Search Results

Search found 15357 results on 615 pages for 'oracle corporation'.

Page 489/615 | < Previous Page | 485 486 487 488 489 490 491 492 493 494 495 496  | Next Page >

  • Thread placement policies on NUMA systems - update

    - by Dave
    In a prior blog entry I noted that Solaris used a "maximum dispersal" placement policy to assign nascent threads to their initial processors. The general idea is that threads should be placed as far away from each other as possible in the resource topology in order to reduce resource contention between concurrently running threads. This policy assumes that resource contention -- pipelines, memory channel contention, destructive interference in the shared caches, etc -- will likely outweigh (a) any potential communication benefits we might achieve by packing our threads more densely onto a subset of the NUMA nodes, and (b) benefits of NUMA affinity between memory allocated by one thread and accessed by other threads. We want our threads spread widely over the system and not packed together. Conceptually, when placing a new thread, the kernel picks the least loaded node NUMA node (the node with lowest aggregate load average), and then the least loaded core on that node, etc. Furthermore, the kernel places threads onto resources -- sockets, cores, pipelines, etc -- without regard to the thread's process membership. That is, initial placement is process-agnostic. Keep reading, though. This description is incorrect. On Solaris 10 on a SPARC T5440 with 4 x T2+ NUMA nodes, if the system is otherwise unloaded and we launch a process that creates 20 compute-bound concurrent threads, then typically we'll see a perfect balance with 5 threads on each node. We see similar behavior on an 8-node x86 x4800 system, where each node has 8 cores and each core is 2-way hyperthreaded. So far so good; this behavior seems in agreement with the policy I described in the 1st paragraph. I recently tried the same experiment on a 4-node T4-4 running Solaris 11. Both the T5440 and T4-4 are 4-node systems that expose 256 logical thread contexts. To my surprise, all 20 threads were placed onto just one NUMA node while the other 3 nodes remained completely idle. I checked the usual suspects such as processor sets inadvertently left around by colleagues, processors left offline, and power management policies, but the system was configured normally. I then launched multiple concurrent instances of the process, and, interestingly, all the threads from the 1st process landed on one node, all the threads from the 2nd process landed on another node, and so on. This happened even if I interleaved thread creating between the processes, so I was relatively sure the effect didn't related to thread creation time, but rather that placement was a function of process membership. I this point I consulted the Solaris sources and talked with folks in the Solaris group. The new Solaris 11 behavior is intentional. The kernel is no longer using a simple maximum dispersal policy, and thread placement is process membership-aware. Now, even if other nodes are completely unloaded, the kernel will still try to pack new threads onto the home lgroup (socket) of the primordial thread until the load average of that node reaches 50%, after which it will pick the next least loaded node as the process's new favorite node for placement. On the T4-4 we have 64 logical thread contexts (strands) per socket (lgroup), so if we launch 48 concurrent threads we will find 32 placed on one node and 16 on some other node. If we launch 64 threads we'll find 32 and 32. That means we can end up with our threads clustered on a small subset of the nodes in a way that's quite different that what we've seen on Solaris 10. So we have a policy that allows process-aware packing but reverts to spreading threads onto other nodes if a node becomes too saturated. It turns out this policy was enabled in Solaris 10, but certain bugs suppressed the mixed packing/spreading behavior. There are configuration variables in /etc/system that allow us to dial the affinity between nascent threads and their primordial thread up and down: see lgrp_expand_proc_thresh, specifically. In the OpenSolaris source code the key routine is mpo_update_tunables(). This method reads the /etc/system variables and sets up some global variables that will subsequently be used by the dispatcher, which calls lgrp_choose() in lgrp.c to place nascent threads. Lgrp_expand_proc_thresh controls how loaded an lgroup must be before we'll consider homing a process's threads to another lgroup. Tune this value lower to have it spread your process's threads out more. To recap, the 'new' policy is as follows. Threads from the same process are packed onto a subset of the strands of a socket (50% for T-series). Once that socket reaches the 50% threshold the kernel then picks another preferred socket for that process. Threads from unrelated processes are spread across sockets. More precisely, different processes may have different preferred sockets (lgroups). Beware that I've simplified and elided details for the purposes of explication. The truth is in the code. Remarks: It's worth noting that initial thread placement is just that. If there's a gross imbalance between the load on different nodes then the kernel will migrate threads to achieve a better and more even distribution over the set of available nodes. Once a thread runs and gains some affinity for a node, however, it becomes "stickier" under the assumption that the thread has residual cache residency on that node, and that memory allocated by that thread resides on that node given the default "first-touch" page-level NUMA allocation policy. Exactly how the various policies interact and which have precedence under what circumstances could the topic of a future blog entry. The scheduler is work-conserving. The x4800 mentioned above is an interesting system. Each of the 8 sockets houses an Intel 7500-series processor. Each processor has 3 coherent QPI links and the system is arranged as a glueless 8-socket twisted ladder "mobius" topology. Nodes are either 1 or 2 hops distant over the QPI links. As an aside the mapping of logical CPUIDs to physical resources is rather interesting on Solaris/x4800. On SPARC/Solaris the CPUID layout is strictly geographic, with the highest order bits identifying the socket, the next lower bits identifying the core within that socket, following by the pipeline (if present) and finally the logical thread context ("strand") on the core. But on Solaris on the x4800 the CPUID layout is as follows. [6:6] identifies the hyperthread on a core; bits [5:3] identify the socket, or package in Intel terminology; bits [2:0] identify the core within a socket. Such low-level details should be of interest only if you're binding threads -- a bad idea, the kernel typically handles placement best -- or if you're writing NUMA-aware code that's aware of the ambient placement and makes decisions accordingly. Solaris introduced the so-called critical-threads mechanism, which is expressed by putting a thread into the FX scheduling class at priority 60. The critical-threads mechanism applies to placement on cores, not on sockets, however. That is, it's an intra-socket policy, not an inter-socket policy. Solaris 11 introduces the Power Aware Dispatcher (PAD) which packs threads instead of spreading them out in an attempt to be able to keep sockets or cores at lower power levels. Maximum dispersal may be good for performance but is anathema to power management. PAD is off by default, but power management polices constitute yet another confounding factor with respect to scheduling and dispatching. If your threads communicate heavily -- one thread reads cache lines last written by some other thread -- then the new dense packing policy may improve performance by reducing traffic on the coherent interconnect. On the other hand if your threads in your process communicate rarely, then it's possible the new packing policy might result on contention on shared computing resources. Unfortunately there's no simple litmus test that says whether packing or spreading is optimal in a given situation. The answer varies by system load, application, number of threads, and platform hardware characteristics. Currently we don't have the necessary tools and sensoria to decide at runtime, so we're reduced to an empirical approach where we run trials and try to decide on a placement policy. The situation is quite frustrating. Relatedly, it's often hard to determine just the right level of concurrency to optimize throughput. (Understanding constructive vs destructive interference in the shared caches would be a good start. We could augment the lines with a small tag field indicating which strand last installed or accessed a line. Given that, we could augment the CPU with performance counters for misses where a thread evicts a line it installed vs misses where a thread displaces a line installed by some other thread.)

    Read the article

  • Optimizing AES modes on Solaris for Intel Westmere

    - by danx
    Optimizing AES modes on Solaris for Intel Westmere Review AES is a strong method of symmetric (secret-key) encryption. It is a U.S. FIPS-approved cryptographic algorithm (FIPS 197) that operates on 16-byte blocks. AES has been available since 2001 and is widely used. However, AES by itself has a weakness. AES encryption isn't usually used by itself because identical blocks of plaintext are always encrypted into identical blocks of ciphertext. This encryption can be easily attacked with "dictionaries" of common blocks of text and allows one to more-easily discern the content of the unknown cryptotext. This mode of encryption is called "Electronic Code Book" (ECB), because one in theory can keep a "code book" of all known cryptotext and plaintext results to cipher and decipher AES. In practice, a complete "code book" is not practical, even in electronic form, but large dictionaries of common plaintext blocks is still possible. Here's a diagram of encrypting input data using AES ECB mode: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 What's the solution to the same cleartext input producing the same ciphertext output? The solution is to further process the encrypted or decrypted text in such a way that the same text produces different output. This usually involves an Initialization Vector (IV) and XORing the decrypted or encrypted text. As an example, I'll illustrate CBC mode encryption: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ IV >----->(XOR) +------------->(XOR) +---> . . . . | | | | | | | | \/ | \/ | AESKey-->(AES Encryption) | AESKey-->(AES Encryption) | | | | | | | | | \/ | \/ | CipherTextOutput ------+ CipherTextOutput -------+ Block 1 Block 2 The steps for CBC encryption are: Start with a 16-byte Initialization Vector (IV), choosen randomly. XOR the IV with the first block of input plaintext Encrypt the result with AES using a user-provided key. The result is the first 16-bytes of output cryptotext. Use the cryptotext (instead of the IV) of the previous block to XOR with the next input block of plaintext Another mode besides CBC is Counter Mode (CTR). As with CBC mode, it also starts with a 16-byte IV. However, for subsequent blocks, the IV is just incremented by one. Also, the IV ix XORed with the AES encryption result (not the plain text input). Here's an illustration: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ IV >----->(XOR) IV + 1 >---->(XOR) IV + 2 ---> . . . . | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 Optimization Which of these modes can be parallelized? ECB encryption/decryption can be parallelized because it does more than plain AES encryption and decryption, as mentioned above. CBC encryption can't be parallelized because it depends on the output of the previous block. However, CBC decryption can be parallelized because all the encrypted blocks are known at the beginning. CTR encryption and decryption can be parallelized because the input to each block is known--it's just the IV incremented by one for each subsequent block. So, in summary, for ECB, CBC, and CTR modes, encryption and decryption can be parallelized with the exception of CBC encryption. How do we parallelize encryption? By interleaving. Usually when reading and writing data there are pipeline "stalls" (idle processor cycles) that result from waiting for memory to be loaded or stored to or from CPU registers. Since the software is written to encrypt/decrypt the next data block where pipeline stalls usually occurs, we can avoid stalls and crypt with fewer cycles. This software processes 4 blocks at a time, which ensures virtually no waiting ("stalling") for reading or writing data in memory. Other Optimizations Besides interleaving, other optimizations performed are Loading the entire key schedule into the 128-bit %xmm registers. This is done once for per 4-block of data (since 4 blocks of data is processed, when present). The following is loaded: the entire "key schedule" (user input key preprocessed for encryption and decryption). This takes 11, 13, or 15 registers, for AES-128, AES-192, and AES-256, respectively The input data is loaded into another %xmm register The same register contains the output result after encrypting/decrypting Using SSSE 4 instructions (AESNI). Besides the aesenc, aesenclast, aesdec, aesdeclast, aeskeygenassist, and aesimc AESNI instructions, Intel has several other instructions that operate on the 128-bit %xmm registers. Some common instructions for encryption are: pxor exclusive or (very useful), movdqu load/store a %xmm register from/to memory, pshufb shuffle bytes for byte swapping, pclmulqdq carry-less multiply for GCM mode Combining AES encryption/decryption with CBC or CTR modes processing. Instead of loading input data twice (once for AES encryption/decryption, and again for modes (CTR or CBC, for example) processing, the input data is loaded once as both AES and modes operations occur at in the same function Performance Everyone likes pretty color charts, so here they are. I ran these on Solaris 11 running on a Piketon Platform system with a 4-core Intel Clarkdale processor @3.20GHz. Clarkdale which is part of the Westmere processor architecture family. The "before" case is Solaris 11, unmodified. Keep in mind that the "before" case already has been optimized with hand-coded Intel AESNI assembly. The "after" case has combined AES-NI and mode instructions, interleaved 4 blocks at-a-time. « For the first table, lower is better (milliseconds). The first table shows the performance improvement using the Solaris encrypt(1) and decrypt(1) CLI commands. I encrypted and decrypted a 1/2 GByte file on /tmp (swap tmpfs). Encryption improved by about 40% and decryption improved by about 80%. AES-128 is slighty faster than AES-256, as expected. The second table shows more detail timings for CBC, CTR, and ECB modes for the 3 AES key sizes and different data lengths. » The results shown are the percentage improvement as shown by an internal PKCS#11 microbenchmark. And keep in mind the previous baseline code already had optimized AESNI assembly! The keysize (AES-128, 192, or 256) makes little difference in relative percentage improvement (although, of course, AES-128 is faster than AES-256). Larger data sizes show better improvement than 128-byte data. Availability This software is in Solaris 11 FCS. It is available in the 64-bit libcrypto library and the "aes" Solaris kernel module. You must be running hardware that supports AESNI (for example, Intel Westmere and Sandy Bridge, microprocessor architectures). The easiest way to determine if AES-NI is available is with the isainfo(1) command. For example, $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu No special configuration or setup is needed to take advantage of this software. Solaris libraries and kernel automatically determine if it's running on AESNI-capable machines and execute the correctly-tuned software for the current microprocessor. Summary Maximum throughput of AES cipher modes can be achieved by combining AES encryption with modes processing, interleaving encryption of 4 blocks at a time, and using Intel's wide 128-bit %xmm registers and instructions. References "Block cipher modes of operation", Wikipedia Good overview of AES modes (ECB, CBC, CTR, etc.) "Advanced Encryption Standard", Wikipedia "Current Modes" describes NIST-approved block cipher modes (ECB,CBC, CFB, OFB, CCM, GCM)

    Read the article

  • GlassFish Clustering with DCOM on Windows

    - by ByronNevins
    DCOM - Distributed COM, a Microsoft protocol for communicating with Windows machines. Why use DCOM? In GlassFish 3.1 SSH is used as the standard way to run commands on remote nodes for clustering.  It is very difficult for users to get SSH configured properly on Windows.  SSH does not come with Windows so we have to depend on third party tools.  And then the user is forced to install and configure these tools -- which can be tricky. DCOM is available on all supported platforms.  It is built-in to Windows. The idea is to use DCOM to communicate with remote Windows nodes.  This has the huge advantage that the user has to do minimal, if any, configuration on the Windows nodes. Implementation HighlightsTwo open Source Libraries have been added to GlassFish: Jcifs – a SAMBA implementation in Java J-interop – A Java implementation for making DCOM calls to remote Windows computers.   Note that any supported platform can use DCOM to work with Windows nodes -- not just Windows.E.g. you can have a Linux DAS work with Windows remote instances.All existing SSH commands now have a corresponding DCOM command – except for setup-ssh which isn’t needed for DCOM.  validate-dcom is an all new command. New DCOM Commands create-node-dcom delete-node-dcom install-node-dcom list-nodes-dcom ping-node-dcom uninstall-node-dcom update-node-dcom validate-dcom setup-local-dcom (This is only available via Update Center for GlassFish 3.1.2) These commands are in-place in the trunk (4.0).  And in the branch (3.1.2) Windows Configuration Challenges There are an infinite number of possible configurations of Windows if you look at it as a combination of main release, service-pack, special drivers, software, configuration etc.  Later versions of Windows err on the side of tightening security be default.  This means that the Windows host may need to have configuration changes made.These configuration changes mostly need to be made by the user.  setup-local-dcom will assist you in making required changes to the Windows Registry.  See the reference blogs for details. The validate-dcom Command validate-dcom is a crucial command.  It should be run before any other commands.  If it does not run successfully then there is no point in running other commands.The validate-dcom command must be used from a DAS machine to test a different Windows machine.  If  validate-dcom runs successfully you can be confident that all the DCOM commands will work.  Conversely, the opposite is also true:  If validate-dcom fails, then no DCOM commands will work. What validate-dcom does Verify that the remote host is not the local machine. Resolves the remote host name Checks that the remote DCOM port is being listened on (135, 139) Checks that the remote host’s File Sharing is enabled (port 445) It copies a file (a script) to the remote host to verify that SAMBA is working and authorization is correct It runs a script that it copied on-the-fly to the remote host. Tips and Tricks The bread and butter commands that use DCOM are existing commands like create-instance, start-instance etc.   All of the commands that have dcom in their name are for dealing with the actual nodes. The way the software works is to call asadmin.bat on the remote machine and run a command.  This means that you can track these commands easily on the remote machine with the usual tools.  E.g. using AS_LOGFILE, looking at log files, etc.  It’s easy to attach a debugger to the remote asadmin process, “just in time”, if necessary. How to debug the remote commands:Edit the asadmin.bat file that is in the glassfish/bin folder.  Use glassfish/lib/nadmin.bat in GlassFish 4.0+Add these options to the java call:-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=1234  Now if you run, say start-instance on DAS, you can attach your debugger, at your leisure, to the remote machines port 1234.  It will be running start-local-instance and patiently waiting for you to attach.

    Read the article

  • ADF Taskflow Reentry-not-allowed and Reentry-allowed

    - by raghu.yadav
    Here is the sample usecase to demonstrate how reentry-not-allowed and reentry-allowed properties works. what doc says about these 2 properties : reentry-allowed: Reentry is allowed on any view activity within the ADF bounded task flow reentry-not-allowed: Reentry of the ADF bounded task flow is not allowed. If you specify reentry-not-allowed on a task flow definition, an end user can still click the browser back button and return to a page within the bounded task flow. However, if the user does anything on the page such as clicking a button, an exception (for example, InvalidTaskFlowReentry) is thrown indicating the bounded task flow was reentered improperly. The actual reentry condition is identified upon the submit of the reentered page. Ingrediants : main.jspx - Jobs_TF - jobs.jspx scenario. click RunTrx button in main.jspx navigates to jobs page by entering into Jobs taskflow. click jobs page back button to navigate back to main.jspx, now click browser back button to navigate jobs.jspx and then click jobs page back Button to see reentry-not-allowed error message.

    Read the article

  • Value of Certification Proven Again

    - by Paul Sorensen
    Hi Everyone,A recent article in Certification Magazine spells out the value of certification IT professionals and article provides some detailed insight on the state of the economy and what it means to IT professionals. A few of the key findings (among many) by Certification Magazine:Even in this tough economy, IT worker salaries grew at about 9%.Many respondents reported that they received raises after earning a new certification.Many people reported that they had earned one or two new credentials within the last year.Salaries for more entry-level certifications was stagnant over the last year or so.I encourage you to take a look at the article. It is very encouraging to see that companies and individuals still recognize and value the hard work that goes in to getting certified.Thank you,

    Read the article

  • SQL Developer Debugging, Watches, Smart Data, & Data

    - by thatjeffsmith
    After presenting the SQL Developer PL/SQL debugger for about an hour yesterday at KScope12 in San Antonio, my boss came up and asked, “Now, would you really want to know what the Smart Data panel does?” Apparently I had ‘made up’ my own story about what that panel’s intent is based on my experience with it. Not good Jeff, not good. It was a very small point of my presentation, but I probably should have read the docs. The Smart Data tab displays information about variables, using your Debugger: Smart Data preferences. You can also specify these preferences by right-clicking in the Smart Data window and selecting Preferences. Debugger Smart Data Preferences, control number of variables to display The Smart Data panel auto-inspects the last X accessed variables. So if you have a program with 26 variables, instead of showing you all 26, it will just show you the last two variables that were referenced in your program. If you were to click on the ‘Data’ debug panel, you’ll see EVERYTHING. And if you only want to see a very specific set of values, then you should use Watches. The Smart Data Panel As I step through the code, the variables being tracked change as they are referenced. Only the most recent ones display. This is controlled by the ‘Maximum Locations to Remember’ preference. Step through the code, see the latest variables accessed The Data Panel All variables are displayed. Might be information overload on large PL/SQL programs where you have many dozens or even hundreds of variables to track. Shows everything all the time Watches Watches are added manually and only show what you ask for. Data on Demand – add a watch to track a specific variable Remember, you can interact with your data If you want to do more than just watch, you can mouse-right on a data element, and change the value of the variable as the program is running. This is one of the primary benefits to debugging over using DBMS_OUTPUT to track what’s happening in your program. Change the values while the program is running to test your ‘What if?’ scenarios

    Read the article

  • Don't Miss What Procurement Experts Are Talking About. Join the Webcasts starting next week!

    - by LuciaC
    The Procurement team have three Advisor Webcasts scheduled in December with information about new features, tips and tricks and troubleshooting guidance. New Features and enhancements Incorporated in the Procurement Rollup Patch 14254641:R12.PRC_PF.B December 4, 2012 at 14:00 London / 16:00 Egypt / 06:00 am Pacific / 7:00 am Mountain / 9:00 am EasternThis session is recommended for technical and functional users who need to know about the new features and enhancements incorporated in the Procurement Rollup Patch. Topics will include: GCPA Enable All Sites E-Mail PO - .LANGUAGE Read Only BWC Validate Document GBPA OSP Items GL Date Defaulting Cancel Refactoring Action History Cleanup Click here to register for this event. Approval Management Engine (AME) New Features, Setup and Use for Purchase Orders December 6, 2012 at 14:00 London / 16:00 Egypt / 06:00 am Pacific / 7:00 am Mountain / 9:00 am EasternThis is recommended for Functional Users and Application Technical Users who work in the Procurement Module including Purchasing and iProcurement and would like to know more about how to set up and use the Approval Management Engine (AME) for purchase orders.Topics will include: Scope and limitations of AME functionality for purchase orders Setup and use of AME for purchase orders PO Review and PO E-Sign new features Demonstration: Example of scenarios using the new features Click here to register for this event. How to Solve Approval Errors in Procurement December 18, 2012 at 4:00 pm Egypt / 2:00 pm London / 6:00 am Pacific / 7:00 am Mountain / 9:00 am EasternThis session is recommended for technical and functional users who need to know about how to diagnose and troubleshoot common Approval Errors.Topics will include: Basic mandatory setups for approvals of PO documents Differences between Purchase Order Approval and Requisition Approval Process. Troubleshooting of Approval Errors. Basic Setup of AME which can be used in Requisition Approval Process. Click here to register for this event. You can see a listing of all scheduled and archived webcasts from Doc ID 740966.1.  Select the product you are interested in (such as E-Business Suite Procurement) and this will take you to the webcast listing for the product.

    Read the article

  • SQL Developer: Describe versus Ctrl+Click to Open Database Objects

    - by thatjeffsmith
    In yesterday’s post I talked about you could use SQL Developer’s Describe (SHIFT+F4) to open a PL/SQL Package at your cursor. You might get an error if you try to describe this… If you actually try to describe the package as you see it in the above screenshot, you’ll get an error: Doh! I neglected to say in yesterday’s post that I was highlighting the package name before I hit SHIFT+F4. This works just fine, but it will work even better in our next release as we’ve fixed this issue. Until then, you can also try the Ctrl+Hover with your mouse. For PL/SQL calls you can open the source immediately based on what you’re hovering over with your mouse cursor. You could try this with “dbms_output.put_line(” too Ctrl+Click, It’s not just for PL/SQL If you don’t like the floating describe windows you get when you do a SHIFT+F4 on a database object, the ctrl+click will work too. Instead of opening a normal ‘hover’ panel, you’ll be taken directly to the object editor for that table, view, etc. Go ahead and try it right now. Paste this into your worksheet, then ctrl+click with your mouse over the table name: select * from scott.emp And now you know, the rest of the story.

    Read the article

  • Task Flow Design Paper Revised

    - by Duncan Mills
    Thanks to some discussion over at the ADF Methodology Group and contributions from Simon Lessard and Jan Vervecken I have been able to make some refinements to the Task Flow Design Fundamentals paper on OTN.As a bonus, whilst I was making some edits anyway I've included some of Frank Nimphius's memory scope diagrams which are a really useful tool for understanding how request, view, backingBean and pageFlow scopes all fit together.

    Read the article

  • Simple tips to design a Customer Journey Map

    - by Isabel F. Peñuelas
    “A model can abstract to a level that is comprehensible to humans, without getting lost in details.” -The Unified Modeling Language Reference Manual. Inception using Post-it, StoryBoards, Lego or Mindmaping Techniques The first step in a Customer Experience project is to describe customer interactions creating a customer journey map. Modeling is never easy, so to succeed on this effort, it is very convenient that your CX´s team have some “abstract thinking” skills. Besides is very helpful to consult a Business Service Design offered by an Interactive Agency to lead your inception process. Initially, you may start by a free discussion using post-it cards; storyboards; even lego or any other brainstorming technique you like. This will help you to get your mind into the path followed by the customer to purchase your product or to consume any business service you actually offer to your customers, or plan to offer in the near future. (from www.servicedesigntools.org) Colorful Mind Maps are very useful to document and share meeting ideas. Some Mind Maps software providers as ThinkBuzzan provide trial versions, and you will find more mindmapping options on this post by Mashable. Finally to produce a quick one, I do recommend Wise, an entirely online mindmaping service. On my view the best results in terms of communication will always come for an artistic hand-made drawing. Customer Experience Mind Map Example Making your first Customer Journey Map To add some more formalization to your thoughts, there is a wide offering for designing Customer Journey Maps. A Customer Map can be represented as an oriented graph in which another follows each step. The one below is the most simple Customer Journey you can draw. Nothing more than a couple of pictures, numbers and lines to design the customer steps sequence in the purchase process. Very simple Customer Journey for Social Mobile Shopping There are a lot of Customer Journey templates much more sophisticated available  in the Web using a variety of styles, as per example this one with a focus on underlining emotional experience, or this other worksheet template. Representing different interaction devices on the vertical axis, and touchpoints / requirements and existing gaps horizontally  is today´s most common format for Customer Journeys. From Customer Journey Maps to CX Technology Adoption Plans Once you have your map ready, you can start to identify the IT infrastructure requirements for your CXProject. By analyzing customer problems and improvement opportunities with maps, you will then identify the technology gaps and the new investment requirements in your IT infrastructure. Deeping step by step from the more abstract to the more concrete is the best guarantee to take the right IT investment decisions.  ¡Remember to keep your initial customer journey safe on your pocket in every one of your CX´s project meetings- that´s you map to success!

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • Remembering September 11 - 11 Years Later

    - by user12613380
    It's September 11 again and time to reminisce about that fateful day when the world came together as one. The attacks of that day touched everyone around the world as almost 3000 people from the United States and 38 other countries were killed. This year, I am finding it difficult to say anything other than what I have said in previous years. So, I will not try to "wax loquacious." Instead, I will simply say that I will never forgot. I will not forget where I was on that day. I will not forgot the people who died. I will not forget the people who gave their lives so that others might live. And I will not forget how our world changed on that day. And with that remembrance, we again return to our lives, using tragedy to drive us to build a world of peace and opportunity. My thanks go out again to the men and women, uniformed or not, who continue to protect us from harm. May we never again experience such human tragedy, on U.S. soil or elsewhere.

    Read the article

  • ct.sym steals the ASM class

    - by Geertjan
    Some mild consternation on the Twittersphere yesterday. Marcus Lagergren not being able to find the ASM classes in JDK 8 in NetBeans IDE: And there's no such problem in Eclipse (and apparently in IntelliJ IDEA). Help, does NetBeans (despite being incredibly awesome) suck, after all? The truth of the matter is that there's something called "ct.sym" in the JDK. When javac is compiling code, it doesn't link against rt.jar. Instead, it uses a special symbol file lib/ct.sym with class stubs. Internal JDK classes are not put in that symbol file, since those are internal classes. You shouldn't want to use them, at all. However, what if you're Marcus Lagergren who DOES need these classes? I.e., he's working on the internal JDK classes and hence needs to have access to them. Fair enough that the general Java population can't access those classes, since they're internal implementation classes that could be changed anytime and one wouldn't want all unknown clients of those classes to start breaking once changes are made to the implementation, i.e., this is the rt.jar's internal class protection mechanism. But, again, we're now Marcus Lagergen and not the general Java population. For the solution, read Jan Lahoda, NetBeans Java Editor guru, here: https://netbeans.org/bugzilla/show_bug.cgi?id=186120 In particular, take note of this: AFAIK, the ct.sym is new in JDK6. It contains stubs for all classes that existed in JDK5 (for compatibility with existing programs that would use private JDK classes), but does not contain implementation classes that were introduced in JDK6 (only API classes). This is to prevent application developers to accidentally use JDK's private classes (as such applications would be unportable and may not run on future versions of JDK). Note that this is not really a NB thing - this is the behavior of javac from the JDK. I do not know about any way to disable this except deleting ct.sym or the option mentioned above. Regarding loading the classes: JVM uses two classpath's: classpath and bootclasspath. rt.jar is on the bootclasspath and has precedence over anything on the "custom" classpath, which is used by the application. The usual way to override classes on bootclasspath is to start the JVM with "-Xbootclasspath/p:" option, which prepends the given jars (and presumably also directories) to bootclasspath. Hence, let's take the first option, the simpler one, and simply delete the "ct.sym" file. Again, only because we need to work with those internal classes as developers of the JDK, not because we want to hack our way around "ct.sym", which would mean you'd not have portable code at the end of the day. Go to the JDK 8 lib folder and you'll find the file: Delete it. Start NetBeans IDE again, either on JDK 7 or JDK 8, doesn't make a difference for these purposes, create a new Java application (or use an existing one), make sure you have set the JDK above as the JDK of the application, and hey presto: The above obviously assumes you have a build of JDK 8 that actually includes the ASM package. And below you can see that not only are the classes found but my build succeeded, even though I'm using internal JDK classes. The yellow markings in the sidebar mean that the classes are imported but not used in the code, where normally, if I hadn't removed "ct.sym", I would have seen red error marking instead, and the code wouldn't have compiled. Note: I've tried setting "-XDignore.symbol.file" in "netbeans.conf" and in other places, but so far haven't got that to work. Simply deleting the "ct.sym" file (or back it up somewhere and put it back when needed) is quite clearly the most straightforward solution. Ultimately, if you want to be able to use those internal classes while still having portable code, do you know what you need to do? You need to create a JDK bug report stating that you need an internal class to be added to "ct.sym". Probably you'll get a motivation back stating WHY that internal class isn't supposed to be used externally. There must be a reason why those classes aren't available for external usage, otherwise they would have been added to "ct.sym". So, now the only remaining question is why the Eclipse compiler doesn't hide the internal JDK classes. Apparently the Eclipse compiler ignores the "ct.sym" file. In other words, at the end of the day, far from being a bug in NetBeans... we have now found a (pretty enormous, I reckon) bug in Eclipse. The Eclipse compiler does not protect you from using internal JDK classes and the code that you create in Eclipse may not work with future releases of the JDK, since the JDK team is simply going to be changing those classes that are not found in the "ct.sym" file while assuming (correctly, thanks to the presence of "ct.sym" mechanism) that no code in the world, other than JDK code, is tied to those classes.

    Read the article

  • on coding style

    - by user12607414
    I vastly prefer coding to discussing coding style, just as I would prefer to write poetry instead of talking about how it should be written. Sometimes the topic cannot be put off, either because some individual coder is messing up a shared code base and needs to be corrected, or (worse) because some officious soul has decided, "what we really need around here are some strongly enforced style rules!" Neither is the case at the moment, and yet I will venture a post on the subject. The following are not rules, but suggested etiquette. The idea is to allow a coherent style of coding to flourish safely and sanely, as a humane, inductive, social process. Maxim M1: Observe, respect, and imitate the largest-scale precedents available. (Preserve styles of whitespace, capitalization, punctuation, abbreviation, name choice, code block size, factorization, type of comments, class organization, file naming, etc., etc., etc.) Maxim M2: Don't add weight to small-scale variations. (Realize that Maxim M1 has been broken many times, but don't take that as license to create further irregularities.) Maxim M3: Listen to and rely on your reviewers to help you perceive your own coding quirks. (When you review, help the coder do this.) Maxim M4: When you touch some code, try to leave it more readable than you found it. (When you review such changes, thank the coder for the cleanup. When you plan changes, plan for cleanups.) On the Hotspot project, which is almost 1.5 decades old, we have often practiced and benefited from such etiquette. The process is, and should be, inductive, not prescriptive. An ounce of neighborliness is better than a pound of police-work. Reality check: If you actually look at (or live in) the Hotspot code base, you will find we have accumulated many annoying irregularities in our source base. I suppose this is the normal condition of a lived-in space. Unless you want to spend all your time polishing and tidying, you can't live without some smudge and clutter, can you? Final digression: Grammars and dictionaries and other prescriptive rule books are sometimes useful, but we humans learn and maintain our language by example not grammar. The same applies to style rules. Actually, I think the process of maintaining a clean and pleasant working code base is an instance of a community maintaining its common linguistic identity. BTW, I've been reading and listening to John McWhorter lately with great pleasure. (If you end with a digression, is it a tail-digression?)

    Read the article

  • NetBeans Podcast 62

    - by TinuA
    Download mp3: 49 minutes – 39.5 MB Subscribe to the NetBeans Podcast on iTunes NetBeans Community News with Geertjan and Tinu What's NEW? Recap of a SUCCESSFUL NetBeans Community Day at JavaOne2012! Want to know what you missed? Download slides for: NetBeans Community Keynote NetBeans and JavaFX panel NetBeans and Java EE panel NetBeans Platform panel Visit the JavaOne Content Catalog for slides, and audio and video recordings of all NetBeans sessions at JavaOne 2012. (Type in keyword "NetBeans".) NetBeans Governance Board elections are done. Congratulations to Anton Epple and Hermien Pellissier, the new members of the 20th Board! How would you grade the NetBeans team on NetBeans IDE 7.2? Take the NetBeans 7.2 Satisfaction Survey. NetBeans IDE 7.3 Beta 2 is available for download. The first beta debuted at JavaOne with support for HTML5. Watch videos of HTML5 support in NetBeans and visit Geertjan's blog for a beginner's guide to HTML5 development. It's a busy Fall on the NetBeans Calendar with stops at Devoxx 2012, JavaOne Latin America, Jay Day Munich, Jay Days Sweden  JavaOne 2012 Reflections NetBeans had a fantastic showing at JavaOne 2012--from the full-day lineup of NetBeans Community Day to the numerous BOFs, Labs, and sessions at the main conference. But better to hear it in these short interviews with members of the community who attended JavaOne 2012. Veteran attendees and first-timers, panel participants and award winners, the interviewees share their experience of the conference, from highlights and insights, to new discoveries and inspiration. Listen in to why attending JavaOne is a tech pilgrimage every Java developer ought to make.   07:50   Anton Epple - Eppleton Consulting (Germany); Recipient of 2012 NetBeans Community Recognition Award 17:10   Henry Arousell and Thomas Boqvist - Bjorn Lunden Information (Sweden) 24:45   Glenn Holmer - Weyco Group, Inc. (USA); Recipient of 2012 NetBeans Community Recognition Award 33:09   Timon Veenstra - Agrosense (The Netherlands); 2012 Duke's Choice Award winner (Agrosense in the Nov/Dec '12 issue of Java Magazine.) 40:19   Rob Terplowski, - Linden, Inc. (USA) More thoughts about NetBeans Day and JavaOne can also be found in two recent NetBeans Zone articles: "Reflections on JavaOne 2012 by the NetBeans Community: Part 1 and Part 2". *Have ideas for NetBeans Podcast topics? Send them to nbpodcast at netbeans dot org. *Subscribe to the official NetBeans page on Facebook! Check us out as well on Twitter, YouTube, and Google+.

    Read the article

  • JRockit Virtual Edition Debug Key

    - by changjae.lee
    There are a few keys that can help the debugging of the JRVE env in console. you can type in each keys in JRVE console to see what's happening under the hood. key '0' : System information key '5' : Enable shutdown key '7' : Start JRockit Management Server (port 7091) key '8' : Statistics Counters key '9' : Full Thread Dump key '0' : Status of Debug-key Below is the sample out from each keys. Debug-key '1' pressed ============ JRockitVE System Information ============ JRockitVE version : 11.1.1.3.0-67-131044 Kernel version : 6.1.0.0-97-131024 JVM version : R27.6.6-28_o-125824-1.6.0_17-20091214-2104-linux-ia32 Hypervisor version : Xen 3.4.0 Boot state : 0x007effff Uptime : 0 days 02:04:31 CPU : uniprocessor @2327 Mhz CPU usage : 0% ctx/s: 285 preempt/s: 0 migrations/s: 0 Physical pages : 82379/261121 (321/1020 MB) Network info : 10.179.97.64 (10.179.97.64/255.255.254.0) GateWay : 10.179.96.1 MAC address : 00:16:3e:7e:dc:78 Boot options : vfsCwd : /application/user_projects/domains/wlsve_domain mainArgs : java -javaagent:/jrockitve/services/sshd/sshd.jar -cp /jrockitve/jrockit/lib/tools.jar:/jrockitve/lib/common.jar:/application/patch_wls1032/profiles/default/sys_manifest_classpath/weblogic_patch.jar:/application/wlserver_10.3/server/lib/weblogic.jar -Dweblogic.Name=WlsveAdmin -Dweblogic.Domain=wlsve_domain -Dweblogic.management.username=weblogic -Dweblogic.management.password=welcome1 -Dweblogic.management.GenerateDefaultConfig=true weblogic.Server consLog : /jrockitve/log/jrockitve.log mounts : ext2 / dev0; posixLocale : en_US posixTimezone : Asia/Seoul posixEncoding : ISO-8859-1 Local disk : Size: 1024M, Used: 728M, Free: 295M ======================================================== Debug-key '5' pressed Shutdown enabled. Debug-key '7' pressed [JRockit] Management server already started. Ignoring request. Debug-key '8' pressed Starting stat recording Debug-key '8' pressed ========= Statistics Counters for the last second ========= dev.eth0_rx.cnt : 22 packets dev.eth0_rx_bytes.cnt : 2704 bytes dev.net_interrupts.cnt : 22 interrupts evt.timer_ticks.cnt : 123 ticks hyper.priv_entries.cnt : 144 entries schedule.context_switches.cnt : 271 switches schedule.idle_cpu_time.cnt : 997318849 nanoseconds schedule.idle_cpu_time_0.cnt : 997318849 nanoseconds schedule.total_cpu_time.cnt : 1000031757 nanoseconds time.system_time.cnt : 1000 ns time.timer_updates.cnt : 123 updates time.wallclock_time.cnt : 1000 ns ======================================= Debug-key '9' pressed ===== FULL THREAD DUMP =============== Fri Jun 4 08:22:12 2010 BEA JRockit(R) R27.6.6-28_o-125824-1.6.0_17-20091214-2104-linux-ia32 "Main Thread" id=1 idx=0x4 tid=1 prio=5 alive, in native, waiting -- Waiting for notification on: weblogic/t3/srvr/T3Srvr@0x646ede8[fat lock] at jrockit/vm/Threads.waitForNotifySignal(JLjava/lang/Object;)Z(Native Method) at java/lang/Object.wait(J)V(Native Method) at java/lang/Object.wait(Object.java:485) at weblogic/t3/srvr/T3Srvr.waitForDeath(T3Srvr.java:919) ^-- Lock released while waiting: weblogic/t3/srvr/T3Srvr@0x646ede8[fat lock] at weblogic/t3/srvr/T3Srvr.run(T3Srvr.java:479) at weblogic/Server.main(Server.java:67) at jrockit/vm/RNI.c2java(IIIII)V(Native Method) -- end of trace "(Signal Handler)" id=2 idx=0x8 tid=2 prio=5 alive, in native, daemon Open lock chains ================ Chain 1: "ExecuteThread: '0' for queue: 'weblogic.socket.Muxer'" id=23 idx=0x50 tid=20 waiting for java/lang/String@0x630c588 held by: "ExecuteThread: '1' for queue: 'weblogic.socket.Muxer'" id=24 idx=0x54 tid=21 (active) ===== END OF THREAD DUMP =============== Debug-key '0' pressed Debug-keys enabled Happy Cloud Walking :)

    Read the article

  • Java Champion Jorge Vargas on Extreme Programming, Geolocalization, and Latin American Programmers

    - by Janice J. Heiss
    In a new interview, up on otn/java, titled “An Interview with Java Champion Jorge Vargas,” Jorge Vargas, a leading Mexican developer, discusses the process of introducing companies to Enterprise JavaBeans through the application of Extreme Programming. Among other things, he gives workshops about building code with agile techniques and creates a master project to build all apps based on Scrum, XP methods and Kanban. He focuses on building core components such as security, login, and menus. Vargas remarks, “This may sound easy, but it’s not—the process takes months and hundreds of hours, but it can be controlled, and with small iterations, we can translate customer requirements and problems of legacy systems to the new system.” In regard to his work with geolocalization, he says: “We have launched a beta program of Yumbling, a geolocalization-based app, with mobile clients for BlackBerry, iPhone, Android, and Nokia, with a Web interface. The first challenge was to design a simple universal mechanism providing information to all clients and to minimize maintenance provision to them. I try not to generalize a lot—to avoid low performance or misunderstanding in processing data. We use the latest Java EE technology—during the last five years, I’ve taught people how to use Java EE efficiently.” Check out the interview here.

    Read the article

  • Update/Insert With ADF Web Service Data Control

    - by shay.shmeltzer
    The Web service data control (WSDC) in ADF is a powerful feature that allows you to easily build a UI on top of WS interfaces exposed by other systems. However when you drag a WSDC to a page you usually get a set of output components where the data is shown. So how would you actually do an update operation on those values? The answer is that you need a call to another method in your WSDC that does the update - but what if you want to pass to it the actual values that you get from the get method you invoked before? Here is a demo showing how to do that: The two tricks that are shown here are: Changing the properties of items in the DC to be updateable - this gives you inputText fields instead of outputText fields. And passing the currentRow.dataProvider to the update method (and choosing the right iterator for this).

    Read the article

  • Interactive Reporting with BI Publisher 11G

    - by kanichiro.nishida
    One of the new features that came out with BI Publisher 11G and made me really excited about is the Interactive Viewer, which allows you to interact with the data presented in the reports and gain more insights about the data. You can have as many Table, Chart, Pivot Table, Gauge components in a single report and all of them are linked together so that you can click on any data point on the components such as Chart, Pivot Table, Gauge, and that would refresh other components in the report to reflect the selection without refreshing the whole report or page. No longer you need to navigate to another report or open other reports to see related data or drill down to the detail data. It’s all there within a single report. Well, sounds cliché but really this is a typical case of ‘seeing is believing’, so instead of reading I would love you guys to take a look so I’ve recorded the following video. Please take a look !   The above video shows you the power of the BI Publisher Interactive Viewer with a real data from San Francisco Airport. The lists shown at the top or the left are one of the new features that we’ll be introducing in coming future very soon, but everything else is there with 11.1.1.3. So why not start today ? And please share your feedback with us!

    Read the article

  • Downloading specific video renditions in WebCenter Content

    - by Kyle Hatlestad
    I recently had a question come up on one of my previous blog articles about downloading a specific video rendition.  When accessing image renditions, you simply need to pass in the 'Rendition=<rendition name>' parameter on the GET_FILE service and it will be returned.  But when you try that with videos, you get the error message, "Unable to download '<Content ID>'. The rendition or attachment '<Rendition Name>' could not be found in the list manifest of the revision with internal revision ID '<dID>'. [Read More] 

    Read the article

  • Downloading specific video renditions in WebCenter Content

    - by Kyle Hatlestad
    I recently had a question come up on one of my previous blog articles about downloading a specific video rendition.  When accessing image renditions, you simply need to pass in the 'Rendition=<rendition name>' parameter on the GET_FILE service and it will be returned.  But when you try that with videos, you get the error message, "Unable to download '<Content ID>'. The rendition or attachment '<Rendition Name>' could not be found in the list manifest of the revision with internal revision ID '<dID>'. Through the interface, it exposes the ability to download, but utilizes the Content Basket to bundle one or more videos and download them as a zip.   I had never tried this with videos, but thought they had worked the same way.  Well, it turns out you need to pass in an extra parameter in the case of videos.  So if you pass in parameter of 'AuxRenditionType=media', that will allow the GET_FILE service to download the video (e.g. http://server/cs/idcplg?IdcService=GET_FILE&dID=11012&dDocName=WCCBASE9010812&allowInterrupt=1 &Rendition=QuickTime&AuxRenditionType=media).  And if you haven't seen the David After Dentist video, I'd highly recommend it! 

    Read the article

  • Jerome has written a nice article on integrating SceneBuilder with several IDEs

    - by daniel
    My colleague Jerome Cambon has written a very nice article about how to get SceneBuilder working with several IDEs. The JavaFX SceneBuilder is at the root a stand-alone tool - but there are various tweaks and tricks that you can use to make its use in conjunction with your favorite IDE a more enjoyable experience. In his article - Jerome shows how this can be done with NetBeans (7.3), Eclipse, with Tom's excellent e(fx)clipse plugin, and IntelliJ IDEA. Good work Jerome!

    Read the article

< Previous Page | 485 486 487 488 489 490 491 492 493 494 495 496  | Next Page >