Search Results

Search found 9183 results on 368 pages for 'implementation latitude'.

Page 49/368 | < Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >

  • Accessing a variable passed by jquery using php

    - by celenius
    How does php access a variable passed by JQuery? I have the following code: $.post("getLatLong.php", { latitude: 500000}, function(data){ alert("Data Loaded: " + data); }); but I don't understand how to access this value using php. I've tried $userLat=$_GET["latitude"]; and $userLat=$_GET[latitude]; and then I try to print out the value (to check that it worked) using: echo $userLat; but it does not return anything. I can't figure out how to access what is being passed to it.

    Read the article

  • How can I get the JSON array data from nsstring or byte in xcode 4.2?

    - by user1471568
    I'm trying to get values from nsdata class and doesn't work. here is my JSON data. { "count": 3, "item": [{ "id": "1", "latitude": "37.556811", "longitude": "126.922015", "imgUrl": "http://175.211.62.15/sample_res/1.jpg", "found": false }, { "id": "3", "latitude": "37.556203", "longitude": "126.922629", "imgUrl": "http://175.211.62.15/sample_res/3.jpg", "found": false }, { "id": "2", "latitude": "37.556985", "longitude": "126.92286", "imgUrl": "http://175.211.62.15/sample_res/2.jpg", "found": false }] } and here is my code -(NSDictionary *)getDataFromItemList { NSData *dataBody = [[NSData alloc] initWithBytes:buffer length:sizeof(buffer)]; NSDictionary *iTem = [[NSDictionary alloc]init]; iTem = [NSJSONSerialization JSONObjectWithData:dataBody options:NSJSONReadingMutableContainers error:nil]; NSLog(@"id = %@",[iTem objectForKey:@"id"]); //for Test output = [[NSString alloc] initWithBytes:buffer length:rangeHeader.length encoding:NSUTF8StringEncoding]; NSLog(@"%@",output); return iTem; } how can I access every value in the JSON? Please help me.

    Read the article

  • Get current location using CLLocationCoordinate2D

    - by Mobility
    I am trying to get current location of user using CLLocationCoordinate2D. I want the values in the format like CLLocationCoordinate2D start = {-28.078694,153.382844 }; So that I can use them like following: NSString *urlAddress = [NSString stringWithFormat:@"http://maps.google.com/?saddr=%1.6f,%1.6f&daddr=%1.6f,%1.6f", start.latitude, start.longitude, destination.latitude, destination.longitude]; I used CLLocation *location = [[CLLocation alloc]init ]; CLLocationDegrees currentLatitude = location.coordinate.latitude; CLLocationDegrees currentLongitude = location.coordinate.longitude; to get current lat & long. But I am getting 0.000 for both when I try to test. I am testing on iPhone 4s. If there is any sample code, it will be great.

    Read the article

  • Merge sort versus quick sort performance

    - by Giorgio
    I have implemented merge sort and quick sort using C (GCC 4.4.3 on Ubuntu 10.04 running on a 4 GB RAM laptop with an Intel DUO CPU at 2GHz) and I wanted to compare the performance of the two algorithms. The prototypes of the sorting functions are: void merge_sort(const char **lines, int start, int end); void quick_sort(const char **lines, int start, int end); i.e. both take an array of pointers to strings and sort the elements with index i : start <= i <= end. I have produced some files containing random strings with length on average 4.5 characters. The test files range from 100 lines to 10000000 lines. I was a bit surprised by the results because, even though I know that merge sort has complexity O(n log(n)) while quick sort is O(n^2), I have often read that on average quick sort should be as fast as merge sort. However, my results are the following. Up to 10000 strings, both algorithms perform equally well. For 10000 strings, both require about 0.007 seconds. For 100000 strings, merge sort is slightly faster with 0.095 s against 0.121 s. For 1000000 strings merge sort takes 1.287 s against 5.233 s of quick sort. For 5000000 strings merge sort takes 7.582 s against 118.240 s of quick sort. For 10000000 strings merge sort takes 16.305 s against 1202.918 s of quick sort. So my question is: are my results as expected, meaning that quick sort is comparable in speed to merge sort for small inputs but, as the size of the input data grows, the fact that its complexity is quadratic will become evident? Here is a sketch of what I did. In the merge sort implementation, the partitioning consists in calling merge sort recursively, i.e. merge_sort(lines, start, (start + end) / 2); merge_sort(lines, 1 + (start + end) / 2, end); Merging of the two sorted sub-array is performed by reading the data from the array lines and writing it to a global temporary array of pointers (this global array is allocate only once). After each merge the pointers are copied back to the original array. So the strings are stored once but I need twice as much memory for the pointers. For quick sort, the partition function chooses the last element of the array to sort as the pivot and scans the previous elements in one loop. After it has produced a partition of the type start ... {elements <= pivot} ... pivotIndex ... {elements > pivot} ... end it calls itself recursively: quick_sort(lines, start, pivotIndex - 1); quick_sort(lines, pivotIndex + 1, end); Note that this quick sort implementation sorts the array in-place and does not require additional memory, therefore it is more memory efficient than the merge sort implementation. So my question is: is there a better way to implement quick sort that is worthwhile trying out? If I improve the quick sort implementation and perform more tests on different data sets (computing the average of the running times on different data sets) can I expect a better performance of quick sort wrt merge sort? EDIT Thank you for your answers. My implementation is in-place and is based on the pseudo-code I have found on wikipedia in Section In-place version: function partition(array, 'left', 'right', 'pivotIndex') where I choose the last element in the range to be sorted as a pivot, i.e. pivotIndex := right. I have checked the code over and over again and it seems correct to me. In order to rule out the case that I am using the wrong implementation I have uploaded the source code on github (in case you would like to take a look at it). Your answers seem to suggest that I am using the wrong test data. I will look into it and try out different test data sets. I will report as soon as I have some results.

    Read the article

  • Iterative and Incremental Principle Series 4: Iteration Planning – (a.k.a What should I do today?)

    - by llowitz
    Welcome back to the fourth of a five part series on applying the Iteration and Incremental principle.  During the last segment, we discussed how the Implementation Plan includes the number of the iterations for a project, but not the specifics about what will occur during each iteration.  Today, we will explore Iteration Planning and discuss how and when to plan your iterations. As mentioned yesterday, OUM prescribes initially planning your project approach at a high level by creating an Implementation Plan.  As the project moves through the lifecycle, the plan is progressively refined.  Specifically, the details of each iteration is planned prior to the iteration start. The Iteration Plan starts by identifying the iteration goal.  An example of an iteration goal during the OUM Elaboration Phase may be to complete the RD.140.2 Create Requirements Specification for a specific set of requirements.  Another project may determine that their iteration goal is to focus on a smaller set of requirements, but to complete both the RD.140.2 Create Requirements Specification and the AN.100.1 Prepare Analysis Specification.  In an OUM project, the Iteration Plan needs to identify both the iteration goal – how far along the implementation lifecycle you plan to be, and the scope of work for the iteration.  Since each iteration typically ranges from 2 weeks to 6 weeks, it is important to identify a scope of work that is achievable, yet challenging, given the iteration goal and timeframe.  OUM provides specific guidelines and techniques to help prioritize the scope of work based on criteria such as risk, complexity, customer priority and dependency.  In OUM, this prioritization helps focus early iterations on the high risk, architecturally significant items helping to mitigate overall project risk.  Central to the prioritization is the MoSCoW (Must Have, Should Have, Could Have, and Won’t Have) list.   The result of the MoSCoW prioritization is an Iteration Group.  This is a scope of work to be worked on as a group during one or more iterations.  As I mentioned during yesterday’s blog, it is pointless to plan my daily exercise in advance since several factors, including the weather, influence what exercise I perform each day.  Therefore, every morning I perform Iteration Planning.   My “Iteration Plan” includes the type of exercise for the day (run, bike, elliptical), whether I will exercise outside or at the gym, and how many interval sets I plan to complete.    I use several factors to prioritize the type of exercise that I perform each day.  Since running outside is my highest priority, I try to complete it early in the week to minimize the risk of not meeting my overall goal of doing it twice each week.  Regardless of the specific exercise I select, I follow the guidelines in my Implementation Plan by applying the 6-minute interval sets.  Just as in OUM, the iteration goal should be in context of the overall Implementation Plan, and the iteration goal should move the project closer to achieving the phase milestone goals. Having an Implementation Plan details the strategy of what I plan to do and keeps me on track, while the Iteration Plan affords me the flexibility to juggle what I do each day based on external influences thus maximizing my overall success. Tomorrow I’ll conclude the series on applying the Iterative and Incremental approach by discussing how to manage the iteration duration and highlighting some benefits of applying this principle.

    Read the article

  • CI tests to enforce specific development rules - good practice?

    - by KeithS
    The following is all purely hypothetical and any particular portion of it may or may not accurately describe real persons or situations, whether living, dead or just pretending. Let's say I'm a senior dev or architect in charge of a dev team working on a project. This project includes a security library for user authentication/authorization of the application under development. The library must be available for developers to edit; however, I wish to "trust but verify" that coders are not doing things that could compromise the security of the finished system, and because this isn't my only responsibility I want it to be done in an automated way. As one example, let's say I have an interface that represents a user which has been authenticated by the system's security library. The interface exposes basic user info and a list of things the user is authorized to do (so that the client app doesn't have to keep asking the server "can I do this?"), all in an immutable fashion of course. There is only one implementation of this interface in production code, and for the purposes of this post we can say that all appropriate measures have been taken to ensure that this implementation can only be used by the one part of our code that needs to be able to create concretions of the interface. The coders have been instructed that this interface and its implementation are sacrosanct and any changes must go through me. However, those are just words; the security library's source is open for editing by necessity. Any of my devs could decide that this secured, private, hash-checked implementation needs to be public so that they could do X, or alternately they could create their own implementation of this public interface in a different library, exposing the hashing algorithm that provides the secure checksum, in order to do Y. I may not be made aware of these changes so that I can beat the developer over the head for it. An attacker could then find these little nuggets in an unobfuscated library of the compiled product, and exploit it to provide fake users and/or falsely-elevated administrative permissions, bypassing the entire security system. This possibility keeps me awake for a couple of nights, and then I create an automated test that reflectively checks the codebase for types deriving from the interface, and fails if it finds any that are not exactly what and where I expect them to be. I compile this test into a project under a separate folder of the VCS that only I have rights to commit to, have CI compile it as an external library of the main project, and set it up to run as part of the CI test suite for user commits. Now, I have an automated test under my complete control that will tell me (and everyone else) if the number of implementations increases without my involvement, or an implementation that I did know about has anything new added or has its modifiers or those of its members changed. I can then investigate further, and regain the opportunity to beat developers over the head as necessary. Is this considered "reasonable" to want to do in situations like this? Am I going to be seen in a negative light for going behind my devs' backs to ensure they aren't doing something they shouldn't?

    Read the article

  • How to model has_many with polymorphism?

    - by Daniel Abrahamsson
    I've run into a situation that I am not quite sure how to model. Suppose I have a User class, and a user has many services. However, these services are quite different, for example a MailService and a BackupService, so single table inheritance won't do. Instead, I am thinking of using polymorphic associations together with an abstract base class: class User < ActiveRecord::Base has_many :services end class Service < ActiveRecord::Base validates_presence_of :user_id, :implementation_id, :implementation_type belongs_to :user belongs_to :implementation, :polymorphic = true delegate :common_service_method, :name, :to => :implementation end #Base class for service implementations class ServiceImplementation < ActiveRecord::Base validates_presence_of :user_id, :on => :create has_one :service, :as => :implementation has_one :user, :through => :service after_create :create_service_record #Tell Rails this class does not use a table. def self.abstract_class? true end #Default name implementation. def name self.class.name end protected #Sets up a service object def create_service_record service = Service.new(:user_id => user_id) service.implementation = self service.save! end end class MailService < ServiceImplementation #validations, etc... def common_service_method puts "MailService implementation of common service method" end end #Example usage MailService.create(..., :user_id => user.id) BackupService.create(...., :user_id => user.id) user.services.each do |s| puts "#{user.name} is using #{s.name}" end #Daniel is using MailService, Daniel is using BackupService So, is this the best solution? Or even a good one? How have you solved this kind of problem?

    Read the article

  • Is there a way to increase the efficiency of shared_ptr by storing the reference count inside the co

    - by BillyONeal
    Hello everyone :) This is becoming a common pattern in my code, for when I need to manage an object that needs to be noncopyable because either A. it is "heavy" or B. it is an operating system resource, such as a critical section: class Resource; class Implementation : public boost::noncopyable { friend class Resource; HANDLE someData; Implementation(HANDLE input) : someData(input) {}; void SomeMethodThatActsOnHandle() { //Do stuff }; public: ~Implementation() { FreeHandle(someData) }; }; class Resource { boost::shared_ptr<Implementation> impl; public: Resource(int argA) explicit { HANDLE handle = SomeLegacyCApiThatMakesSomething(argA); if (handle == INVALID_HANDLE_VALUE) throw SomeTypeOfException(); impl.reset(new Implementation(handle)); }; void SomeMethodThatActsOnTheResource() { impl->SomeMethodThatActsOnTheHandle(); }; }; This way, shared_ptr takes care of the reference counting headaches, allowing Resource to be copyable, even though the underlying handle should only be closed once all references to it are destroyed. However, it seems like we could save the overhead of allocating shared_ptr's reference counts and such separately if we could move that data inside Implementation somehow, like boost's intrusive containers do. If this is making the premature optimization hackles nag some people, I actually agree that I don't need this for my current project. But I'm curious if it is possible.

    Read the article

  • Building a Store Locator ASP.NET Application Using Google Maps API (Part 3)

    Over the past two weeks I've showed how to build a store locator application using ASP.NET and the free <a href="http://code.google.com/apis/maps/">Google Maps API</a> and Google's geocoding service. <a href="http://www.4guysfromrolla.com/articles/051910-1.aspx">Part 1</a> looked at creating the database to record the store locations. This database contains a table named <code>Stores</code> with columns capturing each store's address and <a href="http://en.wikipedia.org/wiki/Latitude">latitude</a> and <a href="http://en.wikipedia.org/wiki/Longitude">longitude</a> coordinates. Part 1 also showed how to use Google's geocoding service to translate a user-entered address

    Read the article

  • Documentation in Oracle Retail Merchandising System (RMS) and Oracle Retail Fiscal Management System (ORFM), Release 13.2.4

    - by Oracle Retail Documentation Team
    The Patch Release 13.2.4 of the Oracle Retail Merchandising System (RMS) and its module, Oracle Retail Fiscal Management (ORFM)  is now available from My Oracle Support. End User Documentation Enhancements The following summarize the highlights of changes made to the documentation in conjunction with the new Brazil-related functionality: Foundation chapter in the Oracle Retail Merchandising System (RMS)/Sales Audit (ReSA) Brazil Localization User GuideThis chapter was updated with a non-base Localization Flexible Attribution Solution (LFAS) section that addresses the addition of several new custom attributes to Items and Suppliers through non-base LFAS for Brazil; it also addresses the extension of the Retail Tax Integration Layer (RTIL) through the Oracle Retail Merchandising System (RMS), and Oracle Retail Fiscal Management System (ORFM).  ORFM User GuideThe Purchase Order chapter was updated to include schedule related updates for a Nota Fiscal. The Fiscal Documents chapter was updated to include information on creating a new NF and searching for details using Vendor Product Number. Oracle Retail Fiscal Management/RMS Brazil Localization Implementation GuideThe Implementation Checklist chapter was updated with a note on multi-currency functionality. The Batch Processes chapter was updated with information on the NF EDI batch. The following summarize the highlights of changes made to the documentation in conjunction with the new technical certifications (see the RMS 13.2.4 Release Notes for more information): Installation Guides for RMS and for ORFM/RMS BrazilThese installation guides were updated extensively to account for the multiple technical certification enhancements in 13.2.4. White Paper: How to Upgrade from WebLogic11g 10.3.3 to WebLogic11g 10.3.4  (Doc ID: 1432575.1)See the previous blog entry regarding this new White Paper. New Documents on My Oracle Support for Brazil Localization Overview and Interfaces Tax Vendor Integration (Doc ID: 1424048.1)Oracle chooses to integrate with a third party tax expert to delivery the Brazilian solution. Oracle has built the Retail Tax Integration layer (RTIL) as the key integration component to support the integration of Oracle suite of products with external tax vendors. This paper addresses the RTIL integration interfaces with TaxWeb, providing guidance on the typical integration interfaces and operations that must be supported by other tax solutions in the Brazilian market. Oracle Retail Fiscal Management/RMS Brazil Localization: Localization Flexible Attribute Solution (LFAS) (Doc ID: 1418509.1)The white paper covers the definition of custom attributes in Localization Flexible Attribute Solution (LFAS) and enables retailers to perform data conversion changes. Retailers can add several new custom attributes to Items and Suppliers through non-base LFAS for Brazil and extend Retail Tax Integration Layer (RTIL) through the Oracle Retail Merchandising System (RMS), and Oracle Retail Fiscal Management System (RFM). Documents Published in RMS and ORFM Release 13.2.4 Oracle Retail Merchandising System Release Notes Oracle Retail Merchandising System Installation Guide Oracle Retail Merchandising System User Guide and Online Help Oracle Retail Sales Audit (ReSA) User Guide and Online Help Oracle Retail Merchandising System Operations Guide Oracle Retail Merchandising System Data Model Oracle Retail Merchandising Batch Schedule Oracle Retail Merchandising Implementation Guide Oracle Retail POS Suite 13.4.1 / Merchandising Operations Management13.2.4 Implementation Guide Oracle Retail Fiscal Management Data Model Oracle Retail Fiscal Management/RMS Brazil Localization Installation Guide Oracle Retail Fiscal Management/RMS Brazil Localization Implementation Guide Oracle Retail Fiscal Management User Guide and Online Help

    Read the article

  • Building a Store Locator ASP.NET Application Using Google Maps API (Part 2)

    Last week's article, <a href="http://www.4guysfromrolla.com/articles/051910-1.aspx">Building a Store Locator ASP.NET Application Using Google Maps API (Part 1)</a>, was the first in a multi-part article series exploring how to add store locator-type functionality to your ASP.NET website using the free <a href="http://code.google.com/apis/maps/">Google Maps API</a>. Part 1 started with an examination of the database used to power the store locator, which contains a single table named <code>Stores</code> with columns capturing the store number, its address and its <a href="http://en.wikipedia.org/wiki/Latitude">latitude</a> and <a

    Read the article

  • Event Driven Behavior Tree: deterministic traversal order with parallel

    - by Heisenbug
    I've studied several articles and listen some talks about behavior trees (mostly the resources available on AIGameDev by Alex J. Champandard). I'm particularly interested on event driven behavior trees, but I have still some doubts on how to implement them correctly using a scheduler. Just a quick recap: Standard Behavior Tree Each execution tick the tree is traversed from the root in depth-first order The execution order is implicitly expressed by the tree structure. So in the case of behaviors parented to a parallel node, even if both children are executed during the same traversing, the first leaf is always evaluated first. Event Driven BT During the first traversal the nodes (tasks) are enqueued using a scheduler which is responsible for updating only running ones every update The first traversal implicitly produce a depth-first ordered queue in the scheduler Non leaf nodes stays suspended mostly of the time. When a leaf node terminate(either with success or fail status) the parent (observer) is waked up allowing the tree traversing to continue and new tasks will be enqueued in the scheduler Without parallel nodes in the tree there will be up to 1 task running in the scheduler Without parallel nodes, the tasks in the queue(excluding dynamic priority implementation) will be always ordered in a depth-first order (is this right?) Now, from what is my understanding of a possible implementation, there are 2 requirements I think must be respected(I'm not sure though): Now, some requirements I think needs to be guaranteed by a correct implementation are: The result of the traversing should be independent from which implementation strategy is used. The traversing result must be deterministic. I'm struggling trying to guarantee both in the case of parallel nodes. Here's an example: Parallel_1 -->Sequence_1 ---->leaf_A ---->leaf_B -->leaf_C Considering a FIFO policy of the scheduler, before leaf_A node terminates the tasks in the scheduler are: P1(suspended),S1(suspended),leaf_A(running),leaf_C(running) When leaf_A terminate leaf_B will be scheduled (at the end of the queue), so the queue will become: P1(suspended),S1(suspended),leaf_C(running),leaf_B(running) In this case leaf_B will be executed after leaf_C at every update, meanwhile with a non event-driven traversing from the root node, the leaf_B will always be evaluated before leaf_A. So I have a couple of question: do I have understand correctly how event driven BT work? How can I guarantee the depth first order is respected with such an implementation? is this a common issue or am I missing something?

    Read the article

  • Building a Store Locator ASP.NET Application Using Google Maps API

    The past couple of projects I've been working on have included the use of the Google Maps API and geocoding service in websites for various reasons. I decided to tie together some of the lessons learned, build an ASP.NETstore locator demo, and write about it on 4Guys. Last week I published the first article in what I think will be a three-part series: Building a Store Locator ASP.NET Application Using Google Maps (Part 1). Part 1 walks through creating a demo where a user can type in an address and any stores within a (roughly) 15 mile area will be displayed in a grid.The article begins with a look at the database used to power the store locator (namely, a single table that contains one row for every location, with each location storing its store number, address, and, most important, latitude and longitude coordinates) and then turns to usingGoogle's geocoding service to translatea user-entered address into latitude and longitude coordinates. The latitude and longitude coordinates are used to find nearby stores, which are then displayed in a grid. Part 2 looks at enhancing the search results to include a map with markers indicating the position of each nearby store location. The Google Maps API, along with a bit of client-side script and server-side logic, make this actually pretty straightforward and easy to implement. Here's a screen shot of the improved store locator results. Part 3, which I plan on publishing next week, looks at how to enhance the map by using information windows to display address information when clicking a marker. Additionally, I'll show how to use custom icons for the markers so that instead of having the same marker for each nearby location the markers will be images numbered 1, 2, 3, and so on, which will correspond to a number assigned to each search result in the grid. The idea here is that by numbering the search results in the grid and the markers on the map visitors will quickly be able to see what marker corresponds to what search result. This article and demo has been a lot of fun to write and create, and I hope you enjoy reading it, too. Building a Store Locator ASP.NET Application Using Google Maps API (Part 1) Building a Store Locator ASP.NET Application Using Google Maps API (Part 2) Happy Programming!Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • IXRepository and test problems

    - by Ridermansb
    Recently had a doubt about how and where to test repository methods. Let the following situation: I have an interface IRepository like this: public interface IRepository<T> where T: class, IEntity { IQueryable<T> Query(Expression<Func<T, bool>> expression); // ... Omitted } And a generic implementation of IRepository public class Repository<T> : IRepository<T> where T : class, IEntity { public IQueryable<T> Query(Expression<Func<T, bool>> expression) { return All().Where(expression).AsQueryable(); } } This is an implementation base that can be used by any repository. It contains the basic implementation of my ORM. Some repositories have specific filters, in which case we will IEmployeeRepository with a specific filter: public interface IEmployeeRepository : IRepository<Employee> { IQueryable<Employee> GetInactiveEmployees(); } And the implementation of IEmployeeRepository: public class EmployeeRepository : Repository<Employee>, IEmployeeRepository // TODO: I have a dependency with ORM at this point in Repository<Employee>. How to solve? How to test the GetInactiveEmployees method { public IQueryable<Employee> GetInactiveEmployees() { return Query(p => p.Status != StatusEmployeeEnum.Active || p.StartDate < DateTime.Now); } } Questions Is right to inherit Repository<Employee>? The goal is to reuse code once all implementing IRepository already been made. If EmployeeRepository inherit only IEmployeeRepository, I have to literally copy and paste the code of Repository<T>. In our example, in EmployeeRepository : Repository<Employee> our Repository lies in our ORM layer. We have a dependency here with our ORM impossible to perform some unit test. How to create a unit test to ensure that the filter GetInactiveEmployees return all Employees in which the Status != Active and StartDate < DateTime.Now. I can not create a Fake/Mock of IEmployeeRepository because I would be testing? Need to test the actual implementation of GetInactiveEmployees. The complete code can be found on Github

    Read the article

  • Facebook - Publish Checkins using Graph API

    - by Zany
    I'm trying to publish Checkin using Facebook Graph API. I've gone through Facebook API documentation (checkins) and also have the publish_checkins permission. However, my checkin is not getting published. May I know is there anything wrong or am I missing anything else? Thank you for your time :) fbmain.php $user = $facebook->getUser(); $access_token = $facebook->getAccessToken(); // Session based API call if ($user) { try { $me = $facebook->api('/me'); if($me) { $_SESSION['fbID'] = $me['id']; $uid = $me['id']; } } catch (FacebookApiException $e) { error_log($e); } } else { echo "<script type='text/javascript'>top.location.href='$loginUrl';</script>"; exit; } $loginUrl = $facebook->getLoginUrl( array( 'redirect_uri' => $redirect_url, 'scope' => status_update, publish_stream, publish_checkins, user_checkins, user_location, user_status' ) ); main.php (Updated: 18/6/2012 11.12pm) <?php include_once "fbmain.php"; if (!isset($_POST['latitude']) && !isset($_POST['longitude'])) { ?> <html> <head> //ajax POST of latitude and longitude </head> <body> <script type="text/javascript"> window.fbAsyncInit = function() { FB.init({ appId: '<?php echo $facebook->getAppID() ?>', cookie: true, xfbml: true, oauth: true, frictionlessRequests: true }); FB.Canvas.setAutoGrow(); }; (function() { var e = document.createElement('script'); e.async = true; e.src = document.location.protocol + '//connect.facebook.net/en_US/all.js'; document.getElementById('fb-root').appendChild(e); }()); </script> ... <input type="button" value="Check In!" onclick="checkin(<?=$facebook?>);"/></span> </body> </html> <?php } else { print_r($_POST['latitude']); print_r($_POST['longitude']); ?> <script type="text/javascript"> // not using latitude and longitude to test function checkin($fb) { try { $tryCatch = $facebook->api('/'.$_SESSION['fbID'].'/checkins', 'POST', array( 'access_token' => $fb->getAccessToken(), //corrected 'place' => '165122993538708', 'message' =>'I went to placename today', 'coordinates' => json_encode(array( 'latitude' => '1.3019399200902', 'longitude' => '103.84067653695' )) )); } catch(FacebookApiException $e) { $tryCatch=$e->getMessage(); } return $tryCatch; } </script> <?php } ?>

    Read the article

  • setTimeout in javascript not giving browser 'breathing room'

    - by C Bauer
    Alright, I thought I had this whole setTimeout thing perfect but I seem to be horribly mistaken. I'm using excanvas and javascript to draw a map of my home state, however the drawing procedure chokes the browser. Right now I'm forced to pander to IE6 because I'm in a big organisation, which is probably a large part of the slowness. So what I thought I'd do is build a procedure called distributedDrawPolys (I'm probably using the wrong word there, so don't focus on the word distributed) which basically pops the polygons off of a global array in order to draw 50 of them at a time. This is the method that pushes the polygons on to the global array and runs the setTimeout: for (var x = 0; x < polygon.length; x++) { coordsObject.push(polygon[x]); fifty++; if (fifty > 49) { timeOutID = setTimeout(distributedDrawPolys, 5000); fifty = 0; } } I put an alert at the end of that method, it runs in practically a second. The distributed method looks like: function distributedDrawPolys() { if (coordsObject.length > 0) { for (x = 0; x < 50; x++) { //Only do 50 polygons var polygon = coordsObject.pop(); var coordinate = polygon.selectNodes("Coordinates/point"); var zip = polygon.selectNodes("ZipCode"); var rating = polygon.selectNodes("Score"); if (zip[0].text.indexOf("HH") == -1) { var lastOriginCoord = []; for (var y = 0; y < coordinate.length; y++) { var point = coordinate[y]; latitude = shiftLat(point.getAttribute("lat")); longitude = shiftLong(point.getAttribute("long")); if (y == 0) { lastOriginCoord[0] = point.getAttribute("long"); lastOriginCoord[1] = point.getAttribute("lat"); } if (y == 1) { beginPoly(longitude, latitude); } if (y > 0) { if (translateLongToX(longitude) > 0 && translateLongToX(longitude) < 800 && translateLatToY(latitude) > 0 && translateLatToY(latitude) < 600) { drawPolyPoint(longitude, latitude); } } } y = 0; if (zip[0].text != targetZipCode) { if (rating[0] != null) { if (rating[0].text == "Excellent") { endPoly("rgb(0,153,0)"); } else if (rating[0].text == "Good") { endPoly("rgb(153,204,102)"); } else if (rating[0].text == "Average") { endPoly("rgb(255,255,153)"); } } else { endPoly("rgb(255,255,255)"); } } else { endPoly("rgb(255,0,0)"); } } } } Ugh I don't know if that is properly formatted, I ended up with an extra bracket < So I thought the setTimeout method would allow the site to draw the polygons in groups so the users would be able to interact with the page while it was still drawing. What am I doing wrong here?

    Read the article

  • xml validation problem

    - by Hoax
    I'm having trouble validating a schema I created. "cvc-elt.1: Cannot find the declaration of element 'category'." xsd <?xml version="1.0" encoding="UTF-8"?> <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> <xs:element name="list"> <xs:complexType> <xs:sequence> <xs:element name="category" type="categoryType" minOccurs="0" maxOccurs="unbounded"/> </xs:sequence> </xs:complexType> </xs:element> <xs:complexType name="categoryType"> <xs:sequence> <xs:element name="name" type="xs:string"/> <xs:element name="desc" type="xs:string"/> <xs:element name="icon" type="xs:base64Binary"/> <xs:element name="poi" type="poiType" minOccurs="0" maxOccurs="unbounded"/> </xs:sequence> </xs:complexType> <xs:complexType name="poiType"> <xs:sequence> <xs:element name="name" type="xs:string"/> <xs:element name="desc" type="xs:string"/> <xs:element name="longitude" type="xs:long"/> <xs:element name="latitude" type="xs:long"/> <xs:element name="url" type="xs:string" minOccurs="0" maxOccurs="unbounded"/> <xs:element name="image" type="xs:base64Binary" minOccurs="0" maxOccurs="unbounded"/> </xs:sequence> </xs:complexType> </xs:schema> xml <?xml version="1.0" encoding="UTF-8"?> <list SchemaLocation="sem.xsd"> <category> <name>Sehenswürdigkeiten</name> <desc>sehenswerte und berühmte Orte, die man gesehen haben muss</desc> <icon>...</icon> <poi> <name>Linzer Landhaus</name> <desc>Sitz des Oberösterreichsichen Landtags</desc> <url>http://www.linz.at/tourismus/7569.asp</url> <longitude>48.304107</longitude> <latitude>14.286025</latitude> <image>...</image> </poi> <poi> <name>Ars Electronica</name> <desc>Museum der digitalen Künste</desc> <url>http://www.aec.at</url> <longitude>48.309788</longitude> <latitude>14.284179</latitude> <image>...</image> <image>...</image> </poi> </category> <category>...</category> </list> any idea whats wrong? cheers hoax

    Read the article

  • UAT Testing for SOA 10G Clusters

    - by [email protected]
    A lot of customers ask how to verify their SOA clusters and make them production ready. Here is a list that I recommend using for 10G SOA Clusters. v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false EN-CA X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; mso-bidi-font-size:12.0pt; font-family:"Calibri","sans-serif"; mso-fareast-language:EN-US;} Test cases for each component - Oracle Application Server 10G General Application Server test cases This section is going to cover very General test cases to make sure that the Application Server cluster has been set up correctly and if you can start and stop all the components in the server via opmnct and AS Console. Test Case 1 Check if you can see AS instances in the console Implementation 1. Log on to the AS Console --> check to see if you can see all the nodes in your AS cluster. You should be able to see all the Oracle AS instances that are part of the cluster. This means that the OPMN clustering worked and the AS instances successfully joined the AS cluster. Result You should be able to see if all the instances in the AS cluster are listed in the EM console. If the instances are not listed here are the files to check to see if OPMN joined the cluster properly: $ORACLE_HOME\opmn\logs{*}opmn.log*$ORACLE_HOME\opmn\logs{*}opmn.dbg* If OPMN did not join the cluster properly, please check the opmn.xml file to make sure the discovery multicast address and port are correct (see this link  for opmn documentation). Restart the whole instance using opmnctl stopall followed by opmnctl startall. Log on to AS console to see if instance is listed as part of the cluster. Test Case 2 Check to see if you can start/stop each component Implementation Check each OC4J component on each AS instanceStart each and every component through the AS console to see if they will start and stop.Do that for each and every instance. Result Each component should start and stop through the AS console. You can also verify if the component started by checking opmnctl status by logging onto each box associated with the cluster Test Case 3 Add/modify a datasource entry through AS console on a remote AS instance (not on the instance where EM is physically running) Implementation Pick an OC4J instanceCreate a new data-source through the AS consoleModify an existing data-source or connection pool (optional) Result Open $ORACLE_HOME\j2ee\<oc4j_name>\config\data-sources.xml to see if the new (and or the modified) connection details and data-source exist. If they do then the AS console has successfully updated a remote file and MBeans are communicating correctly. Test Case 4 Start and stop AS instances using opmnctl @cluster command Implementation 1. Go to $ORACLE_HOME\opmn\bin and use the opmnctl @cluster to start and stop the AS instances Result Use opmnctl @cluster status to check for start and stop statuses.  HTTP server test cases This section will deal with use cases to test HTTP server failover scenarios. In these examples the HTTP server will be talking to the BPEL console (or any other web application that the client wants), so the URL will be _http://hostname:port\BPELConsole Test Case 1  Shut down one of the HTTP servers while accessing the BPEL console and see the requested routed to the second HTTP server in the cluster Implementation Access the BPELConsoleCheck $ORACLE_HOME\Apache\Apache\logs\access_log --> check for the timestamp and the URL that was accessed by the user. Timestamp and URL would look like this 1xx.2x.2xx.xxx [24/Mar/2009:16:04:38 -0500] "GET /BPELConsole=System HTTP/1.1" 200 15 After you have figured out which HTTP server this is running on, shut down this HTTP server by using opmnctl stopproc --> this is a graceful shutdown.Access the BPELConsole again (please note that you should have a LoadBalancer in front of the HTTP server and configured the Apache Virtual Host, see EDG for steps)Check $ORACLE_HOME\Apache\Apache\logs\access_log --> check for the timestamp and the URL that was accessed by the user. Timestamp and URL would look like above Result Even though you are shutting down the HTTP server the request is routed to the surviving HTTP server, which is then able to route the request to the BPEL Console and you are able to access the console. By checking the access log file you can confirm that the request is being picked up by the surviving node. Test Case 2 Repeat the same test as above but instead of calling opmnctl stopproc, pull the network cord of one of the HTTP servers, so that the LBR routes the request to the surviving HTTP node --> this is simulating a network failure. Test Case 3 In test case 1 we have simulated a graceful shutdown, in this case we will simulate an Apache crash Implementation Use opmnctl status -l to get the PID of the HTTP server that you would like forcefully bring downOn Linux use kill -9 <PID> to kill the HTTP serverAccess the BPEL console Result As you shut down the HTTP server, OPMN will restart the HTTP server. The restart may be so quick that the LBR may still route the request to the same server. One way to check if the HTTP server restared is to check the new PID and the timestamp in the access log for the BPEL console. BPEL test cases This section is going to cover scenarios dealing with BPEL clustering using jGroups, BPEL deployment and testing related to BPEL failover. Test Case 1 Verify that jGroups has initialized correctly. There is no real testing in this use case just a visual verification by looking at log files that jGroups has initialized correctly. Check the opmn log for the BPEL container for all nodes at $ORACLE_HOME/opmn/logs/<group name><container name><group name>~1.log. This logfile will contain jGroups related information during startup and steady-state operation. Soon after startup you should find log entries for UDP or TCP.Example jGroups Log Entries for UDPApr 3, 2008 6:30:37 PM org.collaxa.thirdparty.jgroups.protocols.UDP createSockets ·         INFO: sockets will use interface 144.25.142.172·          ·         Apr 3, 2008 6:30:37 PM org.collaxa.thirdparty.jgroups.protocols.UDP createSockets·          ·         INFO: socket information:·          ·         local_addr=144.25.142.172:1127, mcast_addr=228.8.15.75:45788, bind_addr=/144.25.142.172, ttl=32·         sock: bound to 144.25.142.172:1127, receive buffer size=64000, send buffer size=32000·         mcast_recv_sock: bound to 144.25.142.172:45788, send buffer size=32000, receive buffer size=64000·         mcast_send_sock: bound to 144.25.142.172:1128, send buffer size=32000, receive buffer size=64000·         Apr 3, 2008 6:30:37 PM org.collaxa.thirdparty.jgroups.protocols.TP$DiagnosticsHandler bindToInterfaces·          ·         -------------------------------------------------------·          ·         GMS: address is 144.25.142.172:1127·          ------------------------------------------------------- Example jGroups Log Entries for TCPApr 3, 2008 6:23:39 PM org.collaxa.thirdparty.jgroups.blocks.ConnectionTable start ·         INFO: server socket created on 144.25.142.172:7900·          ·         Apr 3, 2008 6:23:39 PM org.collaxa.thirdparty.jgroups.protocols.TP$DiagnosticsHandler bindToInterfaces·          ·         -------------------------------------------------------·         GMS: address is 144.25.142.172:7900------------------------------------------------------- In the log below the "socket created on" indicates that the TCP socket is established on the own node at that IP address and port the "created socket to" shows that the second node has connected to the first node, matching the logfile above with the IP address and port.Apr 3, 2008 6:25:40 PM org.collaxa.thirdparty.jgroups.blocks.ConnectionTable start ·         INFO: server socket created on 144.25.142.173:7901·          ·         Apr 3, 2008 6:25:40 PM org.collaxa.thirdparty.jgroups.protocols.TP$DiagnosticsHandler bindToInterfaces·          ·         ------------------------------------------------------·         GMS: address is 144.25.142.173:7901·         -------------------------------------------------------·         Apr 3, 2008 6:25:41 PM org.collaxa.thirdparty.jgroups.blocks.ConnectionTable getConnectionINFO: created socket to 144.25.142.172:7900  Result By reviewing the log files, you can confirm if BPEL clustering at the jGroups level is working and that the jGroup channel is communicating. Test Case 2  Test connectivity between BPEL Nodes Implementation Test connections between different cluster nodes using ping, telnet, and traceroute. The presence of firewalls and number of hops between cluster nodes can affect performance as they have a tendency to take down connections after some time or simply block them.Also reference Metalink Note 413783.1: "How to Test Whether Multicast is Enabled on the Network." Result Using the above tools you can confirm if Multicast is working  and whether BPEL nodes are commnunicating. Test Case3 Test deployment of BPEL suitcase to one BPEL node.  Implementation Deploy a HelloWorrld BPEL suitcase (or any other client specific BPEL suitcase) to only one BPEL instance using ant, or JDeveloper or via the BPEL consoleLog on to the second BPEL console to check if the BPEL suitcase has been deployed Result If jGroups has been configured and communicating correctly, BPEL clustering will allow you to deploy a suitcase to a single node, and jGroups will notify the second instance of the deployment. The second BPEL instance will go to the DB and pick up the new deployment after receiving notification. The result is that the new deployment will be "deployed" to each node, by only deploying to a single BPEL instance in the BPEL cluster. Test Case 4  Test to see if the BPEL server failsover and if all asynch processes are picked up by the secondary BPEL instance Implementation Deploy a 2 Asynch process: A ParentAsynch Process which calls a ChildAsynchProcess with a variable telling it how many times to loop or how many seconds to sleepA ChildAsynchProcess that loops or sleeps or has an onAlarmMake sure that the processes are deployed to both serversShut down one BPEL serverOn the active BPEL server call ParentAsynch a few times (use the load generation page)When you have enough ParentAsynch instances shut down this BPEL instance and start the other one. Please wait till this BPEL instance shuts down fully before starting up the second one.Log on to the BPEL console and see that the instance were picked up by the second BPEL node and completed Result The BPEL instance will failover to the secondary node and complete the flow ESB test cases This section covers the use cases involved with testing an ESB cluster. For this section please Normal 0 false false false EN-CA X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; mso-bidi-font-size:12.0pt; font-family:"Calibri","sans-serif"; mso-fareast-language:EN-US;} follow Metalink Note 470267.1 which covers the basic tests to verify your ESB cluster.

    Read the article

  • Parallelism in .NET – Part 11, Divide and Conquer via Parallel.Invoke

    - by Reed
    Many algorithms are easily written to work via recursion.  For example, most data-oriented tasks where a tree of data must be processed are much more easily handled by starting at the root, and recursively “walking” the tree.  Some algorithms work this way on flat data structures, such as arrays, as well.  This is a form of divide and conquer: an algorithm design which is based around breaking up a set of work recursively, “dividing” the total work in each recursive step, and “conquering” the work when the remaining work is small enough to be solved easily. Recursive algorithms, especially ones based on a form of divide and conquer, are often a very good candidate for parallelization. This is apparent from a common sense standpoint.  Since we’re dividing up the total work in the algorithm, we have an obvious, built-in partitioning scheme.  Once partitioned, the data can be worked upon independently, so there is good, clean isolation of data. Implementing this type of algorithm is fairly simple.  The Parallel class in .NET 4 includes a method suited for this type of operation: Parallel.Invoke.  This method works by taking any number of delegates defined as an Action, and operating them all in parallel.  The method returns when every delegate has completed: Parallel.Invoke( () => { Console.WriteLine("Action 1 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); }, () => { Console.WriteLine("Action 2 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); }, () => { Console.WriteLine("Action 3 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); } ); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Running this simple example demonstrates the ease of using this method.  For example, on my system, I get three separate thread IDs when running the above code.  By allowing any number of delegates to be executed directly, concurrently, the Parallel.Invoke method provides us an easy way to parallelize any algorithm based on divide and conquer.  We can divide our work in each step, and execute each task in parallel, recursively. For example, suppose we wanted to implement our own quicksort routine.  The quicksort algorithm can be designed based on divide and conquer.  In each iteration, we pick a pivot point, and use that to partition the total array.  We swap the elements around the pivot, then recursively sort the lists on each side of the pivot.  For example, let’s look at this simple, sequential implementation of quicksort: public static void QuickSort<T>(T[] array) where T : IComparable<T> { QuickSortInternal(array, 0, array.Length - 1); } private static void QuickSortInternal<T>(T[] array, int left, int right) where T : IComparable<T> { if (left >= right) { return; } SwapElements(array, left, (left + right) / 2); int last = left; for (int current = left + 1; current <= right; ++current) { if (array[current].CompareTo(array[left]) < 0) { ++last; SwapElements(array, last, current); } } SwapElements(array, left, last); QuickSortInternal(array, left, last - 1); QuickSortInternal(array, last + 1, right); } static void SwapElements<T>(T[] array, int i, int j) { T temp = array[i]; array[i] = array[j]; array[j] = temp; } Here, we implement the quicksort algorithm in a very common, divide and conquer approach.  Running this against the built-in Array.Sort routine shows that we get the exact same answers (although the framework’s sort routine is slightly faster).  On my system, for example, I can use framework’s sort to sort ten million random doubles in about 7.3s, and this implementation takes about 9.3s on average. Looking at this routine, though, there is a clear opportunity to parallelize.  At the end of QuickSortInternal, we recursively call into QuickSortInternal with each partition of the array after the pivot is chosen.  This can be rewritten to use Parallel.Invoke by simply changing it to: // Code above is unchanged... SwapElements(array, left, last); Parallel.Invoke( () => QuickSortInternal(array, left, last - 1), () => QuickSortInternal(array, last + 1, right) ); } This routine will now run in parallel.  When executing, we now see the CPU usage across all cores spike while it executes.  However, there is a significant problem here – by parallelizing this routine, we took it from an execution time of 9.3s to an execution time of approximately 14 seconds!  We’re using more resources as seen in the CPU usage, but the overall result is a dramatic slowdown in overall processing time. This occurs because parallelization adds overhead.  Each time we split this array, we spawn two new tasks to parallelize this algorithm!  This is far, far too many tasks for our cores to operate upon at a single time.  In effect, we’re “over-parallelizing” this routine.  This is a common problem when working with divide and conquer algorithms, and leads to an important observation: When parallelizing a recursive routine, take special care not to add more tasks than necessary to fully utilize your system. This can be done with a few different approaches, in this case.  Typically, the way to handle this is to stop parallelizing the routine at a certain point, and revert back to the serial approach.  Since the first few recursions will all still be parallelized, our “deeper” recursive tasks will be running in parallel, and can take full advantage of the machine.  This also dramatically reduces the overhead added by parallelizing, since we’re only adding overhead for the first few recursive calls.  There are two basic approaches we can take here.  The first approach would be to look at the total work size, and if it’s smaller than a specific threshold, revert to our serial implementation.  In this case, we could just check right-left, and if it’s under a threshold, call the methods directly instead of using Parallel.Invoke. The second approach is to track how “deep” in the “tree” we are currently at, and if we are below some number of levels, stop parallelizing.  This approach is a more general-purpose approach, since it works on routines which parse trees as well as routines working off of a single array, but may not work as well if a poor partitioning strategy is chosen or the tree is not balanced evenly. This can be written very easily.  If we pass a maxDepth parameter into our internal routine, we can restrict the amount of times we parallelize by changing the recursive call to: // Code above is unchanged... SwapElements(array, left, last); if (maxDepth < 1) { QuickSortInternal(array, left, last - 1, maxDepth); QuickSortInternal(array, last + 1, right, maxDepth); } else { --maxDepth; Parallel.Invoke( () => QuickSortInternal(array, left, last - 1, maxDepth), () => QuickSortInternal(array, last + 1, right, maxDepth)); } We no longer allow this to parallelize indefinitely – only to a specific depth, at which time we revert to a serial implementation.  By starting the routine with a maxDepth equal to Environment.ProcessorCount, we can restrict the total amount of parallel operations significantly, but still provide adequate work for each processing core. With this final change, my timings are much better.  On average, I get the following timings: Framework via Array.Sort: 7.3 seconds Serial Quicksort Implementation: 9.3 seconds Naive Parallel Implementation: 14 seconds Parallel Implementation Restricting Depth: 4.7 seconds Finally, we are now faster than the framework’s Array.Sort implementation.

    Read the article

  • Backing up SQL Azure

    - by Herve Roggero
    That's it!!! After many days and nights... and an amazing set of challenges, I just released the Enzo Backup for SQL Azure BETA product (http://www.bluesyntax.net). Clearly, that was one of the most challenging projects I have done so far. Why??? Because to create a highly redundant system, expecting failures at all times for an operation that could take anywhere from a couple of minutes to a couple of hours, and still making sure that the operation completes at some point was remarkably challenging. Some routines have more error trapping that actual code... Here are a few things I had to take into account: Exponential Backoff (explained in another post) Dual dynamic determination of number of rows to backup  Dynamic reduction of batch rows used to restore the data Implementation of a flexible BULK Insert API that the tool could use Implementation of a custom Storage REST API to handle automatic retries Automatic data chunking based on blob sizes Compression of data Implementation of the Task Parallel Library at multiple levels including deserialization of Azure Table rows and backup/restore operations Full or Partial Restore operations Implementation of a Ghost class to serialize/deserialize data tables And that's just a partial list... I will explain what some of those mean in future blob posts. A lot of the complexities had to do with implementing a form of retry logic, depending on the resource and the operation.

    Read the article

  • Success Quote: A Hybrid Approach for Success

    - by Lauren Clark
    We recently received this quote from a project that successfully used OUM: “On our project, we applied a combination of the Oracle Unified Method (OUM) and the client's methodology. The project was organized by OUM's phases and a subset of OUM's processes, tasks, and templates. Using a hybrid of the two methods resulted in an implementation approach that was optimized for the client-specific requirements for this project." This hybrid approach is an excellent example of using OUM in the flexible and scalable manner in which it was intended. The project team was able to scale OUM to be fit-for-purpose for their given situation. It's great to see how merging what was needed out of OUM with the client’s methodology resulted in an implementation approach that more closely aligned to the business needs. Successfully scaling OUM is dependent on the needs of the particular project and/or engagement. The key is to use no more than is necessary to satisfy the requirements of the implementation and appropriately address risks. For more information, check out the "Tailoring OUM for Your Project" page, which can be accessed by first clicking on the "OUM should be scaled to fit your implementation" link on the OUM homepage and then drilling into the link on the subsequent page. Have you used OUM in conjunction with a partner or customer methodology? Please share your experiences with us.

    Read the article

  • Talking JavaOne with Rock Star Charles Nutter

    - by Janice J. Heiss
    JavaOne Rock Stars, conceived in 2005, are the top rated speakers from the JavaOne Conference. They are awarded by their peers who through conference surveys recognize them for their outstanding sessions and speaking ability. Over the years many of the world’s leading Java developers have been so recognized.We spoke with distinguished Rock Star, Charles Nutter. A JRuby Update from Charles NutterCharles Nutter of Red Hat is well known as a lead developer of JRuby, a Ruby implementation of Java that is tightly integrated with Java to allow for the embedding of the interpreter into any Java application with full two-way access between the Java and the Ruby code. Nutter is giving the following sessions at this year’s JavaOne: CON7257 – “JVM Bytecode for Dummies (and the Rest of Us Too)” CON7284 – “Implementing Ruby: The Long, Hard Road” CON7263 – “JVM JIT for Dummies” BOF6682 – “I’ve Got 99 Languages, but Java Ain’t One” CON6575 – “Polyglot for Dummies” (Both with Thomas Enebo) I asked Nutter, to give us the latest on JRuby. “JRuby seems to have hit a tipping point this past year,” he explained, “moving from ‘just another Ruby implementation’ to ‘the best Ruby implementation for X,’ where X may be performance, scaling, big data, stability, reliability, security, and a number of other features important for today's applications. We're currently wrapping up JRuby 1.7, which improves support for Ruby 1.9 APIs, solves a number of user issues and concurrency challenges, and utilizes invokedynamic to outperform all other Ruby implementations by a wide margin. JRuby just gets better and better.” When asked what he thought about the rapid growth of alternative languages for the JVM, he replied, “I'm very intrigued by efforts to bring a high-performance JavaScript runtime to the JVM. There's really no reason the JVM couldn't be the fastest platform for running JavaScript with the right implementation, and I'm excited to see that happen.”And what is Nutter working on currently? “Aside from JRuby 1.7 wrap-up,” he explained, “I'm helping the Hotspot developers investigate invokedynamic performance issues and test-driving their new invokedynamic code in Java 8. I'm also starting to explore ways to improve the general state of dynamic languages on the JVM using JRuby as a guide, and to help the JVM become a better platform for all kinds of languages.”

    Read the article

  • Talking JavaOne with Rock Star Charles Nutter

    - by Janice J. Heiss
    JavaOne Rock Stars, conceived in 2005, are the top rated speakers from the JavaOne Conference. They are awarded by their peers who through conference surveys recognize them for their outstanding sessions and speaking ability. Over the years many of the world’s leading Java developers have been so recognized.We spoke with distinguished Rock Star, Charles Nutter. A JRuby Update from Charles NutterCharles Nutter of Red Hat is well known as a lead developer of JRuby, a Ruby implementation of Java that is tightly integrated with Java to allow for the embedding of the interpreter into any Java application with full two-way access between the Java and the Ruby code. Nutter is giving the following sessions at this year’s JavaOne: CON7257 – “JVM Bytecode for Dummies (and the Rest of Us Too)” CON7284 – “Implementing Ruby: The Long, Hard Road” CON7263 – “JVM JIT for Dummies” BOF6682 – “I’ve Got 99 Languages, but Java Ain’t One” CON6575 – “Polyglot for Dummies” (Both with Thomas Enebo) I asked Nutter, to give us the latest on JRuby. “JRuby seems to have hit a tipping point this past year,” he explained, “moving from ‘just another Ruby implementation’ to ‘the best Ruby implementation for X,’ where X may be performance, scaling, big data, stability, reliability, security, and a number of other features important for today's applications. We're currently wrapping up JRuby 1.7, which improves support for Ruby 1.9 APIs, solves a number of user issues and concurrency challenges, and utilizes invokedynamic to outperform all other Ruby implementations by a wide margin. JRuby just gets better and better.” When asked what he thought about the rapid growth of alternative languages for the JVM, he replied, “I'm very intrigued by efforts to bring a high-performance JavaScript runtime to the JVM. There's really no reason the JVM couldn't be the fastest platform for running JavaScript with the right implementation, and I'm excited to see that happen.”And what is Nutter working on currently? “Aside from JRuby 1.7 wrap-up,” he explained, “I'm helping the Hotspot developers investigate invokedynamic performance issues and test-driving their new invokedynamic code in Java 8. I'm also starting to explore ways to improve the general state of dynamic languages on the JVM using JRuby as a guide, and to help the JVM become a better platform for all kinds of languages.” Originally published on blogs.oracle.com/javaone.

    Read the article

  • Do you want to become an Oracle certified Expert in WebLogic & ADF?

    - by JuergenKress
    Hands-on Bootcamps Training Roadshows FY14 free hands-on training for community members ADF & ADF Mobile Bootcamps & WebLogic Bootcamps. For all WebLogic & ADF experts, we offer 100 free vouchers worth $195 to become an Oracle certified expert. To receive a WebLogic & ADF voucher please send an e-mail with the screenshot of your WebLogic Server 12c PreSales Specialist or ADF 11g PreSales Specialist certificate to [email protected] including your Name, Company, e-mail and Country with the e-mail subject free WebLogic & ADF voucher! Or attend a local free "Test-Fest". WebLogic ADF Pre-Sales assessment (free online test) Preparation: WebLogic 12c PreSales Specialist (OPN account required – need help?) ADF 11g PreSales Specialist (OPN account required – need help?) Implementation assessment Preparation: WebLogic 12c Implementation Specialist WebLogic Bootcamp training material (Community membership required) WebLogic Knowledge Zone Overview ADF 11g Implementation Specialist ADF 11g bootcamp training material (Community membership required) ADF Knowledge Zone Overview Free vouchers are reserved for partners from Europe, Middle East and Africa. Any other countries please contact your local partner manager! Vouchers are only valid until quarter end! WebLogic Partner Community For regular information become a member in the WebLogic Partner Community please visit: http://www.oracle.com/partners/goto/wls-emea ( OPN account required). If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Wiki Technorati Tags: education,Specialization,Implementation Specialist,OPN,OOW,Oracle OpenWorld,WebLogic,WebLogic Community,Oracle,Jürgen Kress

    Read the article

  • Where to find Oracle Training for BI & EPM Partners

    - by Mike.Hallett(at)Oracle-BI&EPM
    We run both “Live Virtual Training” (web-based classes) as well as “In Class Training” in most countries around Europe, Middle East and Africa. Some of these are subsidised for OPN partners, while others are available at a discount (usually 25%) to OPN partners via OU (Oracle University).  To see what is scheduled for in-depth hands-on implementation training for partners see:   Oracle Business Intelligence Enterprise Edition Plus Implementation Boot Camp For example, these are some of the OBI11g Boot-camps we currently have scheduled: 11 - 15 June 2012 Bucharest, Romania 21 - 23 August 2012 Johannesburg, South Africa 24 - 28 September 2012 Utrecht, Netherlands Oracle Essbase Implementation Boot Camp Oracle GoldenGate Implementation Boot Camp Hyperion Planning Boot Camp   Hyperion Financial Management Boot Camp   Oracle Business Intelligence Applications for ERP Boot Camp     You can also selectively filter search for courses via the Partner Events Calendar @ http://events.oracle.com/search/search?group=Events&keyword=OPN+Only   Otherwise, it is worth checking the Oracle Partner Enablement BLOG for any BI / EPM news, especially the sub-Blogs on the right for each country.   There is also a monthly Partner Enablement Update (PDF) to find out the latest partner training on Oracle's new products and new releases.

    Read the article

< Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >