Search Results

Search found 3875 results on 155 pages for 'opengl es lighting'.

Page 49/155 | < Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >

  • PyOpenGL - passing transformation matrix into shader

    - by M-V
    I am having trouble passing projection and modelview matrices into the GLSL shader from my PyOpenGL code. My understanding is that OpenGL matrices are column major, but when I pass in projection and modelview matrices as shown, I don't see anything. I tried the transpose of the matrices, and it worked for the modelview matrix, but the projection matrix doesn't work either way. Here is the code: import OpenGL from OpenGL.GL import * from OpenGL.GL.shaders import * from OpenGL.GLU import * from OpenGL.GLUT import * from OpenGL.GLUT.freeglut import * from OpenGL.arrays import vbo import numpy, math, sys strVS = """ attribute vec3 aVert; uniform mat4 uMVMatrix; uniform mat4 uPMatrix; uniform vec4 uColor; varying vec4 vCol; void main() { // option #1 - fails gl_Position = uPMatrix * uMVMatrix * vec4(aVert, 1.0); // option #2 - works gl_Position = vec4(aVert, 1.0); // set color vCol = vec4(uColor.rgb, 1.0); } """ strFS = """ varying vec4 vCol; void main() { // use vertex color gl_FragColor = vCol; } """ # particle system class class Scene: # initialization def __init__(self): # create shader self.program = compileProgram(compileShader(strVS, GL_VERTEX_SHADER), compileShader(strFS, GL_FRAGMENT_SHADER)) glUseProgram(self.program) self.pMatrixUniform = glGetUniformLocation(self.program, 'uPMatrix') self.mvMatrixUniform = glGetUniformLocation(self.program, "uMVMatrix") self.colorU = glGetUniformLocation(self.program, "uColor") # attributes self.vertIndex = glGetAttribLocation(self.program, "aVert") # color self.col0 = [1.0, 1.0, 0.0, 1.0] # define quad vertices s = 0.2 quadV = [ -s, s, 0.0, -s, -s, 0.0, s, s, 0.0, s, s, 0.0, -s, -s, 0.0, s, -s, 0.0 ] # vertices self.vertexBuffer = glGenBuffers(1) glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer) vertexData = numpy.array(quadV, numpy.float32) glBufferData(GL_ARRAY_BUFFER, 4*len(vertexData), vertexData, GL_STATIC_DRAW) # render def render(self, pMatrix, mvMatrix): # use shader glUseProgram(self.program) # set proj matrix glUniformMatrix4fv(self.pMatrixUniform, 1, GL_FALSE, pMatrix) # set modelview matrix glUniformMatrix4fv(self.mvMatrixUniform, 1, GL_FALSE, mvMatrix) # set color glUniform4fv(self.colorU, 1, self.col0) #enable arrays glEnableVertexAttribArray(self.vertIndex) # set buffers glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer) glVertexAttribPointer(self.vertIndex, 3, GL_FLOAT, GL_FALSE, 0, None) # draw glDrawArrays(GL_TRIANGLES, 0, 6) # disable arrays glDisableVertexAttribArray(self.vertIndex) class Renderer: def __init__(self): pass def reshape(self, width, height): self.width = width self.height = height self.aspect = width/float(height) glViewport(0, 0, self.width, self.height) glEnable(GL_DEPTH_TEST) glDisable(GL_CULL_FACE) glClearColor(0.8, 0.8, 0.8,1.0) glutPostRedisplay() def keyPressed(self, *args): sys.exit() def draw(self): glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) # build projection matrix fov = math.radians(45.0) f = 1.0/math.tan(fov/2.0) zN, zF = (0.1, 100.0) a = self.aspect pMatrix = numpy.array([f/a, 0.0, 0.0, 0.0, 0.0, f, 0.0, 0.0, 0.0, 0.0, (zF+zN)/(zN-zF), -1.0, 0.0, 0.0, 2.0*zF*zN/(zN-zF), 0.0], numpy.float32) # modelview matrix mvMatrix = numpy.array([1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.5, 0.0, -5.0, 1.0], numpy.float32) # render self.scene.render(pMatrix, mvMatrix) # swap buffers glutSwapBuffers() def run(self): glutInitDisplayMode(GLUT_RGBA) glutInitWindowSize(400, 400) self.window = glutCreateWindow("Minimal") glutReshapeFunc(self.reshape) glutDisplayFunc(self.draw) glutKeyboardFunc(self.keyPressed) # Checks for key strokes self.scene = Scene() glutMainLoop() glutInit(sys.argv) prog = Renderer() prog.run() When I use option #2 in the shader without either matrix, I get the following output: What am I doing wrong?

    Read the article

  • Inter Quake Model IQM render Directx9

    - by Andrew_0
    I'm trying to render an Inter Quake Model(http://lee.fov120.com/iqm/) in DirectX9 that I exported from blender. I want to display animations which IQM supports and my model format does not. The model is a cylinder. It loads fine in the iqm sdk opengl viewer but when i try to render it in directx9 using for example(this is just to render the vertices): IDirect3DDevice9 * device; HRESULT hr = S_OK; for(int i = 0; i < nummeshes; i++) { iqmmesh &m = meshes[0]; hr = device->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST, 0, 3*m.num_triangles, m.num_triangles ,&tris[m.first_triangle] ,D3DFMT_INDEX32 ,inposition ,sizeof(unsigned int)); } It renders like this: Incorrect The light grey bit that looks like two triangles in the middle is what is rendered(ignore the other stuff). Whereas it is meant to look like this(using a custom importer which I designed which matches what is displayed in blender): Correct Anyone have any suggestions on what might be going wrong?

    Read the article

  • 3DS Max 2012 OBJ file import missing polygons

    - by Vit
    I started learning OpenGL. I got to a point I want to import some "real" objects. After "Googling" I decided I will go with OBJ file for start, since it is simple to understand, and there are plenty of tutorials on how to read them properly. I have from university access to 3DS Max 2012. So I tried to create very simple model (just deformated cube) and exporting it using OBJ file, just to vertices and triangles for the moment, without textures, so I can examine its structure by myself. But if I imported it right back to 3DS from OBJ file, now it renders somewhat strange, like its smoothen, and with lightsource, even I have none in scene. But the geometry, its wireframe is intact. So I thought maybe it is problem of exporting only vertices and triangles so I downloaded Enterprise-D model from internet, exported with everything on (normals, textures everything), and again imported it. Now, some polygons are missing. So, I want to ask, am I doing something terribly wrong, or is there some incompatibility issue between .max and .obj file ? Even it is only simple textured model without any lightsources, animation etc.? Thanks. Edit: I tried objects with MeshLab, the first, deformated cube was absolutelly OK. But still bothers me that 3DS Max doesen´t render it properly. In Enterprise-D model, there are polygons missing even in MeshLab. I uploaded rar archive with .max model of Enterprise, same .obj model exported from 3DS, and obj model of deformated cube. Download here (2.5 MB, filesonic).

    Read the article

  • Order of operations to render VBO to FBO texture and then rendering FBO texture full quad

    - by cyberdemon
    I've just started using OpenGL with C# via the OpenTK library. I've managed to successfully render my game world using VBOs. I now want to create a pixellated affect by rendering the frame to an offscreen FBO with a size half of my GameWindow size and then render that FBO to a full screen quad. I've been looking at the OpenTK example here: http://www.opentk.com/doc/graphics/frame-buffer-objects ...but the result is a black form. I'm not sure which parts of the example code belongs in the OnLoad event and OnRenderFrame. Can someone please tell me if the below code shows the correct order of operations? OnLoad { // VBO. // DataArrayBuffer GenBuffers/BindBuffer/BufferData // ElementArrayBuffer GenBuffers/BindBuffer/BufferData // ColourArrayBuffer GenBuffers/BindBuffer/BufferData // FBO. // ColourTexture GenTextures/BindTexture/TexParameterx4/TexImage2D // Create FBO. // Textures Ext.GenFramebuffers/Ext.BindFramebuffer/Ext.FramebufferTexture2D/Ext.FramebufferRenderbuffer } OnRenderFrame { // Use FBO buffer. Ext.BindFramebuffer(FBO) GL.Clear // Set viewport to FBO dimensions. GL.DrawBuffer((DrawBufferMode)FramebufferAttachment.ColorAttachment0Ext) // Bind VBO arrays. GL.BindBuffer(ColourArrayBuffer) GL.ColorPointer GL.EnableClientState(ColorArray) GL.BindBuffer(DataArrayBuffer) // If world changed GL.BufferData(DataArrayBuffer) GL.VertexPointer GL.EnableClientState(VertexArray) GL.BindBuffer(ElementArrayBuffer) // Render VBO. GL.DrawElements // Bind visible buffer. GL.Ext.BindFramebuffer(0) GL.DrawBuffer(Back) GL.Clear // Set camera to view texture. GL.BindTexture(ColourTexture) // Render FBO texture GL.Begin(Quads) // Draw texture on quad // TexCoord2/Vertex2 GL.End SwapBuffers }

    Read the article

  • How to improve batching performance

    - by user4241
    Hello, I am developing a sprite based 2D game for mobile platform(s) and I'm using OpenGL (well, actually Irrlicht) to render graphics. First I implemented sprite rendering in a simple way: every game object is rendered as a quad with its own GPU draw call, meaning that if I had 200 game objects, I made 200 draw calls per frame. Of course this was a bad choice and my game was completely CPU bound because there is a little CPU overhead assosiacted in every GPU draw call. GPU stayed idle most of the time. Now, I thought I could improve performance by collecting objects into large batches and rendering these batches with only a few draw calls. I implemented batching (so that every game object sharing the same texture is rendered in same batch) and thought that my problems are gone... only to find out that my frame rate was even lower than before. Why? Well, I have 200 (or more) game objects, and they are updated 60 times per second. Every frame I have to recalculate new position (translation and rotation) for vertices in CPU (GPU on mobile platforms does not support instancing so I can't do it there), and doing this calculation 48000 per second (200*60*4 since every sprite has 4 vertices) simply seems to be too slow. What I could do to improve performance? All game objects are moving/rotating (almost) every frame so I really have to recalculate vertex positions. Only optimization that I could think of is a look-up table for rotations so that I wouldn't have to calculate them. Would point sprites help? Any nasty hacks? Anything else? Thanks.

    Read the article

  • VBO and shaders confusion, what's their connection?

    - by Jeffrey
    Considering OpenGL 2.1 VBOs and 1.20 GLSL shaders: When creating an entity like "Zombie", is it good to initialize just the VBO buffer with the data once and do N glDrawArrays() calls per each N zombies? Is there a more efficient way? (With a single call we cannot pass different uniforms to the shader to calculate an offset, see point 3) When dealing with logical object (player, tree, cube etc), should I always use the same shader or should I customize (or be able to customize) the shaders per each object? Considering an entity class, should I create and define the shader at object initialization? When having a movable object such as a human, is there any more powerful way to deal with its coordinates than to initialize its VBO object at 0,0 and define an uniform offset to pass to the shader to calculate its real position? Could you make an example of the Data Oriented Design on creating a generic zombie class? Is the following good? Zombielist class: class ZombieList { GLuint vbo; // generic zombie vertex model std::vector<color>; // object default color std::vector<texture>; // objects textures std::vector<vector3D>; // objects positions public: unsigned int create(); // return object id void move(unsigned int objId, vector3D offset); void rotate(unsigned int objId, float angle); void setColor(unsigned int objId, color c); void setPosition(unsigned int objId, color c); void setTexture(unsigned int, unsigned int); ... void update(Player*); // move towards player, attack if near } Example: Player p; Zombielist zl; unsigned int first = zl.create(); zl.setPosition(first, vector3D(50, 50)); zl.setTexture(first, texture("zombie1.png")); ... while (running) { // main loop ... zl.update(&p); zl.draw(); // draw every zombie }

    Read the article

  • State of the art Culling and Batching techniques in rendering

    - by Kristian Skarseth
    I'm currently working with upgrading and restructuring an OpenGL render engine. The engine is used for visualising large scenes of architectural data (buildings with interior), and the amount of objects can become rather large. As is the case with any building, there is a lot of occluded objects within walls, and you naturally only see the objects that are in the same room as you, or the exterior if you are on the outside. This leaves a large number of objects that should be occluded through occlusion culling and frustum culling. At the same time there is a lot of repetative geometry that can be batched in renderbatches, and also a lot of objects that can be rendered with instanced rendering. The way I see it, it can be difficult to combine renderbatching and culling in an optimal fashion. If you batch too many objects in the same VBO it's difficult to cull the objects on the CPU in order to skip rendering that batch. At the same time if you skip the culling on the cpu, a lot of objects will be processed by the GPU while they are not visible. If you skip batching copletely in order to more easily cull on the CPU, there will be an unwanted high amount of render calls. I have done some research into existing techniques and theories as to how these problems are solved in modern graphics, but I have not been able to find any concrete solution. An idea a colleague and me came up with was restricting batches to objects relatively close to eachother e.g all chairs in a room or within a radius of n meeters. This could be simplified and optimized through use of oct-trees. Does anyone have any pointers to techniques used for scene managment, culling, batching etc in state of the art modern graphics engines?

    Read the article

  • Octree implementation for fustrum culling

    - by Manvis
    I'm learning modern (=3.1) OpenGL by coding a 3D turn based strategy game, using C++. The maps are composed of 100x90 3D hexagon tiles that range from 50 to 600 tris (20 different types) + any player units on those tiles. My current rendering technique involves sorting meshes by shaders they use (minimizing state changes) and then calling glDrawElementsInstanced() for drawing. Still get solid 16.6 ms/frame on my GTX 560Ti machine but the game struggles (45.45 ms/frame) on an old 8600GT card. I'm certain that using an octree and fustrum culling will help me here, but I have a few questions before I start implementing it: Is it OK for an octree node to have multiple meshes in it (e.g. can a soldier and the hex tile he's standing on end up in the same octree node)? How is one supposed to treat changes in object postion (e.g. several units are moving 3 hexes down)? I can't seem to find good a explanation on how to do it. As I've noticed, soting meshes by shaders is a really good way to save GPU. If I put node contents into, let's say, std::list and sort it before rendering, do you think I would gain any performance, or would it just create overhead on CPU's end? I know that this sounds like early optimization and implementing + testing would be the best way to find out, but perhaps someone knows from experience?

    Read the article

  • Correct level of abstraction for a 3d rendering component?

    - by JohnB
    I've seen lots of questions around this area but not this exact question so apologies if this is a duplicate. I'm making a small 3d game. Well to be honest, it's just a little hobby project and likely won't turn out to be an actual game, I'll be happy to make a nice graphics demo and learn about 3d rendering and c++ design. My intent is to use direct3d9 for rendering as I have some little experience of it, and it seems to meet my requirements. However if I've learned one thing as a programmer it's to ask "is there any conceivable reason that this component might be replaced by a different implmentation" and if the answer is yes then I need to design a proper abstraction and interface to that component. So even though I intend to implment d3d9 I need to design a 3d interface that could be implemented for d3d11, opengl... My question then is what level is it best to do this at? I'm thinking that an interface capable of creating and later drawing Vertex buffers and index buffers Textures Vertex and Pixel "shaders" Some representation of drawing state (blending modes etc...) In other words a fairly low level interface where my code to draw for example an animated model would use the interface to obtain abstract vertex buffers etc. I worry though that it's too low level to abstract out all the functionallity I need efficiently. The alternative is to do this at a higher level where the interface can draw objects, animations, landscapes etc, and implement them for each system. This seems like more work, but it more flexible I guess. So that's my question really, when abstracting out the drawing system, what level of interface works best?

    Read the article

  • How to create per-vertex normals when reusing vertex data?

    - by Chris Smith
    I am displaying a cube using a vertex buffer object (gl.ELEMENT_ARRAY_BUFFER). This allows me to specify vertex indicies, rather than having duplicate vertexes. In the case of displaying a simple cube, this means I only need to have eight vertices total. Opposed to needing three vertices per triangle, times two triangles per face, times six faces. Sound correct so far? My question is, how do I now deal with vertex attribute data such as color, texture coordinates, and normals when reusing vertices using the vertex buffer object? If I am reusing the same vertex data in my indexed vertex buffer, how can I differentiate when vertex X is used as part of the cube's front face versus the cube's left face? In both cases I would like the surface normal and texture coordinates to be different. I understand I could average the surface normal, however I would like to render a cube. Also, this still doesn't work for texture coordinates. Is there a way to save memory using a vertex buffer object while being able to provide different vertex attribute data based on context? (Per-triangle would be idea.) Or should I just duplicate each vertex for each context in which it gets rendered. (So there is a one-to-one mapping between vertex, normal, color, etc.) Note: I'm using OpenGL ES.

    Read the article

  • Rotate a particle system

    - by Blueski
    Languages / Libraries in use: C++, OpenGL, GLUT Okay, here's the deal. I've got a particle system which shoots out alpha blended textures to produce a flame. The system only keeps track of very basic things such as, time alive, life, xyz and spread. The direction in which the flames are currently moving in is purely based on other things which are going on in my code ( I assume ). My goal however, is to attach the flame to the camera (DONE) and have the flame pointing in the direction my camera is facing (NOT WORKING). I've tried glRotate for both x,y,z and I can't get it to work properly. I'm currently using gluLookAt to move the camera, and get the flame to follow the XYZ of the camera by calling glTranslatef(camX, camY - offset, camZ); Any suggestions on how I can rotate the direction of the flame with the camera would be greatly appreciated. Heres an image of what I've got: http://i.imgur.com/YhV4w.png Notes: Crosshair depicts where camera is facing if I turn the camera, flame doesn't follow the crosshair Also asked here: http://stackoverflow.com/questions/9560396/rotate-a-particle-system but was referred here

    Read the article

  • File format for animated scene

    - by stephelton
    I've got a custom OpenGL based rendering engine and I'd like to add support for cinema-type scene animation. The artist that is helping me uses primarily 3DSMax. I'd like a file format for exporting and importing this data. I'm also in need of a file format for skeletal animation data, which may have an impact here. I've been looking at MAXScript to manually export this stuff, which would buy me the most flexibility, but I have virtually no experience with 3DSMax itself, so I get a little lost when it comes to terminology. So I'd like to know what file formats exist for animated scene data, and whether they are appropriate for my use (my fear is that they will be way too broad for my fairly simple needs.) The way I view animated scene data is basically a bunch of references to [animated] models with keyframe-based matrices describing their orientation over time. And probably some special camera stuff to handle perspective. I might also want some event type stuff for adding/removing objects. Is this a sane concept?

    Read the article

  • FreeType2 Crash on FT_Init_FreeType

    - by JoeyDewd
    I'm currently trying to learn how to use the FreeType2 library for drawing fonts with OpenGL. However, when I start the program it immediately crashes with the following error: "(Can't correctly start the application (0xc000007b))" Commenting the FT_Init_FreeType removes the error and my game starts just fine. I'm wondering if it's my code or has something to do with loading the dll file. My code: #include "SpaceGame.h" #include <ft2build.h> #include FT_FREETYPE_H //Freetype test FT_Library library; Game::Game(int Width, int Height) { //Freetype FT_Error error = FT_Init_FreeType(&library); if(error) { cout << "Error occured during FT initialisation" << endl; } And my current use of the FreeType2 files. Inside my bin folder (where debug .exe is located) is: freetype6.dll, libfreetype.dll.a, libfreetype-6.dll. In Code::Blocks, I've linked to the lib and include folder of the FreeType 2.3.5.1 version. And included a compiler flag: -lfreetype My program starts perfectly fine if I comment out the FT_Init function which means the includes, and library files should be fine. I can't find a solution to my problem and google isn't helping me so any help would be greatly appreciated.

    Read the article

  • Blur gets displaced compared to original image

    - by user1294203
    I have implemented a SSAO and I'm using a blur step to smooth it out. The problem is that the blurred texture is slightly displaced compared to the original. I'm blurring using a 4x4 kernel since that was my noise kernel in SSAO. The following is the blurring shader: float result = 0.0; for(int i = 0; i < 4; i++){ for(int j = 0; j < 4; j++){ vec2 offset = vec2(TEXEL_SIZE.x * i, TEXEL_SIZE.y * j); result += texture(aoSampler, TexCoord + offset).r; } } out_AO = vec4(vec3(0.0), result * 0.0625); Where TEXEL_SIZE is one over my window resolution. I was thinking that this is was an error based on how OpenGL counts the Texel center, so I tried displacing the texture coordinate I was using by 0.5 * TEXEL_SIZE, but there was still a slight displacement. The texture input to my blur shader, has wrap parameters: glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); When I tell the blur shader to just output the the value of the pixel, the result is not displaced, so it must have something to do with how neighboring pixels are sampled. Any thoughts?

    Read the article

  • Z Order in 2D with orthographic projection and texture atlas

    - by Carbon Crystal
    I am working with a 2D game in OpenGL ES and have a question about z-order together with a texture atlas. I am using an orthographic projection because I want pixel-perfect rendering of 2D sprites, however from what I can determine the draw order is really the only thing that will determine which textures (sprites) appear above or below their neighbors. That is, the "z-index" is a function of the order in which the textures are drawn as opposed to the z coordinate on the vertex array being drawn. So.. I have a texture atlas to save binding multiple textures for each draw call but this immediately creates a problem if there is more than one atlas in play. If I need to draw textures from more than one atlas (typically the case if I have too many sprites to fit in a single atlas of a reasonable size), then I can't maintain a "draw order" across atlases unless I want to bind/unbind the atlas textures more than once.. which kinda defeats the purpose. Does anyone have any clues as to what the best approach is here? Currently I'm running under an assumption that I will have to declare different fixed "depths" (e.g foreground, background etc) in my 2D scene and assume that the z-order for sprites at a given depth is the same. Then I can have as many atlases as I need at each depth and simply draw the depths in order (along with their associated atlases) I'd love to hear what other people are doing.

    Read the article

  • How to implement physical effect, perspective effect on Android

    - by asedra_le
    I'm researching about 2D game for Android to implement an Android Game Project. My project looks nearly like PaperToss. Instance of throwing a page, my game will throw a coin. Suppose that I have a coin put in three-dimensional that have coordinates at A(x,y,z). I throw that point ahead, after 1/100 second, that coin move from A(x,y,z) to A'(x',y',z'). By this way, I have two problems need to solve. Determine the formulas can be used to compute the coordinates of the coin at time t. This problem is under-researching. I have no idea to solve this problem. Mapping three-dimensional points to a two-dimensional and use those new coordinates (a two-dimensional coordinates) to draw our coin on screen. I have found two solutions for this problem: Orthographic projection & Perspective projection However, my old friend said that OpenGL supports to solve problems like my problems. Any body have experiences about my problems? Help me please :) Thank for reading my question.

    Read the article

  • Checking if an object is inside bounds of an isometric chunk

    - by gopgop
    How would I check if an object is inside the bounds of an isometric chunk? for example I have a player and I want to check if its inside the bounds of this isometric chunk. I draw the isometric chunk's tiles using OpenGL Quads. My first try was checking in a square pattern kind of thing: e = object; this = isometric chunk; if (e.getLocation().getX() < this.getLocation().getX()+World.CHUNK_WIDTH*World.TILE_WIDTH && e.getLocation().getX() > this.getLocation().getX()) { if (e.getLocation().getY() > this.getLocation().getY() && e.getLocation().getY() < this.getLocation().getY()+World.CHUNK_HEIGHT*World.TILE_HEIGHT) { return true; } } return false; What happens here is that it checks in a SQUARE around the chunk so not the real isometric bounds. Image example: (THE RED IS WHERE THE PROGRAM CHECKS THE BOUNDS) What I have now: Desired check: Ultimately I want to do the same for each tile in the chunk. EXTRA INFO: Till now what I had in my game is you could only move tile by tile but now I want them to move freely but I still need them to have a tile location so no matter where they are on the tile their tile location will be that certain tile. then when they are inside a different tile's bounding box then their tile location becomes the new tile. Same thing goes with chunks. the player does have an area but the area does not matter in this case. and as long as the X and Y are inside the bounding box then it should return true. they don't have to be completely on the tile.

    Read the article

  • How to remove seams from a tile map in 3D?

    - by Grimshaw
    I am using my OpenGL custom engine to render a tilemap made with Tiled, using a well spread tileset from the web. There is nothing fancy going on. I load the TMX file from Tiled and generate vertex arrays and index arrays to render the tilemap. I am rendering this tilemap as a wall in my 3D world, meaning that I move around with a fly camera in my 3D world and at Z=0 there is a plane showing me my tiles. Everything is working correctly but I get ugly seems between the tiles. I've tried orthographic and perspective cameras and with either I found particular sets of parameters for the projection and view matrices where the artifacts did not show, but otherwise they are there 99% of the time in multiple patterns, depending on the zoom and camera parameters like field of view. Here's a screenshot of the artifact being shown: http://i.imgur.com/HNV1g4M.png Here's the tileset I am using (which Tiled also uses and renders correctly): http://i.imgur.com/SjjHK4q.png My tileset has no mipmaps and is set to GL_NEAREST and GL_CLAMP_TO_EDGE values. I've looked around many articles in the internet and nothing helped. I tried uv correction so the uv fall at half of the texel, rather than the end of the texel to prevent interpolating with the neighbour value(which is transparency). I tried debugging with my geometry and I verified that with no texture and a random color in each tile, I don't seem to see any seams. All vertices have integer coordinates, i.e, the first tile is a quad from (0,0) to (1,1) and so on. Tried adding a little offset both to the UV and to the vertices to see if the gaps cease to exist. Disabled multisampling too. Nothing fixed it so far. Thanks.

    Read the article

  • From simple physics with a ball, to a more complicated shape

    - by Maximus
    Hello fellow game devs and stack overflowers... I recently made a transition from OpenGL ES 1.1 to 2.0 (on Android via NDK) and things are going well so far. I'm working on doing a dice rolling application (gaming dice up to 20 sided, not just regular 6 sided die) as a way to learn more about how physics is implemented in a gaming environment. I've explored implementing existing engine options (such as Bullet) and I don't think I need to implement something quite so sophisticated. I've found several tutorials that handle a lot of the general physics involved with initial trajectory, velocity, angle of contact and reflection angle, etc. I'm confident that I'd be able to implement ball-like behavior without much trouble. My question lies in when I attempt to make the interaction of the die shape with another surface more "realistic," for example... the die strikes the floor surface at such an angle where only one corner makes contact with the floor. In my mind, the center of gravity of the object would play a part in determining how the die bounces away, possibly even spinning it it faster, etc... but I am not sure what the actual math involved is. Are there any recommended resources for getting into this level of detail? Initial searches haven't turned up much... Thanks to everyone in the community, -Jeremiah

    Read the article

  • Z-order with Alpha blending in a 3D world

    - by user41765
    I'm working on a game in a 3D world with 2D sprites only (like Don't Starve game). (OpenGL ES2 with C++) Currently, I'm ordering elements back to front before drawing them without batch (so 1 element = 1 drawcall). I would like to implement batching in my framework to decrease draw calls. Here is what I've got for the moment: Order all elements of my scene back to front. Send order list of elements to the Renderer. Renderer look in his batch manager if a batch exist for the given element with his Material. Batch didn't exist: create a new one. Batch exist for element with this Material: Add sprite to the batch. Compute big mesh with all sprite for each batch (1 material type = 1 batch). When all batches are ok, the batch manager compute draw commands for the renderer. Renderer process draw commands (bind shader, bind textures, bind buffers, draw element) Image with my problem here: Explication here But I've got some problems because objects can be behind another objects inside another batch. How can I do something like that? Thanks!

    Read the article

  • What is the correct and most efficient approach of streaming vertex data?

    - by Martijn Courteaux
    Usually, I do this in my current OpenGL ES project (for iOS): Initialization: Create two VBO's and one IndexBuffer (since I will use the same indices), same size. Create two VAO's and configure them, both bound to the same Index Buffer. Each frame: Choose a VBO/VAO couple. (Different from the previous frame, so I'm alternating.) Bind that VBO Upload new data using glBufferSubData(GL_ARRAY_BUFFER, ...). Bind the VAO Render my stuff using glDrawElements(GL_***, ...); Unbind the VAO However, someone told me to avoid uploading data (step 3) and render immediately the new data (step 5). I should avoid this, because the glDrawElements call will stall until the buffer is effectively uploaded to VRAM. So he suggested to draw all my geometry I uploaded the previous frame and upload in the current frame what will be drawn in the next frame. Thus, everything is rendered with the delay of one frame. Is this true or am I using the good approach to work with streaming vertex data? (I do know that the pipeline will stall the other way around. Ie: when you draw and immediately try to change the buffer data. But I'm not doing that, since I implemented double buffering.)

    Read the article

  • Sprites, Primitives and logic entity as structs

    - by Jeffrey
    I'm wondering would it be considered acceptable: The window class is responsible for drawing data, so it will have a method: Window::draw(const Sprite&); Window::draw(const Rect&); Window::draw(const Triangle&); Window::draw(const Circle&); and all those primitives + sprites would be just public struct. For example Sprite: struct Sprite { float x, y; // center float origin_x, origin_y; float width, height; float rotation; float scaling; GLuint texture; Sprite(float w, float h); Sprite(float w, float h, float a, float b); void useTexture(std::string file); void setOrigin(float a, float b); void move(float a, float b); // relative move void moveTo(float a, float b); // absolute move void rotate(float a); // relative rotation void rotateTo(float a); // absolute rotation void rotationReset(); void scale(float a); // relative scaling void scaleTo(float a); // absolute scaling void scaleReset(); }; So instead of having each primitive to call their draw() function, which is a little bit off topic for their object, I let the Window class handle all the OpenGL stuff and manipulate them as simple objects that will be drawn later on. Is this pattern used? Does it have any cons against it's primitives-draw-themself pattern? Are there any other related patterns?

    Read the article

  • vector rotations for branches of a 3d tree

    - by freefallr
    I'm attempting to create a 3d tree procedurally. I'm hoping that someone can check my vector rotation maths, as I'm a bit confused. I'm using an l-system (a recursive algorithm for generating branches). The trunk of the tree is the root node. It's orientation is aligned to the y axis. In the next iteration of the tree (e.g. the first branches), I might create a branch that is oriented say by +10 degrees in the X axis and a similar amount in the Z axis, relative to the trunk. I know that I should keep a rotation matrix at each branch, so that it can be applied to child branches, along with any modifications to the child branch. My questions then: for the trunk, the rotation matrix - is that just the identity matrix * initial orientation vector ? for the first branch (and subsequent branches) - I'll "inherit" the rotation matrix of the parent branch, and apply x and z rotations to that also. e.g. using glm::normalize; using glm::rotateX; using glm::vec4; using glm::mat4; using glm::rotate; vec4 vYAxis = vec4(0.0f, 1.0f, 0.0f, 0.0f); vec4 vInitial = normalize( rotateX( vYAxis, 10.0f ) ); mat4 mRotation = mat4(1.0); // trunk rotation matrix = identity * initial orientation vector mRotation *= vInitial; // first branch = parent rotation matrix * this branches rotations mRotation *= rotate( 10.0f, 1.0f, 0.0f, 0.0f ); // x rotation mRotation *= rotate( 10.0f, 0.0f, 0.0f, 1.0f ); // z rotation Are my maths and approach correct, or am I completely wrong? Finally, I'm using the glm library with OpenGL / C++ for this. Is the order of x rotation and z rotation important?

    Read the article

  • Rendering text with stb_font results in glitches

    - by Fabian Fritz
    I'm trying to render text with OpenGL and an "inline"-font taken from the stb_fonts The relevant code for initializing the font & rendering: LabelFactory::LabelFactory() { static unsigned char fontpixels [STB_SOMEFONT_BITMAP_HEIGHT][STB_SOMEFONT_BITMAP_WIDTH]; STB_SOMEFONT_CREATE(fontdata, fontpixels, STB_SOMEFONT_BITMAP_HEIGHT); glGenTextures(1, &texture); glBindTexture(GL_TEXTURE_2D, texture); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glTexImage2D(GL_TEXTURE_2D, 0, GL_ALPHA, STB_SOMEFONT_BITMAP_WIDTH, STB_SOMEFONT_BITMAP_HEIGHT, 0, GL_ALPHA, GL_UNSIGNED_BYTE, fontdata); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); } void LabelFactory::renderLabel(Label * label) { int x = label->x; int y = label->y; const char * str = label->text; glBindTexture(GL_TEXTURE_2D, texture); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_ALPHA_TEST); glColor4f(1.0f, 1.0f, 1.0f, 1.0f); glEnable(GL_TEXTURE_2D); glBegin(GL_QUADS); while (*str) { int char_codepoint = *str++; stb_fontchar *cd = &fontdata[char_codepoint - STB_FONT_arial_14_usascii_FIRST_CHAR]; glTexCoord2f(cd->s0, cd->t0); glVertex2i(x + cd->x0, y + cd->y0); glTexCoord2f(cd->s1, cd->t0); glVertex2i(x + cd->x1, y + cd->y0); glTexCoord2f(cd->s1, cd->t1); glVertex2i(x + cd->x1, y + cd->y1); glTexCoord2f(cd->s0, cd->t1); glVertex2i(x + cd->x0, y + cd->y1); x += cd->advance_int; } glEnd(); } However this results in weird glitches I guess I'm doing something wrong with the alpha blending, however I was unable to improve it by changing the parameters. The size and length of the outline of the text that should be shown seems about right (it should read "Test Test Test").

    Read the article

  • Quaternion LookAt for camera

    - by Homar
    I am using the following code to rotate entities to look at points. glm::vec3 forwardVector = glm::normalize(point - position); float dot = glm::dot(glm::vec3(0.0f, 0.0f, 1.0f), forwardVector); float rotationAngle = (float)acos(dot); glm::vec3 rotationAxis = glm::normalize(glm::cross(glm::vec3(0.0f, 0.0f, 1.0f), forwardVector)); rotation = glm::normalize(glm::quat(rotationAxis * rotationAngle)); This works fine for my usual entities. However, when I use this on my Camera entity, I get a black screen. If I flip the subtraction in the first line, so that I take the forward vector to be the direction from the point to my camera's position, then my camera works but naturally my entities rotate to look in the opposite direction of the point. I compute the transformation matrix for the camera and then take the inverse to be the View Matrix, which I pass to my OpenGL shaders: glm::mat4 viewMatrix = glm::inverse( cameraTransform->GetTransformationMatrix() ); The orthographic projection matrix is created using glm::ortho. What's going wrong?

    Read the article

< Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >