Search Results

Search found 70751 results on 2831 pages for 'javax net ssl sslpeerunverifiedexception gri control aix'.

Page 49/2831 | < Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >

  • Parallelism in .NET – Part 5, Partitioning of Work

    - by Reed
    When parallelizing any routine, we start by decomposing the problem.  Once the problem is understood, we need to break our work into separate tasks, so each task can be run on a different processing element.  This process is called partitioning. Partitioning our tasks is a challenging feat.  There are opposing forces at work here: too many partitions adds overhead, too few partitions leaves processors idle.  Trying to work the perfect balance between the two extremes is the goal for which we should aim.  Luckily, the Task Parallel Library automatically handles much of this process.  However, there are situations where the default partitioning may not be appropriate, and knowledge of our routines may allow us to guide the framework to making better decisions. First off, I’d like to say that this is a more advanced topic.  It is perfectly acceptable to use the parallel constructs in the framework without considering the partitioning taking place.  The default behavior in the Task Parallel Library is very well-behaved, even for unusual work loads, and should rarely be adjusted.  I have found few situations where the default partitioning behavior in the TPL is not as good or better than my own hand-written partitioning routines, and recommend using the defaults unless there is a strong, measured, and profiled reason to avoid using them.  However, understanding partitioning, and how the TPL partitions your data, helps in understanding the proper usage of the TPL. I indirectly mentioned partitioning while discussing aggregation.  Typically, our systems will have a limited number of Processing Elements (PE), which is the terminology used for hardware capable of processing a stream of instructions.  For example, in a standard Intel i7 system, there are four processor cores, each of which has two potential hardware threads due to Hyperthreading.  This gives us a total of 8 PEs – theoretically, we can have up to eight operations occurring concurrently within our system. In order to fully exploit this power, we need to partition our work into Tasks.  A task is a simple set of instructions that can be run on a PE.  Ideally, we want to have at least one task per PE in the system, since fewer tasks means that some of our processing power will be sitting idle.  A naive implementation would be to just take our data, and partition it with one element in our collection being treated as one task.  When we loop through our collection in parallel, using this approach, we’d just process one item at a time, then reuse that thread to process the next, etc.  There’s a flaw in this approach, however.  It will tend to be slower than necessary, often slower than processing the data serially. The problem is that there is overhead associated with each task.  When we take a simple foreach loop body and implement it using the TPL, we add overhead.  First, we change the body from a simple statement to a delegate, which must be invoked.  In order to invoke the delegate on a separate thread, the delegate gets added to the ThreadPool’s current work queue, and the ThreadPool must pull this off the queue, assign it to a free thread, then execute it.  If our collection had one million elements, the overhead of trying to spawn one million tasks would destroy our performance. The answer, here, is to partition our collection into groups, and have each group of elements treated as a single task.  By adding a partitioning step, we can break our total work into small enough tasks to keep our processors busy, but large enough tasks to avoid overburdening the ThreadPool.  There are two clear, opposing goals here: Always try to keep each processor working, but also try to keep the individual partitions as large as possible. When using Parallel.For, the partitioning is always handled automatically.  At first, partitioning here seems simple.  A naive implementation would merely split the total element count up by the number of PEs in the system, and assign a chunk of data to each processor.  Many hand-written partitioning schemes work in this exactly manner.  This perfectly balanced, static partitioning scheme works very well if the amount of work is constant for each element.  However, this is rarely the case.  Often, the length of time required to process an element grows as we progress through the collection, especially if we’re doing numerical computations.  In this case, the first PEs will finish early, and sit idle waiting on the last chunks to finish.  Sometimes, work can decrease as we progress, since previous computations may be used to speed up later computations.  In this situation, the first chunks will be working far longer than the last chunks.  In order to balance the workload, many implementations create many small chunks, and reuse threads.  This adds overhead, but does provide better load balancing, which in turn improves performance. The Task Parallel Library handles this more elaborately.  Chunks are determined at runtime, and start small.  They grow slowly over time, getting larger and larger.  This tends to lead to a near optimum load balancing, even in odd cases such as increasing or decreasing workloads.  Parallel.ForEach is a bit more complicated, however. When working with a generic IEnumerable<T>, the number of items required for processing is not known in advance, and must be discovered at runtime.  In addition, since we don’t have direct access to each element, the scheduler must enumerate the collection to process it.  Since IEnumerable<T> is not thread safe, it must lock on elements as it enumerates, create temporary collections for each chunk to process, and schedule this out.  By default, it uses a partitioning method similar to the one described above.  We can see this directly by looking at the Visual Partitioning sample shipped by the Task Parallel Library team, and available as part of the Samples for Parallel Programming.  When we run the sample, with four cores and the default, Load Balancing partitioning scheme, we see this: The colored bands represent each processing core.  You can see that, when we started (at the top), we begin with very small bands of color.  As the routine progresses through the Parallel.ForEach, the chunks get larger and larger (seen by larger and larger stripes). Most of the time, this is fantastic behavior, and most likely will out perform any custom written partitioning.  However, if your routine is not scaling well, it may be due to a failure in the default partitioning to handle your specific case.  With prior knowledge about your work, it may be possible to partition data more meaningfully than the default Partitioner. There is the option to use an overload of Parallel.ForEach which takes a Partitioner<T> instance.  The Partitioner<T> class is an abstract class which allows for both static and dynamic partitioning.  By overriding Partitioner<T>.SupportsDynamicPartitions, you can specify whether a dynamic approach is available.  If not, your custom Partitioner<T> subclass would override GetPartitions(int), which returns a list of IEnumerator<T> instances.  These are then used by the Parallel class to split work up amongst processors.  When dynamic partitioning is available, GetDynamicPartitions() is used, which returns an IEnumerable<T> for each partition.  If you do decide to implement your own Partitioner<T>, keep in mind the goals and tradeoffs of different partitioning strategies, and design appropriately. The Samples for Parallel Programming project includes a ChunkPartitioner class in the ParallelExtensionsExtras project.  This provides example code for implementing your own, custom allocation strategies, including a static allocator of a given chunk size.  Although implementing your own Partitioner<T> is possible, as I mentioned above, this is rarely required or useful in practice.  The default behavior of the TPL is very good, often better than any hand written partitioning strategy.

    Read the article

  • Parallelism in .NET – Part 3, Imperative Data Parallelism: Early Termination

    - by Reed
    Although simple data parallelism allows us to easily parallelize many of our iteration statements, there are cases that it does not handle well.  In my previous discussion, I focused on data parallelism with no shared state, and where every element is being processed exactly the same. Unfortunately, there are many common cases where this does not happen.  If we are dealing with a loop that requires early termination, extra care is required when parallelizing. Often, while processing in a loop, once a certain condition is met, it is no longer necessary to continue processing.  This may be a matter of finding a specific element within the collection, or reaching some error case.  The important distinction here is that, it is often impossible to know until runtime, what set of elements needs to be processed. In my initial discussion of data parallelism, I mentioned that this technique is a candidate when you can decompose the problem based on the data involved, and you wish to apply a single operation concurrently on all of the elements of a collection.  This covers many of the potential cases, but sometimes, after processing some of the elements, we need to stop processing. As an example, lets go back to our previous Parallel.ForEach example with contacting a customer.  However, this time, we’ll change the requirements slightly.  In this case, we’ll add an extra condition – if the store is unable to email the customer, we will exit gracefully.  The thinking here, of course, is that if the store is currently unable to email, the next time this operation runs, it will handle the same situation, so we can just skip our processing entirely.  The original, serial case, with this extra condition, might look something like the following: foreach(var customer in customers) { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { // Exit gracefully if we fail to email, since this // entire process can be repeated later without issue. if (theStore.EmailCustomer(customer) == false) break; customer.LastEmailContact = DateTime.Now; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re processing our loop, but at any point, if we fail to send our email successfully, we just abandon this process, and assume that it will get handled correctly the next time our routine is run.  If we try to parallelize this using Parallel.ForEach, as we did previously, we’ll run into an error almost immediately: the break statement we’re using is only valid when enclosed within an iteration statement, such as foreach.  When we switch to Parallel.ForEach, we’re no longer within an iteration statement – we’re a delegate running in a method. This needs to be handled slightly differently when parallelized.  Instead of using the break statement, we need to utilize a new class in the Task Parallel Library: ParallelLoopState.  The ParallelLoopState class is intended to allow concurrently running loop bodies a way to interact with each other, and provides us with a way to break out of a loop.  In order to use this, we will use a different overload of Parallel.ForEach which takes an IEnumerable<T> and an Action<T, ParallelLoopState> instead of an Action<T>.  Using this, we can parallelize the above operation by doing: Parallel.ForEach(customers, (customer, parallelLoopState) => { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { // Exit gracefully if we fail to email, since this // entire process can be repeated later without issue. if (theStore.EmailCustomer(customer) == false) parallelLoopState.Break(); else customer.LastEmailContact = DateTime.Now; } }); There are a couple of important points here.  First, we didn’t actually instantiate the ParallelLoopState instance.  It was provided directly to us via the Parallel class.  All we needed to do was change our lambda expression to reflect that we want to use the loop state, and the Parallel class creates an instance for our use.  We also needed to change our logic slightly when we call Break().  Since Break() doesn’t stop the program flow within our block, we needed to add an else case to only set the property in customer when we succeeded.  This same technique can be used to break out of a Parallel.For loop. That being said, there is a huge difference between using ParallelLoopState to cause early termination and to use break in a standard iteration statement.  When dealing with a loop serially, break will immediately terminate the processing within the closest enclosing loop statement.  Calling ParallelLoopState.Break(), however, has a very different behavior. The issue is that, now, we’re no longer processing one element at a time.  If we break in one of our threads, there are other threads that will likely still be executing.  This leads to an important observation about termination of parallel code: Early termination in parallel routines is not immediate.  Code will continue to run after you request a termination. This may seem problematic at first, but it is something you just need to keep in mind while designing your routine.  ParallelLoopState.Break() should be thought of as a request.  We are telling the runtime that no elements that were in the collection past the element we’re currently processing need to be processed, and leaving it up to the runtime to decide how to handle this as gracefully as possible.  Although this may seem problematic at first, it is a good thing.  If the runtime tried to immediately stop processing, many of our elements would be partially processed.  It would be like putting a return statement in a random location throughout our loop body – which could have horrific consequences to our code’s maintainability. In order to understand and effectively write parallel routines, we, as developers, need a subtle, but profound shift in our thinking.  We can no longer think in terms of sequential processes, but rather need to think in terms of requests to the system that may be handled differently than we’d first expect.  This is more natural to developers who have dealt with asynchronous models previously, but is an important distinction when moving to concurrent programming models. As an example, I’ll discuss the Break() method.  ParallelLoopState.Break() functions in a way that may be unexpected at first.  When you call Break() from a loop body, the runtime will continue to process all elements of the collection that were found prior to the element that was being processed when the Break() method was called.  This is done to keep the behavior of the Break() method as close to the behavior of the break statement as possible. We can see the behavior in this simple code: var collection = Enumerable.Range(0, 20); var pResult = Parallel.ForEach(collection, (element, state) => { if (element > 10) { Console.WriteLine("Breaking on {0}", element); state.Break(); } Console.WriteLine(element); }); If we run this, we get a result that may seem unexpected at first: 0 2 1 5 6 3 4 10 Breaking on 11 11 Breaking on 12 12 9 Breaking on 13 13 7 8 Breaking on 15 15 What is occurring here is that we loop until we find the first element where the element is greater than 10.  In this case, this was found, the first time, when one of our threads reached element 11.  It requested that the loop stop by calling Break() at this point.  However, the loop continued processing until all of the elements less than 11 were completed, then terminated.  This means that it will guarantee that elements 9, 7, and 8 are completed before it stops processing.  You can see our other threads that were running each tried to break as well, but since Break() was called on the element with a value of 11, it decides which elements (0-10) must be processed. If this behavior is not desirable, there is another option.  Instead of calling ParallelLoopState.Break(), you can call ParallelLoopState.Stop().  The Stop() method requests that the runtime terminate as soon as possible , without guaranteeing that any other elements are processed.  Stop() will not stop the processing within an element, so elements already being processed will continue to be processed.  It will prevent new elements, even ones found earlier in the collection, from being processed.  Also, when Stop() is called, the ParallelLoopState’s IsStopped property will return true.  This lets longer running processes poll for this value, and return after performing any necessary cleanup. The basic rule of thumb for choosing between Break() and Stop() is the following. Use ParallelLoopState.Stop() when possible, since it terminates more quickly.  This is particularly useful in situations where you are searching for an element or a condition in the collection.  Once you’ve found it, you do not need to do any other processing, so Stop() is more appropriate. Use ParallelLoopState.Break() if you need to more closely match the behavior of the C# break statement. Both methods behave differently than our C# break statement.  Unfortunately, when parallelizing a routine, more thought and care needs to be put into every aspect of your routine than you may otherwise expect.  This is due to my second observation: Parallelizing a routine will almost always change its behavior. This sounds crazy at first, but it’s a concept that’s so simple its easy to forget.  We’re purposely telling the system to process more than one thing at the same time, which means that the sequence in which things get processed is no longer deterministic.  It is easy to change the behavior of your routine in very subtle ways by introducing parallelism.  Often, the changes are not avoidable, even if they don’t have any adverse side effects.  This leads to my final observation for this post: Parallelization is something that should be handled with care and forethought, added by design, and not just introduced casually.

    Read the article

  • Parallelism in .NET – Part 12, More on Task Decomposition

    - by Reed
    Many tasks can be decomposed using a Data Decomposition approach, but often, this is not appropriate.  Frequently, decomposing the problem into distinctive tasks that must be performed is a more natural abstraction. However, as I mentioned in Part 1, Task Decomposition tends to be a bit more difficult than data decomposition, and can require a bit more effort.  Before we being parallelizing our algorithm based on the tasks being performed, we need to decompose our problem, and take special care of certain considerations such as ordering and grouping of tasks. Up to this point in this series, I’ve focused on parallelization techniques which are most appropriate when a problem space can be decomposed by data.  Using PLINQ and the Parallel class, I’ve shown how problem spaces where there is a collection of data, and each element needs to be processed, can potentially be parallelized. However, there are many other routines where this is not appropriate.  Often, instead of working on a collection of data, there is a single piece of data which must be processed using an algorithm or series of algorithms.  Here, there is no collection of data, but there may still be opportunities for parallelism. As I mentioned before, in cases like this, the approach is to look at your overall routine, and decompose your problem space based on tasks.  The idea here is to look for discrete “tasks,” individual pieces of work which can be conceptually thought of as a single operation. Let’s revisit the example I used in Part 1, an application startup path.  Say we want our program, at startup, to do a bunch of individual actions, or “tasks”.  The following is our list of duties we must perform right at startup: Display a splash screen Request a license from our license manager Check for an update to the software from our web server If an update is available, download it Setup our menu structure based on our current license Open and display our main, welcome Window Hide the splash screen The first step in Task Decomposition is breaking up the problem space into discrete tasks. This, naturally, can be abstracted as seven discrete tasks.  In the serial version of our program, if we were to diagram this, the general process would appear as: These tasks, obviously, provide some opportunities for parallelism.  Before we can parallelize this routine, we need to analyze these tasks, and find any dependencies between tasks.  In this case, our dependencies include: The splash screen must be displayed first, and as quickly as possible. We can’t download an update before we see whether one exists. Our menu structure depends on our license, so we must check for the license before setting up the menus. Since our welcome screen will notify the user of an update, we can’t show it until we’ve downloaded the update. Since our welcome screen includes menus that are customized based off the licensing, we can’t display it until we’ve received a license. We can’t hide the splash until our welcome screen is displayed. By listing our dependencies, we start to see the natural ordering that must occur for the tasks to be processed correctly. The second step in Task Decomposition is determining the dependencies between tasks, and ordering tasks based on their dependencies. Looking at these tasks, and looking at all the dependencies, we quickly see that even a simple decomposition such as this one can get quite complicated.  In order to simplify the problem of defining the dependencies, it’s often a useful practice to group our tasks into larger, discrete tasks.  The goal when grouping tasks is that you want to make each task “group” have as few dependencies as possible to other tasks or groups, and then work out the dependencies within that group.  Typically, this works best when any external dependency is based on the “last” task within the group when it’s ordered, although that is not a firm requirement.  This process is often called Grouping Tasks.  In our case, we can easily group together tasks, effectively turning this into four discrete task groups: 1. Show our splash screen – This needs to be left as its own task.  First, multiple things depend on this task, mainly because we want this to start before any other action, and start as quickly as possible. 2. Check for Update and Download the Update if it Exists - These two tasks logically group together.  We know we only download an update if the update exists, so that naturally follows.  This task has one dependency as an input, and other tasks only rely on the final task within this group. 3. Request a License, and then Setup the Menus – Here, we can group these two tasks together.  Although we mentioned that our welcome screen depends on the license returned, it also depends on setting up the menu, which is the final task here.  Setting up our menus cannot happen until after our license is requested.  By grouping these together, we further reduce our problem space. 4. Display welcome and hide splash - Finally, we can display our welcome window and hide our splash screen.  This task group depends on all three previous task groups – it cannot happen until all three of the previous groups have completed. By grouping the tasks together, we reduce our problem space, and can naturally see a pattern for how this process can be parallelized.  The diagram below shows one approach: The orange boxes show each task group, with each task represented within.  We can, now, effectively take these tasks, and run a large portion of this process in parallel, including the portions which may be the most time consuming.  We’ve now created two parallel paths which our process execution can follow, hopefully speeding up the application startup time dramatically. The main point to remember here is that, when decomposing your problem space by tasks, you need to: Define each discrete action as an individual Task Discover dependencies between your tasks Group tasks based on their dependencies Order the tasks and groups of tasks

    Read the article

  • VS 2010 SP1 (Beta) and IIS Express

    - by ScottGu
    Last month we released the VS 2010 Service Pack 1 (SP1) Beta.  You can learn more about the VS 2010 SP1 Beta from Jason Zander’s two blog posts about it, and from Scott Hanselman’s blog post that covers some of the new capabilities enabled with it.  You can download and install the VS 2010 SP1 Beta here. IIS Express Earlier this summer I blogged about IIS Express.  IIS Express is a free version of IIS 7.5 that is optimized for developer scenarios.  We think it combines the ease of use of the ASP.NET Web Server (aka Cassini) currently built-into VS today with the full power of IIS.  Specifically: It’s lightweight and easy to install (less than 5Mb download and a quick install) It does not require an administrator account to run/debug applications from Visual Studio It enables a full web-server feature set – including SSL, URL Rewrite, and other IIS 7.x modules It supports and enables the same extensibility model and web.config file settings that IIS 7.x support It can be installed side-by-side with the full IIS web server as well as the ASP.NET Development Server (they do not conflict at all) It works on Windows XP and higher operating systems – giving you a full IIS 7.x developer feature-set on all Windows OS platforms IIS Express (like the ASP.NET Development Server) can be quickly launched to run a site from a directory on disk.  It does not require any registration/configuration steps. This makes it really easy to launch and run for development scenarios. Visual Studio 2010 SP1 adds support for IIS Express – and you can start to take advantage of this starting with last month’s VS 2010 SP1 Beta release. Downloading and Installing IIS Express IIS Express isn’t included as part of the VS 2010 SP1 Beta.  Instead it is a separate ~4MB download which you can download and install using this link (it uses WebPI to install it).  Once IIS Express is installed, VS 2010 SP1 will enable some additional IIS Express commands and dialog options that allow you to easily use it. Enabling IIS Express for Existing Projects Visual Studio today defaults to using the built-in ASP.NET Development Server (aka Cassini) when running ASP.NET Projects: Converting your existing projects to use IIS Express is really easy.  You can do this by opening up the project properties dialog of an existing project, and then by clicking the “web” tab within it and selecting the “Use IIS Express” checkbox. Or even simpler, just right-click on your existing project, and select the “Use IIS Express…” menu command: And now when you run or debug your project you’ll see that IIS Express now starts up and runs automatically as your web-server: You can optionally right-click on the IIS Express icon within your system tray to see/browse all of sites and applications running on it: Note that if you ever want to revert back to using the ASP.NET Development Server you can do this by right-clicking the project again and then select the “Use Visual Studio Development Server” option (or go into the project properties, click the web tab, and uncheck IIS Express).  This will revert back to the ASP.NET Development Server the next time you run the project. IIS Express Properties Visual Studio 2010 SP1 exposes several new IIS Express configuration options that you couldn’t previously set with the ASP.NET Development Server.  Some of these are exposed via the property grid of your project (select the project node in the solution explorer and then change them via the property window): For example, enabling something like SSL support (which is not possible with the ASP.NET Development Server) can now be done simply by changing the “SSL Enabled” property to “True”: Once this is done IIS Express will expose both an HTTP and HTTPS endpoint for the project that we can use: SSL Self Signed Certs IIS Express ships with a self-signed SSL cert that it installs as part of setup – which removes the need for you to install your own certificate to use SSL during development.  Once you change the above drop-down to enable SSL, you’ll be able to browse to your site with the appropriate https:// URL prefix and it will connect via SSL. One caveat with self-signed certificates, though, is that browsers (like IE) will go out of their way to warn you that they aren’t to be trusted: You can mark the certificate as trusted to avoid seeing dialogs like this – or just keep the certificate un-trusted and press the “continue” button when the browser warns you not to trust your local web server. Additional IIS Settings IIS Express uses its own per-user ApplicationHost.config file to configure default server behavior.  Because it is per-user, it can be configured by developers who do not have admin credentials – unlike the full IIS.  You can customize all IIS features and settings via it if you want ultimate server customization (for example: to use your own certificates for SSL instead of self-signed ones). We recommend storing all app specific settings for IIS and ASP.NET within the web.config file which is part of your project – since that makes deploying apps easier (since the settings can be copied with the application content).  IIS (since IIS 7) no longer uses the metabase, and instead uses the same web.config configuration files that ASP.NET has always supported – which makes xcopy/ftp based deployment much easier. Making IIS Express your Default Web Server Above we looked at how we can convert existing sites that use the ASP.NET Developer Web Server to instead use IIS Express.  You can configure Visual Studio to use IIS Express as the default web server for all new projects by clicking the Tools->Options menu  command and opening up the Projects and Solutions->Web Projects node with the Options dialog: Clicking the “Use IIS Express for new file-based web site and projects” checkbox will cause Visual Studio to use it for all new web site and projects. Summary We think IIS Express makes it even easier to build, run and test web applications.  It works with all versions of ASP.NET and supports all ASP.NET application types (including obviously both ASP.NET Web Forms and ASP.NET MVC applications).  Because IIS Express is based on the IIS 7.5 codebase, you have a full web-server feature-set that you can use.  This means you can build and run your applications just like they’ll work on a real production web-server.  In addition to supporting ASP.NET, IIS Express also supports Classic ASP and other file-types and extensions supported by IIS – which also makes it ideal for sites that combine a variety of different technologies. Best of all – you do not need to change any code to take advantage of it.  As you can see above, updating existing Visual Studio web projects to use it is trivial.  You can begin to take advantage of IIS Express today using the VS 2010 SP1 Beta. Hope this helps, Scott

    Read the article

  • Parallelism in .NET – Part 4, Imperative Data Parallelism: Aggregation

    - by Reed
    In the article on simple data parallelism, I described how to perform an operation on an entire collection of elements in parallel.  Often, this is not adequate, as the parallel operation is going to be performing some form of aggregation. Simple examples of this might include taking the sum of the results of processing a function on each element in the collection, or finding the minimum of the collection given some criteria.  This can be done using the techniques described in simple data parallelism, however, special care needs to be taken into account to synchronize the shared data appropriately.  The Task Parallel Library has tools to assist in this synchronization. The main issue with aggregation when parallelizing a routine is that you need to handle synchronization of data.  Since multiple threads will need to write to a shared portion of data.  Suppose, for example, that we wanted to parallelize a simple loop that looked for the minimum value within a dataset: double min = double.MaxValue; foreach(var item in collection) { double value = item.PerformComputation(); min = System.Math.Min(min, value); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This seems like a good candidate for parallelization, but there is a problem here.  If we just wrap this into a call to Parallel.ForEach, we’ll introduce a critical race condition, and get the wrong answer.  Let’s look at what happens here: // Buggy code! Do not use! double min = double.MaxValue; Parallel.ForEach(collection, item => { double value = item.PerformComputation(); min = System.Math.Min(min, value); }); This code has a fatal flaw: min will be checked, then set, by multiple threads simultaneously.  Two threads may perform the check at the same time, and set the wrong value for min.  Say we get a value of 1 in thread 1, and a value of 2 in thread 2, and these two elements are the first two to run.  If both hit the min check line at the same time, both will determine that min should change, to 1 and 2 respectively.  If element 1 happens to set the variable first, then element 2 sets the min variable, we’ll detect a min value of 2 instead of 1.  This can lead to wrong answers. Unfortunately, fixing this, with the Parallel.ForEach call we’re using, would require adding locking.  We would need to rewrite this like: // Safe, but slow double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach(collection, item => { double value = item.PerformComputation(); lock(syncObject) min = System.Math.Min(min, value); }); This will potentially add a huge amount of overhead to our calculation.  Since we can potentially block while waiting on the lock for every single iteration, we will most likely slow this down to where it is actually quite a bit slower than our serial implementation.  The problem is the lock statement – any time you use lock(object), you’re almost assuring reduced performance in a parallel situation.  This leads to two observations I’ll make: When parallelizing a routine, try to avoid locks. That being said: Always add any and all required synchronization to avoid race conditions. These two observations tend to be opposing forces – we often need to synchronize our algorithms, but we also want to avoid the synchronization when possible.  Looking at our routine, there is no way to directly avoid this lock, since each element is potentially being run on a separate thread, and this lock is necessary in order for our routine to function correctly every time. However, this isn’t the only way to design this routine to implement this algorithm.  Realize that, although our collection may have thousands or even millions of elements, we have a limited number of Processing Elements (PE).  Processing Element is the standard term for a hardware element which can process and execute instructions.  This typically is a core in your processor, but many modern systems have multiple hardware execution threads per core.  The Task Parallel Library will not execute the work for each item in the collection as a separate work item. Instead, when Parallel.ForEach executes, it will partition the collection into larger “chunks” which get processed on different threads via the ThreadPool.  This helps reduce the threading overhead, and help the overall speed.  In general, the Parallel class will only use one thread per PE in the system. Given the fact that there are typically fewer threads than work items, we can rethink our algorithm design.  We can parallelize our algorithm more effectively by approaching it differently.  Because the basic aggregation we are doing here (Min) is communitive, we do not need to perform this in a given order.  We knew this to be true already – otherwise, we wouldn’t have been able to parallelize this routine in the first place.  With this in mind, we can treat each thread’s work independently, allowing each thread to serially process many elements with no locking, then, after all the threads are complete, “merge” together the results. This can be accomplished via a different set of overloads in the Parallel class: Parallel.ForEach<TSource,TLocal>.  The idea behind these overloads is to allow each thread to begin by initializing some local state (TLocal).  The thread will then process an entire set of items in the source collection, providing that state to the delegate which processes an individual item.  Finally, at the end, a separate delegate is run which allows you to handle merging that local state into your final results. To rewriting our routine using Parallel.ForEach<TSource,TLocal>, we need to provide three delegates instead of one.  The most basic version of this function is declared as: public static ParallelLoopResult ForEach<TSource, TLocal>( IEnumerable<TSource> source, Func<TLocal> localInit, Func<TSource, ParallelLoopState, TLocal, TLocal> body, Action<TLocal> localFinally ) The first delegate (the localInit argument) is defined as Func<TLocal>.  This delegate initializes our local state.  It should return some object we can use to track the results of a single thread’s operations. The second delegate (the body argument) is where our main processing occurs, although now, instead of being an Action<T>, we actually provide a Func<TSource, ParallelLoopState, TLocal, TLocal> delegate.  This delegate will receive three arguments: our original element from the collection (TSource), a ParallelLoopState which we can use for early termination, and the instance of our local state we created (TLocal).  It should do whatever processing you wish to occur per element, then return the value of the local state after processing is completed. The third delegate (the localFinally argument) is defined as Action<TLocal>.  This delegate is passed our local state after it’s been processed by all of the elements this thread will handle.  This is where you can merge your final results together.  This may require synchronization, but now, instead of synchronizing once per element (potentially millions of times), you’ll only have to synchronize once per thread, which is an ideal situation. Now that I’ve explained how this works, lets look at the code: // Safe, and fast! double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach( collection, // First, we provide a local state initialization delegate. () => double.MaxValue, // Next, we supply the body, which takes the original item, loop state, // and local state, and returns a new local state (item, loopState, localState) => { double value = item.PerformComputation(); return System.Math.Min(localState, value); }, // Finally, we provide an Action<TLocal>, to "merge" results together localState => { // This requires locking, but it's only once per used thread lock(syncObj) min = System.Math.Min(min, localState); } ); Although this is a bit more complicated than the previous version, it is now both thread-safe, and has minimal locking.  This same approach can be used by Parallel.For, although now, it’s Parallel.For<TLocal>.  When working with Parallel.For<TLocal>, you use the same triplet of delegates, with the same purpose and results. Also, many times, you can completely avoid locking by using a method of the Interlocked class to perform the final aggregation in an atomic operation.  The MSDN example demonstrating this same technique using Parallel.For uses the Interlocked class instead of a lock, since they are doing a sum operation on a long variable, which is possible via Interlocked.Add. By taking advantage of local state, we can use the Parallel class methods to parallelize algorithms such as aggregation, which, at first, may seem like poor candidates for parallelization.  Doing so requires careful consideration, and often requires a slight redesign of the algorithm, but the performance gains can be significant if handled in a way to avoid excessive synchronization.

    Read the article

  • Should a c# dev switch to VB.net when the team language base is mixed?

    - by jjr2527
    I recently joined a new development team where the language preferences are mixed on the .net platform. Dev 1: Knows VB.net, does not know c# Dev 2: Knows VB.net, does not know c# Dev 3: Knows c# and VB.net, prefers c# Dev 4: Knows c# and VB6(VB.net should be pretty easy to pick up), prefers c# It seems to me that the thought leaders in the .net space are c# devs almost universally. I also thought that some 3rd party tools didn't support VB.net but when I started looking into it I didn't find any good examples. I would prefer to get the whole team on c# but if there isn't any good reason to force the issue aside from preference then I don't think that is the right choice. Are there any reasons I should lead folks away from VB.net?

    Read the article

  • MySQL SSL: bad other signature confirmation

    - by samJL
    I am trying to enable SSL connections for MySQL-- SSL will show as enabled in MySQL, but I can't make any connections due to this error: ERROR 2026 (HY000): SSL connection error: ASN: bad other signature confirmation I am running the following: Ubuntu Version: 14.04.1 LTS (GNU/Linux 3.13.0-34-generic x86_64) MySQL Version: 5.5.38-0ubuntu0.14.04.1 OpenSSL Version: OpenSSL 1.0.1f 6 Jan 2014 I used these commands to generate my certificates (all generated in /etc/mysql): openssl genrsa -out ca-key.pem 2048 openssl req -new -x509 -nodes -days 3650 -key ca-key.pem -out ca-cert.pem -subj "/C=US/ST=NY/O=MyCompany/CN=ca" openssl req -newkey rsa:2048 -nodes -days 3650 -keyout server-key.pem -out server-req.pem -subj "/C=US/ST=NY/O=MyCompany/CN=server" openssl rsa -in server-key.pem -out server-key.pem openssl x509 -req -in server-req.pem -CA ca-cert.pem -CAkey ca-key.pem -set_serial 01 -out server-cert.pem openssl req -newkey rsa:2048 -nodes -days 3650 -keyout client-key.pem -out client-req.pem -subj "/C=US/ST=NY/O=MyCompany/CN=client" openssl rsa -in client-key.pem -out client-key.pem openssl x509 -req -in client-req.pem -CA ca-cert.pem -CAkey ca-key.pem -set_serial 01 -out client-cert.pem I put the following in my.cnf: [mysqld] ssl-ca=/etc/mysql/ca-cert.pem ssl-cert=/etc/mysql/server-cert.pem ssl-key=/etc/mysql/server-key.pem When I attempt to connect specifying the client certificates-- I get the following error: mysql -uroot -ppassword --ssl-ca=/etc/mysql/ca-cert.pem --ssl-cert=/etc/mysql/client-cert.pem --ssl-key=/etc/mysql/client-key.pem ERROR 2026 (HY000): SSL connection error: ASN: bad other signature confirmation If I connect without SSL, I can see that MySQL has correctly loaded the certificates: mysql -uroot -ppassword --ssl=false mysql> SHOW VARIABLES LIKE '%ssl%'; +---------------+----------------------------+ | Variable_name | Value | +---------------+----------------------------+ | have_openssl | YES | | have_ssl | YES | | ssl_ca | /etc/mysql/ca-cert.pem | | ssl_capath | | | ssl_cert | /etc/mysql/server-cert.pem | | ssl_cipher | | | ssl_key | /etc/mysql/server-key.pem | +---------------+----------------------------+ 7 rows in set (0.00 sec) My generated certificates pass OpenSSL verification and modulus: openssl verify -CAfile ca-cert.pem server-cert.pem client-cert.pem server-cert.pem: OK client-cert.pem: OK What am I missing? I used this same process before on a different server and it worked- however the Ubuntu version was 12.04 LTS and the OpenSSL version was older (don't remember specifically). Has something changed with the latest OpenSSL? Any help would be appreciated!

    Read the article

  • .NET Weak Event Handlers – Part II

    - by João Angelo
    On the first part of this article I showed two possible ways to create weak event handlers. One using reflection and the other using a delegate. For this performance analysis we will further differentiate between creating a delegate by providing the type of the listener at compile time (Explicit Delegate) vs creating the delegate with the type of the listener being only obtained at runtime (Implicit Delegate). As expected, the performance between reflection/delegate differ significantly. With the reflection based approach, creating a weak event handler is just storing a MethodInfo reference while with the delegate based approach there is the need to create the delegate which will be invoked later. So, at creating the weak event handler reflection clearly wins, but what about when the handler is invoked. No surprises there, performing a call through reflection every time a handler is invoked is costly. In conclusion, if you want good performance when creating handlers that only sporadically get triggered use reflection, otherwise use the delegate based approach. The explicit delegate approach always wins against the implicit delegate, but I find the syntax for the latter much more intuitive. // Implicit delegate - The listener type is inferred at runtime from the handler parameter public static EventHandler WrapInDelegateCall(EventHandler handler); public static EventHandler<TArgs> WrapInDelegateCall<TArgs>(EventHandler<TArgs> handler) where TArgs : EventArgs; // Explicite delegate - TListener is the type that defines the handler public static EventHandler WrapInDelegateCall<TListener>(EventHandler handler); public static EventHandler<TArgs> WrapInDelegateCall<TArgs, TListener>(EventHandler<TArgs> handler) where TArgs : EventArgs;

    Read the article

  • Parallelism in .NET – Part 19, TaskContinuationOptions

    - by Reed
    My introduction to Task continuations demonstrates continuations on the Task class.  In addition, I’ve shown how continuations allow handling of multiple tasks in a clean, concise manner.  Continuations can also be used to handle exceptional situations using a clean, simple syntax. In addition to standard Task continuations , the Task class provides some options for filtering continuations automatically.  This is handled via the TaskContinationOptions enumeration, which provides hints to the TaskScheduler that it should only continue based on the operation of the antecedent task. This is especially useful when dealing with exceptions.  For example, we can extend the sample from our earlier continuation discussion to include support for handling exceptions thrown by the Factorize method: // Get a copy of the UI-thread task scheduler up front to use later var uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); // Start our task var factorize = Task.Factory.StartNew( () => { int primeFactor1 = 0; int primeFactor2 = 0; bool result = Factorize(10298312, ref primeFactor1, ref primeFactor2); return new { Result = result, Factor1 = primeFactor1, Factor2 = primeFactor2 }; }); // When we succeed, report the results to the UI factorize.ContinueWith(task => textBox1.Text = string.Format("{0}/{1} [Succeeded {2}]", task.Result.Factor1, task.Result.Factor2, task.Result.Result), CancellationToken.None, TaskContinuationOptions.NotOnFaulted, uiScheduler); // When we have an exception, report it factorize.ContinueWith(task => textBox1.Text = string.Format("Error: {0}", task.Exception.Message), CancellationToken.None, TaskContinuationOptions.OnlyOnFaulted, uiScheduler); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The above code works by using a combination of features.  First, we schedule our task, the same way as in the previous example.  However, in this case, we use a different overload of Task.ContinueWith which allows us to specify both a specific TaskScheduler (in order to have your continuation run on the UI’s synchronization context) as well as a TaskContinuationOption.  In the first continuation, we tell the continuation that we only want it to run when there was not an exception by specifying TaskContinuationOptions.NotOnFaulted.  When our factorize task completes successfully, this continuation will automatically run on the UI thread, and provide the appropriate feedback. However, if the factorize task has an exception – for example, if the Factorize method throws an exception due to an improper input value, the second continuation will run.  This occurs due to the specification of TaskContinuationOptions.OnlyOnFaulted in the options.  In this case, we’ll report the error received to the user. We can use TaskContinuationOptions to filter our continuations by whether or not an exception occurred and whether or not a task was cancelled.  This allows us to handle many situations, and is especially useful when trying to maintain a valid application state without ever blocking the user interface.  The same concepts can be extended even further, and allow you to chain together many tasks based on the success of the previous ones.  Continuations can even be used to create a state machine with full error handling, all without blocking the user interface thread.

    Read the article

  • Building a better .NET Application Configuration Class - revisited

    - by Rick Strahl
    Managing configuration settings is an important part of successful applications. It should be easy to ensure that you can easily access and modify configuration values within your applications. If it's not - well things don't get parameterized as much as they should. In this post I discuss a custom Application Configuration class that makes it super easy to create reusable configuration objects in your applications using a code-first approach and the ability to persist configuration information into various types of configuration stores.

    Read the article

  • Why isn't SSL/TLS built into modern Operating Systems?

    - by Channel72
    A lot of the basic network protocols that make up the infrastructure of the Internet are built in to most major Operating Systems. Things like TCP, UDP, and DNS are all built into Linux, UNIX and Windows, and are made available to the programmer through low-level system APIs. But when it comes to SSL or TLS, one has to turn to a third-party library such as OpenSSL or Mozilla NSS. SSL is a relatively old protocol, and it's basically an industry standard as ubiquitous as TCP/IP, so why isn't it built into most Operating Systems?

    Read the article

  • .NET Properties - Use Private Set or ReadOnly Property?

    - by tgxiii
    In what situation should I use a Private Set on a property versus making it a ReadOnly property? Take into consideration the two very simplistic examples below. First example: Public Class Person Private _name As String Public Property Name As String Get Return _name End Get Private Set(ByVal value As String) _name = value End Set End Property Public Sub WorkOnName() Dim txtInfo As TextInfo = _ Threading.Thread.CurrentThread.CurrentCulture.TextInfo Me.Name = txtInfo.ToTitleCase(Me.Name) End Sub End Class // ---------- public class Person { private string _name; public string Name { get { return _name; } private set { _name = value; } } public void WorkOnName() { TextInfo txtInfo = System.Threading.Thread.CurrentThread.CurrentCulture.TextInfo; this.Name = txtInfo.ToTitleCase(this.Name); } } Second example: Public Class AnotherPerson Private _name As String Public ReadOnly Property Name As String Get Return _name End Get End Property Public Sub WorkOnName() Dim txtInfo As TextInfo = _ Threading.Thread.CurrentThread.CurrentCulture.TextInfo _name = txtInfo.ToTitleCase(_name) End Sub End Class // --------------- public class AnotherPerson { private string _name; public string Name { get { return _name; } } public void WorkOnName() { TextInfo txtInfo = System.Threading.Thread.CurrentThread.CurrentCulture.TextInfo; _name = txtInfo.ToTitleCase(_name); } } They both yield the same results. Is this a situation where there's no right and wrong, and it's just a matter of preference?

    Read the article

  • ASP.NET ViewState Tips and Tricks #1

    - by João Angelo
    In User Controls or Custom Controls DO NOT use ViewState to store non public properties. Persisting non public properties in ViewState results in loss of functionality if the Page hosting the controls has ViewState disabled since it can no longer reset values of non public properties on page load. Example: public class ExampleControl : WebControl { private const string PublicViewStateKey = "Example_Public"; private const string NonPublicViewStateKey = "Example_NonPublic"; // DO public int Public { get { object o = this.ViewState[PublicViewStateKey]; if (o == null) return default(int); return (int)o; } set { this.ViewState[PublicViewStateKey] = value; } } // DO NOT private int NonPublic { get { object o = this.ViewState[NonPublicViewStateKey]; if (o == null) return default(int); return (int)o; } set { this.ViewState[NonPublicViewStateKey] = value; } } } // Page with ViewState disabled public partial class ExamplePage : Page { protected override void OnLoad(EventArgs e) { base.OnLoad(e); this.Example.Public = 10; // Restore Public value this.Example.NonPublic = 20; // Compile Error! } }

    Read the article

  • Hosting a web application on discountasp.net using sql ce 5

    - by David Stanley
    I am hoping that someone may have experience with this, since the discountasp site is very lacking in straightforward answers. I am building a lightweight web application and have decided to have sql ce as the database for it. Two questions regarding this: Do i need to get an actual database hosted as well as the site, in order for it to work? Do you know if discountasp supports the use of sql ce (not with webmatrix or any cms builds, completely custom)? If they don't, do you have any experience/recommendations with getting this done?

    Read the article

  • What will be the impact on SEO if we remove our SSL certificate (url become http instead of https)?

    - by pixeline
    For some weird reason, our domain's content is returned for any https request set to any of our server's hosted domain names. https://domain.com leads to our website, with a proper SSL certificate (so, no warning). https://domain2.com, also hosted on our server but without SSL certificate, leads to a warning, and if accepted, to our website's content! The problem is that any search for our keywords in Google shows "fake websites" on top of ours, with the warning et al. It seems unsolvable so we are thinking about switching back ton nonsecure http . I'm just afraid of losing whatever indexing we have. How can i avoid that? Thanks, a.

    Read the article

  • Recommended solutions for integrating iOS with .NET, at the service tier

    - by George
    I'm developing an application, in iOS, that is required to connect to my Windows Server to poll for new data, update, etc. As a seasoned C# developer, my first instinct is to start a new project in Visual Studio and select Web Service, letting my bias (and comfort level) dictate the service layer of my application. However, I don't want to be biased, and I don't base my decision on a service which I am very familiar with, at the cost of performance. I would like to know what other developers have had success using, and if there is a default standard for iOS service layer development? Are there protocols that are easier to consume than others within iOS? Better ones for the size and/or compression of data? Is there anything wrong with using SOAP? I know it's "big" in comparison to protocols like JSON.

    Read the article

  • Are there any advantages to using ASP.Net MVC 3 over Ruby On Rails for existing businesses? [closed]

    - by user786621
    Possible Duplicate: What ASP.NET MVC can do and Ruby on Rails can't? I've been hearing a lot of good press about Ruby On Rails but I'm having a hard time finding much information on the advantages of using ASP.Net MVC 3 over RoR, yet I see many existing businesses migrating over to ASP.Net MVC. Does ASP.Net MVC 3 have any advantages over Ruby On Rails for existing businesses such as possibly tying into old databases better or allowing for more complex business logic? Or is it most likely the case that they are transferring simply because they were already using ASP.Net for Winforms?

    Read the article

  • SEO and search result changes when switching to SSL on Joomla site?

    - by jeffery_the_wind
    I am thinking about purchasing an SSL certificate for a website. The most noticeable difference for the user would be the http now becomes https and there is that lock icon in most browsers. Will there be any adverse affects on the website's current SEO or recognition by search engines when I make the switch? Also this is a Joomla site, which has an option in the settings to use SSL. It is supposed to make it easier but not sure if it takes care of everything. Thanks!

    Read the article

  • MVC2 and MVC Futures causing RedirectToAction issues

    - by Darragh
    I've been trying to get the strongly typed version of RedirectToAction from the MVC Futures project to work, but I've been getting no where. Below are the steps I've followed, and the errors I've encountered. Any help is much appreciated. I created a new MVC2 app and changed the About action on the HomeController to redirect to the Index page. Return RedirectToAction("Index") However, I wanted to use the strongly typed extensions, so I downloaded the MVC Futures from CodePlex and added a reference to Microsoft.Web.Mvc to my project. I addded the following "import" statement to the top of HomeContoller.vb Imports Microsoft.Web.Mvc I commented out the above RedirectToAction and added the following line: Return RedirectToAction(Of HomeController)(Function(c) c.Index()) So far, so good. However, I noticed if I uncomment out the first (non Generic) RedirectToAction, it was now causing the following compile error: Error 1 Overload resolution failed because no accessible 'RedirectToAction' can be called with these arguments: Extension method 'Public Function RedirectToAction(Of TController)(action As System.Linq.Expressions.Expression(Of System.Action(Of TController))) As System.Web.Mvc.RedirectToRouteResult' defined in 'Microsoft.Web.Mvc.ControllerExtensions': Data type(s) of the type parameter(s) cannot be inferred from these arguments. Specifying the data type(s) explicitly might correct this error. Extension method 'Public Function RedirectToAction(action As System.Linq.Expressions.Expression(Of System.Action(Of HomeController))) As System.Web.Mvc.RedirectToRouteResult' defined in 'Microsoft.Web.Mvc.ControllerExtensions': Value of type 'String' cannot be converted to 'System.Linq.Expressions.Expression(Of System.Action(Of mvc2test1.HomeController))'. Even though intelli-sense was showing 8 overloads (the original 6 non-generic overloads, plus the 2 new generic overloads from the Futures assembly), it seems when trying to complie the code, the compiler would only 'find' the 2 non-gneneric extension methods from the Futures assessmbly. I thought this might be an issue that I was using conflicting versions of the MVC2 assembly, and the futures assembly, so I added MvcDiaganotics.aspx from the Futures download to my project and everytyhing looked correct: ASP.NET MVC Assembly Information (System.Web.Mvc.dll) Assembly version: ASP.NET MVC 2 RTM (2.0.50217.0) Full name: System.Web.Mvc, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35 Code base: file:///C:/WINDOWS/assembly/GAC_MSIL/System.Web.Mvc/2.0.0.0__31bf3856ad364e35/System.Web.Mvc.dll Deployment: GAC-deployed ASP.NET MVC Futures Assembly Information (Microsoft.Web.Mvc.dll) Assembly version: ASP.NET MVC 2 RTM Futures (2.0.50217.0) Full name: Microsoft.Web.Mvc, Version=2.0.0.0, Culture=neutral, PublicKeyToken=null Code base: file:///xxxx/bin/Microsoft.Web.Mvc.DLL Deployment: bin-deployed This is driving me crazy! Becuase I thought this might be some VB issue, I created a new MVC2 project using C# and tried the same as above. I added the following "using" statement to the top of HomeController.cs using Microsoft.Web.Mvc; This time, in the About action method, I could only manage to call the non-generic RedirectToAction by typing the full commmand as follows: return Microsoft.Web.Mvc.ControllerExtensions.RedirectToAction<HomeController>(this, c => c.Index()); Even though I had a "using" statement at the top of the class, if I tried to call the non-generic RedirectToAction as follows: return RedirectToAction<HomeController>(c => c.Index()); I would get the following compile error: Error 1 The non-generic method 'System.Web.Mvc.Controller.RedirectToAction(string)' cannot be used with type arguments What gives? It's not like I'm trying to do anything out of the ordinary. It's a simple vanilla MVC2 project with only a reference to the Futures assembly. I'm hoping that I've missed out something obvious, but I've been scratching my head for too long, so I figured I'd seek some assisstance. If anyone's managed to get this simple scenario working (in VB and/or C#) could they please let me know what, if anything, they did differently? Thanks!

    Read the article

  • .NET invoking against an arbitrary control.

    - by kerkeslager
    I have a method which takes in a .NET control and calls invoke against it like so: Form.Invoke(Target); However, I've run into an issue numerous times calling this method where due to timing or whatever, the form handle on the form doesn't exist, causing a Invoke or BeginInvoke cannot be called on a control until the window handle has been created error. In frustration, I jokingly changed the code to: MainForm.Invoke(Target); where MainForm is the main window of the application (the form handle for the main form is created at startup and remains active for the entire life cycle of the application). I ran all the tests and manually tested the application and everything seems to work fine despite the fact that this is used everywhere. So my question is, what exactly is the meaning of invoking against a specific control? Is there any downside to just always invoking against a control you know will be active? If not, why does .NET have you invoke against a control in the first place (instead of just creating a static GuiThread.InvokeOnGuiThread(Blah);)?

    Read the article

  • More than one Custome control are not working properly

    - by Kamlesh
    Hello Developers, I have developed a ASP.Net Server custom control in C# for 3.5. named "myCheckBoxList" inherited from CheckBoxList web control. Working is very simple. It just works as a two option buttons. I have taken a CheckBoxList which will show two fixed checkboxes always. When I check one checkbox then another will uncheck as vise versa. This control works perfectly only when I have placed only one instance of that control on web page. If I place more than one instance of control then it doesnt works. Please, I need solution from expert minds from developers as stackoverflow users.

    Read the article

  • FortiClient SSL VPN Command Line Options

    - by user116036
    We had recently had a vendor switch to a fortinet firewall. We were given the FortinetSLVPNclient (version 4.0.2148) to use. This has some simple command line switches that allow you to connect from the commandline (cmd.exe this is on windows) but they seem to do nothing. Anyone have any luck with this or any alternative ssl vpn clients with scriptable installers? I have been through the documentation on the site and have seen my hopes dashed.

    Read the article

< Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >