Search Results

Search found 5903 results on 237 pages for 'generic variance'.

Page 49/237 | < Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >

  • Multi Monitor Setup Problems

    - by Shamballa
    I have Ubuntu 10.04 LTS - the Lucid Lynx. I have until recently been using a nVida Graphics card (NVIDIA GeForce 9800 GT) with two monitors attached, this all worked fine and dandy. A couple of days ago I bought two new identical LCD monitors for a multi monitor setup and two ATI graphics cards (ATI Sapphire Radeon HD5450). NOTE *All monitors work fine in Windows XP, 2k, Vista and 7 After I had booted into Ubuntu only one display came on, that I kind of expected anyway, then I removed the driver for the nVidia card and downloaded the ATI version which gave me the ATI Catalyst Control Center - in that only two of the displays were showing the third was disabled and showing unknown driver. I enabled the third monitor that stated "Unkown Driver" and had to reboot, upon reboot none of the displays work. I restarted and booted up into recovery mode and from now that is only what I can get into using a failsafe driver. It seems according to the log that a server is already active for Display 0 and I have to remove /tmp/.X0-lock and start again. This is what the log file is saying: Fatal Server Error Server is already active for display 0 if this server is no longer running, remove /tmp/.X0-lock and start again. (WW) xf86 closeconsole: KDSETMODE failed: Bad file descriptor (WW) xf86 closeconsole: VT_GETMODE failed: Bad file descriptor (WW) xf86 closeconsole: VT_GETSTATE failed: Bad file descriptor ddxSigGiveUp: closing log I have tried looking at my xorg.config file but unfortunately I have not really got a clue as to how it "should" be - I have tried regenerating it using this command from a terminal: sudo dpkg-reconfigure -phigh xserver-xorg but that had no effect so I am currently stuck in failsafe driver mode but two monitors are active but are mirroring each other. I hope that this is not to long - looking back I have been going on a bit! but I am just trying to explain as much as I can... I have asked this on Linuxquestions but nobody seems to know either or at least I have not had any responses. Could some kind soul please help explain what I can do from here? I would be eternally grateful. Chris * Update * Removing xorg.conf does nothing other than allowing me to use only two monitors - using the command: sudo aticonfig --initial generates the xorg.conf file below: but does not work either - I just get two monitors... Section "ServerLayout" Identifier "aticonfig Layout" Screen 0 "aticonfig-Screen[0]-0" 0 0 EndSection Section "Files" EndSection Section "Module" EndSection Section "Monitor" Identifier "aticonfig-Monitor[0]-0" Option "VendorName" "ATI Proprietary Driver" Option "ModelName" "Generic Autodetecting Monitor" Option "DPMS" "true" EndSection Section "Device" Identifier "aticonfig-Device[0]-0" Driver "fglrx" BusID "PCI:1:0:0" EndSection Section "Screen" Identifier "aticonfig-Screen[0]-0" Device "aticonfig-Device[0]-0" Monitor "aticonfig-Monitor[0]-0" DefaultDepth 24 SubSection "Display" Viewport 0 0 Depth 24 EndSubSection EndSection I have tried using this command from a thread on the Ubuntu Forums with a question similar to mine: sudo aticonfig --initial=dual-head --adapter=all Generated xorg.conf file Section "ServerLayout" Identifier "aticonfig Layout" Screen 0 "aticonfig-Screen[0]-0" 0 0 Screen "aticonfig-Screen[0]-1" RightOf "aticonfig-Screen[0]-0" Screen "aticonfig-Screen[1]-0" RightOf "aticonfig-Screen[0]-1" Screen "aticonfig-Screen[1]-1" RightOf "aticonfig-Screen[1]-0" EndSection Section "Files" EndSection Section "Module" EndSection Section "Monitor" Identifier "aticonfig-Monitor[0]-0" Option "VendorName" "ATI Proprietary Driver" Option "ModelName" "Generic Autodetecting Monitor" Option "DPMS" "true" EndSection Section "Monitor" Identifier "aticonfig-Monitor[0]-1" Option "VendorName" "ATI Proprietary Driver" Option "ModelName" "Generic Autodetecting Monitor" Option "DPMS" "true" EndSection Section "Monitor" Identifier "aticonfig-Monitor[1]-0" Option "VendorName" "ATI Proprietary Driver" Option "ModelName" "Generic Autodetecting Monitor" Option "DPMS" "true" EndSection Section "Monitor" Identifier "aticonfig-Monitor[1]-1" Option "VendorName" "ATI Proprietary Driver" Option "ModelName" "Generic Autodetecting Monitor" Option "DPMS" "true" EndSection Section "Device" Identifier "aticonfig-Device[0]-0" Driver "fglrx" BusID "PCI:1:0:0" EndSection Section "Device" Identifier "aticonfig-Device[0]-1" Driver "fglrx" BusID "PCI:1:0:0" Screen 1 EndSection Section "Device" Identifier "aticonfig-Device[1]-0" Driver "fglrx" BusID "PCI:2:0:0" EndSection Section "Device" Identifier "aticonfig-Device[1]-1" Driver "fglrx" BusID "PCI:2:0:0" Screen 1 EndSection Section "Screen" Identifier "aticonfig-Screen[0]-0" Device "aticonfig-Device[0]-0" Monitor "aticonfig-Monitor[0]-0" DefaultDepth 24 SubSection "Display" Viewport 0 0 Depth 24 EndSubSection EndSection Section "Screen" Identifier "aticonfig-Screen[0]-1" Device "aticonfig-Device[0]-1" Monitor "aticonfig-Monitor[0]-1" DefaultDepth 24 SubSection "Display" Viewport 0 0 Depth 24 EndSubSection EndSection Section "Screen" Identifier "aticonfig-Screen[1]-0" Device "aticonfig-Device[1]-0" Monitor "aticonfig-Monitor[1]-0" DefaultDepth 24 SubSection "Display" Viewport 0 0 Depth 24 EndSubSection EndSection Section "Screen" Identifier "aticonfig-Screen[1]-1" Device "aticonfig-Device[1]-1" Monitor "aticonfig-Monitor[1]-1" DefaultDepth 24 SubSection "Display" Viewport 0 0 Depth 24 EndSubSection EndSection This upon reboot renders ALL monitors blank and I have to go into recovery mode and use a failsafe driver. This is so much harder than I thought it would be, I don't think Ubuntu likes ATI for multi (3) monitors or maybe the other way around. Can anyone help still?

    Read the article

  • Connect ps/2->usb keyboard to linux?

    - by Daniel
    I have a lovely ancient ergonomic keyboard (no name SK - 6000) connected via a DIN-ps/2 adapter to a ps/2-usb adapter to my docking station. After Grub it stops working. It takes either suspending and waking up or replugging it while Linux is running to get it to work. No extra kernel modules get loaded for this. When it works and I restart without power off, it will work immediately. Even when it does not work, it is visible (lsusb device number varies but output is identical whether working or not): $ lsusb -v -s 001:006 Bus 001 Device 006: ID 0a81:0205 Chesen Electronics Corp. PS/2 Keyboard+Mouse Adapter Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 1.10 bDeviceClass 0 (Defined at Interface level) bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 8 idVendor 0x0a81 Chesen Electronics Corp. idProduct 0x0205 PS/2 Keyboard+Mouse Adapter bcdDevice 0.10 iManufacturer 1 CHESEN iProduct 2 PS2 to USB Converter iSerial 0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 59 bNumInterfaces 2 bConfigurationValue 1 iConfiguration 2 PS2 to USB Converter bmAttributes 0xa0 (Bus Powered) Remote Wakeup MaxPower 100mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 3 Human Interface Device bInterfaceSubClass 1 Boot Interface Subclass bInterfaceProtocol 1 Keyboard iInterface 0 HID Device Descriptor: bLength 9 bDescriptorType 33 bcdHID 1.10 bCountryCode 0 Not supported bNumDescriptors 1 bDescriptorType 34 Report wDescriptorLength 64 Report Descriptors: ** UNAVAILABLE ** Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0008 1x 8 bytes bInterval 10 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 3 Human Interface Device bInterfaceSubClass 1 Boot Interface Subclass bInterfaceProtocol 2 Mouse iInterface 0 HID Device Descriptor: bLength 9 bDescriptorType 33 bcdHID 1.10 bCountryCode 0 Not supported bNumDescriptors 1 bDescriptorType 34 Report wDescriptorLength 148 Report Descriptors: ** UNAVAILABLE ** Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x82 EP 2 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0008 1x 8 bytes bInterval 10 Device Status: 0x0000 (Bus Powered) $ ll -R /sys/bus/hid/drivers/ /sys/bus/hid/drivers/: total 0 drwxr-xr-x 2 root root 0 Jul 8 2012 generic-usb/ /sys/bus/hid/drivers/generic-usb: total 0 lrwxrwxrwx 1 root root 0 Jul 7 23:33 0003:046D:C03D.0003 -> ../../../../devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.2/1-1.2.2:1.0/0003:046D:C03D.0003/ lrwxrwxrwx 1 root root 0 Jul 7 23:33 0003:0A81:0205.0001 -> ../../../../devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.0/0003:0A81:0205.0001/ lrwxrwxrwx 1 root root 0 Jul 7 23:33 0003:0A81:0205.0002 -> ../../../../devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.1/0003:0A81:0205.0002/ --w------- 1 root root 4096 Jul 7 23:32 bind lrwxrwxrwx 1 root root 0 Jul 7 23:33 module -> ../../../../module/usbhid/ --w------- 1 root root 4096 Jul 7 23:32 new_id --w------- 1 root root 4096 Jul 8 2012 uevent --w------- 1 root root 4096 Jul 7 23:32 unbind When replugging, dmesg shows this (which except for the 1st line and different input numbers already came at boot time): [ 1583.295385] usb 1-1.2.1: new low-speed USB device number 6 using ehci_hcd [ 1583.446514] input: CHESEN PS2 to USB Converter as /devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.0/input/input17 [ 1583.446817] generic-usb 0003:0A81:0205.0001: input,hidraw0: USB HID v1.10 Keyboard [CHESEN PS2 to USB Converter] on usb-0000:00:1a.0-1.2.1/input0 [ 1583.454764] input: CHESEN PS2 to USB Converter as /devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.1/input/input18 [ 1583.455534] generic-usb 0003:0A81:0205.0002: input,hidraw1: USB HID v1.10 Mouse [CHESEN PS2 to USB Converter] on usb-0000:00:1a.0-1.2.1/input1 [ 1583.455578] usbcore: registered new interface driver usbhid [ 1583.455584] usbhid: USB HID core driver So I tried $ sudo udevadm test /sys/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.0/0003:0A81:0205.0001/hidraw/hidraw0 run_command: calling: test adm_test: version 175 This program is for debugging only, it does not run any program, specified by a RUN key. It may show incorrect results, because some values may be different, or not available at a simulation run. parse_file: reading '/lib/udev/rules.d/40-crda.rules' as rules file parse_file: reading '/lib/udev/rules.d/40-fuse.rules' as rules file ... parse_file: reading '/lib/udev/rules.d/40-usb-media-players.rules' as rules file parse_file: reading '/lib/udev/rules.d/40-usb_modeswitch.rules' as rules file ... parse_file: reading '/lib/udev/rules.d/42-qemu-usb.rules' as rules file ... parse_file: reading '/lib/udev/rules.d/69-cd-sensors.rules' as rules file add_rule: IMPORT found builtin 'usb_id', replacing /lib/udev/rules.d/69-cd-sensors.rules:76 ... parse_file: reading '/lib/udev/rules.d/77-mm-usb-device-blacklist.rules' as rules file ... parse_file: reading '/lib/udev/rules.d/85-usbmuxd.rules' as rules file ... parse_file: reading '/lib/udev/rules.d/95-upower-hid.rules' as rules file parse_file: reading '/lib/udev/rules.d/95-upower-wup.rules' as rules file parse_file: reading '/lib/udev/rules.d/97-bluetooth-hid2hci.rules' as rules file udev_rules_new: rules use 271500 bytes tokens (22625 * 12 bytes), 44331 bytes buffer udev_rules_new: temporary index used 76320 bytes (3816 * 20 bytes) udev_device_new_from_syspath: device 0x7f78a5e4d2d0 has devpath '/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.0/0003:0A81:0205.0001/hidraw/hidraw0' udev_device_new_from_syspath: device 0x7f78a5e5f820 has devpath '/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.0/0003:0A81:0205.0001/hidraw/hidraw0' udev_device_read_db: device 0x7f78a5e5f820 filled with db file data udev_device_new_from_syspath: device 0x7f78a5e60270 has devpath '/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.0/0003:0A81:0205.0001' udev_device_new_from_syspath: device 0x7f78a5e609c0 has devpath '/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.0' udev_device_new_from_syspath: device 0x7f78a5e61160 has devpath '/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1' udev_device_new_from_syspath: device 0x7f78a5e61960 has devpath '/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2' udev_device_new_from_syspath: device 0x7f78a5e62150 has devpath '/devices/pci0000:00/0000:00:1a.0/usb1/1-1' udev_device_new_from_syspath: device 0x7f78a5e62940 has devpath '/devices/pci0000:00/0000:00:1a.0/usb1' udev_device_new_from_syspath: device 0x7f78a5e630f0 has devpath '/devices/pci0000:00/0000:00:1a.0' udev_device_new_from_syspath: device 0x7f78a5e638a0 has devpath '/devices/pci0000:00' udev_event_execute_rules: no node name set, will use kernel supplied name 'hidraw0' udev_node_add: creating device node '/dev/hidraw0', devnum=251:0, mode=0600, uid=0, gid=0 udev_node_mknod: preserve file '/dev/hidraw0', because it has correct dev_t udev_node_mknod: preserve permissions /dev/hidraw0, 020600, uid=0, gid=0 node_symlink: preserve already existing symlink '/dev/char/251:0' to '../hidraw0' udev_device_update_db: created empty file '/run/udev/data/c251:0' for '/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.0/0003:0A81:0205.0001/hidraw/hidraw0' ACTION=add DEVNAME=/dev/hidraw0 DEVPATH=/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.0/0003:0A81:0205.0001/hidraw/hidraw0 MAJOR=251 MINOR=0 SUBSYSTEM=hidraw UDEV_LOG=6 USEC_INITIALIZED=969079051 The later lines sound like it's already there. And none of these awakes the keyboard: $ sudo udevadm trigger --verbose --sysname-match=usb* /sys/devices/pci0000:00/0000:00:1a.0/usb1 /sys/devices/pci0000:00/0000:00:1a.0/usbmon/usbmon1 /sys/devices/pci0000:00/0000:00:1d.0/usb2 /sys/devices/pci0000:00/0000:00:1d.0/usbmon/usbmon2 /sys/devices/virtual/usbmon/usbmon0 $ sudo udevadm trigger --verbose --sysname-match=hidraw0 /sys/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.0/0003:0A81:0205.0001/hidraw/hidraw0 $ sudo udevadm trigger I also tried this to no avail: # echo -n 0003:0A81:0205.0001 > /sys/bus/hid/drivers/generic-usb/bind ksh: echo: write to 1 failed [No such device] # echo -n 0003:0A81:0205.0001 > /sys/bus/hid/drivers/generic-usb/unbind # echo -n 0003:0A81:0205.0001 > /sys/bus/hid/drivers/generic-usb/bind # echo usb1 >/sys/bus/usb/drivers/usb/unbind # echo usb1 >/sys/bus/usb/drivers/usb/bind What else should I try to get the same result as replugging or suspending, by just issuing a command?

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • MVC2 and MVC Futures causing RedirectToAction issues

    - by Darragh
    I've been trying to get the strongly typed version of RedirectToAction from the MVC Futures project to work, but I've been getting no where. Below are the steps I've followed, and the errors I've encountered. Any help is much appreciated. I created a new MVC2 app and changed the About action on the HomeController to redirect to the Index page. Return RedirectToAction("Index") However, I wanted to use the strongly typed extensions, so I downloaded the MVC Futures from CodePlex and added a reference to Microsoft.Web.Mvc to my project. I addded the following "import" statement to the top of HomeContoller.vb Imports Microsoft.Web.Mvc I commented out the above RedirectToAction and added the following line: Return RedirectToAction(Of HomeController)(Function(c) c.Index()) So far, so good. However, I noticed if I uncomment out the first (non Generic) RedirectToAction, it was now causing the following compile error: Error 1 Overload resolution failed because no accessible 'RedirectToAction' can be called with these arguments: Extension method 'Public Function RedirectToAction(Of TController)(action As System.Linq.Expressions.Expression(Of System.Action(Of TController))) As System.Web.Mvc.RedirectToRouteResult' defined in 'Microsoft.Web.Mvc.ControllerExtensions': Data type(s) of the type parameter(s) cannot be inferred from these arguments. Specifying the data type(s) explicitly might correct this error. Extension method 'Public Function RedirectToAction(action As System.Linq.Expressions.Expression(Of System.Action(Of HomeController))) As System.Web.Mvc.RedirectToRouteResult' defined in 'Microsoft.Web.Mvc.ControllerExtensions': Value of type 'String' cannot be converted to 'System.Linq.Expressions.Expression(Of System.Action(Of mvc2test1.HomeController))'. Even though intelli-sense was showing 8 overloads (the original 6 non-generic overloads, plus the 2 new generic overloads from the Futures assembly), it seems when trying to complie the code, the compiler would only 'find' the 2 non-gneneric extension methods from the Futures assessmbly. I thought this might be an issue that I was using conflicting versions of the MVC2 assembly, and the futures assembly, so I added MvcDiaganotics.aspx from the Futures download to my project and everytyhing looked correct: ASP.NET MVC Assembly Information (System.Web.Mvc.dll) Assembly version: ASP.NET MVC 2 RTM (2.0.50217.0) Full name: System.Web.Mvc, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35 Code base: file:///C:/WINDOWS/assembly/GAC_MSIL/System.Web.Mvc/2.0.0.0__31bf3856ad364e35/System.Web.Mvc.dll Deployment: GAC-deployed ASP.NET MVC Futures Assembly Information (Microsoft.Web.Mvc.dll) Assembly version: ASP.NET MVC 2 RTM Futures (2.0.50217.0) Full name: Microsoft.Web.Mvc, Version=2.0.0.0, Culture=neutral, PublicKeyToken=null Code base: file:///xxxx/bin/Microsoft.Web.Mvc.DLL Deployment: bin-deployed This is driving me crazy! Becuase I thought this might be some VB issue, I created a new MVC2 project using C# and tried the same as above. I added the following "using" statement to the top of HomeController.cs using Microsoft.Web.Mvc; This time, in the About action method, I could only manage to call the non-generic RedirectToAction by typing the full commmand as follows: return Microsoft.Web.Mvc.ControllerExtensions.RedirectToAction<HomeController>(this, c => c.Index()); Even though I had a "using" statement at the top of the class, if I tried to call the non-generic RedirectToAction as follows: return RedirectToAction<HomeController>(c => c.Index()); I would get the following compile error: Error 1 The non-generic method 'System.Web.Mvc.Controller.RedirectToAction(string)' cannot be used with type arguments What gives? It's not like I'm trying to do anything out of the ordinary. It's a simple vanilla MVC2 project with only a reference to the Futures assembly. I'm hoping that I've missed out something obvious, but I've been scratching my head for too long, so I figured I'd seek some assisstance. If anyone's managed to get this simple scenario working (in VB and/or C#) could they please let me know what, if anything, they did differently? Thanks!

    Read the article

  • Reporting Services: Two Tables One Sum

    - by Neomoon
    My report is as follows: One table provides financial information with sums at the group footer (Grouping is called "StockTable_Shipped"). The group is controlled by a boolean value (1=shows shipped data, 0 = shows received data) The second table is a variance report for data that has been shipped (boolean value of 1) and has a sum at the bottom of the table. My ultimate goal is to take the sum from table1 where shipped=1 and subtract it from the variance sum from table2. This will be placed in a textbox at the bottom of the report. I understand if this sounds confusing but I would be more then happy to provide more information.

    Read the article

  • Converting legacy GRUB menu entries to GRUB 2

    - by WindowsEscapist
    I would like to change an entry for a solution to boot from CD from legacy grub (looks like title bla bla bla) to an entry to a format compatible to grub 2 (the one that looks like menuentry "bla bla bla" {. The original legacy GRUB entry is as follows: title Boot From CD/DVD Drive kernel /boot/grub/memdisk.din initrd /boot/grub/sbootmgr.dsk Is there any sort of conversion rule to change this to something like the example I've put here on the next line? (This is from my precise's grub.cfg.) menuentry 'Ubuntu, with Linux 3.2.0-25-generic' --class ubuntu --class gnu-linux --class gnu --class os { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='(hd0,msdos8)' search --no-floppy --fs-uuid --set=root efc87ac0-daac-4a32-9a85-ea57beff0e28 linux /boot/vmlinuz-3.2.0-25-generic root=UUID=efc87ac0-daac-4a32-9a85-ea57beff0e28 ro quiet splash acpi_osi= $vt_handoff initrd /boot/initrd.img-3.2.0-25-generic }

    Read the article

  • SqlParameter contructor compiler overload choice

    - by Ash
    When creating a SqlParameter (.NET3.5) or OdbcParameter I often use the SqlParameter(string parameterName, Object value) constructor overload to set the value in one statement. When I tried passing a literal 0 as the value paramter I was initially caught by the C# compiler choosing the (string, OdbcType) overload instead of (string, Object). MSDN actually warns about this gotcha in the remarks section, but the explanation confuses me. Why does the C# compiler decide that a literal 0 parameter should be converted to OdbcType rather than Object? The warning also says to use Convert.ToInt32(0) to force the Object overload to be used. It confusingly says that this converts the 0 to an "Object type". But isn't 0 already an "Object type"? The Types of Literal Values section of this page seems to say literals are always typed and so inherit from System.Object. This behavior doesn't seem very intuitive given my current understanding? Is this something to do with Contra-variance or Co-variance maybe?

    Read the article

  • VMWare tools on Ubuntu Server 10.10 kernel source problem

    - by Hamid Elaosta
    After install and running the vm-ware config, the config needs my kernel headers to compile some modules, ok, so I'll give it them, but it just won't work. It asks for the path of the directory of C header files that match my running kernel. If I uname -r I get 2.6.35-22-generic-pae So I tell it the source path is /lib/modules/2.6.25-22-generic-pae/build/include and it returns "The directory of kernel headers (version @@VMWARE@@ UTS_RELEASE) does not match your running kernel (version 2.6.35-22-generic-pae). ..I'm confused? can anyone offer suggestions please? I installed hte kernel source andh eaders myself using sudo apt-get install linux-headers-$(uname -r)

    Read the article

  • Bluetooth radio device is not available

    - by Mike
    I reinstalled my Windows 7 operating system, and have since been unable to detect my Logitech m555b bluetooth mouse. Here is some info about my system: I have have a working connection with a bluetooth printer. I have a message in the "My Bluetooth" section of explorer stating "Bluetooth radio device is not available". The Device Manager indicates that the Generic Bluetooth radio is working correctly. The bluetooth "F12" switch is on. Mouse batteries are new and the right way around. I'm presuming that I need a bluetooth driver which is non generic. The computer is a Clevo P150HMx (the version with the GTX485 GPU) with the default WLAN / bluetooth combo card manufactured by Realtek (I think it's a Realtek RTL8188CE card). I think I have the drivers installed, but I still get the generic driver in the Device Manager. I'm confused. Please help, I'm going mad on the touchpad. (Thanks for the touchup wizlog)

    Read the article

  • Address rewriting postfix

    - by ACHAL
    I am using CentOs5 and postfix as an MTA for my server. My situation is as follows:- I have a mail server through which Php applications connect and send mails to the destination addresses. The problem is that the the application servers do not have spf/dkim record set up and my server which actually relays the mails to the network has spf/dkim records. So i want the mail sent by an application having a return address:[email protected] to change to [email protected]. r09.4reseller.org is hostname of my mail server. This i have done by generic mapping in postfix: smtp_generic_maps = hash:/etc/postfix/generic In /etc/postfix/generic: [email protected] [email protected] This is working as return address is changed to [email protected] when mail is sent. But when i try to sent mail on [email protected] I don't get mail on [email protected]. I have tried virtual mapping in postfix i.e by the file /etc/postfix/virtual but its not helping.

    Read the article

  • VMWare tools on Ubuntu Server 10.10 kernel source problem

    - by Hamid Elaosta
    After install and running the vm-ware config, the config needs my kernel headers to compile some modules, ok, so I'll give it them, but it just won't work. It asks for the path of the directory of C header files that match my running kernel. If I uname -r I get 2.6.35-22-generic-pae So I tell it the source path is /lib/modules/2.6.25-22-generic-pae/build/include and it returns "The directory of kernel headers (version @@VMWARE@@ UTS_RELEASE) does not match your running kernel (version 2.6.35-22-generic-pae). ..I'm confused? can anyone offer suggestions please? I installed hte kernel source andh eaders myself using sudo apt-get install linux-headers-$(uname -r)

    Read the article

  • Monitor resolution messed up somehow

    - by Kelp
    I purchased the Westinghouse 22" LCD LCM-22w3 a few years ago, and now it's been acting up on me. I just booted into Windows 7(without changing any settings), and the default resolution is 1600x1024, and it allows me to select a refresh rate of up to 85 Hz(it didn't let me do that). I usually have my resolution set to 1680x1050 with a refresh rate of 60 Hz. Now, that resolution does not even appear in the list. Does anyone have any idea of what could be the problem and how to fix it? Edit: I am not sure if this will help, but when I go to change the screen resolution, the monitor is known as "Generic Non-PnP Monitor". It used to be referred to as "Generic PnP Monitor). I tried to disable Generic Non-PnP Monitor, but when I restart, it uses that monitor again. Edit 2: I created a custom .inf file using Powerstrip, but that does not work either. The monitor settings are being stubborn.

    Read the article

  • list and explanations of ways to boost this router's signal strength? [closed]

    - by barlop
    Possible Duplicates: Improve Wireless Signal How to get wireless coverage over my whole house? What's the best way to increase the range of my 802.11g router? The back of my house doesn't have WiFi Signal I'm interested in ways that are both specific to certain routers, and generic. When I say generic, I don't necessarily mean a one way that works for many.. but it can also be a generic answer, so mentioning solutions for different situations. So not just the one router I mention. Explanations are important, as well as all the ways. One i'm particularly interested in boosting the strength of is this wireless router/modem Netgear VMDG280 maybe anywhere in a big house with three floors, maybe from the garden.

    Read the article

  • How to implement collection with covariance when delegating to another collection for storage?

    - by memelet
    I'm trying to implement a type of SortedMap with extended semantics. I'm trying to delegate to SortedMap as the storage but can't get around the variance constraints: class IntervalMap[A, +B](implicit val ordering: Ordering[A]) //extends ... { var underlying = SortedMap.empty[A, List[B]] } Here is the error I get. I understand why I get the error (I understand variance). What I don't get is how to implement this type of delegation. And yes, the covariance on B is required. error: covariant type B occurs in contravariant position in type scala.collection.immutable.SortedMap[A,List[B]] of parameter of setter underlying_=

    Read the article

  • How to get an item value of json using C#?

    - by user3487837
    How to get an item value of json using C#? json: [{ ID: '6512', fd: [{ titie: 'Graph-01', type: 'graph', views: { graph: { show: true, state: { group: 'DivisionName', series: ['FieldWeight', 'FactoryWeight', 'Variance'], graphType: 'lines-and-points' } } } }, { titie: 'Graph-02', type: 'Graph', views: { graph: { show: true, state: { group: 'DivisionName', series: ['FieldWeight', 'FactoryWeight', 'Variance'], graphType: 'lines-and-points' } } } }] }, { ID: '6506', fd: [{ titie: 'Map-01', type: 'map', views: { map: { show: true, state: { kpiField: 'P_BudgetAmount', kpiSlabs: [{ id: 'P_BudgetAmount', hues: ['#0fff03', '#eb0707'], scales: '10' }] } } } }] }] Above mentioned one is json, Here titie value will be get in a list please help me... my code is: string dashletsConfigPath = Url.Content("~/Content/Dashlets/Dashlets.json"); string jArray = System.IO.File.ReadAllText(Server.MapPath(dashletsConfigPath)) List<string> lists = new List<string>(); JArray list = JArray.Parse(jArray); var ll = list.Select(j => j["dashlets"]).ToList();

    Read the article

  • Retrieve data like rework %, schedule and effort varience from Microsoft Project

    - by Ram
    Hi, I need to generate various metric from my MS project file for the period of one month. I need to generate following reports Schedule Variance Effort Variance Rework Percentage Wasted Efforts For rework percentage, I am using condition like the task.Start date should be greater than or equal to the start date and task.Finish date should be less than or equal to finish date. but I am concerned about the tasks those are starting before the start date and ending before the end date. In such situation I only need the rework % for the number of hrs spent during start and end and not for the hrs spent before start date. Same thing applies to the task which are starting before end date but ending after end date. Any pointer would be great help. Thanks

    Read the article

  • APT: Hold packages back from updates without APT Pin

    - by David
    I know about pinning packages with APT; that's not what I want to do. Other questions have been answered with either using pinning or by using pins temporarily. I don't want to do this... What I want to do is keep packages back the same way the kernel has been: # apt-get upgrade Reading package lists... Done Building dependency tree Reading state information... Done The following packages have been kept back: linux-generic-pae linux-headers-generic-pae linux-image-generic-pae The following packages will be upgraded: I want to add tomcat-* and mysql-* and sun-* to this list. In the past, there was a configuration parameter to do this - I've always thought it was something like Apt::Get::HoldPkgs or Apt::HoldPkgs but I can't find it. I want to have these packages held from updates until I specifically request them with an "apt-get install". I found the apt-get configuration Apt::NeverAutoRemove; will this do what I want? Added Question: I notice that Apt::NeverAutoRemove and Apt::Never-MarkAuto-Sections (among others) are not documented so far as I can see; they're not in the manpages. Neither is aptitude::Keep-Unused-Pattern and aptitude::Get-Root-Command. Is there any comprehensive and complete documentation for apt.conf?

    Read the article

  • I'm trying to install VMWare tools on Ubuntu 12.04.2 LTS and I seem to have a problem with Kernel headers

    - by Pedro Irusta
    I have Ubuntu 12.04.2 LTS installed on a VMware machine on Windows 7 host. I seem to have a problem with Kernel headers when trying to install them I did: sudo apt-get install gcc make build-essential linux-headers-$(uname -r) Reading package lists... Done Building dependency tree Reading state information... Done gcc is already the newest version. build-essential is already the newest version. linux-headers-3.5.0-28-generic is already the newest version. make is already the newest version. 0 upgraded, 0 newly installed, 0 to remove and 100 not upgraded. However, when installing VMware tools I get the following error: make[1]: Entering directory `/usr/src/linux-headers-3.5.0-28-generic' CC [M] /tmp/vmware-root/modules/vmhgfs-only/backdoor.o CC [M] /tmp/vmware-root/modules/vmhgfs-only/backdoorGcc32.o CC [M] /tmp/vmware-root/modules/vmhgfs-only/bdhandler.o CC [M] /tmp/vmware-root/modules/vmhgfs-only/cpName.o CC [M] /tmp/vmware-root/modules/vmhgfs-only/cpNameLinux.o CC [M] /tmp/vmware-root/modules/vmhgfs-only/cpNameLite.o CC [M] /tmp/vmware-root/modules/vmhgfs-only/dentry.o CC [M] /tmp/vmware-root/modules/vmhgfs-only/dir.o CC [M] /tmp/vmware-root/modules/vmhgfs-only/file.o /tmp/vmware-root/modules/vmhgfs-only/file.c:122:4: warning: initialization from incompatible pointer type [enabled by default] /tmp/vmware-root/modules/vmhgfs-only/file.c:122:4: warning: (near initialization for ‘HgfsFileFileOperations.fsync’) [enabled by default] CC [M] /tmp/vmware-root/modules/vmhgfs-only/filesystem.o /tmp/vmware-root/modules/vmhgfs-only/filesystem.c:48:28: fatal error: linux/smp_lock.h: No such file or directory compilation terminated. make[2]: *** [/tmp/vmware-root/modules/vmhgfs-only/filesystem.o] Error 1 make[1]: *** [_module_/tmp/vmware-root/modules/vmhgfs-only] Error 2 make[1]: Leaving directory `/usr/src/linux-headers-3.5.0-28-generic' make: *** [vmhgfs.ko] Error 2 make: Leaving directory `/tmp/vmware-root/modules/vmhgfs-only' Any help appreciated!

    Read the article

  • How to fix "apt-get upgrade" errors?

    - by mohamad farid bin abdullah
    I get these errors when I try to upgrade the packages installed on my Ubuntu system: m@m-desktop ~ $ sudo apt-get upgrade Reading package lists... Done Building dependency tree Reading state information... Done 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. 2 not fully installed or removed. After this operation, 0B of additional disk space will be used. Do you want to continue [Y/n]? y Setting up drbd8-source (2:8.3.7-1ubuntu2.3) ... Removing old drbd8-8.3.7 DKMS files... ------------------------------ Deleting module version: 8.3.7 completely from the DKMS tree. ------------------------------ Done. Loading new drbd8-8.3.7 DKMS files... First Installation: checking all kernels... Building only for 2.6.35-22-generic Building for architecture i386 Building initial module for 2.6.35-22-generic Error! Bad return status for module build on kernel: 2.6.35-22-generic (i386) Consult the make.log in the build directory /var/lib/dkms/drbd8/8.3.7/build/ for more information. dpkg: error processing drbd8-source (--configure): subprocess installed post-installation script returned error exit status 10 dpkg: dependency problems prevent configuration of drbd8-utils: drbd8-utils depends on drbd8-source; however: Package drbd8-source is not configured yet. dpkg: error processing drbd8-utils (--configure): dependency problems - leaving unconfigured No apport report written because the error message indicates its a followup error from a previous failure. Errors were encountered while processing: drbd8-source drbd8-utils E: Sub-process /usr/bin/dpkg returned an error code (1) m@m-desktop ~ $

    Read the article

  • Fixing unbootable installation on LVM root from Desktop LiveCD

    - by intuited
    I just did an installation from the 10.10 Desktop LiveCD, making the root volume an LVM LV. Apparently this is not supported; I managed it by taking these steps before starting the GUI installer app: installing the lvm2 package on the running system creating an LVM-type partition on the system hard drive creating a physical volume, a volume group and a root LV using the LVM tools. I also created a second LV for /var; this I don't think is relevant. creating a filesystem (ext4) on each of the two LVs. After taking these steps, the GUI installer offered the two LVs as installation targets; I gladly accepted, also putting /boot on a primary partition separate from the LVM partition. Installation seemed to go smoothly, and I've verified that both the root and var volumes do contain acceptable-looking directory structures. However, booting fails; if I understood correctly what happened, I was dropped into a busybox running in the initrd filesystem. Although I haven't worked through the entirety of the grub2 docs yet, it looks like the entry that tries to boot my new system is correct: menuentry 'Ubuntu, with Linux 2.6.35-22-generic' --class ubuntu --class gnu-linux --class gnu --class os { recordfail insmod part_msdos insmod ext2 set root='(hd0,msdos3)' search --no-floppy --fs-uuid --set $UUID_OF_BOOT_FILESYSTEM linux /vmlinuz-2.6.35-22-generic root=/dev/mapper/$LVM_VOLUME_GROUP-root ro quiet splash initrd /initrd.img-2.6.35-22-generic } Note that $VARS are replaced in the actual grub.cfg with their corresponding values. I rebooted back into the livecd and have unpacked the initrd image into a temp directory. It looks like the initrd image lacks LVM functionality. For example, if I'm reading /usr/share/initramfs-tools/hooks/lvm2 (installed with lvm2 on the livecd-booted system, not present on the installed one) correctly, an lvm executable should be situated in /sbin; that is not the case. What's the best way to remedy this situation? I realize that it would be easier to just use the alternate install CD, which apparently supports LVM, but I don't want to wait for it to download and then have to reinstall.

    Read the article

  • A good substitute for ASMX web service methods, but not a general handler

    - by Saeed Neamati
    The best thing I like about ASP.NET MVC, is that you can directly call a server method (called action), from the client. This is so convenient, and so straightforward, that I really like to implement such a model in ASP.NET WebForms too. However, in ASP.NET WebForms, to call a server method from the client, you should either use Page Methods, or Web Services, both of which use SOAP as their communication protocol (though JSON can also be used). There is also another substitution, which is using Generic Handlers. The problem with them however is that, a separate Generic Handler should be written for each server method. In other words, each Generic Handler works like a simple method. Is there anyway else to imitate MVC model in ASP.NET WebForms? Please note that I can't change to MVC platform right now, cause the project at our hand is a big project and we don't have required resources and time to change our platform. What we seek, is a simple MVC model implementation for our AJAX calls. A problem that we have with Web Services, is the known problem of SoapException, and we're not interested in creating custom SoapExctensions.

    Read the article

  • Ubuntu 14.04 ATI Radeon open source driver with distorted video playback

    - by Bwog
    Video in VLC or SMplayer is often in black and white with washed-out colors in the wrong place (translated considerably). Moreover, the last video image is often visible when a new video is started and persist as long as the new video is running. Colors have a recognizable shape (e.g. a persons clothes or face), but can be obviously incorrect (e.g. green or purples faces). This is independent of the format of the videos (mp4, mkv, wmv). Sometimes all problems disappear when a new video is started, but often only a reboot restores normal video. Ubuntu was upgraded to 14.04 and is fully updated. Processor intel core i5-2500K cpu. gpu: amd/ati Radeon HD 7950. graphics: gallium 0.4 on AMD Tahiti. xorg xserver amd/ati display driver wrapper from xserver-xorg-video-ati. :~$ Xorg -version X.Org X Server 1.15.1 Release Date: 2014-04-13 X Protocol Version 11, Revision 0 Build Operating System: Linux 3.2.0-37-generic x86_64 Ubuntu Current Operating System: Linux Mare 3.13.0-29-generic #53-Ubuntu SMP Wed Jun 4 21:00:20 UTC 2014 x86_64 Kernel command line: BOOT_IMAGE=/boot/vmlinuz-3.13.0-29-generic.efi.signed root=UUID=number ro Build Date: 16 April 2014 01:36:29PM xorg-server 2:1.15.1-0ubuntu2 Current version of pixman: 0.30.2 ~$ lspci | grep VGA 01:00.0 VGA compatible controller: Advanced Micro Devices, Inc. [AMD/ATI] Tahiti PRO [Radeon HD 7950/8950 OEM / R9 280] Question: how to restore regular video playback?

    Read the article

  • How to fix E: Internal Error, No file name for libc6

    - by Loren Ramly
    How to fix E: Internal Error, No file name for libc6, Like that will show If I do: $ sudo apt-get upgrade or $ sudo apt-get install package This is example : $ sudo apt-get upgrade Reading package lists... Done Building dependency tree Reading state information... Done The following packages have been kept back: ginn hplip hplip-data libdrm-dev libdrm-intel1 libdrm-nouveau1a libdrm-radeon1 libdrm2 libgrip0 libhpmud0 libkms1 libsane-hpaio libunity-2d-private0 libunity-core-5.0-5 linux-generic-pae linux-headers-generic-pae linux-image-generic-pae printer-driver-hpcups printer-driver-hpijs unity unity-2d-common unity-2d-panel unity-2d-shell unity-2d-spread unity-common unity-services The following packages will be upgraded: alsa-base firefox firefox-globalmenu firefox-gnome-support firefox-locale-en icedtea-6-jre-cacao icedtea-6-jre-jamvm icedtea-7-jre-jamvm libdbus-glib-1-2 libdbus-glib-1-dev libgnutls-dev libgnutls-openssl27 libgnutls26 libgnutlsxx27 libssl-dev libssl-doc libssl1.0.0 linux-sound-base openjdk-6-jre openjdk-6-jre-headless openjdk-6-jre-lib openjdk-7-jdk openjdk-7-jre openjdk-7-jre-headless openjdk-7-jre-lib openssl sudo 27 upgraded, 0 newly installed, 0 to remove and 26 not upgraded. 3 not fully installed or removed. Need to get 0 B/126 MB of archives. After this operation, 3,072 B of additional disk space will be used. Do you want to continue [Y/n]? y E: Internal Error, No file name for libc6 I have follow instruction from here E: Internal Error, No file name for libssl1.0.0 . Which do: sudo apt-get update sudo apt-get clean sudo apt-get install -fy sudo dpkg -i /var/cache/apt/archives/*.deb sudo dpkg --configure -a sudo apt-get install -fy sudo apt-get dist-upgrade But stuck with same error E: Internal Error, No file name for libc6 when do command sudo apt-get install -fy. And I've been looking on google, but have not been successful until now. Thanks.

    Read the article

  • Workaround: build FBX in XNA raise OutOfMemoryException

    - by Vitus
    If you try to add large FBX 3D model to the XNA project, and build it, you can get an OutOfMemoryException build error like following: Error    1    Building content threw OutOfMemoryException: Exception of type 'System.OutOfMemoryException' was thrown.    at System.Collections.Generic.List`1.set_Capacity(Int32 value)    at System.Collections.Generic.List`1.EnsureCapacity(Int32 min)    at System.Collections.Generic.List`1.InsertRange(Int32 index, IEnumerable`1 collection)    at Microsoft.Xna.Framework.Content.Pipeline.Graphics.VertexChannel`1.InsertRange(Int32 index, Int32 count)    at Microsoft.Xna.Framework.Content.Pipeline.Graphics.VertexContent.InsertRange(Int32 index, IEnumerable`1 positionIndexCollection)    at Microsoft.Xna.Framework.Content.Pipeline.Graphics.MeshBuilder.AddTriangleVertex(Int32 indexIntoVertexCollection)    at Microsoft.Xna.Framework.Content.Pipeline.MeshConverter.FillNodeWithInfoFromMesh(KFbxNode* fbxNode, String name, KFbxGeometryConverter* geometryConverter)    at Microsoft.Xna.Framework.Content.Pipeline.FbxImporter.ProcessInformationInNode(KFbxNode* fbxNode, String name, Boolean* partOfMainSkeleton, Boolean* warnIfBoneButNotChild)    at Microsoft.Xna.Framework.Content.Pipeline.FbxImporter.ProcessNode(ValueType parentAbsoluteTransform, NodeContent potentialParent, KFbxNode* fbxNode, Boolean partOfMainSkeleton, Boolean warnIfBoneButNotChild)    at Microsoft.Xna.Framework.Content.Pipeline.FbxImporter.ProcessNode(ValueType parentAbsoluteTransform, NodeContent potentialParent, KFbxNode* fbxNode, Boolean partOfMainSkeleton, Boolean warnIfBoneButNotChild)    at Microsoft.Xna.Framework.Content.Pipeline.FbxImporter.Import(String filename, ContentImporterContext context)    at Microsoft.Xna.Framework.Content.Pipeline.ContentImporter`1.Microsoft.Xna.Framework.Content.Pipeline.IContentImporter.Import(String filename, ContentImporterContext context)    //additional calls here …   My desktop PC have 8Gb RAM, and Visual Studio’s process devenv.exe use under 2Gb of it while build process (about 3.5-4Gb of RAM is always free). It’s obvious, that VS can’t address more than 2Gb of RAM, and when that limit is over, build process is fail. OS on my PC is Win x64,  so I “charge” devenv.exe by using editbin.exe utility – in the VS Command prompt I run following: editbin "C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\devenv.exe" /LARGEADDRESSAWARE This command edits the image to indicate that the application can handle addresses larger than 2 gigabytes. After that FBX file successfully built! Of course, you must put proper path to devenv.exe, depend on your installation path. If you are on Win x86, you need to do additional action – more info here.   P.S.: although now you can build a bigger files, than usual, keep in mind, that XNA have some restrictions on vertex buffer size etc., depend on your current XNA project profile (Reach or HiDef). And if your model’s vertexbuffer size more than 64Mb (with Reach profile), that model can’t be built and raise an error.

    Read the article

  • A Look Inside JSR 360 - CLDC 8

    - by Roger Brinkley
    If you didn't notice during JavaOne the Java Micro Edition took a major step forward in its consolidation with Java Standard Edition when JSR 360 was proposed to the JCP community. Over the last couple of years there has been a focus to move Java ME back in line with it's big brother Java SE. We see evidence of this in JCP itself which just recently merged the ME and SE/EE Executive Committees into a single Java Executive Committee. But just before that occurred JSR 360 was proposed and approved for development on October 29. So let's take a look at what changes are now being proposed. In a way JSR 360 is returning back to the original roots of Java ME when it was first introduced. It was indeed a subset of the JDK 4 language, but as Java progressed many of the language changes were not implemented in the Java ME. Back then the tradeoff was still a functionality, footprint trade off but the major market was feature phones. Today the market has changed and CLDC, while it will still target feature phones, will have it primary emphasis on embedded devices like wireless modules, smart meters, health care monitoring and other M2M devices. The major changes will come in three areas: language feature changes, library changes, and consolidating the Generic Connection Framework.  There have been three Java SE versions that have been implemented since JavaME was first developed so the language feature changes can be divided into changes that came in JDK 5 and those in JDK 7, which mostly consist of the project Coin changes. There were no language changes in JDK 6 but the changes from JDK 5 are: Assertions - Assertions enable you to test your assumptions about your program. For example, if you write a method that calculates the speed of a particle, you might assert that the calculated speed is less than the speed of light. In the example code below if the interval isn't between 0 and and 1,00 the an error of "Invalid value?" would be thrown. private void setInterval(int interval) { assert interval > 0 && interval <= 1000 : "Invalid value?" } Generics - Generics add stability to your code by making more of your bugs detectable at compile time. Code that uses generics has many benefits over non-generic code with: Stronger type checks at compile time. Elimination of casts. Enabling programming to implement generic algorithms. Enhanced for Loop - the enhanced for loop allows you to iterate through a collection without having to create an Iterator or without having to calculate beginning and end conditions for a counter variable. The enhanced for loop is the easiest of the new features to immediately incorporate in your code. In this tip you will see how the enhanced for loop replaces more traditional ways of sequentially accessing elements in a collection. void processList(Vector<string> list) { for (String item : list) { ... Autoboxing/Unboxing - This facility eliminates the drudgery of manual conversion between primitive types, such as int and wrapper types, such as Integer.  Hashtable<Integer, string=""> data = new Hashtable<>(); void add(int id, String value) { data.put(id, value); } Enumeration - Prior to JDK 5 enumerations were not typesafe, had no namespace, were brittle because they were compile time constants, and provided no informative print values. JDK 5 added support for enumerated types as a full-fledged class (dubbed an enum type). In addition to solving all the problems mentioned above, it allows you to add arbitrary methods and fields to an enum type, to implement arbitrary interfaces, and more. Enum types provide high-quality implementations of all the Object methods. They are Comparable and Serializable, and the serial form is designed to withstand arbitrary changes in the enum type. enum Season {WINTER, SPRING, SUMMER, FALL}; } private Season season; void setSeason(Season newSeason) { season = newSeason; } Varargs - Varargs eliminates the need for manually boxing up argument lists into an array when invoking methods that accept variable-length argument lists. The three periods after the final parameter's type indicate that the final argument may be passed as an array or as a sequence of arguments. Varargs can be used only in the final argument position. void warning(String format, String... parameters) { .. for(String p : parameters) { ...process(p);... } ... } Static Imports -The static import construct allows unqualified access to static members without inheriting from the type containing the static members. Instead, the program imports the members either individually or en masse. Once the static members have been imported, they may be used without qualification. The static import declaration is analogous to the normal import declaration. Where the normal import declaration imports classes from packages, allowing them to be used without package qualification, the static import declaration imports static members from classes, allowing them to be used without class qualification. import static data.Constants.RATIO; ... double r = Math.cos(RATIO * theta); Annotations - Annotations provide data about a program that is not part of the program itself. They have no direct effect on the operation of the code they annotate. There are a number of uses for annotations including information for the compiler, compiler-time and deployment-time processing, and run-time processing. They can be applied to a program's declarations of classes, fields, methods, and other program elements. @Deprecated public void clear(); The language changes from JDK 7 are little more familiar as they are mostly the changes from Project Coin: String in switch - Hey it only took us 18 years but the String class can be used in the expression of a switch statement. Fortunately for us it won't take that long for JavaME to adopt it. switch (arg) { case "-data": ... case "-out": ... Binary integral literals and underscores in numeric literals - Largely for readability, the integral types (byte, short, int, and long) can also be expressed using the binary number system. and any number of underscore characters (_) can appear anywhere between digits in a numerical literal. byte flags = 0b01001111; long mask = 0xfff0_ff08_4fff_0fffl; Multi-catch and more precise rethrow - A single catch block can handle more than one type of exception. In addition, the compiler performs more precise analysis of rethrown exceptions than earlier releases of Java SE. This enables you to specify more specific exception types in the throws clause of a method declaration. catch (IOException | InterruptedException ex) { logger.log(ex); throw ex; } Type Inference for Generic Instance Creation - Otherwise known as the diamond operator, the type arguments required to invoke the constructor of a generic class can be replaced with an empty set of type parameters (<>) as long as the compiler can infer the type arguments from the context.  map = new Hashtable<>(); Try-with-resource statement - The try-with-resources statement is a try statement that declares one or more resources. A resource is an object that must be closed after the program is finished with it. The try-with-resources statement ensures that each resource is closed at the end of the statement.  try (DataInputStream is = new DataInputStream(...)) { return is.readDouble(); } Simplified varargs method invocation - The Java compiler generates a warning at the declaration site of a varargs method or constructor with a non-reifiable varargs formal parameter. Java SE 7 introduced a compiler option -Xlint:varargs and the annotations @SafeVarargs and @SuppressWarnings({"unchecked", "varargs"}) to supress these warnings. On the library side there are new features that will be added to satisfy the language requirements above and some to improve the currently available set of APIs.  The library changes include: Collections update - New Collection, List, Set and Map, Iterable and Iteratator as well as implementations including Hashtable and Vector. Most of the work is too support generics String - New StringBuilder and CharSequence as well as a Stirng formatter. The javac compiler  now uses the the StringBuilder instead of String Buffer. Since StringBuilder is synchronized there is a performance increase which has necessitated the wahat String constructor works. Comparable interface - The comparable interface works with Collections, making it easier to reuse. Try with resources - Closeable and AutoCloseable Annotations - While support for Annotations is provided it will only be a compile time support. SuppressWarnings, Deprecated, Override NIO - There is a subset of NIO Buffer that have been in use on the of the graphics packages and needs to be pulled in and also support for NIO File IO subset. Platform extensibility via Service Providers (ServiceLoader) - ServiceLoader interface dos late bindings of interface to existing implementations. It helpe to package an interface and behavior of the implementation at a later point in time.Provider classes must have a zero-argument constructor so that they can be instantiated during loading. They are located and instantiated on demand and are identified via a provider-configuration file in the METAINF/services resource directory. This is a mechansim from Java SE. import com.XYZ.ServiceA; ServiceLoader<ServiceA> sl1= new ServiceLoader(ServiceA.class); Resources: META-INF/services/com.XYZ.ServiceA: ServiceAProvider1 ServiceAProvider2 ServiceAProvider3 META-INF/services/ServiceB: ServiceBProvider1 ServiceBProvider2 From JSR - I would rather use this list I think The Generic Connection Framework (GCF) was previously specified in a number of different JSRs including CLDC, MIDP, CDC 1.2, and JSR 197. JSR 360 represents a rare opportunity to consolidated and reintegrate parts that were duplicated in other specifications into a single specification, upgrade the APIs as well provide new functionality. The proposal is to specify a combined GCF specification that can be used with Java ME or Java SE and be backwards compatible with previous implementations. Because of size limitations as well as the complexity of the some features like InvokeDynamic and Unicode 6 will not be included. Additionally, any language or library changes in JDK 8 will be not be included. On the upside, with all the changes being made, backwards compatibility will still be maintained. JSR 360 is a major step forward for Java ME in terms of platform modernization, language alignment, and embedded support. If you're interested in following the progress of this JSR see the JSR's java.net project for details of the email lists, discussions groups.

    Read the article

< Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >