Search Results

Search found 15357 results on 615 pages for 'oracle corporation'.

Page 489/615 | < Previous Page | 485 486 487 488 489 490 491 492 493 494 495 496  | Next Page >

  • Value of Certification Proven Again

    - by Paul Sorensen
    Hi Everyone,A recent article in Certification Magazine spells out the value of certification IT professionals and article provides some detailed insight on the state of the economy and what it means to IT professionals. A few of the key findings (among many) by Certification Magazine:Even in this tough economy, IT worker salaries grew at about 9%.Many respondents reported that they received raises after earning a new certification.Many people reported that they had earned one or two new credentials within the last year.Salaries for more entry-level certifications was stagnant over the last year or so.I encourage you to take a look at the article. It is very encouraging to see that companies and individuals still recognize and value the hard work that goes in to getting certified.Thank you,

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • Adding graph in excel based on the content of ADFdi Table

    - by Arun
    Often we tend to represent the data present in the table in a graphical format to give a visual impression of the data. This article would be explaining the way to achieve it using the data we have in ADFdi table of the integrated workbook. Pre-requisites: Microsoft Office 2007 JDeveloper 11.1.1.1.0 and above Assuming we are already having an ADFdi enabled workbook with a table based on an Employee table as shown in the image below. Also, add the table.download to the ribbon toolbar as menu item / as action for the startup event. From excel, we'll add a new 3D bar chart Now, we need to select the data range for the chart. We will take an example of chart based on the salary of the employees. So, the data for the X-Axis of the chart would be the Ename and the data for the Y-Axis being the salary. We can do that by right clicking on the Chart and selecting Select Data. We would select the Legend Entry Series name as the Sal header column in the table, and for the data, we select both the header row and the row below it (by holding Shift key). And, for the Category Axis, we select the Ename header row and the row below it (by holding Shift key). We can get the chart now, by running the Workbook and downloading the data into the table. This simple example can be enhanced for complex graphs by using the data from the ADFdi table to use the power of excel along with ADF Desktop Integration.

    Read the article

  • JavaOne 2012 - The Power of Java 7 NIO.2

    - by Sharon Zakhour
    At JavaOne 2012, Mohamed Taman of e-finance gave a presentation highlighting the power of NIO.2, the file I/O APIs introduced in JDK 7. He shared information on how to get the most out of NIO.2, gave tips on migrating your I/O code to NIO.2, and presented case studies. The File I/O (featuring NIO.2) lesson in the Java Tutorials has extensive coverage of NIO.2 and includes the following topics: Managing Metadata Walking the File Tree Finding Files, including information on using PatternMatcher and globs. Watching a Directory for Changes Legacy File I/O Code includes information on migrating your code. From the conference session page, you can watch the presentation or download the materials.

    Read the article

  • SQL Developer Debugging, Watches, Smart Data, & Data

    - by thatjeffsmith
    After presenting the SQL Developer PL/SQL debugger for about an hour yesterday at KScope12 in San Antonio, my boss came up and asked, “Now, would you really want to know what the Smart Data panel does?” Apparently I had ‘made up’ my own story about what that panel’s intent is based on my experience with it. Not good Jeff, not good. It was a very small point of my presentation, but I probably should have read the docs. The Smart Data tab displays information about variables, using your Debugger: Smart Data preferences. You can also specify these preferences by right-clicking in the Smart Data window and selecting Preferences. Debugger Smart Data Preferences, control number of variables to display The Smart Data panel auto-inspects the last X accessed variables. So if you have a program with 26 variables, instead of showing you all 26, it will just show you the last two variables that were referenced in your program. If you were to click on the ‘Data’ debug panel, you’ll see EVERYTHING. And if you only want to see a very specific set of values, then you should use Watches. The Smart Data Panel As I step through the code, the variables being tracked change as they are referenced. Only the most recent ones display. This is controlled by the ‘Maximum Locations to Remember’ preference. Step through the code, see the latest variables accessed The Data Panel All variables are displayed. Might be information overload on large PL/SQL programs where you have many dozens or even hundreds of variables to track. Shows everything all the time Watches Watches are added manually and only show what you ask for. Data on Demand – add a watch to track a specific variable Remember, you can interact with your data If you want to do more than just watch, you can mouse-right on a data element, and change the value of the variable as the program is running. This is one of the primary benefits to debugging over using DBMS_OUTPUT to track what’s happening in your program. Change the values while the program is running to test your ‘What if?’ scenarios

    Read the article

  • Client side code snipets

    - by raghu.yadav
    function clientMethodCall(event) { component = event.getSource(); AdfCustomEvent.queue(component, "customEvent",{payload:component.getSubmittedValue()}, true); event.cancel(); } ]]-- <af:document>      <f:facet name="metaContainer">      <af:group>        <!--[CDATA[            <script>                function clientMethodCall(event) {                                       component = event.getSource();                    AdfCustomEvent.queue(component, "customEvent",{payload:component.getSubmittedValue()}, true);                                                     event.cancel();                                    }                 </script> ]]-->      </af:group>    </f:facet>      <af:form>        <af:panelformlayout>          <f:facet name="footer">          <af:inputtext label="Let me spy on you: Please enter your mail password">            <af:clientlistener method="clientMethodCall" type="keyUp">            <af:serverlistener type="customEvent" method="#{customBean.handleRequest}">          </af:serverlistener>bean code    public void handleRequest(ClientEvent event){                System.out.println("---"+event.getParameters().get("payload"));            } tree<af:tree id="tree1" value="#{bindings.DepartmentsView11.treeModel}" var="node" selectionlistener="#{bindings.DepartmentsView11.treeModel.makeCurrent}" rowselection="single">    <f:facet name="nodeStamp">      <af:outputtext value="#{node}">    </af:outputtext>    <af:clientlistener method="expandNode" type="selection">  </af:clientlistener></f:facet>   <f:facet name="metaContainer">        <af:group>          <!--[CDATA[            <script>                function expandNode(event){                    var _tree = event.getSource();                    rwKeySet = event.getAddedSet();                    var firstRowKey;                    for(rowKey in rwKeySet){                       firstRowKey  = rowKey;                        // we are interested in the first hit, so break out here                        break;                    }                    if (_tree.isPathExpanded(firstRowKey)){                         _tree.setDisclosedRowKey(firstRowKey,false);                    }                    else{                        _tree.setDisclosedRowKey(firstRowKey,true);                    }               }        </script> ]]-->        </af:group>      </f:facet>   </af:tree> </af:clientlistener></af:inputtext></f:facet></af:panelformlayout></af:form></af:document> bean code public void handleRequest(ClientEvent event){ System.out.println("---"+event.getParameters().get("payload")); } tree function expandNode(event){ var _tree = event.getSource(); rwKeySet = event.getAddedSet(); var firstRowKey; for(rowKey in rwKeySet){ firstRowKey = rowKey; // we are interested in the first hit, so break out here break; } if (_tree.isPathExpanded(firstRowKey)){ _tree.setDisclosedRowKey(firstRowKey,false); } else{ _tree.setDisclosedRowKey(firstRowKey,true); } } ]]--

    Read the article

  • Integrating JavaFX Scene Builder in the IDEs

    - by Jerome Cambon
    I experienced recently using Scene Builder from Netbeans, Eclipse and IntelliJ IDEA. As you may know, Scene Builder is a standalone tool, that can be used independently of any IDE. But it can be very convenient to use it with your favorite IDE, for instance start it by double-clicking on an FXML file, or run samples delivered with Scene Builder.  I'm sharing here with you few tweaks that I had to do for a better integration. Scene Builder 1.1 Developer Preview should be installed before doing the tweaks. The steps below have been done on Windows 7. It should be very similar on both Mac OS and Linux. Please tell me if you find any issue on one of these 2 platforms. Netbeans 7.3 Netbeans 7.3 can be downloaded from here. Creating a New FXML project Part of the JavaFx projects, Netbeans allows to create a 'JavaFX FXML Application', that creates a JavaFx project based on FXML description. The FXML file will be editable with Scene Builder. Starting Scene Builder from Netbeans If SceneBuilder 1.1 is installed, Netbeans will discover it automatically.In case of issue, one can open the Options panel, Java section, JavaFx tab. Scene Builder home should appear here. You can then either Open the FXML file with Scene Builder, or edit it with the Netbeans FXML editor : When 'Open' is selected, Scene Builder appears on top of the Netbeans window : When 'Edit' is selected, the FXML is opened in the Netbeans FXML editor, which support syntax highlighting and completion : Using Scene Builder Samples Scene Builder provides Netbeans projects, that can be opened/run directly : Eclipse 4.2.1 + e(fx)clipse 0.1.1 JavaFX integration in Eclipse has been done with the e(fx)clipse plugin. A distribution bundle containing Eclipse and e(fx)clipse is provided here. Creating New FXML project All the JavaFX-related projects can be found in 'Other' section : First create a new JavaFX project: Enter the project name (Test here). JavaFX delivery will be found in the JRE. Then, create a 'New FXML Document': Enter the FXML file name (Sample here). You may also want to choose the FXML document root element (AnchorPane by default). Dynamic root is for advanced users which want to manage custom types. Starting Scene Builder from Eclipse Once created, you can then either Open the FXML file with Scene Builder, or Open it in the Eclipse FXML editor : Using Scene Builder Samples from Eclipse To use Scene Builder samples, first create a new JavaFX Project (from 'Other' section): Then, on the next panel, 'Link additionnal source': … and select the source directory of a Scene Builder example : HelloWorld here (the parent directory of the java package should be selected).Then, choose a 'Folder name' for your sample: You can now run the Scene Builder example by right-clicking the Main.java source file: IntelliJ IDEA 11.1.3 IntelliJ IDEA Community Edition can be downloaded from here. IntelliJ IDEA has no specific JavaFX integration. Creating New IntelliJ project from existing source Since IntelliJ has no JavaFX project knowledge, we are using the Scene Builder samples as a starting point. We are going to create a new Java project from the HelloWorld sample: Then, click twice on 'Next' (nothing to change), then 'Finish'. The 'HelloWorld' project is created. Starting Scene Builder from IntelliJ We need to tell the IDE that FXML files are opened with an external application. Then, the OS file association will be used. To do this, open the File->Settings panel. Then, select 'File Types' and 'Files opened in associated applications'. And add a new wildcard : '*.fxml' : Now, from the HelloWorld project, you can double-click on HelloWorld.fxml : Scene Builder window appears on top of the IntelliJ window : Using Scene Builder Samples from IntelliJ We need to tell IntelliJ that the fxml files must be copied in the build directory.To do that, from the HelloWorld directory, open the 'idea' section, and edit the 'compiler.xml' file. We need to add an '*.fxml' entry: Then, you can run the sample from HelloWorld project, by right-clicking the Main class:

    Read the article

  • Broadcom BCM4331 not working on new Mac Mini 5,1

    - by Jon
    I can't seem to get my wireless card working on my Mac Mini 5,1. Lspci returns: 03:00.0 Network controller: Broadcom Corporation BCM4331 802.11a/b/g/n (rev 02) But running "additional drivers" doesn't detect anything. The nm-applet menu reads "device not ready--firmware missing." What can I do to get this to work? Note, this is with 12.04.1, so many of the previous discussions (for 11.10, etc) probably don't apply here.

    Read the article

  • on coding style

    - by user12607414
    I vastly prefer coding to discussing coding style, just as I would prefer to write poetry instead of talking about how it should be written. Sometimes the topic cannot be put off, either because some individual coder is messing up a shared code base and needs to be corrected, or (worse) because some officious soul has decided, "what we really need around here are some strongly enforced style rules!" Neither is the case at the moment, and yet I will venture a post on the subject. The following are not rules, but suggested etiquette. The idea is to allow a coherent style of coding to flourish safely and sanely, as a humane, inductive, social process. Maxim M1: Observe, respect, and imitate the largest-scale precedents available. (Preserve styles of whitespace, capitalization, punctuation, abbreviation, name choice, code block size, factorization, type of comments, class organization, file naming, etc., etc., etc.) Maxim M2: Don't add weight to small-scale variations. (Realize that Maxim M1 has been broken many times, but don't take that as license to create further irregularities.) Maxim M3: Listen to and rely on your reviewers to help you perceive your own coding quirks. (When you review, help the coder do this.) Maxim M4: When you touch some code, try to leave it more readable than you found it. (When you review such changes, thank the coder for the cleanup. When you plan changes, plan for cleanups.) On the Hotspot project, which is almost 1.5 decades old, we have often practiced and benefited from such etiquette. The process is, and should be, inductive, not prescriptive. An ounce of neighborliness is better than a pound of police-work. Reality check: If you actually look at (or live in) the Hotspot code base, you will find we have accumulated many annoying irregularities in our source base. I suppose this is the normal condition of a lived-in space. Unless you want to spend all your time polishing and tidying, you can't live without some smudge and clutter, can you? Final digression: Grammars and dictionaries and other prescriptive rule books are sometimes useful, but we humans learn and maintain our language by example not grammar. The same applies to style rules. Actually, I think the process of maintaining a clean and pleasant working code base is an instance of a community maintaining its common linguistic identity. BTW, I've been reading and listening to John McWhorter lately with great pleasure. (If you end with a digression, is it a tail-digression?)

    Read the article

  • WebCenter Spaces 11g PS2 Task Flow Customization

    - by Javier Ductor
    Previously, I wrote about Spaces Template Customization. In order to adapt Spaces to customers prototype, it was necessary to change template and skin, as well as the members task flow. In this entry, I describe how to customize this task flow.Default members portlet:Prototype Members Portlet:First thing to do, I downloaded SpacesTaskflowCustomizationApplication with its guide.This application allows developers to modify task flows in Spaces, such as Announcements, Discussions, Events, Members, etc. Before starting, some configuration is needed in jDeveloper, like changing role to 'Customization Developer' mode, although it is explained in the application guide. It is important to know that the way task flows are modified is through libraries, and they cannot be updated directly in the source code like templates, you must use the Structure panel for this. Steps to customize Members portlet:1. There are two members views: showIconicView and showListView. By default it is set to Iconic view, but in my case I preferred the View list, so I updated in table-of-members-taskflow.xml this default value.2. Change the TableOfMembers-ListView.jspx file. By editing this file, you can control the way this task flow is displayed. So I customized this list view using the structure panel to get the desired look&feel.3. After changes are made, click save all, because every time a library changes an xml file is generated with all modifications listed, and they must be saved.4. Rebuild project and deploy application.5. Open WLST command window and import this customization to MDS repository with the 'import' command.Eventually, this was the result:Other task flows can be customized in a similar way.

    Read the article

  • Interactive Reporting with BI Publisher 11G

    - by kanichiro.nishida
    One of the new features that came out with BI Publisher 11G and made me really excited about is the Interactive Viewer, which allows you to interact with the data presented in the reports and gain more insights about the data. You can have as many Table, Chart, Pivot Table, Gauge components in a single report and all of them are linked together so that you can click on any data point on the components such as Chart, Pivot Table, Gauge, and that would refresh other components in the report to reflect the selection without refreshing the whole report or page. No longer you need to navigate to another report or open other reports to see related data or drill down to the detail data. It’s all there within a single report. Well, sounds cliché but really this is a typical case of ‘seeing is believing’, so instead of reading I would love you guys to take a look so I’ve recorded the following video. Please take a look !   The above video shows you the power of the BI Publisher Interactive Viewer with a real data from San Francisco Airport. The lists shown at the top or the left are one of the new features that we’ll be introducing in coming future very soon, but everything else is there with 11.1.1.3. So why not start today ? And please share your feedback with us!

    Read the article

  • SQL Developer: Describe versus Ctrl+Click to Open Database Objects

    - by thatjeffsmith
    In yesterday’s post I talked about you could use SQL Developer’s Describe (SHIFT+F4) to open a PL/SQL Package at your cursor. You might get an error if you try to describe this… If you actually try to describe the package as you see it in the above screenshot, you’ll get an error: Doh! I neglected to say in yesterday’s post that I was highlighting the package name before I hit SHIFT+F4. This works just fine, but it will work even better in our next release as we’ve fixed this issue. Until then, you can also try the Ctrl+Hover with your mouse. For PL/SQL calls you can open the source immediately based on what you’re hovering over with your mouse cursor. You could try this with “dbms_output.put_line(” too Ctrl+Click, It’s not just for PL/SQL If you don’t like the floating describe windows you get when you do a SHIFT+F4 on a database object, the ctrl+click will work too. Instead of opening a normal ‘hover’ panel, you’ll be taken directly to the object editor for that table, view, etc. Go ahead and try it right now. Paste this into your worksheet, then ctrl+click with your mouse over the table name: select * from scott.emp And now you know, the rest of the story.

    Read the article

  • Developing custom MBeans to manage J2EE Applications (Part III)

    - by philippe Le Mouel
    This is the third and final part in a series of blogs, that demonstrate how to add management capability to your own application using JMX MBeans. In Part I we saw: How to implement a custom MBean to manage configuration associated with an application. How to package the resulting code and configuration as part of the application's ear file. How to register MBeans upon application startup, and unregistered them upon application stop (or undeployment). How to use generic JMX clients such as JConsole to browse and edit our application's MBean. In Part II we saw: How to add localized descriptions to our MBean, MBean attributes, MBean operations and MBean operation parameters. How to specify meaningful name to our MBean operation parameters. We also touched on future enhancements that will simplify how we can implement localized MBeans. In this third and last part, we will re-write our MBean to simplify how we added localized descriptions. To do so we will take advantage of the functionality we already described in part II and that is now part of WebLogic 10.3.3.0. We will show how to take advantage of WebLogic's localization support to localize our MBeans based on the client's Locale independently of the server's Locale. Each client will see MBean descriptions localized based on his/her own Locale. We will show how to achieve this using JConsole, and also using a sample programmatic JMX Java client. The complete code sample and associated build files for part III are available as a zip file. The code has been tested against WebLogic Server 10.3.3.0 and JDK6. To build and deploy our sample application, please follow the instruction provided in Part I, as they also apply to part III's code and associated zip file. Providing custom descriptions take II In part II we localized our MBean descriptions by extending the StandardMBean class and overriding its many getDescription methods. WebLogic 10.3.3.0 similarly to JDK 7 can automatically localize MBean descriptions as long as those are specified according to the following conventions: Descriptions resource bundle keys are named according to: MBean description: <MBeanInterfaceClass>.mbean MBean attribute description: <MBeanInterfaceClass>.attribute.<AttributeName> MBean operation description: <MBeanInterfaceClass>.operation.<OperationName> MBean operation parameter description: <MBeanInterfaceClass>.operation.<OperationName>.<ParameterName> MBean constructor description: <MBeanInterfaceClass>.constructor.<ConstructorName> MBean constructor parameter description: <MBeanInterfaceClass>.constructor.<ConstructorName>.<ParameterName> We also purposely named our resource bundle class MBeanDescriptions and included it as part of the same package as our MBean. We already followed the above conventions when creating our resource bundle in part II, and our default resource bundle class with English descriptions looks like: package blog.wls.jmx.appmbean; import java.util.ListResourceBundle; public class MBeanDescriptions extends ListResourceBundle { protected Object[][] getContents() { return new Object[][] { {"PropertyConfigMXBean.mbean", "MBean used to manage persistent application properties"}, {"PropertyConfigMXBean.attribute.Properties", "Properties associated with the running application"}, {"PropertyConfigMXBean.operation.setProperty", "Create a new property, or change the value of an existing property"}, {"PropertyConfigMXBean.operation.setProperty.key", "Name that identify the property to set."}, {"PropertyConfigMXBean.operation.setProperty.value", "Value for the property being set"}, {"PropertyConfigMXBean.operation.getProperty", "Get the value for an existing property"}, {"PropertyConfigMXBean.operation.getProperty.key", "Name that identify the property to be retrieved"} }; } } We have now also added a resource bundle with French localized descriptions: package blog.wls.jmx.appmbean; import java.util.ListResourceBundle; public class MBeanDescriptions_fr extends ListResourceBundle { protected Object[][] getContents() { return new Object[][] { {"PropertyConfigMXBean.mbean", "Manage proprietes sauvegarde dans un fichier disque."}, {"PropertyConfigMXBean.attribute.Properties", "Proprietes associee avec l'application en cour d'execution"}, {"PropertyConfigMXBean.operation.setProperty", "Construit une nouvelle proprietee, ou change la valeur d'une proprietee existante."}, {"PropertyConfigMXBean.operation.setProperty.key", "Nom de la propriete dont la valeur est change."}, {"PropertyConfigMXBean.operation.setProperty.value", "Nouvelle valeur"}, {"PropertyConfigMXBean.operation.getProperty", "Retourne la valeur d'une propriete existante."}, {"PropertyConfigMXBean.operation.getProperty.key", "Nom de la propriete a retrouver."} }; } } So now we can just remove the many getDescriptions methods from our MBean code, and have a much cleaner: package blog.wls.jmx.appmbean; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.File; import java.net.URL; import java.util.Map; import java.util.HashMap; import java.util.Properties; import javax.management.MBeanServer; import javax.management.ObjectName; import javax.management.MBeanRegistration; import javax.management.StandardMBean; import javax.management.MBeanOperationInfo; import javax.management.MBeanParameterInfo; public class PropertyConfig extends StandardMBean implements PropertyConfigMXBean, MBeanRegistration { private String relativePath_ = null; private Properties props_ = null; private File resource_ = null; private static Map operationsParamNames_ = null; static { operationsParamNames_ = new HashMap(); operationsParamNames_.put("setProperty", new String[] {"key", "value"}); operationsParamNames_.put("getProperty", new String[] {"key"}); } public PropertyConfig(String relativePath) throws Exception { super(PropertyConfigMXBean.class , true); props_ = new Properties(); relativePath_ = relativePath; } public String setProperty(String key, String value) throws IOException { String oldValue = null; if (value == null) { oldValue = String.class.cast(props_.remove(key)); } else { oldValue = String.class.cast(props_.setProperty(key, value)); } save(); return oldValue; } public String getProperty(String key) { return props_.getProperty(key); } public Map getProperties() { return (Map) props_; } private void load() throws IOException { InputStream is = new FileInputStream(resource_); try { props_.load(is); } finally { is.close(); } } private void save() throws IOException { OutputStream os = new FileOutputStream(resource_); try { props_.store(os, null); } finally { os.close(); } } public ObjectName preRegister(MBeanServer server, ObjectName name) throws Exception { // MBean must be registered from an application thread // to have access to the application ClassLoader ClassLoader cl = Thread.currentThread().getContextClassLoader(); URL resourceUrl = cl.getResource(relativePath_); resource_ = new File(resourceUrl.toURI()); load(); return name; } public void postRegister(Boolean registrationDone) { } public void preDeregister() throws Exception {} public void postDeregister() {} protected String getParameterName(MBeanOperationInfo op, MBeanParameterInfo param, int sequence) { return operationsParamNames_.get(op.getName())[sequence]; } } The only reason we are still extending the StandardMBean class, is to override the default values for our operations parameters name. If this isn't a concern, then one could just write the following code: package blog.wls.jmx.appmbean; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.File; import java.net.URL; import java.util.Properties; import javax.management.MBeanServer; import javax.management.ObjectName; import javax.management.MBeanRegistration; import javax.management.StandardMBean; import javax.management.MBeanOperationInfo; import javax.management.MBeanParameterInfo; public class PropertyConfig implements PropertyConfigMXBean, MBeanRegistration { private String relativePath_ = null; private Properties props_ = null; private File resource_ = null; public PropertyConfig(String relativePath) throws Exception { props_ = new Properties(); relativePath_ = relativePath; } public String setProperty(String key, String value) throws IOException { String oldValue = null; if (value == null) { oldValue = String.class.cast(props_.remove(key)); } else { oldValue = String.class.cast(props_.setProperty(key, value)); } save(); return oldValue; } public String getProperty(String key) { return props_.getProperty(key); } public Map getProperties() { return (Map) props_; } private void load() throws IOException { InputStream is = new FileInputStream(resource_); try { props_.load(is); } finally { is.close(); } } private void save() throws IOException { OutputStream os = new FileOutputStream(resource_); try { props_.store(os, null); } finally { os.close(); } } public ObjectName preRegister(MBeanServer server, ObjectName name) throws Exception { // MBean must be registered from an application thread // to have access to the application ClassLoader ClassLoader cl = Thread.currentThread().getContextClassLoader(); URL resourceUrl = cl.getResource(relativePath_); resource_ = new File(resourceUrl.toURI()); load(); return name; } public void postRegister(Boolean registrationDone) { } public void preDeregister() throws Exception {} public void postDeregister() {} } Note: The above would also require changing the operations parameters name in the resource bundle classes. For instance: PropertyConfigMXBean.operation.setProperty.key would become: PropertyConfigMXBean.operation.setProperty.p0 Client based localization When accessing our MBean using JConsole started with the following command line: jconsole -J-Djava.class.path=$JAVA_HOME/lib/jconsole.jar:$JAVA_HOME/lib/tools.jar: $WL_HOME/server/lib/wljmxclient.jar -J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote -debug We see that our MBean descriptions are localized according to the WebLogic's server Locale. English in this case: Note: Consult Part I for information on how to use JConsole to browse/edit our MBean. Now if we specify the client's Locale as part of the JConsole command line as follow: jconsole -J-Djava.class.path=$JAVA_HOME/lib/jconsole.jar:$JAVA_HOME/lib/tools.jar: $WL_HOME/server/lib/wljmxclient.jar -J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote -J-Dweblogic.management.remote.locale=fr-FR -debug We see that our MBean descriptions are now localized according to the specified client's Locale. French in this case: We use the weblogic.management.remote.locale system property to specify the Locale that should be associated with the cient's JMX connections. The value is composed of the client's language code and its country code separated by the - character. The country code is not required, and can be omitted. For instance: -Dweblogic.management.remote.locale=fr We can also specify the client's Locale using a programmatic client as demonstrated below: package blog.wls.jmx.appmbean.client; import javax.management.MBeanServerConnection; import javax.management.ObjectName; import javax.management.MBeanInfo; import javax.management.remote.JMXConnector; import javax.management.remote.JMXServiceURL; import javax.management.remote.JMXConnectorFactory; import java.util.Hashtable; import java.util.Set; import java.util.Locale; public class JMXClient { public static void main(String[] args) throws Exception { JMXConnector jmxCon = null; try { JMXServiceURL serviceUrl = new JMXServiceURL( "service:jmx:iiop://127.0.0.1:7001/jndi/weblogic.management.mbeanservers.runtime"); System.out.println("Connecting to: " + serviceUrl); // properties associated with the connection Hashtable env = new Hashtable(); env.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES, "weblogic.management.remote"); String[] credentials = new String[2]; credentials[0] = "weblogic"; credentials[1] = "weblogic"; env.put(JMXConnector.CREDENTIALS, credentials); // specifies the client's Locale env.put("weblogic.management.remote.locale", Locale.FRENCH); jmxCon = JMXConnectorFactory.newJMXConnector(serviceUrl, env); jmxCon.connect(); MBeanServerConnection con = jmxCon.getMBeanServerConnection(); Set mbeans = con.queryNames( new ObjectName( "blog.wls.jmx.appmbean:name=myAppProperties,type=PropertyConfig,*"), null); for (ObjectName mbeanName : mbeans) { System.out.println("\n\nMBEAN: " + mbeanName); MBeanInfo minfo = con.getMBeanInfo(mbeanName); System.out.println("MBean Description: "+minfo.getDescription()); System.out.println("\n"); } } finally { // release the connection if (jmxCon != null) jmxCon.close(); } } } The above client code is part of the zip file associated with this blog, and can be run using the provided client.sh script. The resulting output is shown below: $ ./client.sh Connecting to: service:jmx:iiop://127.0.0.1:7001/jndi/weblogic.management.mbeanservers.runtime MBEAN: blog.wls.jmx.appmbean:type=PropertyConfig,name=myAppProperties MBean Description: Manage proprietes sauvegarde dans un fichier disque. $ Miscellaneous Using Description annotation to specify MBean descriptions Earlier we have seen how to name our MBean descriptions resource keys, so that WebLogic 10.3.3.0 automatically uses them to localize our MBean. In some cases we might want to implicitly specify the resource key, and resource bundle. For instance when operations are overloaded, and the operation name is no longer sufficient to uniquely identify a single operation. In this case we can use the Description annotation provided by WebLogic as follow: import weblogic.management.utils.Description; @Description(resourceKey="myapp.resources.TestMXBean.description", resourceBundleBaseName="myapp.resources.MBeanResources") public interface TestMXBean { @Description(resourceKey="myapp.resources.TestMXBean.threshold.description", resourceBundleBaseName="myapp.resources.MBeanResources" ) public int getthreshold(); @Description(resourceKey="myapp.resources.TestMXBean.reset.description", resourceBundleBaseName="myapp.resources.MBeanResources") public int reset( @Description(resourceKey="myapp.resources.TestMXBean.reset.id.description", resourceBundleBaseName="myapp.resources.MBeanResources", displayNameKey= "myapp.resources.TestMXBean.reset.id.displayName.description") int id); } The Description annotation should be applied to the MBean interface. It can be used to specify MBean, MBean attributes, MBean operations, and MBean operation parameters descriptions as demonstrated above. Retrieving the Locale associated with a JMX operation from the MBean code There are several cases where it is necessary to retrieve the Locale associated with a JMX call from the MBean implementation. For instance this can be useful when localizing exception messages. This can be done as follow: import weblogic.management.mbeanservers.JMXContextUtil; ...... // some MBean method implementation public String setProperty(String key, String value) throws IOException { Locale callersLocale = JMXContextUtil.getLocale(); // use callersLocale to localize Exception messages or // potentially some return values such a Date .... } Conclusion With this last part we conclude our three part series on how to write MBeans to manage J2EE applications. We are far from having exhausted this particular topic, but we have gone a long way and are now capable to take advantage of the latest functionality provided by WebLogic's application server to write user friendly MBeans.

    Read the article

  • Java Spotlight Episode 148: Bruno Souza on SouJava and the JCP @JCP @Soujava

    - by Roger Brinkley
    Interview with Bruno Souza of SouJava on the upcoming JCP elections, SouJava's involvement in the JCP, Adopt a JSR program, transparency, and Juggy.. Right-click or Control-click to download this MP3 file. You can also subscribe to the Java Spotlight Podcast Feed to get the latest podcast automatically. If you use iTunes you can open iTunes and subscribe with this link: Java Spotlight Podcast in iTunes. Show Notes News Java SE 8: Lambda Quick Start JCP Executive Committee Elections start Oct 15 Java EE 7 Certification Survey - Participants Needed Events Oct 28-30, JAX London, London Nov 4-8, Oredev, Malmö, Sweden Nov 6, JFall, Amsterdam, Netherlands Nov 11-15, Devoxx, Belgium Feature Interview Bruno Souza is a Java Developer and Open Source Evangelist at Summa Technologies, and a Cloud Expert at ToolsCloud. Nurturing developer communities is a personal passion, and Bruno worked actively with Java, NetBeans, Open Solaris, OFBiz, and many other open source communities. As founder and coordinator of SouJava (The Java Users Society), one of the world's largest Java User Groups, Bruno leaded the expansion of the Java movement in Brazil. Founder of the Worldwide Java User Groups Community, Bruno helped the creation and organization of hundreds of JUGs worldwide. A Java Developer since the early days, Bruno participated in some of the largest Java projects in Brazil. What’s Cool ControlsFX 8.0.2 Release Screencast by Adam Bien on using JavaFX with Maven and SceneBuilder New DukePad video by Jasper Potts

    Read the article

  • Election 2012: Twitter Breaks Records with MySQL

    - by Bertrand Matthelié
    Twitter VP of Infrastructure Operations Engineering Mazen Rawashdeh shared news and numbers yesterday on his blog: "Last night, the world tuned in to Twitter to share the election results as U.S. voters chose a president and settled many other campaigns. Throughout the day, people sent more than 31 million election-related Tweets (which contained certain key terms and relevant hashtags). And as results rolled in, we tracked the surge in election-related Tweets at 327,452 Tweets per minute (TPM). These numbers reflect the largest election-related Twitter conversation during our 6 years of existence, though they don’t capture the total volume of all Tweets yesterday." "Last night, Twitter averaged about 9,965 TPS from 8:11pm to 9:11pm PT, with a one-second peak of 15,107 TPS at 8:20pm PT and a one-minute peak of 874,560 TPM. Seeing a sustained peak over the course of an entire event is a change from the way people have previously turned to Twitter during live events. Now, rather than brief spikes, we are seeing sustained peaks for hours." Congrats to Jeremy Cole, Davi Arnaut and the rest of the team at Twitter for their excellent work! Jeremy recently held a keynote presentation at MySQL Connect describing how MySQL powers Twitter, and why they chose and continue to rely on MySQL for their operations. You can watch the presentation here. He also went into more details during another presentation later that day and you can access the slides here. Below a couple of tweets from Jeremy after what have surely been hectic days...  Keep up the good work guys!

    Read the article

  • ADF Taskflow Reentry-not-allowed and Reentry-allowed

    - by raghu.yadav
    Here is the sample usecase to demonstrate how reentry-not-allowed and reentry-allowed properties works. what doc says about these 2 properties : reentry-allowed: Reentry is allowed on any view activity within the ADF bounded task flow reentry-not-allowed: Reentry of the ADF bounded task flow is not allowed. If you specify reentry-not-allowed on a task flow definition, an end user can still click the browser back button and return to a page within the bounded task flow. However, if the user does anything on the page such as clicking a button, an exception (for example, InvalidTaskFlowReentry) is thrown indicating the bounded task flow was reentered improperly. The actual reentry condition is identified upon the submit of the reentered page. Ingrediants : main.jspx - Jobs_TF - jobs.jspx scenario. click RunTrx button in main.jspx navigates to jobs page by entering into Jobs taskflow. click jobs page back button to navigate back to main.jspx, now click browser back button to navigate jobs.jspx and then click jobs page back Button to see reentry-not-allowed error message.

    Read the article

  • Jerome has written a nice article on integrating SceneBuilder with several IDEs

    - by daniel
    My colleague Jerome Cambon has written a very nice article about how to get SceneBuilder working with several IDEs. The JavaFX SceneBuilder is at the root a stand-alone tool - but there are various tweaks and tricks that you can use to make its use in conjunction with your favorite IDE a more enjoyable experience. In his article - Jerome shows how this can be done with NetBeans (7.3), Eclipse, with Tom's excellent e(fx)clipse plugin, and IntelliJ IDEA. Good work Jerome!

    Read the article

  • Using Solaris pkg to list all setuid or setgid programs

    - by darrenm
    $ pkg contents -a mode=4??? -a mode=2??? -t file -o pkg.name,path,mode We can also add a package name on the end to restrict it to just that single package eg: $ pkg contents -a mode=4??? -a mode=2??? -t file -o pkg.name,path,mode core-os PKG.NAME PATH MODE system/core-os usr/bin/amd64/newtask 4555 system/core-os usr/bin/amd64/uptime 4555 system/core-os usr/bin/at 4755 system/core-os usr/bin/atq 4755 system/core-os usr/bin/atrm 4755 system/core-os usr/bin/crontab 4555 system/core-os usr/bin/mail 2511 system/core-os usr/bin/mailx 2511 system/core-os usr/bin/newgrp 4755 system/core-os usr/bin/pfedit 4755 system/core-os usr/bin/su 4555 system/core-os usr/bin/tip 4511 system/core-os usr/bin/write 2555 system/core-os usr/lib/utmp_update 4555 system/core-os usr/sbin/amd64/prtconf 2555 system/core-os usr/sbin/amd64/swap 2555 system/core-os usr/sbin/amd64/sysdef 2555 system/core-os usr/sbin/amd64/whodo 4555 system/core-os usr/sbin/prtdiag 2755 system/core-os usr/sbin/quota 4555 system/core-os usr/sbin/wall 2555

    Read the article

  • CSV Anyone?

    - by Tim Dexter
    CSV, a dead format? With today's abilities to generate Excel output (Im working on some posts for the shiny new Excel templates) and the sophistication of the eText outputs, do you really need CSV? I guess so seeing as it was added after the base product was released as an enhancement. But I'd be interested in hearing use cases? I used to think the same of text output. But now Im working in the public sector where older technologies abound I can see a use for text output. Its also used as a machine readable format, etc. BIP still does not support a text format from its RTF templates but its very doable using XSL templates. Back to CSV, I noticed an enhancement in the big list of new stuff in the 10.1.3.4.1 rollup. You can now generate CSV from structured data ie a data template or a SQL XML query. This piqued my interest so I ran off a data template to CSV. Its interesting, in a geeky kinda way, I guess Im that way inclined.Here's my data structure:<EMPLOYEES> <LIST_G_DEPT> <G_DEPT>  <DEPARTMENT_ID>10</DEPARTMENT_ID>  <DEPARTMENT_NAME>Administration</DEPARTMENT_NAME>  <LIST_G_EMP>   <G_EMP>     <EMPLOYEE_ID>200</EMPLOYEE_ID>     <EMP_NAME>Jennifer Whalen</EMP_NAME>     <EMAIL>JWHALEN</EMAIL>     <PHONE_NUMBER>515.123.4444</PHONE_NUMBER>     <HIRE_DATE>1987-09-17T00:00:00.000-06:00</HIRE_DATE>     <SALARY>4400</SALARY>    </G_EMP>   </LIST_G_EMP>  <TOTAL_EMPS>1</TOTAL_EMPS>  <TOTAL_SALARY>4400</TOTAL_SALARY>  <AVG_SALARY>4400</AVG_SALARY>  <MAX_SALARY>4400</MAX_SALARY>  <MIN_SALARY>4400</MIN_SALARY> </G_DEPT>Poor ol Jennifer, she needs some help in the Admin department :0)Pushing this to CSV and BP completely flattens the data out so you get a completely denormalized data output in the CSV.TOTAL_SALARY,DEPARTMENT_ID,DEPARTMENT_NAME,MIN_SALARY,AVG_SALARY,MAX_SALARY,EMPLOYEE_ID,SALARY,PHONE_NUMBER,HIRE_DATE,EMP_NAME,EMAIL,TOTAL_EMPS4400,10,Administration,4400,4400,4400,200,4400,515.123.4444,1987-09-17T00:00:00.000-06:00,"Jennifer Whalen",JWHALEN,119000,20,Marketing,6000,9500,13000,201,13000,515.123.5555,1996-02-17T00:00:00.000-07:00,"Michael Hartstein",MHARTSTE,219000,20,Marketing,6000,9500,13000,202,6000,603.123.6666,1997-08-17T00:00:00.000-06:00,"Pat Fay",PFAY,2Useful? Its a little confusing to start with but it is completely de-normalized so there is lots of repetition. But if it floats your boat, you got it!

    Read the article

  • European e-government Action Plan all about interoperability

    - by trond-arne.undheim
    Yesterday, the European Commission released its European eGovernment Action Plan for 2011-2015. The plan includes measures on providing deeper user empowerment, enhancing the Internal Market, more efficiency and effectiveness of public administrations, and putting in place pre-conditions for developing e-government. The Good - Defines interoperability very clearly. Calls interoperability "a pre-condition for cross-border eGovernment services" (a very strong formulation) and says interoperability "is supported by open specifications". - Uses the terminology "open specifications" which, let's face it, is pretty close to "open standards" which is the term the rest of the world would use. - Confirms that Member States are fully committed to the political priorities of the Malmö Declaration (which was all about open standards) including the very strong action: by 2013: All Member States will have incorporated the political priorities of the Malmö Declaration in their national strategies. Such tight Action Plan integration between Commission and Member State priorities has seldom been attempted before, particularly not in a field where European legal competence is virtually non-existent. What we see now, is the subtle force of soft power rather than the rough force of regulation. In this case, it is the Member States who want Europe to take the lead. Very refreshing! Some quotes that show the commitment to interoperability and open specifications: "The emergence of innovative technologies such as "service-oriented architectures" (SOA), or "clouds" of services,  together with more open specifications which allow for greater sharing, re-use and interoperability reinforce the ability of ICT to play a key role in this quest for effficiency in the public sector." (p.4) "Interoperability is supported through open specifications" (p.13) 2.4.1. Open Specifications and Interoperability (p.13 has a whole section dedicated to this important topic. Open specifications and interoperability are nearly 100% interrelated): "Interoperability is the ability of systems and machines to exchange, process and correctly interpret information. It is more than just a technical challenge, as it also involves legal, organisational and semantic aspects of handling  data" (p.13) "standards and  open platforms offer opportunities for more cost-effective use of resources and delivery of services" (p.13). The Bad Shies away from defining open standards, or even open specifications, the EU's preferred term for the key enabler of interoperability. Verdict 90/100, a very respectable score.

    Read the article

  • MDM 2010 Summit in San Francisco

    - by Tony Ouk
    Since 2006, the MDM Global Summit Series has brought master data expertise to more than 5,000 delegates worldwide. The Series is designed to reinforce the importance of data governance as a key factor to your MDM program's success while providing real-world experience and all-in-one access to solutions providers. Come join us June 2-3, 2010 at the Hyatt Regency in San Francisco.  For more information including registration details, visit the MDM Global Summit Series website.

    Read the article

< Previous Page | 485 486 487 488 489 490 491 492 493 494 495 496  | Next Page >