Search Results

Search found 24498 results on 980 pages for 'lock pages in memory'.

Page 485/980 | < Previous Page | 481 482 483 484 485 486 487 488 489 490 491 492  | Next Page >

  • unsigned char* buffer (FreeType2 Bitmap) to System::Drawing::Bitmap.

    - by Dennis Roche
    Hi, I'm trying to convert a FreeType2 bitmap to a System::Drawing::Bitmap in C++/CLI. FT_Bitmap has a unsigned char* buffer that contains the data to write. I have got somewhat working save it disk as a *.tga, but when saving as *.bmp it renders incorrectly. I believe that the size of byte[] is incorrect and that my data is truncated. Any hints/tips/ideas on what is going on here would be greatly appreciated. Links to articles explaining byte layout and pixel formats etc. would be helpful. Thanks!! C++/CLI code. FT_Bitmap *bitmap = &face->glyph->bitmap; int width = (face->bitmap->metrics.width / 64); int height = (face->bitmap->metrics.height / 64); // must be aligned on a 32 bit boundary or 4 bytes int depth = 8; int stride = ((width * depth + 31) & ~31) >> 3; int bytes = (int)(stride * height); // as *.tga void *buffer = bytes ? malloc(bytes) : NULL; if (buffer) { memset(buffer, 0, bytes); for (int i = 0; i < glyph->rows; ++i) memcpy((char *)buffer + (i * width), glyph->buffer + (i * glyph->pitch), glyph->pitch); WriteTGA("Test.tga", buffer, width, height); } // as *.bmp array<Byte>^ values = gcnew array<Byte>(bytes); Marshal::Copy((IntPtr)glyph->buffer, values, 0, bytes); Bitmap^ systemBitmap = gcnew Bitmap(width, height, PixelFormat::Format24bppRgb); // create bitmap data, lock pixels to be written. BitmapData^ bitmapData = systemBitmap->LockBits(Rectangle(0, 0, width, height), ImageLockMode::WriteOnly, bitmap->PixelFormat); Marshal::Copy(values, 0, bitmapData->Scan0, bytes); systemBitmap->UnlockBits(bitmapData); systemBitmap->Save("Test.bmp"); Reference, FT_Bitmap typedef struct FT_Bitmap_ { int rows; int width; int pitch; unsigned char* buffer; short num_grays; char pixel_mode; char palette_mode; void* palette; } FT_Bitmap; Reference, WriteTGA bool WriteTGA(const char *filename, void *pxl, uint16 width, uint16 height) { FILE *fp = NULL; fopen_s(&fp, filename, "wb"); if (fp) { TGAHeader header; memset(&header, 0, sizeof(TGAHeader)); header.imageType = 3; header.width = width; header.height = height; header.depth = 8; header.descriptor = 0x20; fwrite(&header, sizeof(header), 1, fp); fwrite(pxl, sizeof(uint8) * width * height, 1, fp); fclose(fp); return true; } return false; } Update FT_Bitmap *bitmap = &face->glyph->bitmap; // stride must be aligned on a 32 bit boundary or 4 bytes int depth = 8; int stride = ((width * depth + 31) & ~31) >> 3; int bytes = (int)(stride * height); target = gcnew Bitmap(width, height, PixelFormat::Format8bppIndexed); // create bitmap data, lock pixels to be written. BitmapData^ bitmapData = target->LockBits(Rectangle(0, 0, width, height), ImageLockMode::WriteOnly, target->PixelFormat); array<Byte>^ values = gcnew array<Byte>(bytes); Marshal::Copy((IntPtr)bitmap->buffer, values, 0, bytes); Marshal::Copy(values, 0, bitmapData->Scan0, bytes); target->UnlockBits(bitmapData);

    Read the article

  • Pagination links broken - php/jquery

    - by ClarkSKent
    Hey, I'm still trying to get my pagination links to load properly dynamically. But I can't seem to find a solution to this one problem. vote down star Hi everyone, I am still trying to figure out how to fix my pagination script to work properly. the problem I am having is when I click any of the pagination number links to go the next page, the new content does not load. literally nothing happens and when looking at the console in Firebug, nothing is sent or loaded. I have on the main page 3 links to filter the content and display it. When any of these links are clicked the results are loaded and displayed along with the associated pagination numbers for that specific content. I believe the problem is coming from the sql query in generate_pagination.php (seen below). When I hard code the sql category part it works, but is not dynamic at all. This is why I'm calling $ids=$_GET['ids']; and trying to put that into the category section but then the numbers don't display at all. If I echo out the $ids variable and click on a filter it does display the correct name/id, so I don't know why this doesn't work Here is the main page so you can see how I am including and starting the function(I'm new to php): <?php include_once('generate_pagination.php'); ?> <script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.1/jquery.min.js"></script> <script type="text/javascript" src="jquery_pagination.js"></script> <div id="loading" ></div> <div id="content" data-page="1"></div> <ul id="pagination"> <?php //Pagination Numbers for($i=1; $i<=$pages; $i++) { echo '<li class="page_numbers" id="page'.$i.'">'.$i.'</li>'; } ?> </ul> <br /> <br /> <a href="#" class="category" id="marketing">Marketing</a> <a href="#" class="category" id="automotive">Automotive</a> <a href="#" class="category" id="sports">Sports</a> Here is the generate pagination where the problem seems to occur: <?php $ids=$_GET['ids']; include_once('config.php'); $per_page = 3; //Calculating no of pages $sql = "SELECT COUNT(*) FROM explore WHERE category='$ids'"; $result = mysql_query($sql); $count = mysql_fetch_row($result); $pages = ceil($count[0]/$per_page); ?> I thought I might as well post the jquery script if someone wants to see: $(document).ready(function(){ //Display Loading Image function Display_Load() { $("#loading").fadeIn(900,0); $("#loading").html("<img src='bigLoader.gif' />"); } //Hide Loading Image function Hide_Load() { $("#loading").fadeOut('slow'); }; //Default Starting Page Results $("#pagination li:first").css({'color' : '#FF0084'}).css({'border' : 'none'}); Display_Load(); $("#content").load("pagination_data.php?page=1", Hide_Load()); // Editing below. // Sort content Marketing $("a.category").click(function() { Display_Load(); var this_id = $(this).attr('id'); $.get("pagination.php", { category: this.id }, function(data){ //Load your results into the page var pageNum = $('#content').attr('data-page'); $("#pagination").load('generate_pagination.php?category=' + pageNum +'&ids='+ this_id ); $("#content").load("filter_marketing.php?page=" + pageNum +'&id='+ this_id, Hide_Load()); }); }); //Pagination Click $("#pagination li").click(function(){ Display_Load(); //CSS Styles $("#pagination li") .css({'border' : 'solid #dddddd 1px'}) .css({'color' : '#0063DC'}); $(this) .css({'color' : '#FF0084'}) .css({'border' : 'none'}); //Loading Data var pageNum = $(this).attr("id").replace("page",""); $("#content").load("pagination_data.php?page=" + pageNum, function(){ $(this).attr('data-page', pageNum); Hide_Load(); }); }); }); If any could assist me on solving this problem that would be great, thanks.

    Read the article

  • [ebp + 6] instead of +8 in a JIT compiler

    - by David Titarenco
    I'm implementing a simplistic JIT compiler in a VM I'm writing for fun (mostly to learn more about language design) and I'm getting some weird behavior, maybe someone can tell me why. First I define a JIT "prototype" both for C and C++: #ifdef __cplusplus typedef void* (*_JIT_METHOD) (...); #else typedef (*_JIT_METHOD) (); #endif I have a compile() function that will compile stuff into ASM and stick it somewhere in memory: void* compile (void* something) { // grab some memory unsigned char* buffer = (unsigned char*) malloc (1024); // xor eax, eax // inc eax // inc eax // inc eax // ret -> eax should be 3 /* WORKS! buffer[0] = 0x67; buffer[1] = 0x31; buffer[2] = 0xC0; buffer[3] = 0x67; buffer[4] = 0x40; buffer[5] = 0x67; buffer[6] = 0x40; buffer[7] = 0x67; buffer[8] = 0x40; buffer[9] = 0xC3; */ // xor eax, eax // mov eax, 9 // ret 4 -> eax should be 9 /* WORKS! buffer[0] = 0x67; buffer[1] = 0x31; buffer[2] = 0xC0; buffer[3] = 0x67; buffer[4] = 0xB8; buffer[5] = 0x09; buffer[6] = 0x00; buffer[7] = 0x00; buffer[8] = 0x00; buffer[9] = 0xC3; */ // push ebp // mov ebp, esp // mov eax, [ebp + 6] ; wtf? shouldn't this be [ebp + 8]!? // mov esp, ebp // pop ebp // ret -> eax should be the first value sent to the function /* WORKS! */ buffer[0] = 0x66; buffer[1] = 0x55; buffer[2] = 0x66; buffer[3] = 0x89; buffer[4] = 0xE5; buffer[5] = 0x66; buffer[6] = 0x66; buffer[7] = 0x8B; buffer[8] = 0x45; buffer[9] = 0x06; buffer[10] = 0x66; buffer[11] = 0x89; buffer[12] = 0xEC; buffer[13] = 0x66; buffer[14] = 0x5D; buffer[15] = 0xC3; // mov eax, 5 // add eax, ecx // ret -> eax should be 50 /* WORKS! buffer[0] = 0x67; buffer[1] = 0xB8; buffer[2] = 0x05; buffer[3] = 0x00; buffer[4] = 0x00; buffer[5] = 0x00; buffer[6] = 0x66; buffer[7] = 0x01; buffer[8] = 0xC8; buffer[9] = 0xC3; */ return buffer; } And finally I have the main chunk of the program: void main (int argc, char **args) { DWORD oldProtect = (DWORD) NULL; int i = 667, j = 1, k = 5, l = 0; // generate some arbitrary function _JIT_METHOD someFunc = (_JIT_METHOD) compile(NULL); // windows only #if defined _WIN64 || defined _WIN32 // set memory permissions and flush CPU code cache VirtualProtect(someFunc,1024,PAGE_EXECUTE_READWRITE, &oldProtect); FlushInstructionCache(GetCurrentProcess(), someFunc, 1024); #endif // this asm just for some debugging/testing purposes __asm mov ecx, i // run compiled function (from wherever *someFunc is pointing to) l = (int)someFunc(i, k); // did it work? printf("result: %d", l); free (someFunc); _getch(); } As you can see, the compile() function has a couple of tests I ran to make sure I get expected results, and pretty much everything works but I have a question... On most tutorials or documentation resources, to get the first value of a function passed (in the case of ints) you do [ebp+8], the second [ebp+12] and so forth. For some reason, I have to do [ebp+6] then [ebp+10] and so forth. Could anyone tell me why?

    Read the article

  • Twitter Bootstrap modal spans, side-by-side divs and "control-group"?

    - by Federico Stango
    I'm trying my best to have a good looking modal login form but for some reasons it seems that no matter how I nest divs, I cannot obtain the proper shape. What I need is a big "lock" image side-by-side with a username/password form. The best I could do adds a horizontal scroller by the modal bottom and shows the input gadgets fairly distant from the image partly hidden on the right side of the modal canvas. Inspecting with FireBug it seems that the spans in row-fluid are ok but the "control-label" and "controls" class adds way too much space on the left by width (for the labels) and margin-left (for the controls). How would you solve it? Am I doing something wrong with divs and classes nesting? This is the current modal without the main wrapper as it gets added by some js code that loads modal contents through ajax: <form class="form-horizontal" id="login" name="login" method="post" action="<?php echo site_url('user/login'); ?>"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-hidden="true">&times;</button> <h3>Login</h3> </div> <div class="modal-body"> <?php if ( isset($error) ) { ?> <div class="row"> <div class="alert alert-error"> <strong>Warning!</strong> <?php echo $error; ?> </div> </div> <?php } ?> <div class="row-fluid"> <div class="span4"> <img src="skins/frontend/base/images/lock.png" width="96px" height="96px" /> </div> <div class="span8"> <div class="control-group"> <label class="control-label" for="email">Email</label> <div class="controls"><input type="text" placeholder="Type your email" id="email" name="email" /></div> <?php echo form_error('email', '<div id="error_email" class="alert alert-error">* ', '</div>'); ?> </div> <div class="control-group"> <label class="control-label" for="password">Password</label> <div class="controls"><input type="password" placeholder="Password" id="password" name="password" /></div> <?php echo form_error('password', '<div id="error_password" class="alert alert-error">* ', '</div>'); ?> </div> <div class="control-group"> <div class="controls"><label class="checkbox inline"><input type="checkbox" id="remember" name="remember" checked="checked" />&nbsp;Remember Me</label></div> </div> </div> </div> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary">Login</button> </div> </form> Just don't take into account the php code you see... :) Thanks in advance for all the support you can give! Federico

    Read the article

  • ASP.NET- using System.IO.File.Delete() to delete file(s) from directory inside wwwroot?

    - by Jim S
    Hello, I have a ASP.NET SOAP web service whose web method creates a PDF file, writes it to the "Download" directory of the applicaton, and returns the URL to the user. Code: //Create the map images (MapPrinter) and insert them on the PDF (PagePrinter). MemoryStream mstream = null; FileStream fs = null; try { //Create the memorystream storing the pdf created. mstream = pgPrinter.GenerateMapImage(); //Convert the memorystream to an array of bytes. byte[] byteArray = mstream.ToArray(); //return byteArray; //Save PDF file to site's Download folder with a unique name. System.Text.StringBuilder sb = new System.Text.StringBuilder(Global.PhysicalDownloadPath); sb.Append("\\"); string fileName = Guid.NewGuid().ToString() + ".pdf"; sb.Append(fileName); string filePath = sb.ToString(); fs = new FileStream(filePath, FileMode.CreateNew); fs.Write(byteArray, 0, byteArray.Length); string requestURI = this.Context.Request.Url.AbsoluteUri; string virtPath = requestURI.Remove(requestURI.IndexOf("Service.asmx")) + "Download/" + fileName; return virtPath; } catch (Exception ex) { throw new Exception("An error has occurred creating the map pdf.", ex); } finally { if (mstream != null) mstream.Close(); if (fs != null) fs.Close(); //Clean up resources if (pgPrinter != null) pgPrinter.Dispose(); } Then in the Global.asax file of the web service, I set up a Timer in the Application_Start event listener. In the Timer's ElapsedEvent listener I look for any files in the Download directory that are older than the Timer interval (for testing = 1 min., for deployment ~20 min.) and delete them. Code: //Interval to check for old files (milliseconds), also set to delete files older than now minus this interval. private static double deleteTimeInterval; private static System.Timers.Timer timer; //Physical path to Download folder. Everything in this folder will be checked for deletion. public static string PhysicalDownloadPath; void Application_Start(object sender, EventArgs e) { // Code that runs on application startup deleteTimeInterval = Convert.ToDouble(System.Configuration.ConfigurationManager.AppSettings["FileDeleteInterval"]); //Create timer with interval (milliseconds) whose elapse event will trigger the delete of old files //in the Download directory. timer = new System.Timers.Timer(deleteTimeInterval); timer.Enabled = true; timer.AutoReset = true; timer.Elapsed += new System.Timers.ElapsedEventHandler(OnTimedEvent); PhysicalDownloadPath = System.Web.Hosting.HostingEnvironment.ApplicationPhysicalPath + "Download"; } private static void OnTimedEvent(object source, System.Timers.ElapsedEventArgs e) { //Delete the files older than the time interval in the Download folder. var folder = new System.IO.DirectoryInfo(PhysicalDownloadPath); System.IO.FileInfo[] files = folder.GetFiles(); foreach (var file in files) { if (file.CreationTime < DateTime.Now.AddMilliseconds(-deleteTimeInterval)) { string path = PhysicalDownloadPath + "\\" + file.Name; System.IO.File.Delete(path); } } } This works perfectly, with one exception. When I publish the web service application to inetpub\wwwroot (Windows 7, IIS7) it does not delete the old files in the Download directory. The app works perfect when I publish to IIS from a physical directory not in wwwroot. Obviously, it seems IIS places some sort of lock on files in the web root. I have tested impersonating an admin user to run the app and it still does not work. Any tips on how to circumvent the lock programmatically when in wwwroot? The client will probably want the app published to the root directory. Thank you very much.

    Read the article

  • How can I get SQL Server transactions to use record-level locks?

    - by Joe White
    We have an application that was originally written as a desktop app, lo these many years ago. It starts a transaction whenever you open an edit screen, and commits if you click OK, or rolls back if you click Cancel. This worked okay for a desktop app, but now we're trying to move to ADO.NET and SQL Server, and the long-running transactions are problematic. I found that we'll have a problem when multiple users are all trying to edit (different subsets of) the same table at the same time. In our old database, each user's transaction would acquire record-level locks to every record they modified during their transaction; since different users were editing different records, everyone gets their own locks and everything works. But in SQL Server, as soon as one user edits a record inside a transaction, SQL Server appears to get a lock on the entire table. When a second user tries to edit a different record in the same table, the second user's app simply locks up, because the SqlConnection blocks until the first user either commits or rolls back. I'm aware that long-running transactions are bad, and I know that the best solution would be to change these screens so that they no longer keep transactions open for a long time. But since that would mean some invasive and risky changes, I also want to research whether there's a way to get this code up and running as-is, just so I know what my options are. How can I get two different users' transactions in SQL Server to lock individual records instead of the entire table? Here's a quick-and-dirty console app that illustrates the issue. I've created a database called "test1", with one table called "Values" that just has ID (int) and Value (nvarchar) columns. If you run the app, it asks for an ID to modify, starts a transaction, modifies that record, and then leaves the transaction open until you press ENTER. I want to be able to start the program and tell it to update ID 1; let it get its transaction and modify the record; start a second copy of the program and tell it to update ID 2; have it able to update (and commit) while the first app's transaction is still open. Currently it freezes at step 4, until I go back to the first copy of the app and close it or press ENTER so it commits. The call to command.ExecuteNonQuery blocks until the first connection is closed. public static void Main() { Console.Write("ID to update: "); var id = int.Parse(Console.ReadLine()); Console.WriteLine("Starting transaction"); using (var scope = new TransactionScope()) using (var connection = new SqlConnection(@"Data Source=localhost\sqlexpress;Initial Catalog=test1;Integrated Security=True")) { connection.Open(); var command = connection.CreateCommand(); command.CommandText = "UPDATE [Values] SET Value = 'Value' WHERE ID = " + id; Console.WriteLine("Updating record"); command.ExecuteNonQuery(); Console.Write("Press ENTER to end transaction: "); Console.ReadLine(); scope.Complete(); } } Here are some things I've already tried, with no change in behavior: Changing the transaction isolation level to "read uncommitted" Specifying a "WITH (ROWLOCK)" on the UPDATE statement

    Read the article

  • Hi i have a c programming doubt in the implementation of hash table?

    - by aks
    Hi i have a c programming doubt in the implementation of hash table? I have implemented the hash table for storing some strings? I am having problem while dealing with hash collisons. I am following chaining link-list approach to overcome the same? But, somehow my code is behaving differently. I am not able to debug the same? Can somebody help? This is what i am facing: Say first time, i insert a string called gaur. My hash map calculates the index as 0 and inserts the string successfully. However, when another string whose hash map also when calculates turns out to be 0, my previous value gets overrridden i.e. gaur will be replaced by new string. This is my code: struct list { char *string; struct list *next; }; struct hash_table { int size; /* the size of the table */ struct list **table; /* the table elements */ }; struct hash_table *create_hash_table(int size) { struct hash_table *new_table; int i; if (size<1) return NULL; /* invalid size for table */ /* Attempt to allocate memory for the table structure */ if ((new_table = malloc(sizeof(struct hash_table))) == NULL) { return NULL; } /* Attempt to allocate memory for the table itself */ if ((new_table->table = malloc(sizeof(struct list *) * size)) == NULL) { return NULL; } /* Initialize the elements of the table */ for(i=0; i<size; i++) new_table->table[i] = '\0'; /* Set the table's size */ new_table->size = size; return new_table; } unsigned int hash(struct hash_table *hashtable, char *str) { unsigned int hashval = 0; int i = 0; for(; *str != '\0'; str++) { hashval += str[i]; i++; } return (hashval % hashtable->size); } struct list *lookup_string(struct hash_table *hashtable, char *str) { printf("\n enters in lookup_string \n"); struct list * new_list; unsigned int hashval = hash(hashtable, str); /* Go to the correct list based on the hash value and see if str is * in the list. If it is, return return a pointer to the list element. * If it isn't, the item isn't in the table, so return NULL. */ for(new_list = hashtable->table[hashval]; new_list != NULL;new_list = new_list->next) { if (strcmp(str, new_list->string) == 0) return new_list; } printf("\n returns NULL in lookup_string \n"); return NULL; } int add_string(struct hash_table *hashtable, char *str) { printf("\n enters in add_string \n"); struct list *new_list; struct list *current_list; unsigned int hashval = hash(hashtable, str); printf("\n hashval = %d", hashval); /* Attempt to allocate memory for list */ if ((new_list = malloc(sizeof(struct list))) == NULL) { printf("\n enters here \n"); return 1; } /* Does item already exist? */ current_list = lookup_string(hashtable, str); if (current_list == NULL) { printf("\n DEBUG Purpose \n"); printf("\n NULL \n"); } /* item already exists, don't insert it again. */ if (current_list != NULL) { printf("\n Item already present...\n"); return 2; } /* Insert into list */ printf("\n Inserting...\n"); new_list->string = strdup(str); new_list->next = NULL; //new_list->next = hashtable->table[hashval]; if(hashtable->table[hashval] == NULL) { hashtable->table[hashval] = new_list; } else { struct list * temp_list = hashtable->table[hashval]; while(temp_list->next!=NULL) temp_list = temp_list->next; temp_list->next = new_list; hashtable->table[hashval] = new_list; } return 0; }

    Read the article

  • what is the wrong in this code(openAl in vc++)

    - by maiajam
    hi how are you all? i need your help i have this code #include <conio.h> #include <stdlib.h> #include <stdio.h> #include <al.h> #include <alc.h> #include <alut.h> #pragma comment(lib, "openal32.lib") #pragma comment(lib, "alut.lib") /* * These are OpenAL "names" (or "objects"). They store and id of a buffer * or a source object. Generally you would expect to see the implementation * use values that scale up from '1', but don't count on it. The spec does * not make this mandatory (as it is OpenGL). The id's can easily be memory * pointers as well. It will depend on the implementation. */ // Buffers to hold sound data. ALuint Buffer; // Sources are points of emitting sound. ALuint Source; /* * These are 3D cartesian vector coordinates. A structure or class would be * a more flexible of handling these, but for the sake of simplicity we will * just leave it as is. */ // Position of the source sound. ALfloat SourcePos[] = { 0.0, 0.0, 0.0 }; // Velocity of the source sound. ALfloat SourceVel[] = { 0.0, 0.0, 0.0 }; // Position of the Listener. ALfloat ListenerPos[] = { 0.0, 0.0, 0.0 }; // Velocity of the Listener. ALfloat ListenerVel[] = { 0.0, 0.0, 0.0 }; // Orientation of the Listener. (first 3 elements are "at", second 3 are "up") // Also note that these should be units of '1'. ALfloat ListenerOri[] = { 0.0, 0.0, -1.0, 0.0, 1.0, 0.0 }; /* * ALboolean LoadALData() * * This function will load our sample data from the disk using the Alut * utility and send the data into OpenAL as a buffer. A source is then * also created to play that buffer. */ ALboolean LoadALData() { // Variables to load into. ALenum format; ALsizei size; ALvoid* data; ALsizei freq; ALboolean loop; // Load wav data into a buffer. alGenBuffers(1, &Buffer); if(alGetError() != AL_NO_ERROR) return AL_FALSE; alutLoadWAVFile((ALbyte *)"C:\Users\Toshiba\Desktop\Graduation Project\OpenAL\open AL test\wavdata\FancyPants.wav", &format, &data, &size, &freq, &loop); alBufferData(Buffer, format, data, size, freq); alutUnloadWAV(format, data, size, freq); // Bind the buffer with the source. alGenSources(1, &Source); if(alGetError() != AL_NO_ERROR) return AL_FALSE; alSourcei (Source, AL_BUFFER, Buffer ); alSourcef (Source, AL_PITCH, 1.0 ); alSourcef (Source, AL_GAIN, 1.0 ); alSourcefv(Source, AL_POSITION, SourcePos); alSourcefv(Source, AL_VELOCITY, SourceVel); alSourcei (Source, AL_LOOPING, loop ); // Do another error check and return. if(alGetError() == AL_NO_ERROR) return AL_TRUE; return AL_FALSE; } /* * void SetListenerValues() * * We already defined certain values for the Listener, but we need * to tell OpenAL to use that data. This function does just that. */ void SetListenerValues() { alListenerfv(AL_POSITION, ListenerPos); alListenerfv(AL_VELOCITY, ListenerVel); alListenerfv(AL_ORIENTATION, ListenerOri); } /* * void KillALData() * * We have allocated memory for our buffers and sources which needs * to be returned to the system. This function frees that memory. */ void KillALData() { alDeleteBuffers(1, &Buffer); alDeleteSources(1, &Source); alutExit(); } int main(int argc, char *argv[]) { printf("MindCode's OpenAL Lesson 1: Single Static Source\n\n"); printf("Controls:\n"); printf("p) Play\n"); printf("s) Stop\n"); printf("h) Hold (pause)\n"); printf("q) Quit\n\n"); // Initialize OpenAL and clear the error bit. alutInit(NULL, 0); alGetError(); // Load the wav data. if(LoadALData() == AL_FALSE) { printf("Error loading data."); return 0; } SetListenerValues(); // Setup an exit procedure. atexit(KillALData); // Loop. ALubyte c = ' '; while(c != 'q') { c = getche(); switch(c) { // Pressing 'p' will begin playing the sample. case 'p': alSourcePlay(Source); break; // Pressing 's' will stop the sample from playing. case 's': alSourceStop(Source); break; // Pressing 'h' will pause the sample. case 'h': alSourcePause(Source); break; }; } return 0; } and it is run willbut i cant here any thing also i am new in programong and wont to program a virtual reality sound in my graduation project and start to learn opeal and vc++ but i dont how to start and from where i must begin and i want to ask if i need to learn about API win ?? and if i need how i can learn that thank you alote and i am sorry coz of my english

    Read the article

  • Self-updating collection concurrency issues

    - by DEHAAS
    I am trying to build a self-updating collection. Each item in the collection has a position (x,y). When the position is changed, an event is fired, and the collection will relocate the item. Internally the collection is using a “jagged dictionary”. The outer dictionary uses the x-coordinate a key, while the nested dictionary uses the y-coordinate a key. The nested dictionary then has a list of items as value. The collection also maintains a dictionary to store the items position as stored in the nested dictionaries – item to stored location lookup. I am having some trouble making the collection thread safe, which I really need. Source code for the collection: public class PositionCollection<TItem, TCoordinate> : ICollection<TItem> where TItem : IPositionable<TCoordinate> where TCoordinate : struct, IConvertible { private readonly object itemsLock = new object(); private readonly Dictionary<TCoordinate, Dictionary<TCoordinate, List<TItem>>> items; private readonly Dictionary<TItem, Vector<TCoordinate>> storedPositionLookup; public PositionCollection() { this.items = new Dictionary<TCoordinate, Dictionary<TCoordinate, List<TItem>>>(); this.storedPositionLookup = new Dictionary<TItem, Vector<TCoordinate>>(); } public void Add(TItem item) { if (item.Position == null) { throw new ArgumentException("Item must have a valid position."); } lock (this.itemsLock) { if (!this.items.ContainsKey(item.Position.X)) { this.items.Add(item.Position.X, new Dictionary<TCoordinate, List<TItem>>()); } Dictionary<TCoordinate, List<TItem>> xRow = this.items[item.Position.X]; if (!xRow.ContainsKey(item.Position.Y)) { xRow.Add(item.Position.Y, new List<TItem>()); } xRow[item.Position.Y].Add(item); if (this.storedPositionLookup.ContainsKey(item)) { this.storedPositionLookup[item] = new Vector<TCoordinate>(item.Position); } else { this.storedPositionLookup.Add(item, new Vector<TCoordinate>(item.Position)); // Store a copy of the original position } item.Position.PropertyChanged += (object sender, PropertyChangedEventArgs eventArgs) => this.UpdatePosition(item, eventArgs.PropertyName); } } private void UpdatePosition(TItem item, string propertyName) { lock (this.itemsLock) { Vector<TCoordinate> storedPosition = this.storedPositionLookup[item]; this.RemoveAt(storedPosition, item); this.storedPositionLookup.Remove(item); } } } I have written a simple unit test to check for concurrency issues: [TestMethod] public void TestThreadedPositionChange() { PositionCollection<Crate, int> collection = new PositionCollection<Crate, int>(); Crate crate = new Crate(new Vector<int>(5, 5)); collection.Add(crate); Parallel.For(0, 100, new Action<int>((i) => crate.Position.X += 1)); Crate same = collection[105, 5].First(); Assert.AreEqual(crate, same); } The actual stored position varies every time I run the test. I appreciate any feedback you may have.

    Read the article

  • mysql_close doesn't kill locked sql requests

    - by Nikita
    I use mysqld Ver 5.1.37-2-log for debian-linux-gnu I perform mysql calls from c++ code with functions mysql_query. The problem occurs when mysql_query execute procedure, procedure locked on locked table, so mysql_query hangs. If send kill signal to application then we can see lock until table is locked. Create the following SQL table and procedure CREATE TABLE IF NOT EXISTS `tabletolock` ( `id` INT NOT NULL AUTO_INCREMENT, PRIMARY KEY (`id`) )ENGINE = InnoDB; DELIMITER $$ DROP PROCEDURE IF EXISTS `LOCK_PROCEDURE` $$ CREATE PROCEDURE `LOCK_PROCEDURE`() BEGIN SELECT id INTO @id FROM tabletolock; END $$ DELOMITER; There are sql commands to reproduce the problem: 1. in one terminal execute lock tables tabletolock write; 2. in another terminal execute call LOCK_PROCEDURE(); 3. In first terminal exeute show processlist and see | 2492 | root | localhost | syn_db | Query | 12 | Locked | SELECT id INTO @id FROM tabletolock | Then perfrom Ctrl-C in second terminal to interrupt our procudere and see processlist again. It is not changed, we already see locked select request and can teminate it by unlock tables or kill commands. Problem described is occured with mysql command line client. Also such problem exists when we use functions mysql_query and mysql_close. Example of c code: #include <iostream> #include <mysql/mysql.h> #include <mysql/errmsg.h> #include <signal.h> // g++ -Wall -g -fPIC -lmysqlclient dbtest.cpp using namespace std; MYSQL * connection = NULL; void closeconnection() { if(connection != NULL) { cout << "close connection !\n"; mysql_close(connection); mysql_thread_end(); delete connection; mysql_library_end(); } } void sigkill(int s) { closeconnection(); signal(SIGINT, NULL); raise(s); } int main(int argc, char ** argv) { signal(SIGINT, sigkill); connection = new MYSQL; mysql_init(connection); mysql_options(connection, MYSQL_READ_DEFAULT_GROUP, "nnfc"); if (!mysql_real_connect(connection, "127.0.0.1", "user", "password", "db", 3306, NULL, CLIENT_MULTI_RESULTS)) { delete connection; cout << "cannot connect\n"; return -1; } cout << "before procedure call\n"; mysql_query(connection, "CALL LOCK_PROCEDURE();"); cout << "after procedure call\n"; closeconnection(); return 0; } Compile it, and perform the folloing actions: 1. in first terminal local tables tabletolock write; 2. run program ./a.out 3. interrupt program Ctrl-C. on the screen we see that closeconnection function is called, so connection is closed. 4. in first terminal execute show processlist and see that procedure was not intrrupted. My question is how to terminate such locked calls from c code? Thank you in advance!

    Read the article

  • Using VBA / Macro to highlight changes in excel

    - by Zaj
    I have a spread sheet that I send out to various locations to have information on it updated and then sent back to me. However, I had to put validation and lock the cells to force users to input accurate information. Then I can to use VBA to disable the work around of cut copy and paste functions. And additionally I inserted a VBA function to force users to open the excel file in Macros. Now I'm trying to track the changes so that I know what was updated when I recieve the sheet back. However everytime i do this I get an error when someone savesthe document and randomly it will lock me out of the document completely. I have my code pasted below, can some one help me create code in the VBA forum to highlight changes instead of through excel's share/track changes option? ThisWorkbook (Code): Option Explicit Const WelcomePage = "Macros" Private Sub Workbook_BeforeClose(Cancel As Boolean) Call ToggleCutCopyAndPaste(True) 'Turn off events to prevent unwanted loops Application.EnableEvents = False 'Evaluate if workbook is saved and emulate default propmts With ThisWorkbook If Not .Saved Then Select Case MsgBox("Do you want to save the changes you made to '" & .Name & "'?", _ vbYesNoCancel + vbExclamation) Case Is = vbYes 'Call customized save routine Call CustomSave Case Is = vbNo 'Do not save Case Is = vbCancel 'Set up procedure to cancel close Cancel = True End Select End If 'If Cancel was clicked, turn events back on and cancel close, 'otherwise close the workbook without saving further changes If Not Cancel = True Then .Saved = True Application.EnableEvents = True .Close savechanges:=False Else Application.EnableEvents = True End If End With End Sub Private Sub Workbook_BeforeSave(ByVal SaveAsUI As Boolean, Cancel As Boolean) 'Turn off events to prevent unwanted loops Application.EnableEvents = False 'Call customized save routine and set workbook's saved property to true '(To cancel regular saving) Call CustomSave(SaveAsUI) Cancel = True 'Turn events back on an set saved property to true Application.EnableEvents = True ThisWorkbook.Saved = True End Sub Private Sub Workbook_Open() Call ToggleCutCopyAndPaste(False) 'Unhide all worksheets Application.ScreenUpdating = False Call ShowAllSheets Application.ScreenUpdating = True End Sub Private Sub CustomSave(Optional SaveAs As Boolean) Dim ws As Worksheet, aWs As Worksheet, newFname As String 'Turn off screen flashing Application.ScreenUpdating = False 'Record active worksheet Set aWs = ActiveSheet 'Hide all sheets Call HideAllSheets 'Save workbook directly or prompt for saveas filename If SaveAs = True Then newFname = Application.GetSaveAsFilename( _ fileFilter:="Excel Files (*.xls), *.xls") If Not newFname = "False" Then ThisWorkbook.SaveAs newFname Else ThisWorkbook.Save End If 'Restore file to where user was Call ShowAllSheets aWs.Activate 'Restore screen updates Application.ScreenUpdating = True End Sub Private Sub HideAllSheets() 'Hide all worksheets except the macro welcome page Dim ws As Worksheet Worksheets(WelcomePage).Visible = xlSheetVisible For Each ws In ThisWorkbook.Worksheets If Not ws.Name = WelcomePage Then ws.Visible = xlSheetVeryHidden Next ws Worksheets(WelcomePage).Activate End Sub Private Sub ShowAllSheets() 'Show all worksheets except the macro welcome page Dim ws As Worksheet For Each ws In ThisWorkbook.Worksheets If Not ws.Name = WelcomePage Then ws.Visible = xlSheetVisible Next ws Worksheets(WelcomePage).Visible = xlSheetVeryHidden End Sub Private Sub Workbook_Activate() Call ToggleCutCopyAndPaste(False) End Sub Private Sub Workbook_Deactivate() Call ToggleCutCopyAndPaste(True) End Sub This is in my ModuleCode: Option Explicit Sub ToggleCutCopyAndPaste(Allow As Boolean) 'Activate/deactivate cut, copy, paste and pastespecial menu items Call EnableMenuItem(21, Allow) ' cut Call EnableMenuItem(19, Allow) ' copy Call EnableMenuItem(22, Allow) ' paste Call EnableMenuItem(755, Allow) ' pastespecial 'Activate/deactivate drag and drop ability Application.CellDragAndDrop = Allow 'Activate/deactivate cut, copy, paste and pastespecial shortcut keys With Application Select Case Allow Case Is = False .OnKey "^c", "CutCopyPasteDisabled" .OnKey "^v", "CutCopyPasteDisabled" .OnKey "^x", "CutCopyPasteDisabled" .OnKey "+{DEL}", "CutCopyPasteDisabled" .OnKey "^{INSERT}", "CutCopyPasteDisabled" Case Is = True .OnKey "^c" .OnKey "^v" .OnKey "^x" .OnKey "+{DEL}" .OnKey "^{INSERT}" End Select End With End Sub Sub EnableMenuItem(ctlId As Integer, Enabled As Boolean) 'Activate/Deactivate specific menu item Dim cBar As CommandBar Dim cBarCtrl As CommandBarControl For Each cBar In Application.CommandBars If cBar.Name <> "Clipboard" Then Set cBarCtrl = cBar.FindControl(ID:=ctlId, recursive:=True) If Not cBarCtrl Is Nothing Then cBarCtrl.Enabled = Enabled End If Next End Sub Sub CutCopyPasteDisabled() 'Inform user that the functions have been disabled MsgBox " Cutting, copying and pasting have been disabled in this workbook. Please hard key in data. " End Sub

    Read the article

  • Pagination links do not work after first page

    - by TheStack
    Hello, I am trying to fix this pagination script. It seems when I click on the pagination links [1][2][3][4]or[5] , it doesn't work. It just shows the first page and when clicking on the next numbers nothing happens. I hoping someone can see something in the script that I can not see. The main page looks like this (pagination.php): <?php include_once('generate_pagination.php'); ?> <script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.1/jquery.min.js"></script> <script type="text/javascript" src="jquery_pagination.js"></script> <div id="loading" ></div> <div id="content" data-page="1"></div> <ul id="pagination"> <?php generate_pagination() ?> </ul> <br /> <br /> <a href="#" class="category" id="marketing">Marketing</a> <a href="#" class="category" id="automotive">Automotive</a> <a href="#" class="category" id="sports">Sports</a> Then, generate_pagination.php: <?php function generate_pagination($sql) { include_once('config.php'); $per_page = 3; //Calculating no of pages $result = mysql_query($sql); $count = mysql_fetch_row($result); $pages = ceil($count[0]/$per_page); //Pagination Numbers for($i=1; $i<=$pages; $i++) { echo '<li class="page_numbers" id="'.$i.'">'.$i.'</li>'; } } $ids=$_GET['ids']; generate_pagination("SELECT COUNT(*) FROM explore WHERE category='$ids'"); ?> Here is the jquery file (jquery_pagination.js): $(document).ready(function(){ //Display Loading Image function Display_Load() { $("#loading").fadeIn(900,0); $("#loading").html("<img src='bigLoader.gif' />"); } //Hide Loading Image function Hide_Load() { $("#loading").fadeOut('slow'); }; //Default Starting Page Results $("#pagination li:first").css({'color' : '#FF0084'}).css({'border' : 'none'}); Display_Load(); $("#content").load("pagination_data.php?page=1", Hide_Load()); //Pagination Click $("#pagination li").click(function(){ Display_Load(); //CSS Styles $("#pagination li") .css({'border' : 'solid #dddddd 1px'}) .css({'color' : '#0063DC'}); $(this) .css({'color' : '#FF0084'}) .css({'border' : 'none'}); //Loading Data var pageNum = this.id; $("#content").load("pagination_data.php?page=" + pageNum, function(){ Hide_Load(); $(this).attr('data-page', pageNum); }); }); // Editing below. // Sort content Marketing $("a.category").click(function() { Display_Load(); var this_id = $(this).attr('id'); $.get("pagination.php", { category: this.id }, function(data){ //Load your results into the page var pageNum = $('#content').attr('data-page'); $("#pagination").load('generate_pagination.php?category=' + pageNum +'&ids='+ this_id ); $("#content").load("filter_marketing.php?page=" + pageNum +'&id='+ this_id, Hide_Load()); }); }); }); Lastly, filter_marketing.php (when a user clicks the filter link buttons): <?php include('config.php'); $per_page = 3; if(count($_GET)>0) { if($_GET['page']!=''){ $page=$_GET['page']; } if($_GET['id']!=''){ $id=$_GET['id']; } } $page= ($_GET['page']!='') ? $_GET['page']: false; $id= ($_GET['id']!='') ? $_GET['id']: false; $start = ($page-1)*$per_page; if($page && $id){ $sql = "SELECT * FROM explore WHERE category='$id' ORDER BY category LIMIT $start,$per_page"; } else { die('Error: missing parameters. Id= '.$id.' and page= '.$page); } $result = mysql_query($sql); ?> <table width="800px"> <?php while($row = mysql_fetch_array($result)) { $msg_id=$row['id']; $message=$row['site_description']; $site_price=$row['site_price']; ?> <tr> <td><?php echo $msg_id; ?></td> <td><?php echo $message; ?></td> <td><?php echo $site_price; ?></td> </tr> <?php } ?> </table> So, if anyone sees where the problem is occurring and can help rid of the problem, that would be great, Thank you.

    Read the article

  • C# Alternating threads

    - by Mutoh
    Imagine a situation in which there are one king and n number of minions submissed to him. When the king says "One!", one of the minions says "Two!", but only one of them. That is, only the fastest minion speaks while the others must wait for another call of the king. This is my try: using System; using System.Threading; class Program { static bool leaderGO = false; void Leader() { do { lock(this) { //Console.WriteLine("? {0}", leaderGO); if (leaderGO) Monitor.Wait(this); Console.WriteLine("> One!"); Thread.Sleep(200); leaderGO = true; Monitor.Pulse(this); } } while(true); } void Follower (char chant) { do { lock(this) { //Console.WriteLine("! {0}", leaderGO); if (!leaderGO) Monitor.Wait(this); Console.WriteLine("{0} Two!", chant); leaderGO = false; Monitor.Pulse(this); } } while(true); } static void Main() { Console.WriteLine("Go!\n"); Program m = new Program(); Thread king = new Thread(() => m.Leader()); Thread minion1 = new Thread(() => m.Follower('#')); Thread minion2 = new Thread(() => m.Follower('$')); king.Start(); minion1.Start(); minion2.Start(); Console.ReadKey(); king.Abort(); minion1.Abort(); minion2.Abort(); } } The expected output would be this (# and $ representing the two different minions): > One! # Two! > One! $ Two! > One! $ Two! ... The order in which they'd appear doesn't matter, it'd be random. The problem, however, is that this code, when compiled, produces this instead: > One! # Two! $ Two! > One! # Two! > One! $ Two! # Two! ... That is, more than one minion speaks at the same time. This would cause quite the tumult with even more minions, and a king shoudln't allow a meddling of this kind. What would be a possible solution?

    Read the article

  • SharpDX: Render to bitmap using Direct2D 1.1

    - by mwhouser
    I have a command line application that I am currently using SharpDX (Direct2D 1.0) to render to PNG files. This is a window-less application. It's currently creating a SharpDX.WIC.WicBitmap, a WicRenderTarget, then rendering to that. I then save the WicBitmap to the PNG file. For various reasons, I need to migrate to Direct2D 1.1 to take advantage of some of the effects available in 1.1. I'm trying to get a SharpDX.Direct2D1.Bitmap that I can save as PNG. I cannot use FromWicBitmap because that copies the bitmap, it does not share it. I see CreateSharedBitmap in the Direct2D1 API that takes a IWICBitmapLock. However, I do not see this implemented as a constructor of SharpDX.Direct2D.Bitmap. This is what I'm trying to do: // Bunch of setup var d2dDevice = new SharpDX.Direct2D1.Device(dxgiDevice); var d2dDeviceContext = new SharpDX.Direct2D1.DeviceContext(d2dDevice, SharpDX.Direct2D1.DeviceContextOptions.None); using (var wicFactory = new SharpDX.WIC.ImagingFactory()) { using (SharpDX.WIC.Bitmap wicBitmap = new SharpDX.WIC.Bitmap(wicFactory, 500, 500, SharpDX.WIC.PixelFormat.Format32bppPBGRA, SharpDX.WIC.BitmapCreateCacheOption.CacheOnDemand)) { var wicLock = wicBitmap.Lock(SharpDX.WIC.BitmapLockFlags.Write); var props = new SharpDX.Direct2D1.BitmapProperties1(); props.BitmapOptions = SharpDX.Direct2D1.BitmapOptions.Target; var bitmap = new SharpDX.Direct2D1.Bitmap1(d2dDeviceContext, wicLock, props); // This is not available d2dDeviceContext.Target = bitmap; // Do the drawing // Save the PNG } } Is there a way to do what I'm trying to accomplish?

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Oracle Announces Oracle Cloud Office and Oracle Open Office 3.3

    - by Paulo Folgado
    Oracle today introduced Oracle Cloud Office and Oracle Open Office 3.3, two complete, open standards-based office productivity suites for the desktop, web and mobile devices - helping users significantly improve productivity, reduce costs and achieve greater innovation across the enterprise.Oracle Cloud Office 1.0 is a web and mobile office suite that enables web 2.0-style collaboration and mobile document access. Compatibility with Microsoft Office and integration with Oracle Open Office enable rich and seamless offline editing of complex presentations, text and spreadsheet documents. Oracle Open Office 3.3 includes new enterprise connectors to Oracle Business Intelligence, Oracle E-Business Suite, other Oracle Applications and Microsoft Sharepoint, to allow for fast, seamless integration into existing enterprise software stacks. In addition, it adds increased stability, compatibility and performance at up to five times lower license cost compared to Microsoft Office. Based on the Open Document Format (ODF) and open web standards, Oracle Office enables users to share files on any system as it is compatible with both legacy Microsoft Office documents and modern web 2.0 publishing. The Oracle Office APIs and open standards-based approach provides IT users with flexibility, lower short and long-term costs and freedom from vendor lock-in - enabling organizations to build a complete Open Standard Office Stack. If you're interested to learn more, read our today's press release or visit oracle.com/office.

    Read the article

  • Oracle Announces Oracle Cloud Office and Oracle Open Office 3.3

    - by Harald Behnke
    Oracle today introduced Oracle Cloud Office and Oracle Open Office 3.3, two complete, open standards-based office productivity suites for the desktop, web and mobile devices - helping users significantly improve productivity, reduce costs and achieve greater innovation across the enterprise.(View image)Oracle Cloud Office 1.0 is a web and mobile office suite that enables web 2.0-style collaboration and mobile document access. Compatibility with Microsoft Office and integration with Oracle Open Office enable rich and seamless offline editing of complex presentations, text and spreadsheet documents. Oracle Open Office 3.3 includes new enterprise connectors to Oracle Business Intelligence, Oracle E-Business Suite, other Oracle Applications and Microsoft Sharepoint, to allow for fast, seamless integration into existing enterprise software stacks. In addition, it adds increased stability, compatibility and performance at up to five times lower license cost compared to Microsoft Office. Based on the Open Document Format (ODF) and open web standards, Oracle Office enables users to share files on any system as it is compatible with both legacy Microsoft Office documents and modern web 2.0 publishing. The Oracle Office APIs and open standards-based approach provides IT users with flexibility, lower short and long-term costs and freedom from vendor lock-in - enabling organizations to build a complete Open Standard Office Stack. If you're interested to learn more, read our today's press release or visit oracle.com/office.

    Read the article

  • PowerShell Script to Deploy Multiple VM on Azure in Parallel #azure #powershell

    - by Marco Russo (SQLBI)
    This blog is usually dedicated to Business Intelligence and SQL Server, but I didn’t found easily on the web simple PowerShell scripts to help me deploying a number of virtual machines on Azure that I use for testing and development. Since I need to deploy, start, stop and remove many virtual machines created from a common image I created (you know, Tabular is not part of the standard images provided by Microsoft…), I wanted to minimize the time required to execute every operation from my Windows Azure PowerShell console (but I suggest you using Windows PowerShell ISE), so I also wanted to fire the commands as soon as possible in parallel, without losing the result in the console. In order to execute multiple commands in parallel, I used the Start-Job cmdlet, and using Get-Job and Receive-Job I wait for job completion and display the messages generated during background command execution. This technique allows me to reduce execution time when I have to deploy, start, stop or remove virtual machines. Please note that a few operations on Azure acquire an exclusive lock and cannot be really executed in parallel, but only one part of their execution time is subject to this lock. Thus, you obtain a better response time also in these scenarios (this is the case of the provisioning of a new VM). Finally, when you remove the VMs you still have the disk containing the virtual machine to remove. This cannot be done just after the VM removal, because you have to wait that the removal operation is completed on Azure. So I wrote a script that you have to run a few minutes after VMs removal and delete disks (and VHD) no longer related to a VM. I just check that the disk were associated to the original image name used to provision the VMs (so I don’t remove other disks deployed by other batches that I might want to preserve). These examples are specific for my scenario, if you need more complex configurations you have to change and adapt the code. But if your need is to create multiple instances of the same VM running in a workgroup, these scripts should be good enough. I prepared the following PowerShell scripts: ProvisionVMs: Provision many VMs in parallel starting from the same image. It creates one service for each VM. RemoveVMs: Remove all the VMs in parallel – it also remove the service created for the VM StartVMs: Starts all the VMs in parallel StopVMs: Stops all the VMs in parallel RemoveOrphanDisks: Remove all the disks no longer used by any VMs. Run this script a few minutes after RemoveVMs script. ProvisionVMs # Name of subscription $SubscriptionName = "Copy the SubscriptionName property you get from Get-AzureSubscription"   # Name of storage account (where VMs will be deployed) $StorageAccount = "Copy the Label property you get from Get-AzureStorageAccount"   function ProvisionVM( [string]$VmName ) {     Start-Job -ArgumentList $VmName {         param($VmName) $Location = "Copy the Location property you get from Get-AzureStorageAccount" $InstanceSize = "A5" # You can use any other instance, such as Large, A6, and so on $AdminUsername = "UserName" # Write the name of the administrator account in the new VM $Password = "Password"      # Write the password of the administrator account in the new VM $Image = "Copy the ImageName property you get from Get-AzureVMImage" # You can list your own images using the following command: # Get-AzureVMImage | Where-Object {$_.PublisherName -eq "User" }         New-AzureVMConfig -Name $VmName -ImageName $Image -InstanceSize $InstanceSize |             Add-AzureProvisioningConfig -Windows -Password $Password -AdminUsername $AdminUsername|             New-AzureVM -Location $Location -ServiceName "$VmName" -Verbose     } }   # Set the proper storage - you might remove this line if you have only one storage in the subscription Set-AzureSubscription -SubscriptionName $SubscriptionName -CurrentStorageAccount $StorageAccount   # Select the subscription - this line is fundamental if you have access to multiple subscription # You might remove this line if you have only one subscription Select-AzureSubscription -SubscriptionName $SubscriptionName   # Every line in the following list provisions one VM using the name specified in the argument # You can change the number of lines - use a unique name for every VM - don't reuse names # already used in other VMs already deployed ProvisionVM "test10" ProvisionVM "test11" ProvisionVM "test12" ProvisionVM "test13" ProvisionVM "test14" ProvisionVM "test15" ProvisionVM "test16" ProvisionVM "test17" ProvisionVM "test18" ProvisionVM "test19" ProvisionVM "test20"   # Wait for all to complete While (Get-Job -State "Running") {     Get-Job -State "Completed" | Receive-Job     Start-Sleep 1 }   # Display output from all jobs Get-Job | Receive-Job   # Cleanup of jobs Remove-Job *   # Displays batch completed echo "Provisioning VM Completed" RemoveVMs # Name of subscription $SubscriptionName = "Copy the SubscriptionName property you get from Get-AzureSubscription"   function RemoveVM( [string]$VmName ) {     Start-Job -ArgumentList $VmName {         param($VmName)         Remove-AzureService -ServiceName $VmName -Force -Verbose     } }   # Select the subscription - this line is fundamental if you have access to multiple subscription # You might remove this line if you have only one subscription Select-AzureSubscription -SubscriptionName $SubscriptionName   # Every line in the following list remove one VM using the name specified in the argument # You can change the number of lines - use a unique name for every VM - don't reuse names # already used in other VMs already deployed RemoveVM "test10" RemoveVM "test11" RemoveVM "test12" RemoveVM "test13" RemoveVM "test14" RemoveVM "test15" RemoveVM "test16" RemoveVM "test17" RemoveVM "test18" RemoveVM "test19" RemoveVM "test20"   # Wait for all to complete While (Get-Job -State "Running") {     Get-Job -State "Completed" | Receive-Job     Start-Sleep 1 }   # Display output from all jobs Get-Job | Receive-Job   # Cleanup Remove-Job *   # Displays batch completed echo "Remove VM Completed" StartVMs # Name of subscription $SubscriptionName = "Copy the SubscriptionName property you get from Get-AzureSubscription"   function StartVM( [string]$VmName ) {     Start-Job -ArgumentList $VmName {         param($VmName)         Start-AzureVM -Name $VmName -ServiceName $VmName -Verbose     } }   # Select the subscription - this line is fundamental if you have access to multiple subscription # You might remove this line if you have only one subscription Select-AzureSubscription -SubscriptionName $SubscriptionName   # Every line in the following list starts one VM using the name specified in the argument # You can change the number of lines - use a unique name for every VM - don't reuse names # already used in other VMs already deployed StartVM "test10" StartVM "test11" StartVM "test11" StartVM "test12" StartVM "test13" StartVM "test14" StartVM "test15" StartVM "test16" StartVM "test17" StartVM "test18" StartVM "test19" StartVM "test20"   # Wait for all to complete While (Get-Job -State "Running") {     Get-Job -State "Completed" | Receive-Job     Start-Sleep 1 }   # Display output from all jobs Get-Job | Receive-Job   # Cleanup Remove-Job *   # Displays batch completed echo "Start VM Completed"   StopVMs # Name of subscription $SubscriptionName = "Copy the SubscriptionName property you get from Get-AzureSubscription"   function StopVM( [string]$VmName ) {     Start-Job -ArgumentList $VmName {         param($VmName)         Stop-AzureVM -Name $VmName -ServiceName $VmName -Verbose -Force     } }   # Select the subscription - this line is fundamental if you have access to multiple subscription # You might remove this line if you have only one subscription Select-AzureSubscription -SubscriptionName $SubscriptionName   # Every line in the following list stops one VM using the name specified in the argument # You can change the number of lines - use a unique name for every VM - don't reuse names # already used in other VMs already deployed StopVM "test10" StopVM "test11" StopVM "test12" StopVM "test13" StopVM "test14" StopVM "test15" StopVM "test16" StopVM "test17" StopVM "test18" StopVM "test19" StopVM "test20"   # Wait for all to complete While (Get-Job -State "Running") {     Get-Job -State "Completed" | Receive-Job     Start-Sleep 1 }   # Display output from all jobs Get-Job | Receive-Job   # Cleanup Remove-Job *   # Displays batch completed echo "Stop VM Completed" RemoveOrphanDisks $Image = "Copy the ImageName property you get from Get-AzureVMImage" # You can list your own images using the following command: # Get-AzureVMImage | Where-Object {$_.PublisherName -eq "User" }   # Remove all orphan disks coming from the image specified in $ImageName Get-AzureDisk |     Where-Object {$_.attachedto -eq $null -and $_.SourceImageName -eq $ImageName} |     Remove-AzureDisk -DeleteVHD -Verbose  

    Read the article

  • Parallelism in .NET – Introduction

    - by Reed
    Parallel programming is something that every professional developer should understand, but is rarely discussed or taught in detail in a formal manner.  Software users are no longer content with applications that lock up the user interface regularly, or take large amounts of time to process data unnecessarily.  Modern development requires the use of parallelism.  There is no longer any excuses for us as developers. Learning to write parallel software is challenging.  It requires more than reading that one chapter on parallelism in our programming language book of choice… Today’s systems are no longer getting faster with each generation; in many cases, newer computers are actually slower than previous generation systems.  Modern hardware is shifting towards conservation of power, with processing scalability coming from having multiple computer cores, not faster and faster CPUs.  Our CPU frequencies no longer double on a regular basis, but Moore’s Law is still holding strong.  Now, however, instead of scaling transistors in order to make processors faster, hardware manufacturers are scaling the transistors in order to add more discrete hardware processing threads to the system. This changes how we should think about software.  In order to take advantage of modern systems, we need to redesign and rewrite our algorithms to work in parallel.  As with any design domain, it helps tremendously to have a common language, as well as a common set of patterns and tools. For .NET developers, this is an exciting time for parallel programming.  Version 4 of the .NET Framework is adding the Task Parallel Library.  This has been back-ported to .NET 3.5sp1 as part of the Reactive Extensions for .NET, and is available for use today in both .NET 3.5 and .NET 4.0 beta. In order to fully utilize the Task Parallel Library and parallelism, both in .NET 4 and previous versions, we need to understand the proper terminology.  For this series, I will provide an introduction to some of the basic concepts in parallelism, and relate them to the tools available in .NET.

    Read the article

  • Transactional Messaging in the Windows Azure Service Bus

    - by Alan Smith
    Introduction I’m currently working on broadening the content in the Windows Azure Service Bus Developer Guide. One of the features I have been looking at over the past week is the support for transactional messaging. When using the direct programming model and the WCF interface some, but not all, messaging operations can participate in transactions. This allows developers to improve the reliability of messaging systems. There are some limitations in the transactional model, transactions can only include one top level messaging entity (such as a queue or topic, subscriptions are no top level entities), and transactions cannot include other systems, such as databases. As the transaction model is currently not well documented I have had to figure out how things work through experimentation, with some help from the development team to confirm any questions I had. Hopefully I’ve got the content mostly correct, I will update the content in the e-book if I find any errors or improvements that can be made (any feedback would be very welcome). I’ve not had a chance to look into the code for transactions and asynchronous operations, maybe that would make a nice challenge lab for my Windows Azure Service Bus course. Transactional Messaging Messaging entities in the Windows Azure Service Bus provide support for participation in transactions. This allows developers to perform several messaging operations within a transactional scope, and ensure that all the actions are committed or, if there is a failure, none of the actions are committed. There are a number of scenarios where the use of transactions can increase the reliability of messaging systems. Using TransactionScope In .NET the TransactionScope class can be used to perform a series of actions in a transaction. The using declaration is typically used de define the scope of the transaction. Any transactional operations that are contained within the scope can be committed by calling the Complete method. If the Complete method is not called, any transactional methods in the scope will not commit.   // Create a transactional scope. using (TransactionScope scope = new TransactionScope()) {     // Do something.       // Do something else.       // Commit the transaction.     scope.Complete(); }     In order for methods to participate in the transaction, they must provide support for transactional operations. Database and message queue operations typically provide support for transactions. Transactions in Brokered Messaging Transaction support in Service Bus Brokered Messaging allows message operations to be performed within a transactional scope; however there are some limitations around what operations can be performed within the transaction. In the current release, only one top level messaging entity, such as a queue or topic can participate in a transaction, and the transaction cannot include any other transaction resource managers, making transactions spanning a messaging entity and a database not possible. When sending messages, the send operations can participate in a transaction allowing multiple messages to be sent within a transactional scope. This allows for “all or nothing” delivery of a series of messages to a single queue or topic. When receiving messages, messages that are received in the peek-lock receive mode can be completed, deadlettered or deferred within a transactional scope. In the current release the Abandon method will not participate in a transaction. The same restrictions of only one top level messaging entity applies here, so the Complete method can be called transitionally on messages received from the same queue, or messages received from one or more subscriptions in the same topic. Sending Multiple Messages in a Transaction A transactional scope can be used to send multiple messages to a queue or topic. This will ensure that all the messages will be enqueued or, if the transaction fails to commit, no messages will be enqueued.     An example of the code used to send 10 messages to a queue as a single transaction from a console application is shown below.   QueueClient queueClient = messagingFactory.CreateQueueClient(Queue1);   Console.Write("Sending");   // Create a transaction scope. using (TransactionScope scope = new TransactionScope()) {     for (int i = 0; i < 10; i++)     {         // Send a message         BrokeredMessage msg = new BrokeredMessage("Message: " + i);         queueClient.Send(msg);         Console.Write(".");     }     Console.WriteLine("Done!");     Console.WriteLine();       // Should we commit the transaction?     Console.WriteLine("Commit send 10 messages? (yes or no)");     string reply = Console.ReadLine();     if (reply.ToLower().Equals("yes"))     {         // Commit the transaction.         scope.Complete();     } } Console.WriteLine(); messagingFactory.Close();     The transaction scope is used to wrap the sending of 10 messages. Once the messages have been sent the user has the option to either commit the transaction or abandon the transaction. If the user enters “yes”, the Complete method is called on the scope, which will commit the transaction and result in the messages being enqueued. If the user enters anything other than “yes”, the transaction will not commit, and the messages will not be enqueued. Receiving Multiple Messages in a Transaction The receiving of multiple messages is another scenario where the use of transactions can improve reliability. When receiving a group of messages that are related together, maybe in the same message session, it is possible to receive the messages in the peek-lock receive mode, and then complete, defer, or deadletter the messages in one transaction. (In the current version of Service Bus, abandon is not transactional.)   The following code shows how this can be achieved. using (TransactionScope scope = new TransactionScope()) {       while (true)     {         // Receive a message.         BrokeredMessage msg = q1Client.Receive(TimeSpan.FromSeconds(1));         if (msg != null)         {             // Wrote message body and complete message.             string text = msg.GetBody<string>();             Console.WriteLine("Received: " + text);             msg.Complete();         }         else         {             break;         }     }     Console.WriteLine();       // Should we commit?     Console.WriteLine("Commit receive? (yes or no)");     string reply = Console.ReadLine();     if (reply.ToLower().Equals("yes"))     {         // Commit the transaction.         scope.Complete();     }     Console.WriteLine(); }     Note that if there are a large number of messages to be received, there will be a chance that the transaction may time out before it can be committed. It is possible to specify a longer timeout when the transaction is created, but It may be better to receive and commit smaller amounts of messages within the transaction. It is also possible to complete, defer, or deadletter messages received from more than one subscription, as long as all the subscriptions are contained in the same topic. As subscriptions are not top level messaging entities this scenarios will work. The following code shows how this can be achieved. try {     using (TransactionScope scope = new TransactionScope())     {         // Receive one message from each subscription.         BrokeredMessage msg1 = subscriptionClient1.Receive();         BrokeredMessage msg2 = subscriptionClient2.Receive();           // Complete the message receives.         msg1.Complete();         msg2.Complete();           Console.WriteLine("Msg1: " + msg1.GetBody<string>());         Console.WriteLine("Msg2: " + msg2.GetBody<string>());           // Commit the transaction.         scope.Complete();     } } catch (Exception ex) {     Console.WriteLine(ex.Message); }     Unsupported Scenarios The restriction of only one top level messaging entity being able to participate in a transaction makes some useful scenarios unsupported. As the Windows Azure Service Bus is under continuous development and new releases are expected to be frequent it is possible that this restriction may not be present in future releases. The first is the scenario where messages are to be routed to two different systems. The following code attempts to do this.   try {     // Create a transaction scope.     using (TransactionScope scope = new TransactionScope())     {         BrokeredMessage msg1 = new BrokeredMessage("Message1");         BrokeredMessage msg2 = new BrokeredMessage("Message2");           // Send a message to Queue1         Console.WriteLine("Sending Message1");         queue1Client.Send(msg1);           // Send a message to Queue2         Console.WriteLine("Sending Message2");         queue2Client.Send(msg2);           // Commit the transaction.         Console.WriteLine("Committing transaction...");         scope.Complete();     } } catch (Exception ex) {     Console.WriteLine(ex.Message); }     The results of running the code are shown below. When attempting to send a message to the second queue the following exception is thrown: No active Transaction was found for ID '35ad2495-ee8a-4956-bbad-eb4fedf4a96e:1'. The Transaction may have timed out or attempted to span multiple top-level entities such as Queue or Topic. The server Transaction timeout is: 00:01:00..TrackingId:947b8c4b-7754-4044-b91b-4a959c3f9192_3_3,TimeStamp:3/29/2012 7:47:32 AM.   Another scenario where transactional support could be useful is when forwarding messages from one queue to another queue. This would also involve more than one top level messaging entity, and is therefore not supported.   Another scenario that developers may wish to implement is performing transactions across messaging entities and other transactional systems, such as an on-premise database. In the current release this is not supported.   Workarounds for Unsupported Scenarios There are some techniques that developers can use to work around the one top level entity limitation of transactions. When sending two messages to two systems, topics and subscriptions can be used. If the same message is to be sent to two destinations then the subscriptions would have the default subscriptions, and the client would only send one message. If two different messages are to be sent, then filters on the subscriptions can route the messages to the appropriate destination. The client can then send the two messages to the topic in the same transaction.   In scenarios where a message needs to be received and then forwarded to another system within the same transaction topics and subscriptions can also be used. A message can be received from a subscription, and then sent to a topic within the same transaction. As a topic is a top level messaging entity, and a subscription is not, this scenario will work.

    Read the article

  • OBIEE 11.1.1 - Disable Wrap Data Types in WebLogic Server 10.3.x

    - by Ahmed Awan
    By default, JDBC data type’s objects are wrapped with a WebLogic wrapper. This allows for features like debugging output and track connection usage to be done by the server. The wrapping can be turned off by setting this value to false. This improves performance, in some cases significantly, and allows for the application to use the native driver objects directly. Tip: How to Disable Wrapping in WLS Administration Console You can use the Administration Console to disable data type wrapping for following JDBC data sources in bifoundation_domain domain: Data Source Name bip_datasource mds-owsm EPMSystemRegistry   To disable wrapping for each JDBC data source (as stated in above table): 1.     If you have not already done so, in the Change Center of the Administration Console, click Lock & Edit. 2.     In the Domain Structure tree, expand Services, then select Data Sources. 3.     On the Summary of Data Sources page, click the data source name for example “mds-owsm”. 4.     Select the Configuration: Connection Pool tab. 5.     Scroll down and click Advanced to show the advanced connection pool options. 6.     In Wrap Data Types, deselect the checkbox to disable wrapping. 7.     Click Save. 8.     To activate these changes, in the Change Center of the Administration Console, click Activate Changes. Important Note: This change does not take effect immediately—it requires the server be restarted.

    Read the article

  • SQLAuthority News – Best SQLAuthority Posts of May

    - by pinaldave
    Month of May is always interesting and full of enthusiasm. Lots of good articles shared and lots of enthusiast communication on technology. This month we had 140 Character Cartoon Challenge Winner. We also had interesting conversation on what kind of lock WITH NOLOCK takes on objects as well. A quick tutorial on how to import CSV files into Database using SSIS started few other related questions. I also had fun time with community activities. I attended MVP Open Day. Vijay Raj also took awesome photos of my daughter – Shaivi. I have gain my faith back in Social Media and have created my Facebook Page, if you like SQLAuthority.com I request you to Like Facebook page as well. I am very active on twitter (@pinaldave) and answer lots of technical question if I am online during that time. During this month couple of old thing, I did learn by accident 1) Restart and Shutdown Remote Computer 2) SSMS has web browser. If you have made it till here – I suggest you to take participation in very interesting conversation here – Why SELECT * throws an error but SELECT COUNT(*) does not? Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: About Me, Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Earth’s Radiation Belt Sounds like Whale Song [Video]

    - by Jason Fitzpatrick
    The radio frequencies of Earth’s radiation belt have uncanny resemblance to a sort of whale/bird song remix. Check out this video to learn more about NASA’s efforts to explore the belts and listen to the Earth’s song. When we hear the “song” of the Earth, exactly what are we hearing? Science@NASA explains: Chorus is an electromagnetic phenomenon caused by plasma waves in Earth’s radiation belts. For years, ham radio operators on Earth have been listening to them from afar. Now, NASA’s twin Radiation Belt Storm Probes are traveling through the region of space where chorus actually comes from–and the recordings are out of this world. “This is what the radiation belts would sound like to a human being if we had radio antennas for ears,” says Kletzing, whose team at the University of Iowa built the “EMFISIS” (Electric and Magnetic Field Instrument Suite and Integrated Science) receiver used to pick up the signals. He’s careful to point out that these are not acoustic waves of the kind that travel through the air of our planet. Chorus is made of radio waves that oscillate at acoustic frequencies, between 0 and 10 kHz. The magnetic search coil antennas of the Radiation Belt Storm Probes are designed to detect these kinds of waves. HTG Explains: How Antivirus Software Works HTG Explains: Why Deleted Files Can Be Recovered and How You Can Prevent It HTG Explains: What Are the Sys Rq, Scroll Lock, and Pause/Break Keys on My Keyboard?

    Read the article

  • Podcast Show Notes: Evolving Enterprise Architecture

    - by Bob Rhubart
    Back in March Oracle ACE Directors Mike van Alst (IT-Eye) and Jordan Braunstein (Visual Integrator Consulting) and Oracle product manager Jeff Davies participated in an ArchBeat virtual meet-up. The resulting conversation quickly turned to the changing nature of enterprise architecture and the various forces driving that change. All four parts of that wide-ranging conversation are now available. Listen to Part 1 Listen to Part 2 Listen to Part 3 Listen to Part 4 As you’ll hear, Mike, Jordan, and Jeff bring unique perspectives and opinions to this very lively conversation. These are three very sharp, very experienced guys, as and you might expect, they don’t always walk in lock-step when it comes to EA. You can learn more about Mike, Jordan, and Jeff – and share your opinions with them -- through the links below: Mike van Alst Blog | Twitter | LinkedIn | Business |Oracle Mix | Oracle ACE Profile Jordan Braunstein Blog | Twitter | LinkedIn | Business | Oracle Mix | Oracle ACE Profile Jeff Davies Homepage | Blog | LinkedIn | Oracle Mix (Also check out Jeff’s book: The Definitive Guide to SOA: Oracle Service Bus) Up Next Next week’s program features highlights from the panel discussion at the Oracle Technology Architect Day event held in Anaheim, CA on May 19. You’ll hear from Oracle ACE Directors Basheer Khan and Floyd Teter, Oracle virtualization expert and former Sun Microsystems principal engineer Jeff Savit, Oracle security analyst Geri Born, and event MC Ralf Dossman, Director of SOA and Middleware in Oracle’s Enterprise Solutions Group. Stay tuned: RSS

    Read the article

  • Ask How-To Geek: Diagnosing DSL Hang Ups, Extracting Media from PowerPoint, Restricting IE to a Single Web Page

    - by Jason Fitzpatrick
    This week we take a look at flaky DSL connections, extracting media from PowerPoint presentations, and how to lock down IE to a single website without any additional software or network configuration hacking necessary. Once a week we dip into our reader mailbag and help readers solve their problems, sharing the useful solutions with you in the process. Read on to see our fixes for this week’s reader dilemmas. Latest Features How-To Geek ETC How to Get Amazing Color from Photos in Photoshop, GIMP, and Paint.NET Learn To Adjust Contrast Like a Pro in Photoshop, GIMP, and Paint.NET Have You Ever Wondered How Your Operating System Got Its Name? Should You Delete Windows 7 Service Pack Backup Files to Save Space? What Can Super Mario Teach Us About Graphics Technology? Windows 7 Service Pack 1 is Released: But Should You Install It? Page Zipper Unpacks Multi-Page Articles for Single-Page Display Minty Bug: Build an FM Bug Inside a Mint Container Get the MakeUseOf eBook Guide to Hacker Proofing Your PC Sync Your Windows Computer with Your Ubuntu One Account [Desktop Client] Awesome 10 Meter Curved Touchscreen at the University of Groningen [Video] TV Antenna Helper Makes HDTV Antenna Calibration a Snap

    Read the article

< Previous Page | 481 482 483 484 485 486 487 488 489 490 491 492  | Next Page >