo].[StatsTest] (FirstName,LastName,City) SELECT TOP 1000000 'Bob', CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%2 = 1 THEN 'Smith' ELSE 'Brown' END, CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 1 THEN 'New York' WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 5 THEN 'San Marino' WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 3 THEN 'Los Angeles' ELSE 'Houston' END FROM sys.all_objects a CROSS JOIN sys.all_objects b GO -- Update the statistics UPDATE STATISTICS [dbo].[StatsTest] GO -- Shows the statistics DBCC SHOW_STATISTICS ("StatsTest"PK_StatsTest) GO -- Clean up DROP TABLE [dbo].[StatsTest] GO Now let us observe the result of the DBCC SHOW_STATISTICS. The result shows that Resultset is for sure sampling for a large dataset. The percentage of sampling is based on data distribution as well as the kind of data in the table. Before dropping the table, let us check first the size of the table. The size of the table is 35 MB. Now, let us run the above code with lesser number of the rows. USE [AdventureWorks] GO -- Create Table CREATE TABLE [dbo].[StatsTest]( [ID] [int] IDENTITY(1,1) NOT NULL, [FirstName] [varchar](100) NULL, [LastName] [varchar](100) NULL, [City] [varchar](100) NULL, CONSTRAINT [PK_StatsTest] PRIMARY KEY CLUSTERED ([ID] ASC) ) ON [PRIMARY] GO -- Insert 1 Hundred Thousand Rows INSERT INTO [dbo].[StatsTest] (FirstName,LastName,City) SELECT TOP 100000 'Bob', CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%2 = 1 THEN 'Smith' ELSE 'Brown' END, CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 1 THEN 'New York' WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 5 THEN 'San Marino' WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 3 THEN 'Los Angeles' ELSE 'Houston' END FROM sys.all_objects a CROSS JOIN sys.all_objects b GO -- Update the statistics UPDATE STATISTICS [dbo].[StatsTest] GO -- Shows the statistics DBCC SHOW_STATISTICS ("StatsTest"PK_StatsTest) GO -- Clean up DROP TABLE [dbo].[StatsTest] GO You can see that Rows Sampled is just the same as Rows of the table. In this case, the sample rate is 100%. Before dropping the table, let us also check the size of the table. The size of the table is less than 4 MB. Let us compare the Result set just for a valid reference. Test 1: Total Rows: 1000000, Rows Sampled: 255420, Size of the Table: 35.516 MB Test 2: Total Rows: 100000, Rows Sampled: 100000, Size of the Table: 3.555 MB The reason behind the sample in the Test1 is that the data space is larger than 8 MB, and therefore it uses more than 1024 data pages. If the data space is smaller than 8 MB and uses less than 1024 data pages, then the sampling does not happen. Sampling aids in reducing excessive data scan; however, sometimes it reduces the accuracy of the data as well. Please note that this is just a sample test and there is no way it can be claimed as a benchmark test. The result can be dissimilar on different machines. There are lots of other information can be included when talking about this subject. I will write detail post covering all the subject very soon. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Index, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: SQL Statistics

    Read the article

  • SQL SERVER – Server Side Paging in SQL Server 2011 Performance Comparison

    - by pinaldave
    Earlier, I have written about SQL SERVER – Server Side Paging in SQL Server 2011 – A Better Alternative. I got many emails asking for performance analysis of paging. Here is the quick analysis of it. The real challenge of paging is all the unnecessary IO reads from the database. Network traffic was one of the reasons why paging has become a very expensive operation. I have seen many legacy applications where a complete resultset is brought back to the application and paging has been done. As what you have read earlier, SQL Server 2011 offers a better alternative to an age-old solution. This article has been divided into two parts: Test 1: Performance Comparison of the Two Different Pages on SQL Server 2011 Method In this test, we will analyze the performance of the two different pages where one is at the beginning of the table and the other one is at its end. Test 2: Performance Comparison of the Two Different Pages Using CTE (Earlier Solution from SQL Server 2005/2008) and the New Method of SQL Server 2011 We will explore this in the next article. This article will tackle test 1 first. Test 1: Retrieving Page from two different locations of the table. Run the following T-SQL Script and compare the performance. SET STATISTICS IO ON; USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 5 SELECT * FROM Sales.SalesOrderDetail ORDER BY SalesOrderDetailID OFFSET @PageNumber*@RowsPerPage ROWS FETCH NEXT 10 ROWS ONLY GO USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 12100 SELECT * FROM Sales.SalesOrderDetail ORDER BY SalesOrderDetailID OFFSET @PageNumber*@RowsPerPage ROWS FETCH NEXT 10 ROWS ONLY GO You will notice that when we are reading the page from the beginning of the table, the database pages read are much lower than when the page is read from the end of the table. This is very interesting as when the the OFFSET changes, PAGE IO is increased or decreased. In the normal case of the search engine, people usually read it from the first few pages, which means that IO will be increased as we go further in the higher parts of navigation. I am really impressed because using the new method of SQL Server 2011,  PAGE IO will be much lower when the first few pages are searched in the navigation. Test 2: Retrieving Page from two different locations of the table and comparing to earlier versions. In this test, we will compare the queries of the Test 1 with the earlier solution via Common Table Expression (CTE) which we utilized in SQL Server 2005 and SQL Server 2008. Test 2 A : Page early in the table -- Test with pages early in table USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 5 ;WITH CTE_SalesOrderDetail AS ( SELECT *, ROW_NUMBER() OVER( ORDER BY SalesOrderDetailID) AS RowNumber FROM Sales.SalesOrderDetail PC) SELECT * FROM CTE_SalesOrderDetail WHERE RowNumber >= @PageNumber*@RowsPerPage+1 AND RowNumber <= (@PageNumber+1)*@RowsPerPage ORDER BY SalesOrderDetailID GO SET STATISTICS IO ON; USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 5 SELECT * FROM Sales.SalesOrderDetail ORDER BY SalesOrderDetailID OFFSET @PageNumber*@RowsPerPage ROWS FETCH NEXT 10 ROWS ONLY GO Test 2 B : Page later in the table -- Test with pages later in table USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 12100 ;WITH CTE_SalesOrderDetail AS ( SELECT *, ROW_NUMBER() OVER( ORDER BY SalesOrderDetailID) AS RowNumber FROM Sales.SalesOrderDetail PC) SELECT * FROM CTE_SalesOrderDetail WHERE RowNumber >= @PageNumber*@RowsPerPage+1 AND RowNumber <= (@PageNumber+1)*@RowsPerPage ORDER BY SalesOrderDetailID GO SET STATISTICS IO ON; USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 12100 SELECT * FROM Sales.SalesOrderDetail ORDER BY SalesOrderDetailID OFFSET @PageNumber*@RowsPerPage ROWS FETCH NEXT 10 ROWS ONLY GO From the resultset, it is very clear that in the earlier case, the pages read in the solution are always much higher than the new technique introduced in SQL Server 2011 even if we don’t retrieve all the data to the screen. If you carefully look at both the comparisons, the PAGE IO is much lesser in the case of the new technique introduced in SQL Server 2011 when we read the page from the beginning of the table and when we read it from the end. I consider this as a big improvement as paging is one of the most used features for the most part of the application. The solution introduced in SQL Server 2011 is very elegant because it also improves the performance of the query and, at large, the database. Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • SQL SERVER – Introduction to Wait Stats and Wait Types – Wait Type – Day 1 of 28

    - by pinaldave
    I have been working a lot on Wait Stats and Wait Types recently. Last Year, I requested blog readers to send me their respective server’s wait stats. I appreciate their kind response as I have received  Wait stats from my readers. I took each of the results and carefully analyzed them. I provided necessary feedback to the person who sent me his wait stats and wait types. Based on the feedbacks I got, many of the readers have tuned their server. After a while I got further feedbacks on my recommendations and again, I collected wait stats. I recorded the wait stats and my recommendations and did further research. At some point at time, there were more than 10 different round trips of the recommendations and suggestions. Finally, after six month of working my hands on performance tuning, I have collected some real world wisdom because of this. Now I plan to share my findings with all of you over here. Before anything else, please note that all of these are based on my personal observations and opinions. They may or may not match the theory available at other places. Some of the suggestions may not match your situation. Remember, every server is different and consequently, there is more than one solution to a particular problem. However, this series is written with kept wait stats in mind. While I was working on various performance tuning consultations, I did many more things than just tuning wait stats. Today we will discuss how to capture the wait stats. I use the script diagnostic script created by my friend and SQL Server Expert Glenn Berry to collect wait stats. Here is the script to collect the wait stats: -- Isolate top waits for server instance since last restart or statistics clear WITH Waits AS (SELECT wait_type, wait_time_ms / 1000. AS wait_time_s, 100. * wait_time_ms / SUM(wait_time_ms) OVER() AS pct, ROW_NUMBER() OVER(ORDER BY wait_time_ms DESC) AS rn FROM sys.dm_os_wait_stats WHERE wait_type NOT IN ('CLR_SEMAPHORE','LAZYWRITER_SLEEP','RESOURCE_QUEUE','SLEEP_TASK' ,'SLEEP_SYSTEMTASK','SQLTRACE_BUFFER_FLUSH','WAITFOR', 'LOGMGR_QUEUE','CHECKPOINT_QUEUE' ,'REQUEST_FOR_DEADLOCK_SEARCH','XE_TIMER_EVENT','BROKER_TO_FLUSH','BROKER_TASK_STOP','CLR_MANUAL_EVENT' ,'CLR_AUTO_EVENT','DISPATCHER_QUEUE_SEMAPHORE', 'FT_IFTS_SCHEDULER_IDLE_WAIT' ,'XE_DISPATCHER_WAIT', 'XE_DISPATCHER_JOIN', 'SQLTRACE_INCREMENTAL_FLUSH_SLEEP')) SELECT W1.wait_type, CAST(W1.wait_time_s AS DECIMAL(12, 2)) AS wait_time_s, CAST(W1.pct AS DECIMAL(12, 2)) AS pct, CAST(SUM(W2.pct) AS DECIMAL(12, 2)) AS running_pct FROM Waits AS W1 INNER JOIN Waits AS W2 ON W2.rn <= W1.rn GROUP BY W1.rn, W1.wait_type, W1.wait_time_s, W1.pct HAVING SUM(W2.pct) - W1.pct < 99 OPTION (RECOMPILE); -- percentage threshold GO This script uses Dynamic Management View sys.dm_os_wait_stats to collect the wait stats. It omits the system-related wait stats which are not useful to diagnose performance-related bottleneck. Additionally, not OPTION (RECOMPILE) at the end of the DMV will ensure that every time the query runs, it retrieves new data and not the cached data. This dynamic management view collects all the information since the time when the SQL Server services have been restarted. You can also manually clear the wait stats using the following command: DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR); Once the wait stats are collected, we can start analysis them and try to see what is causing any particular wait stats to achieve higher percentages than the others. Many waits stats are related to one another. When the CPU pressure is high, all the CPU-related wait stats show up on top. But when that is fixed, all the wait stats related to the CPU start showing reasonable percentages. It is difficult to have a sure solution, but there are good indications and good suggestions on how to solve this. I will keep this blog post updated as I will post more details about wait stats and how I reduce them. The reference to Book On Line is over here. Of course, I have selected February to run this Wait Stats series. I am already cheating by having the smallest month to run this series. :) Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: DMV, Pinal Dave, PostADay, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • SQL SERVER – Video – Beginning Performance Tuning with SQL Server Execution Plan

    - by pinaldave
    Traveling can be most interesting or most exhausting experience. However, traveling is always the most enlightening experience one can have. While going to long journey one has to prepare a lot of things. Pack necessary travel gears, clothes and medicines. However, the most essential part of travel is the journey to the destination. There are many variations one prefer but the ultimate goal is to have a delightful experience during the journey. Here is the video available which explains how to begin with SQL Server Execution plans. Performance Tuning is a Journey Performance tuning is just like a long journey. The goal of performance tuning is efficient and least resources consuming query execution with accurate results. Just as maps are the most essential aspect of performance tuning the same way, execution plans are essentially maps for SQL Server to reach to the resultset. The goal of the execution plan is to find the most efficient path which translates the least usage of the resources (CPU, memory, IO etc). Execution Plans are like Maps When online maps were invented (e.g. Bing, Google, Mapquests etc) initially it was not possible to customize them. They were given a single route to reach to the destination. As time evolved now it is possible to give various hints to the maps, for example ‘via public transport’, ‘walking’, ‘fastest route’, ‘shortest route’, ‘avoid highway’. There are places where we manually drag the route and make it appropriate to our needs. The same situation is with SQL Server Execution Plans, if we want to tune the queries, we need to understand the execution plans and execution plans internals. We need to understand the smallest details which relate to execution plan when we our destination is optimal queries. Understanding Execution Plans The biggest challenge with maps are figuring out the optimal path. The same way the  most common challenge with execution plans is where to start from and which precise route to take. Here is a quick list of the frequently asked questions related to execution plans: Should I read the execution plans from bottoms up or top down? Is execution plans are left to right or right to left? What is the relational between actual execution plan and estimated execution plan? When I mouse over operator I see CPU and IO but not memory, why? Sometime I ran the query multiple times and I get different execution plan, why? How to cache the query execution plan and data? I created an optimal index but the query is not using it. What should I change – query, index or provide hints? What are the tools available which helps quickly to debug performance problems? Etc… Honestly the list is quite a big and humanly impossible to write everything in the words. SQL Server Performance:  Introduction to Query Tuning My friend Vinod Kumar and I have created for the same a video learning course for beginning performance tuning. We have covered plethora of the subject in the course. Here is the quick list of the same: Execution Plan Basics Essential Indexing Techniques Query Design for Performance Performance Tuning Tools Tips and Tricks Checklist: Performance Tuning We believe we have covered a lot in this four hour course and we encourage you to go over the video course if you are interested in Beginning SQL Server Performance Tuning and Query Tuning. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology, Video Tagged: Execution Plan

    Read the article

  • SQL SERVER – Reducing CXPACKET Wait Stats for High Transactional Database

    - by pinaldave
    While engaging in a performance tuning consultation for a client, a situation occurred where they were facing a lot of CXPACKET Waits Stats. The client asked me if I could help them reduce this huge number of wait stats. I usually receive this kind of request from other client as well, but the important thing to understand is whether this question has any merits or benefits, or not. Before we continue the resolution, let us understand what CXPACKET Wait Stats are. The official definition suggests that CXPACKET Wait Stats occurs when trying to synchronize the query processor exchange iterator. You may consider lowering the degree of parallelism if a conflict concerning this wait type develops into a problem. (from BOL) In simpler words, when a parallel operation is created for SQL Query, there are multiple threads for a single query. Each query deals with a different set of the data (or rows). Due to some reasons, one or more of the threads lag behind, creating the CXPACKET Wait Stat. Threads which came first have to wait for the slower thread to finish. The Wait by a specific completed thread is called CXPACKET Wait Stat. Note that CXPACKET Wait is done by completed thread and not the one which are unfinished. “Note that not all the CXPACKET wait types are bad. You might experience a case when it totally makes sense. There might also be cases when this is also unavoidable. If you remove this particular wait type for any query, then that query may run slower because the parallel operations are disabled for the query.” Now let us see what the best practices to reduce the CXPACKET Wait Stats are. The suggestions, with which you will find that if you search online through the browser, would play a major role as and might be asked about their jobs In addition, might tell you that you should set ‘maximum degree of parallelism’ to 1. I do agree with these suggestions, too; however, I think this is not the final resolutions. As soon as you set your entire query to run on single CPU, you will get a very bad performance from the queries which are actually performing okay when using parallelism. The best suggestion to this is that you set ‘the maximum degree of parallelism’ to a lower number or 1 (be very careful with this – it can create more problems) but tune the queries which can be benefited from multiple CPU’s. You can use query hint OPTION (MAXDOP 0) to run the server to use parallelism. Here is the two-quick script which helps to resolve these issues: Change MAXDOP at Server Level EXEC sys.sp_configure N'max degree of parallelism', N'1' GO RECONFIGURE WITH OVERRIDE GO Run Query with all the CPU (using parallelism) USE AdventureWorks GO SELECT * FROM Sales.SalesOrderDetail ORDER BY ProductID OPTION (MAXDOP 0) GO Below is the blog post which will help you to find all the parallel query in your server. SQL SERVER – Find Queries using Parallelism from Cached Plan Please note running Queries in single CPU may worsen your performance and it is not recommended at all. Infect this can be very bad advise. I strongly suggest that you identify the queries which are offending and tune them instead of following any other suggestions. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQL White Papers, SQLAuthority News, T SQL, Technology

    Read the article

  • SQL SERVER – Data Pages in Buffer Pool – Data Stored in Memory Cache

    - by pinaldave
    This will drop all the clean buffers so we will be able to start again from there. Now, run the following script and check the execution plan of the query. Have you ever wondered what types of data are there in your cache? During SQL Server Trainings, I am usually asked if there is any way one can know how much data in a table is stored in the memory cache? The more detailed question I usually get is if there are multiple indexes on table (and used in a query), were the data of the single table stored multiple times in the memory cache or only for a single time? Here is a query you can run to figure out what kind of data is stored in the cache. USE AdventureWorks GO SELECT COUNT(*) AS cached_pages_count, name AS BaseTableName, IndexName, IndexTypeDesc FROM sys.dm_os_buffer_descriptors AS bd INNER JOIN ( SELECT s_obj.name, s_obj.index_id, s_obj.allocation_unit_id, s_obj.OBJECT_ID, i.name IndexName, i.type_desc IndexTypeDesc FROM ( SELECT OBJECT_NAME(OBJECT_ID) AS name, index_id ,allocation_unit_id, OBJECT_ID FROM sys.allocation_units AS au INNER JOIN sys.partitions AS p ON au.container_id = p.hobt_id AND (au.type = 1 OR au.type = 3) UNION ALL SELECT OBJECT_NAME(OBJECT_ID) AS name, index_id, allocation_unit_id, OBJECT_ID FROM sys.allocation_units AS au INNER JOIN sys.partitions AS p ON au.container_id = p.partition_id AND au.type = 2 ) AS s_obj LEFT JOIN sys.indexes i ON i.index_id = s_obj.index_id AND i.OBJECT_ID = s_obj.OBJECT_ID ) AS obj ON bd.allocation_unit_id = obj.allocation_unit_id WHERE database_id = DB_ID() GROUP BY name, index_id, IndexName, IndexTypeDesc ORDER BY cached_pages_count DESC; GO Now let us run the query above and observe the output of the same. We can see in the above query that there are four columns. Cached_Pages_Count lists the pages cached in the memory. BaseTableName lists the original base table from which data pages are cached. IndexName lists the name of the index from which pages are cached. IndexTypeDesc lists the type of index. Now, let us do one more experience here. Please note that you should not run this test on a production server as it can extremely reduce the performance of the database. DBCC DROPCLEANBUFFERS This will drop all the clean buffers and we will be able to start again from there. Now run following script and check the execution plan for the same. USE AdventureWorks GO SELECT UnitPrice, ModifiedDate FROM Sales.SalesOrderDetail WHERE SalesOrderDetailID BETWEEN 1 AND 100 GO The execution plans contain the usage of two different indexes. Now, let us run the script that checks the pages cached in SQL Server. It will give us the following output. It is clear from the Resultset that when more than one index is used, datapages related to both or all of the indexes are stored in Memory Cache separately. Let me know what you think of this article. I had a great pleasure while writing this article because I was able to write on this subject, which I like the most. In the next article, we will exactly see what data are cached and those that are not cached, using a few undocumented commands. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: DMV, Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: SQL DMV

    Read the article

  • SQL SERVER – How to Ignore Columnstore Index Usage in Query

    - by pinaldave
    Earlier I wrote about SQL SERVER – Fundamentals of Columnstore Index and very first question I received in email was as following. “We are using SQL Server 2012 CTP3 and so far so good. In our data warehouse solution we have created 1 non-clustered columnstore index on our large fact table. We have very unique situation but your article did not cover it. We are running few queries on our fact table which is working very efficiently but there is one query which earlier was running very fine but after creating this non-clustered columnstore index this query is running very slow. We dropped the columnstore index and suddenly this one query is running fast but other queries which were benefited by this columnstore index it is running slow. Any workaround in this situation?” In summary the question in simple words “How can we ignore using columnstore index in selective queries?” Very interesting question – you can use I can understand there may be the cases when columnstore index is not ideal and needs to be ignored the same. You can use the query hint IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX to ignore the columnstore index. SQL Server Engine will use any other index which is best after ignoring the columnstore index. Here is the quick script to prove the same. We will first create sample database and then create columnstore index on the same. Once columnstore index is created we will write simple query. This query will use columnstore index. We will then show the usage of the query hint. USE AdventureWorks GO -- Create New Table CREATE TABLE [dbo].[MySalesOrderDetail]( [SalesOrderID] [int] NOT NULL, [SalesOrderDetailID] [int] NOT NULL, [CarrierTrackingNumber] [nvarchar](25) NULL, [OrderQty] [smallint] NOT NULL, [ProductID] [int] NOT NULL, [SpecialOfferID] [int] NOT NULL, [UnitPrice] [money] NOT NULL, [UnitPriceDiscount] [money] NOT NULL, [LineTotal] [numeric](38, 6) NOT NULL, [rowguid] [uniqueidentifier] NOT NULL, [ModifiedDate] [datetime] NOT NULL ) ON [PRIMARY] GO -- Create clustered index CREATE CLUSTERED INDEX [CL_MySalesOrderDetail] ON [dbo].[MySalesOrderDetail] ( [SalesOrderDetailID]) GO -- Create Sample Data Table -- WARNING: This Query may run upto 2-10 minutes based on your systems resources INSERT INTO [dbo].[MySalesOrderDetail] SELECT S1.* FROM Sales.SalesOrderDetail S1 GO 100 -- Create ColumnStore Index CREATE NONCLUSTERED COLUMNSTORE INDEX [IX_MySalesOrderDetail_ColumnStore] ON [MySalesOrderDetail] (UnitPrice, OrderQty, ProductID) GO Now we have created columnstore index so if we run following query it will use for sure the same index. -- Select Table with regular Index SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice, SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty FROM [dbo].[MySalesOrderDetail] GROUP BY ProductID ORDER BY ProductID GO We can specify Query Hint IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX as described in following query and it will not use columnstore index. -- Select Table with regular Index SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice, SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty FROM [dbo].[MySalesOrderDetail] GROUP BY ProductID ORDER BY ProductID OPTION (IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX) GO Let us clean up the database. -- Cleanup DROP INDEX [IX_MySalesOrderDetail_ColumnStore] ON [dbo].[MySalesOrderDetail] GO TRUNCATE TABLE dbo.MySalesOrderDetail GO DROP TABLE dbo.MySalesOrderDetail GO Again, make sure that you use hint sparingly and understanding the proper implication of the same. Make sure that you test it with and without hint and select the best option after review of your administrator. Here is the question for you – have you started to use SQL Server 2012 for your validation and development (not on production)? It will be interesting to know the answer. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Index, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Apache2 URL Rewrite - Second-Level-Domain to the end of URL

    - by Acryl
    i have a site "example.com" and also many other domains like "example1.com", "example2.de", etc. I want that every Second-Level-Domain is rewritten in the following way: example.com/domainredirect=example1.com (when you open example1.com) and example.com/domainredirect=example2.de (when you open example2.de) So the original Second-Level-Domain should be rewritten after "example.com/domainredirect=" Thanks in advance

    Read the article

  • can I put files in hidden volume /home at the root level of macintosh HD

    - by mjr
    I am trying to reproduce the file structure of my VPS on my mac locally, so that it's easier for me to test websites in a local development environment to do this I would need have a /home folder at the root level of the hard drive using panic transmit I can see that there is already a volume called home at the root level can I store other files and folders in here to set up my local web server? sorry if this is a dumb question folks

    Read the article

  • Remote Desktop from Linux to Computer that Requires Network Level Authentication

    - by Kyle Brandt
    Is there a way to use rdesktop or another Linux client to connect to a server that requires Network Level Authentication? From Windows Server 2008 R2 -- Control Panel -- System And Security -- System -- Allow Remote Access there is an option that says "Allow connections only from computers running Remote Desktop with Network Level Authentication". So with this enabled I can con not connect from Linux. I can connect from XP but you need SP3 and I had to edit a couple of things in the registry for it to work.

    Read the article

  • What are your best senior level Linux interview questions

    - by Mike
    Every now and then on this site there are people asking what are some sys admin interview questions. Mostly when reading them they are all junior to mid-level questions. I'm wondering what are your best senior level Linux admin interview questions. Two of mine are 1) How do you stop a fork bomb if you are already logged into a system 2) You delete a log file that apache is using and did not restart apache yet, how can you recover that log file?

    Read the article

  • Unable to start my linux (cent OS ) machine in run level 5

    - by k38
    Suddenly my machine not working under run level 5 and it seems to be problem with xserver and it is saying that "in last 90 seconds xserver restarted 6 times and unable to start" and then just giving blank screen.So i changed the run level to 3 and using startx command i am managing to work now.can any one help me on this.......?

    Read the article

  • Unable to start my linux (cent OS ) machine in run level 5

    - by k38
    Suddenly my machine not working under run level 5 and it seems to be problem with xserver and it is saying that "in last 90 seconds xserver restarted 6 times and unable to start" and then just giving blank screen.So i changed the run level to 3 and using startx command i am managing to work now.can any one help me on this.......?

    Read the article

  • More CPU cores may not always lead to better performance – MAXDOP and query memory distribution in spotlight

    - by sqlworkshops
    More hardware normally delivers better performance, but there are exceptions where it can hinder performance. Understanding these exceptions and working around it is a major part of SQL Server performance tuning.   When a memory allocating query executes in parallel, SQL Server distributes memory to each task that is executing part of the query in parallel. In our example the sort operator that executes in parallel divides the memory across all tasks assuming even distribution of rows. Common memory allocating queries are that perform Sort and do Hash Match operations like Hash Join or Hash Aggregation or Hash Union.   In reality, how often are column values evenly distributed, think about an example; are employees working for your company distributed evenly across all the Zip codes or mainly concentrated in the headquarters? What happens when you sort result set based on Zip codes? Do all products in the catalog sell equally or are few products hot selling items?   One of my customers tested the below example on a 24 core server with various MAXDOP settings and here are the results:MAXDOP 1: CPU time = 1185 ms, elapsed time = 1188 msMAXDOP 4: CPU time = 1981 ms, elapsed time = 1568 msMAXDOP 8: CPU time = 1918 ms, elapsed time = 1619 msMAXDOP 12: CPU time = 2367 ms, elapsed time = 2258 msMAXDOP 16: CPU time = 2540 ms, elapsed time = 2579 msMAXDOP 20: CPU time = 2470 ms, elapsed time = 2534 msMAXDOP 0: CPU time = 2809 ms, elapsed time = 2721 ms - all 24 cores.In the above test, when the data was evenly distributed, the elapsed time of parallel query was always lower than serial query.   Why does the query get slower and slower with more CPU cores / higher MAXDOP? Maybe you can answer this question after reading the article; let me know: [email protected].   Well you get the point, let’s see an example.   The best way to learn is to practice. To create the below tables and reproduce the behavior, join the mailing list by using this link: www.sqlworkshops.com/ml and I will send you the table creation script.   Let’s update the Employees table with 49 out of 50 employees located in Zip code 2001. update Employees set Zip = EmployeeID / 400 + 1 where EmployeeID % 50 = 1 update Employees set Zip = 2001 where EmployeeID % 50 != 1 go update statistics Employees with fullscan go   Let’s create the temporary table #FireDrill with all possible Zip codes. drop table #FireDrill go create table #FireDrill (Zip int primary key) insert into #FireDrill select distinct Zip from Employees update statistics #FireDrill with fullscan go  Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --First serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) goThe query took 1011 ms to complete.   The execution plan shows the 77816 KB of memory was granted while the estimated rows were 799624.  No Sort Warnings in SQL Server Profiler.  Now let’s execute the query in parallel with MAXDOP 0. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 1912 ms to complete.  The execution plan shows the 79360 KB of memory was granted while the estimated rows were 799624.  The estimated number of rows between serial and parallel plan are the same. The parallel plan has slightly more memory granted due to additional overhead. Sort properties shows the rows are unevenly distributed over the 4 threads.   Sort Warnings in SQL Server Profiler.   Intermediate Summary: The reason for the higher duration with parallel plan was sort spill. This is due to uneven distribution of employees over Zip codes, especially concentration of 49 out of 50 employees in Zip code 2001. Now let’s update the Employees table and distribute employees evenly across all Zip codes.   update Employees set Zip = EmployeeID / 400 + 1 go update statistics Employees with fullscan go  Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --Serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) go   The query took 751 ms to complete.  The execution plan shows the 77816 KB of memory was granted while the estimated rows were 784707.  No Sort Warnings in SQL Server Profiler.   Now let’s execute the query in parallel with MAXDOP 0. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 661 ms to complete.  The execution plan shows the 79360 KB of memory was granted while the estimated rows were 784707.  Sort properties shows the rows are evenly distributed over the 4 threads. No Sort Warnings in SQL Server Profiler.    Intermediate Summary: When employees were distributed unevenly, concentrated on 1 Zip code, parallel sort spilled while serial sort performed well without spilling to tempdb. When the employees were distributed evenly across all Zip codes, parallel sort and serial sort did not spill to tempdb. This shows uneven data distribution may affect the performance of some parallel queries negatively. For detailed discussion of memory allocation, refer to webcasts available at www.sqlworkshops.com/webcasts.     Some of you might conclude from the above execution times that parallel query is not faster even when there is no spill. Below you can see when we are joining limited amount of Zip codes, parallel query will be fasted since it can use Bitmap Filtering.   Let’s update the Employees table with 49 out of 50 employees located in Zip code 2001. update Employees set Zip = EmployeeID / 400 + 1 where EmployeeID % 50 = 1 update Employees set Zip = 2001 where EmployeeID % 50 != 1 go update statistics Employees with fullscan go  Let’s create the temporary table #FireDrill with limited Zip codes. drop table #FireDrill go create table #FireDrill (Zip int primary key) insert into #FireDrill select distinct Zip       from Employees where Zip between 1800 and 2001 update statistics #FireDrill with fullscan go  Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --Serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) go The query took 989 ms to complete.  The execution plan shows the 77816 KB of memory was granted while the estimated rows were 785594. No Sort Warnings in SQL Server Profiler.  Now let’s execute the query in parallel with MAXDOP 0. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 1799 ms to complete.  The execution plan shows the 79360 KB of memory was granted while the estimated rows were 785594.  Sort Warnings in SQL Server Profiler.    The estimated number of rows between serial and parallel plan are the same. The parallel plan has slightly more memory granted due to additional overhead.  Intermediate Summary: The reason for the higher duration with parallel plan even with limited amount of Zip codes was sort spill. This is due to uneven distribution of employees over Zip codes, especially concentration of 49 out of 50 employees in Zip code 2001.   Now let’s update the Employees table and distribute employees evenly across all Zip codes. update Employees set Zip = EmployeeID / 400 + 1 go update statistics Employees with fullscan go Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --Serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) go The query took 250  ms to complete.  The execution plan shows the 9016 KB of memory was granted while the estimated rows were 79973.8.  No Sort Warnings in SQL Server Profiler.  Now let’s execute the query in parallel with MAXDOP 0.  --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 85 ms to complete.  The execution plan shows the 13152 KB of memory was granted while the estimated rows were 784707.  No Sort Warnings in SQL Server Profiler.    Here you see, parallel query is much faster than serial query since SQL Server is using Bitmap Filtering to eliminate rows before the hash join.   Parallel queries are very good for performance, but in some cases it can hinder performance. If one identifies the reason for these hindrances, then it is possible to get the best out of parallelism. I covered many aspects of monitoring and tuning parallel queries in webcasts (www.sqlworkshops.com/webcasts) and articles (www.sqlworkshops.com/articles). I suggest you to watch the webcasts and read the articles to better understand how to identify and tune parallel query performance issues.   Summary: One has to avoid sort spill over tempdb and the chances of spills are higher when a query executes in parallel with uneven data distribution. Parallel query brings its own advantage, reduced elapsed time and reduced work with Bitmap Filtering. So it is important to understand how to avoid spills over tempdb and when to execute a query in parallel.   I explain these concepts with detailed examples in my webcasts (www.sqlworkshops.com/webcasts), I recommend you to watch them. The best way to learn is to practice. To create the above tables and reproduce the behavior, join the mailing list at www.sqlworkshops.com/ml and I will send you the relevant SQL Scripts.   Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.   Disclaimer and copyright information:This article refers to organizations and products that may be the trademarks or registered trademarks of their various owners. Copyright of this article belongs to R Meyyappan / www.sqlworkshops.com. You may freely use the ideas and concepts discussed in this article with acknowledgement (www.sqlworkshops.com), but you may not claim any of it as your own work. This article is for informational purposes only; you use any of the suggestions given here entirely at your own risk.   Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.   R Meyyappan [email protected] LinkedIn: http://at.linkedin.com/in/rmeyyappan  

    Read the article

  • SQL SERVER – Beginning SQL Server: One Step at a Time – SQL Server Magazine

    - by pinaldave
    I am glad to announce that along with SQLAuthority.com, I will be blogging on the prominent site of SQL Server Magazine. My very first blog post there is already live; read here: Beginning SQL Server: One Step at a Time. My association with SQL Server Magazine has been quite long, I have written nearly 7 to 8 SQL Server articles for the print magazine and it has been a great experience. I used to stay in the United States at that time. I moved back to India for good, and during this process, I had put everything on hold for a while. Just like many things, “temporary” things become “permanent” – coming back to SQLMag was on hold for long time. Well, this New Year, things have changed – once again, I am back with my online presence at SQLMag.com. Everybody is a beginner at every task or activity at some point of his/her life: spelling words for the first time; learning how to drive for the first time, etc. No one is perfect at the start of any task, but every human is different. As time passes, we all develop our interests and begin to study our subject of interest. Most of us dream to get a job in the area of our study – however things change as time passes. I recently read somewhere online (I could not find the link again while writing this one) that all the successful people in various areas have never studied in the area in which they are successful. After going through a formal learning process of what we love, we refuse to stop learning, and we finally stop changing career and focus areas. We move, we dare and we progress. IT field is similar to our life. New IT professionals come to this field every day. There are two types of beginners – a) those who are associated with IT field but not familiar with other technologies, and b) those who are absolutely new to the IT field. Learning a new technology is always exciting and overwhelming for enthusiasts. I am working with database (in particular) for SQL Server for more than 7 years but I am still overwhelmed with so many things to learn. I continue to learn and I do not think that I should ever stop doing so. Just like everybody, I want to be in the race and get ahead in learning the technology. For the same, I am always looking for good guidance. I always try to find a good article, blog or book chapter, which can teach me what I really want to learn at this stage in my career and can be immensely helpful. Quite often, I prefer to read the material where the author does not judge me or assume my understanding. I like to read new concepts like a child, who takes his/her first steps of learning without any prior knowledge. Keeping my personal philosophy and preference in mind, I will be blogging on SQL Server Magazine site. I will be blogging on the beginners stuff. I will be blogging for them, who really want to start and make a mark in this area. I will be blogging for all those who have an extreme passion for learning. I am happy that this is a good start for this year. One of my resolutions is to help every beginner. It is totally possible that in future they all will grow and find the same article quite ‘easy‘ – well when that happens, it indicates the success of the article and material! Well, I encourage everybody to read my SQL Server Magazine blog – I will be blogging there frequently on various topics. To begin, we will be talking about performance tuning, and I assure that I will not shy away from other multiple areas. Read my SQL Server Magazine Blog: Beginning SQL Server: One Step at a Time I think the title says it all. Do leave your comments and feedback to indicate your preference of subject and interest. I am going to continue writing on subject, and the aim is of course to help grow in this field. Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQLAuthority News, T SQL, Technology

    Read the article

  • SQL SERVER – Fundamentals of Columnstore Index

    - by pinaldave
    There are two kind of storage in database. Row Store and Column Store. Row store does exactly as the name suggests – stores rows of data on a page – and column store stores all the data in a column on the same page. These columns are much easier to search – instead of a query searching all the data in an entire row whether the data is relevant or not, column store queries need only to search much lesser number of the columns. This means major increases in search speed and hard drive use. Additionally, the column store indexes are heavily compressed, which translates to even greater memory and faster searches. I am sure this looks very exciting and it does not mean that you convert every single index from row store to column store index. One has to understand the proper places where to use row store or column store indexes. Let us understand in this article what is the difference in Columnstore type of index. Column store indexes are run by Microsoft’s VertiPaq technology. However, all you really need to know is that this method of storing data is columns on a single page is much faster and more efficient. Creating a column store index is very easy, and you don’t have to learn new syntax to create them. You just need to specify the keyword “COLUMNSTORE” and enter the data as you normally would. Keep in mind that once you add a column store to a table, though, you cannot delete, insert or update the data – it is READ ONLY. However, since column store will be mainly used for data warehousing, this should not be a big problem. You can always use partitioning to avoid rebuilding the index. A columnstore index stores each column in a separate set of disk pages, rather than storing multiple rows per page as data traditionally has been stored. The difference between column store and row store approaches is illustrated below: In case of the row store indexes multiple pages will contain multiple rows of the columns spanning across multiple pages. In case of column store indexes multiple pages will contain multiple single columns. This will lead only the columns needed to solve a query will be fetched from disk. Additionally there is good chance that there will be redundant data in a single column which will further help to compress the data, this will have positive effect on buffer hit rate as most of the data will be in memory and due to same it will not need to be retrieved. Let us see small example of how columnstore index improves the performance of the query on a large table. As a first step let us create databaseset which is large enough to show performance impact of columnstore index. The time taken to create sample database may vary on different computer based on the resources. USE AdventureWorks GO -- Create New Table CREATE TABLE [dbo].[MySalesOrderDetail]( [SalesOrderID] [int] NOT NULL, [SalesOrderDetailID] [int] NOT NULL, [CarrierTrackingNumber] [nvarchar](25) NULL, [OrderQty] [smallint] NOT NULL, [ProductID] [int] NOT NULL, [SpecialOfferID] [int] NOT NULL, [UnitPrice] [money] NOT NULL, [UnitPriceDiscount] [money] NOT NULL, [LineTotal] [numeric](38, 6) NOT NULL, [rowguid] [uniqueidentifier] NOT NULL, [ModifiedDate] [datetime] NOT NULL ) ON [PRIMARY] GO -- Create clustered index CREATE CLUSTERED INDEX [CL_MySalesOrderDetail] ON [dbo].[MySalesOrderDetail] ( [SalesOrderDetailID]) GO -- Create Sample Data Table -- WARNING: This Query may run upto 2-10 minutes based on your systems resources INSERT INTO [dbo].[MySalesOrderDetail] SELECT S1.* FROM Sales.SalesOrderDetail S1 GO 100 Now let us do quick performance test. I have kept STATISTICS IO ON for measuring how much IO following queries take. In my test first I will run query which will use regular index. We will note the IO usage of the query. After that we will create columnstore index and will measure the IO of the same. -- Performance Test -- Comparing Regular Index with ColumnStore Index USE AdventureWorks GO SET STATISTICS IO ON GO -- Select Table with regular Index SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice, SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty FROM [dbo].[MySalesOrderDetail] GROUP BY ProductID ORDER BY ProductID GO -- Table 'MySalesOrderDetail'. Scan count 1, logical reads 342261, physical reads 0, read-ahead reads 0. -- Create ColumnStore Index CREATE NONCLUSTERED COLUMNSTORE INDEX [IX_MySalesOrderDetail_ColumnStore] ON [MySalesOrderDetail] (UnitPrice, OrderQty, ProductID) GO -- Select Table with Columnstore Index SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice, SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty FROM [dbo].[MySalesOrderDetail] GROUP BY ProductID ORDER BY ProductID GO It is very clear from the results that query is performance extremely fast after creating ColumnStore Index. The amount of the pages it has to read to run query is drastically reduced as the column which are needed in the query are stored in the same page and query does not have to go through every single page to read those columns. If we enable execution plan and compare we can see that column store index performance way better than regular index in this case. Let us clean up the database. -- Cleanup DROP INDEX [IX_MySalesOrderDetail_ColumnStore] ON [dbo].[MySalesOrderDetail] GO TRUNCATE TABLE dbo.MySalesOrderDetail GO DROP TABLE dbo.MySalesOrderDetail GO In future posts we will see cases where Columnstore index is not appropriate solution as well few other tricks and tips of the columnstore index. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Index, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Optimizing collision engine bottleneck

    - by Vittorio Romeo
    Foreword: I'm aware that optimizing this bottleneck is not a necessity - the engine is already very fast. I, however, for fun and educational purposes, would love to find a way to make the engine even faster. I'm creating a general-purpose C++ 2D collision detection/response engine, with an emphasis on flexibility and speed. Here's a very basic diagram of its architecture: Basically, the main class is World, which owns (manages memory) of a ResolverBase*, a SpatialBase* and a vector<Body*>. SpatialBase is a pure virtual class which deals with broad-phase collision detection. ResolverBase is a pure virtual class which deals with collision resolution. The bodies communicate to the World::SpatialBase* with SpatialInfo objects, owned by the bodies themselves. There currenly is one spatial class: Grid : SpatialBase, which is a basic fixed 2D grid. It has it's own info class, GridInfo : SpatialInfo. Here's how its architecture looks: The Grid class owns a 2D array of Cell*. The Cell class contains two collection of (not owned) Body*: a vector<Body*> which contains all the bodies that are in the cell, and a map<int, vector<Body*>> which contains all the bodies that are in the cell, divided in groups. Bodies, in fact, have a groupId int that is used for collision groups. GridInfo objects also contain non-owning pointers to the cells the body is in. As I previously said, the engine is based on groups. Body::getGroups() returns a vector<int> of all the groups the body is part of. Body::getGroupsToCheck() returns a vector<int> of all the groups the body has to check collision against. Bodies can occupy more than a single cell. GridInfo always stores non-owning pointers to the occupied cells. After the bodies move, collision detection happens. We assume that all bodies are axis-aligned bounding boxes. How broad-phase collision detection works: Part 1: spatial info update For each Body body: Top-leftmost occupied cell and bottom-rightmost occupied cells are calculated. If they differ from the previous cells, body.gridInfo.cells is cleared, and filled with all the cells the body occupies (2D for loop from the top-leftmost cell to the bottom-rightmost cell). body is now guaranteed to know what cells it occupies. For a performance boost, it stores a pointer to every map<int, vector<Body*>> of every cell it occupies where the int is a group of body->getGroupsToCheck(). These pointers get stored in gridInfo->queries, which is simply a vector<map<int, vector<Body*>>*>. body is now guaranteed to have a pointer to every vector<Body*> of bodies of groups it needs to check collision against. These pointers are stored in gridInfo->queries. Part 2: actual collision checks For each Body body: body clears and fills a vector<Body*> bodiesToCheck, which contains all the bodies it needs to check against. Duplicates are avoided (bodies can belong to more than one group) by checking if bodiesToCheck already contains the body we're trying to add. const vector<Body*>& GridInfo::getBodiesToCheck() { bodiesToCheck.clear(); for(const auto& q : queries) for(const auto& b : *q) if(!contains(bodiesToCheck, b)) bodiesToCheck.push_back(b); return bodiesToCheck; } The GridInfo::getBodiesToCheck() method IS THE BOTTLENECK. The bodiesToCheck vector must be filled for every body update because bodies could have moved meanwhile. It also needs to prevent duplicate collision checks. The contains function simply checks if the vector already contains a body with std::find. Collision is checked and resolved for every body in bodiesToCheck. That's it. So, I've been trying to optimize this broad-phase collision detection for quite a while now. Every time I try something else than the current architecture/setup, something doesn't go as planned or I make assumption about the simulation that later are proven to be false. My question is: how can I optimize the broad-phase of my collision engine maintaining the grouped bodies approach? Is there some kind of magic C++ optimization that can be applied here? Can the architecture be redesigned in order to allow for more performance? Actual implementation: SSVSCollsion Body.h, Body.cpp World.h, World.cpp Grid.h, Grid.cpp Cell.h, Cell.cpp GridInfo.h, GridInfo.cpp

    Read the article

  • Infinite detail inside Perlin noise procedural mapping

    - by Dave Jellison
    I am very new to game development but I was able to scour the internet to figure out Perlin noise enough to implement a very simple 2D tile infinite procedural world. Here's the question and it's more conceptual than code-based in answer, I think. I understand the concept of "I plug in (x, y) and get back from Perlin noise p" (I'll call it p). P will always be the same value for the same (x, y) (as long as the Perlin algorithm parameters haven't changed, like altering number of octaves, et cetera). What I want to do is be able to zoom into a square and be able to generate smaller squares inside of the already generated overhead tile of terrain. Let's say I have a jungle tile for overhead terrain but I want to zoom in and maybe see a small river tile that would only be a creek and not large enough to be a full "big tile" of water in the overhead. Of course, I want the same net effect as a Perlin equation inside a Perlin equation if that makes sense? (aka. I want two people playing the game with the same settings to get the same terrain and details every time). I can conceptually wrap my head around the large tile being based on an "zoomed out" coordinate leaving enough room to drill into but this approach doesn't make sense in my head (maybe I'm wrong). I'm guessing with this approach my overhead terrain would lose all of the cohesiveness delivered by the Perlin. Imagine I calculate (0, 0) as overhead tile 1 and then to the east of that I plug in (50, 0). OK, great, I now have 49 pixels of detail I could then "drill down" into. The issue I have in my head with this approach (without attempting it) is that there's no guarantee from my Perlin noise that (0,0) would be a good neighbor to (50,0) as they could have wildly different "elevations" or p/resultant values returning from the Perlin equation when I generate the overhead map. I think I can conceive of using the Perlin noise for the overhead tile to then reuse the p value as a seed for the "detail" level of noise once I zoom in. That would ensure my detail Perlin is always the same configuration for (0,0), (1,0), etc. ad nauseam but I'm not sure if there are better approaches out there or if this is a sound approach at all.

    Read the article

  • Cisco ASA - Enable communication between same security level

    - by Conor
    I have recently inherited a network with a Cisco ASA (running version 8.2). I am trying to configure it to allow communication between two interfaces configured with the same security level (DMZ-DMZ) "same-security-traffic permit inter-interface" has been set, but hosts are unable to communicate between the interfaces. I am assuming that some NAT settings are causing my issue. Below is my running config: ASA Version 8.2(3) ! hostname asa enable password XXXXXXXX encrypted passwd XXXXXXXX encrypted names ! interface Ethernet0/0 switchport access vlan 400 ! interface Ethernet0/1 switchport access vlan 400 ! interface Ethernet0/2 switchport access vlan 420 ! interface Ethernet0/3 switchport access vlan 420 ! interface Ethernet0/4 switchport access vlan 450 ! interface Ethernet0/5 switchport access vlan 450 ! interface Ethernet0/6 switchport access vlan 500 ! interface Ethernet0/7 switchport access vlan 500 ! interface Vlan400 nameif outside security-level 0 ip address XX.XX.XX.10 255.255.255.248 ! interface Vlan420 nameif public security-level 20 ip address 192.168.20.1 255.255.255.0 ! interface Vlan450 nameif dmz security-level 50 ip address 192.168.10.1 255.255.255.0 ! interface Vlan500 nameif inside security-level 100 ip address 192.168.0.1 255.255.255.0 ! ftp mode passive clock timezone JST 9 same-security-traffic permit inter-interface same-security-traffic permit intra-interface object-group network DM_INLINE_NETWORK_1 network-object host XX.XX.XX.11 network-object host XX.XX.XX.13 object-group service ssh_2220 tcp port-object eq 2220 object-group service ssh_2251 tcp port-object eq 2251 object-group service ssh_2229 tcp port-object eq 2229 object-group service ssh_2210 tcp port-object eq 2210 object-group service DM_INLINE_TCP_1 tcp group-object ssh_2210 group-object ssh_2220 object-group service zabbix tcp port-object range 10050 10051 object-group service DM_INLINE_TCP_2 tcp port-object eq www group-object zabbix object-group protocol TCPUDP protocol-object udp protocol-object tcp object-group service http_8029 tcp port-object eq 8029 object-group network DM_INLINE_NETWORK_2 network-object host 192.168.20.10 network-object host 192.168.20.30 network-object host 192.168.20.60 object-group service imaps_993 tcp description Secure IMAP port-object eq 993 object-group service public_wifi_group description Service allowed on the Public Wifi Group. Allows Web and Email. service-object tcp-udp eq domain service-object tcp-udp eq www service-object tcp eq https service-object tcp-udp eq 993 service-object tcp eq imap4 service-object tcp eq 587 service-object tcp eq pop3 service-object tcp eq smtp access-list outside_access_in remark http traffic from outside access-list outside_access_in extended permit tcp any object-group DM_INLINE_NETWORK_1 eq www access-list outside_access_in remark ssh from outside to web1 access-list outside_access_in extended permit tcp any host XX.XX.XX.11 object-group ssh_2251 access-list outside_access_in remark ssh from outside to penguin access-list outside_access_in extended permit tcp any host XX.XX.XX.10 object-group ssh_2229 access-list outside_access_in remark http from outside to penguin access-list outside_access_in extended permit tcp any host XX.XX.XX.10 object-group http_8029 access-list outside_access_in remark ssh from outside to internal hosts access-list outside_access_in extended permit tcp any host XX.XX.XX.13 object-group DM_INLINE_TCP_1 access-list outside_access_in remark dns service to internal host access-list outside_access_in extended permit object-group TCPUDP any host XX.XX.XX.13 eq domain access-list dmz_access_in extended permit ip 192.168.10.0 255.255.255.0 any access-list dmz_access_in extended permit tcp any host 192.168.10.29 object-group DM_INLINE_TCP_2 access-list public_access_in remark Web access to DMZ websites access-list public_access_in extended permit object-group TCPUDP any object-group DM_INLINE_NETWORK_2 eq www access-list public_access_in remark General web access. (HTTP, DNS & ICMP and Email) access-list public_access_in extended permit object-group public_wifi_group any any pager lines 24 logging enable logging asdm informational mtu outside 1500 mtu public 1500 mtu dmz 1500 mtu inside 1500 no failover icmp unreachable rate-limit 1 burst-size 1 no asdm history enable arp timeout 60 global (outside) 1 interface global (dmz) 2 interface nat (public) 1 0.0.0.0 0.0.0.0 nat (dmz) 1 0.0.0.0 0.0.0.0 nat (inside) 1 0.0.0.0 0.0.0.0 static (inside,outside) tcp interface 2229 192.168.0.29 2229 netmask 255.255.255.255 static (inside,outside) tcp interface 8029 192.168.0.29 www netmask 255.255.255.255 static (dmz,outside) XX.XX.XX.13 192.168.10.10 netmask 255.255.255.255 dns static (dmz,outside) XX.XX.XX.11 192.168.10.30 netmask 255.255.255.255 dns static (dmz,inside) 192.168.0.29 192.168.10.29 netmask 255.255.255.255 static (dmz,public) 192.168.20.30 192.168.10.30 netmask 255.255.255.255 dns static (dmz,public) 192.168.20.10 192.168.10.10 netmask 255.255.255.255 dns static (inside,dmz) 192.168.10.0 192.168.0.0 netmask 255.255.255.0 dns access-group outside_access_in in interface outside access-group public_access_in in interface public access-group dmz_access_in in interface dmz route outside 0.0.0.0 0.0.0.0 XX.XX.XX.9 1 timeout xlate 3:00:00 timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 icmp 0:00:02 timeout sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00 mgcp-pat 0:05:00 timeout sip 0:30:00 sip_media 0:02:00 sip-invite 0:03:00 sip-disconnect 0:02:00 timeout sip-provisional-media 0:02:00 uauth 0:05:00 absolute timeout tcp-proxy-reassembly 0:01:00 dynamic-access-policy-record DfltAccessPolicy http server enable http 192.168.0.0 255.255.255.0 inside no snmp-server location no snmp-server contact snmp-server enable traps snmp authentication linkup linkdown coldstart crypto ipsec security-association lifetime seconds 28800 crypto ipsec security-association lifetime kilobytes 4608000 telnet timeout 5 ssh 192.168.0.0 255.255.255.0 inside ssh timeout 20 console timeout 0 dhcpd dns 61.122.112.97 61.122.112.1 dhcpd auto_config outside ! dhcpd address 192.168.20.200-192.168.20.254 public dhcpd enable public ! dhcpd address 192.168.0.200-192.168.0.254 inside dhcpd enable inside ! threat-detection basic-threat threat-detection statistics host threat-detection statistics access-list no threat-detection statistics tcp-intercept ntp server 130.54.208.201 source public webvpn ! class-map inspection_default match default-inspection-traffic ! ! policy-map type inspect dns preset_dns_map parameters message-length maximum client auto message-length maximum 512 policy-map global_policy class inspection_default inspect dns preset_dns_map inspect ftp inspect h323 h225 inspect h323 ras inspect ip-options inspect netbios inspect rsh inspect rtsp inspect skinny inspect esmtp inspect sqlnet inspect sunrpc inspect tftp inspect sip inspect xdmcp !

    Read the article

  • MySQL – Scalability on Amazon RDS: Scale out to multiple RDS instances

    - by Pinal Dave
    Today, I’d like to discuss getting better MySQL scalability on Amazon RDS. The question of the day: “What can you do when a MySQL database needs to scale write-intensive workloads beyond the capabilities of the largest available machine on Amazon RDS?” Let’s take a look. In a typical EC2/RDS set-up, users connect to app servers from their mobile devices and tablets, computers, browsers, etc.  Then app servers connect to an RDS instance (web/cloud services) and in some cases they might leverage some read-only replicas.   Figure 1. A typical RDS instance is a single-instance database, with read replicas.  This is not very good at handling high write-based throughput. As your application becomes more popular you can expect an increasing number of users, more transactions, and more accumulated data.  User interactions can become more challenging as the application adds more sophisticated capabilities. The result of all this positive activity: your MySQL database will inevitably begin to experience scalability pressures. What can you do? Broadly speaking, there are four options available to improve MySQL scalability on RDS. 1. Larger RDS Instances – If you’re not already using the maximum available RDS instance, you can always scale up – to larger hardware.  Bigger CPUs, more compute power, more memory et cetera. But the largest available RDS instance is still limited.  And they get expensive. “High-Memory Quadruple Extra Large DB Instance”: 68 GB of memory 26 ECUs (8 virtual cores with 3.25 ECUs each) 64-bit platform High I/O Capacity Provisioned IOPS Optimized: 1000Mbps 2. Provisioned IOPs – You can get provisioned IOPs and higher throughput on the I/O level. However, there is a hard limit with a maximum instance size and maximum number of provisioned IOPs you can buy from Amazon and you simply cannot scale beyond these hardware specifications. 3. Leverage Read Replicas – If your application permits, you can leverage read replicas to offload some reads from the master databases. But there are a limited number of replicas you can utilize and Amazon generally requires some modifications to your existing application. And read-replicas don’t help with write-intensive applications. 4. Multiple Database Instances – Amazon offers a fourth option: “You can implement partitioning,thereby spreading your data across multiple database Instances” (Link) However, Amazon does not offer any guidance or facilities to help you with this. “Multiple database instances” is not an RDS feature.  And Amazon doesn’t explain how to implement this idea. In fact, when asked, this is the response on an Amazon forum: Q: Is there any documents that describe the partition DB across multiple RDS? I need to use DB with more 1TB but exist a limitation during the create process, but I read in the any FAQ that you need to partition database, but I don’t find any documents that describe it. A: “DB partitioning/sharding is not an official feature of Amazon RDS or MySQL, but a technique to scale out database by using multiple database instances. The appropriate way to split data depends on the characteristics of the application or data set. Therefore, there is no concrete and specific guidance.” So now what? The answer is to scale out with ScaleBase. Amazon RDS with ScaleBase: What you get – MySQL Scalability! ScaleBase is specifically designed to scale out a single MySQL RDS instance into multiple MySQL instances. Critically, this is accomplished with no changes to your application code.  Your application continues to “see” one database.   ScaleBase does all the work of managing and enforcing an optimized data distribution policy to create multiple MySQL instances. With ScaleBase, data distribution, transactions, concurrency control, and two-phase commit are all 100% transparent and 100% ACID-compliant, so applications, services and tooling continue to interact with your distributed RDS as if it were a single MySQL instance. The result: now you can cost-effectively leverage multiple MySQL RDS instance to scale out write-intensive workloads to an unlimited number of users, transactions, and data. Amazon RDS with ScaleBase: What you keep – Everything! And how does this change your Amazon environment? 1. Keep your application, unchanged – There is no change your application development life-cycle at all.  You still use your existing development tools, frameworks and libraries.  Application quality assurance and testing cycles stay the same. And, critically, you stay with an ACID-compliant MySQL environment. 2. Keep your RDS value-added services – The value-added services that you rely on are all still available. Amazon will continue to handle database maintenance and updates for you. You can still leverage High Availability via Multi A-Z.  And, if it benefits youra application throughput, you can still use read replicas. 3. Keep your RDS administration – Finally the RDS monitoring and provisioning tools you rely on still work as they did before. With your one large MySQL instance, now split into multiple instances, you can actually use less expensive, smallersmaller available RDS hardware and continue to see better database performance. Conclusion Amazon RDS is a tremendous service, but it doesn’t offer solutions to scale beyond a single MySQL instance. Larger RDS instances get more expensive.  And when you max-out on the available hardware, you’re stuck.  Amazon recommends scaling out your single instance into multiple instances for transaction-intensive apps, but offers no services or guidance to help you. This is where ScaleBase comes in to save the day. It gives you a simple and effective way to create multiple MySQL RDS instances, while removing all the complexities typically caused by “DIY” sharding andwith no changes to your applications . With ScaleBase you continue to leverage the AWS/RDS ecosystem: commodity hardware and value added services like read replicas, multi A-Z, maintenance/updates and administration with monitoring tools and provisioning. SCALEBASE ON AMAZON If you’re curious to try ScaleBase on Amazon, it can be found here – Download NOW. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: MySQL, PostADay, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

< Previous Page | 44 45 46 47 48 49 50 51 52 53 54 55  | Next Page >