Search Results

Search found 8262 results on 331 pages for 'optimization algorithm'.

Page 49/331 | < Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >

  • Optimization in Python - do's, don'ts and rules of thumb.

    - by JV
    Well I was reading this post and then I came across a code which was: jokes=range(1000000) domain=[(0,(len(jokes)*2)-i-1) for i in range(0,len(jokes)*2)] I thought wouldn't it be better to calculate the value of len(jokes) once outside the list comprehension? Well I tried it and timed three codes jv@Pioneer:~$ python -m timeit -s 'jokes=range(1000000);domain=[(0,(len(jokes)*2)-i-1) for i in range(0,len(jokes)*2)]' 10000000 loops, best of 3: 0.0352 usec per loop jv@Pioneer:~$ python -m timeit -s 'jokes=range(1000000);l=len(jokes);domain=[(0,(l*2)-i-1) for i in range(0,l*2)]' 10000000 loops, best of 3: 0.0343 usec per loop jv@Pioneer:~$ python -m timeit -s 'jokes=range(1000000);l=len(jokes)*2;domain=[(0,l-i-1) for i in range(0,l)]' 10000000 loops, best of 3: 0.0333 usec per loop Observing the marginal difference 2.55% between the first and the second made me think - is the first list comprehension domain=[(0,(len(jokes)*2)-i-1) for i in range(0,len(jokes)*2)] optimized internally by python? or is 2.55% a big enough optimization (given that the len(jokes)=1000000)? If this is - What are the other implicit/internal optimizations in Python ? What are the developer's rules of thumb for optimization in Python? Edit1: Since most of the answers are "don't optimize, do it later if its slow" and I got some tips and links from Triptych and Ali A for the do's. I will change the question a bit and request for don'ts. Can we have some experiences from people who faced the 'slowness', what was the problem and how it was corrected? Edit2: For those who haven't here is an interesting read Edit3: Incorrect usage of timeit in question please see dF's answer for correct usage and hence timings for the three codes.

    Read the article

  • Design Book–Fourth(last) Section (Physical Abstraction Optimization)

    - by drsql
    In this last section of the book, we will shift focus to the physical abstraction layer optimization. By this I mean the little bits and pieces of the design that is specifically there for performance and are actually part of the relational engine (read: the part of the SQL Server experience that ideally is hidden from you completely, but in 2010 reality it isn’t quite so yet.  This includes all of the data structures like database, files, etc; the optimizer; some coding, etc. In my mind, this...(read more)

    Read the article

  • Ant Colony Optimization de Marco Dorigo et Thomas Stützle, critique par Franck Dernoncourt

    Bonjour à tous, Voici ma critique du livre "Ant Colony Optimization". Les algorithmes de colonies de fourmis sont des algorithmes inspirés du comportement des fourmis et qui constituent une famille de métaheuristiques d'optimisation. Ils ont été appliqués à un grand nombre de problèmes d'optimisation combinatoire, allant de l'assignement quadratique au replis de protéine ou au routage de véhicules. Comme beaucoup de métaheuristiques, l'algorithme de base a été adapté aux problèmes dynamiques, en variables réelles, aux problèmes stochastiques, multi-objectifs ou aux implémentations parallèles, etc. Bref, c'est une métaheuristique incontournable pour toute pe...

    Read the article

  • How Can I Improve This Card-Game AI?

    - by James Burgess
    Let me get this out there before anything else: this is a learning exercise for me. I am not a game developer by trade or hobby (at least, not seriously) and am purely delving into some AI- and 3D-related topics to broaden my horizons a bit. As part of the learning experience, I thought I'd have a go at developing a basic card game AI. I selected Pit as the card game I was going to attempt to emulate (specifically, the 'bull and bear' variation of the game as mentioned in the link above). Unfortunately, the rule-set that I'm used to playing with (an older version of the game) isn't described. The basics of it are: The number of commodities played with is equal to the number of players. The bull and bear cards are included. All but two players receive 8 cards, two receive 9 cards. A player can win the round with 7 + bull, 8, or 8 + bull (receiving double points). The bear is a penalty card. You can trade up to a maximum of 4 cards at a time. They must all be of the same type, but can optionally include the bull or bear (so, you could trade A, A, A, Bull - but not A, B, A, Bull). For those who have played the card game, it will probably have been as obvious to you as it was to me that given the nature of the game, gameplay would seem to resemble a greedy algorithm. With this in mind, I thought it might simplify my AI experience somewhat. So, here's what I've come up with for a basic AI player to play Pit... and I'd really just like any form of suggestion (from improvements to reading materials) relating to it. Here it is in something vaguely pseudo-code-ish ;) While AI does not hold 7 similar + bull, 8 similar, or 8 similar + bull, do: 1. Establish 'target' hand, by seeing which card AI holds the most of. 2. Prepare to trade next-most-numerous card type in a trade (max. held, or 4, whichever is fewer) 3. If holding the bear, add to (if trading <=3 cards) or replace in (if trading 4 cards) hand. 4. Offer cards for trade. 5. If cards are accepted for trade within X turns, continue (clearing 'failed card types'). Otherwise: a. If only one card remains in the trade, go to #6. Otherwise: i. Remove one non-penalty card from the trade. ii. Return to #5. 6. Add card type to temporary list of failed card types. 7. Repeat from #2 (excluding 'failed card types'). I'm aware this is likely to be a sub-optimal way of solving the problem, but that's why I'm posting this question. Are there any AI- or algorithm-related concepts that I've missed and should be incorporating to make a better AI? Additionally, what are the flaws with my AI at present (I'm well aware it's probably far from complete)? Thanks in advance!

    Read the article

  • SEO optimisation problems after Google Panda [on hold]

    - by Daniel West
    I am currently trying to improve a website's SEO after it took quite a hit from the Google Panda upgrades. What are the main things I need to look at improving when trying to improve its ranking in Google? I have already made sure that the pages validate to W3C Standards, minimized css and js and done the obvious meta tags and header optimization but this hasn't made any difference yet. It could possibly be a content issue as the pages currently read much like a brochure and there were some pages with just a video and no text content on them which is also an issue. I've added a rel="nofollow" attribute to the links to these pages although i'm told this doesn't really work anymore. If anyone has any ideas let me know. Cheers!

    Read the article

  • Bitmap font rendering, UV generation and vertex placement

    - by jack
    I am generating a bitmap, however, I am not sure on how to render the UV's and placement. I had a thread like this once before, but it was too loosely worded as to what I was looking to do. What I am doing right now is creating a large 1024x1024 image with characters evenly placed every 64 pixels. Here is an example of what I mean. I then save the bitmap X/Y information to a file (which is all multiples of 64). However, I am not sure how to properly use this information and bitmap to render. This falls into two different categories, UV generation and kerning. Now I believe I know how to do both of these, however, when I attempt to couple them together I will get horrendous results. For example, I am trying to render two different text arrays, "123" and "njfb". While ignoring the texture quality (I will be increasing the texture to provide more detail once I fix this issue), here is what it looks like when I try to render them. http://img64.imageshack.us/img64/599/badfontrendering.png Now for the algorithm. I am doing my letter placement with both GetABCWidth and GetKerningPairs. I am using GetABCWidth for the width of the characters, then I am getting the kerning information for adjust the characters. Does anyone have any suggestions on how I can implement my own bitmap font renderer? I am trying to do this without using external libraries such as angel bitmap tool or freetype. I also want to stick to the way the bitmap font sheet is generated so I can do extra effects in the future. Rendering Algorithm for(U32 c = 0, vertexID = 0, i = 0; c < numberOfCharacters; ++c, vertexID += 4, i += 6) { ObtainCharInformation(fontName, m_Text[c]); letterWidth = (charInfo.A + charInfo.B + charInfo.C) * scale; if(c != 0) { DWORD BytesReq = GetGlyphOutlineW(dc, m_Text[c], GGO_GRAY8_BITMAP, &gm, 0, 0, &mat); U8 * glyphImg= new U8[BytesReq]; DWORD r = GetGlyphOutlineW(dc, m_Text[c], GGO_GRAY8_BITMAP, &gm, BytesReq, glyphImg, &mat); for (int k=0; k<nKerningPairs; k++) { if ((kerningpairs[k].wFirst == previousCharIndex) && (kerningpairs[k].wSecond == m_Text[c])) { letterBottomLeftX += (kerningpairs[k].iKernAmount * scale); break; } } letterBottomLeftX -= (gm.gmCellIncX * scale); } SetVertex(letterBottomLeftX, 0.0f, zFight, vertexID); SetVertex(letterBottomLeftX, letterHeight, zFight, vertexID + 1); SetVertex(letterBottomLeftX + letterWidth, letterHeight, zFight, vertexID + 2); SetVertex(letterBottomLeftX + letterWidth, 0.0f, zFight, vertexID + 3); zFight -= 0.001f; float BottomLeftX = (F32)(charInfo.bitmapXOrigin) / (float)m_BitmapWidth; float BottomLeftY = (F32)(charInfo.bitmapYOrigin + charInfo.charBitmapHeight) / (float)m_BitmapWidth; float TopLeftX = BottomLeftX; float TopLeftY = (F32)(charInfo.bitmapYOrigin) / (float)m_BitmapWidth; float TopRightX = (F32)(charInfo.bitmapXOrigin + charInfo.B - charInfo.C) / (float)m_BitmapWidth; float TopRightY = TopLeftY; float BottomRightX = TopRightX; float BottomRightY = BottomLeftY; SetTextureCoordinate(TopLeftX, TopLeftY, vertexID + 1); SetTextureCoordinate(BottomLeftX, BottomLeftY, vertexID + 0); SetTextureCoordinate(BottomRightX, BottomRightY, vertexID + 3); SetTextureCoordinate(TopRightX, TopRightY, vertexID + 2); /// index setting letterBottomLeftX += letterWidth; previousCharIndex = m_Text[c]; }

    Read the article

  • Quality Backlinks - A Key to Search Engine Optimization

    Backlinks are the links which are going to your blogs, sites or articles. Backlinks are the most important and single very significant factors to give the page rank to your site or blogs.They are great technique and way to find a proper and a decent place in the goggle or any of the major search engines. There are many other aspects of SEO but quality back links are the most appropriate way to find a great way in terms of search engine optimization. Now it is the time to take a look at the components which are very important about backlinks.

    Read the article

  • How do I avoid "Developer's Bad Optimization Intuition"?

    - by Mona
    I saw on a article that put forth this statement: Developers love to optimize code and with good reason. It is so satisfying and fun. But knowing when to optimize is far more important. Unfortunately, developers generally have horrible intuition about where the performance problems in an application will actually be. How can a developer avoid this bad intuition? Are there good tools to find which parts of your code really need optimization (for Java)? Do you know of some articles, tips, or good reads on this subject?

    Read the article

  • All About Search Engine Position Optimization

    Search engine optimization or SEO is a method increasing the amount of traffic or hits to your website, which results in making your website rank high in search engine results. These results are produced whenever an individual types in a keyword or a set of keywords in a search query in search engines like Yahoo!, Google and the like. Being high on the list of search results matters a lot because it makes you more visible to the general public, especially to your target market. This differentiates you from your competitors who may rank low in the search results, or may not even appear in the results lists at all.

    Read the article

  • SQLAuthority News Microsoft SQL Server 2005/2008 Query Optimization & Performance Tuning Training

    Last 3 days to register for the courses. This is one time offer with big discount. The deadline for the course registration is 5th May, 2010. There are two different courses are offered by Solid Quality Mentors 1) Microsoft SQL Server 2005/2008 Query Optimization & Performance Tuning – Pinal Dave Date: May 12-14, 2010 Price: [...]...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Approach for packing 2D shapes while minimizing total enclosing area

    - by Dennis
    Not sure on my tags for this question, but in short .... I need to solve a problem of packing industrial parts into crates while minimizing total containing area. These parts are motors, or pumps, or custom-made components, and they have quite unusual shapes. For some, it may be possible to assume that a part === rectangular cuboid, but some are not so simple, i.e. they assume a shape more of that of a hammer or letter T. With those, (assuming 2D shape), by alternating direction of top & bottom, one can pack more objects into the same space, than if all tops were in the same direction. Crude example below with letter "T"-shaped parts: ***** xxxxx ***** x ***** *** ooo * x vs * x vs * x vs * x o * x * xxxxx * x * x o xxxxx xxx Right now we are solving the problem by something like this: using CAD software, make actual models of how things fit in crate boxes make estimates of actual crate dimensions & write them into Excel file (1) is crazy amount of work and as the result we have just a limited amount of possible entries in (2), the Excel file. The good things is that programming this is relatively easy. Given a combination of products to go into crates, we do a lookup, and if entry exists in the Excel (or Database), we bring it out. If it doesn't, we say "sorry, no data!". I don't necessarily want to go full force on making up some crazy algorithm that given geometrical part description can align, rotate, and figure out best part packing into a crate, given its shape, but maybe I do.. Question Well, here is my question: assuming that I can represent my parts as 2D (to be determined how), and that some parts look like letter T, and some parts look like rectangles, which algorithm can I use to give me a good estimate on the dimensions of the encompassing area, while ensuring that the parts are packed in a minimal possible area, to minimize crating/shipping costs? Are there approximation algorithms? Seeing how this can get complex, is there an existing library I could use? My thought / Approach My naive approach would be to define a way to describe position of parts, and place the first part, compute total enclosing area & dimensions. Then place 2nd part in 0 degree orientation, repeat, place it at 180 degree orientation, repeat (for my case I don't think 90 degree rotations will be meaningful due to long lengths of parts). Proceed using brute force "tacking on" other parts to the enclosing area until all parts are processed. I may have to shift some parts a tad (see 3rd pictorial example above with letters T). This adds a layer of 2D complexity rather than 1D. I am not sure how to approach this. One idea I have is genetic algorithms, but I think those will take up too much processing power and time. I will need to look out for shape collisions, as well as adding extra padding space, since we are talking about real parts with irregularities rather than perfect imaginary blocks. I'm afraid this can get geometrically messy fairly fast, and I'd rather keep things simple, if I can. But what if the best (practical) solution is to pack things into different crate boxes rather than just one? This can get a bit more tricky. There is human element involved as well, i.e. like parts can go into same box and are thus a constraint to be considered. Some parts that are not the same are sometimes grouped together for shipping and can be considered as a common grouped item. Sometimes customers want things shipped their way, which adds human element to constraints. so there will have to be some customization.

    Read the article

  • How to place rooms proceduraly (rule based) on in a game word

    - by gardian06
    I am trying to design the algorithm for my level generation which is a rule driven system. I have created all the rules for the system. I have taken care to insure that all rooms make sense in a grid type setup. for example: these rooms could make this configuration The logic flow code that I have so far Door{ Vector3 position; POD orient; // 5 possible values (up is not an option) bool Open; } Room{ String roomRule; Vector3 roomPos; Vector3 dimensions; POD roomOrient; // 4 possible values List doors<Door>; } LevelManager{ float scale = 18f; List usedRooms<Room>; List openDoors<Door> bool Grid[][][]; Room CreateRoom(String rule, Vector3 position, POD Orient){ place recieved values based on rule fill in other data } Vector3 getDimenstions(String rule){ return dimensions of the room } RotateRoom(POD rotateAmount){ rotate all items in the room } MoveRoom(Room toBeMoved, POD orientataion, float distance){ move the position of the room based on inputs } GenerateMap(Vector3 size, Vector3 start, Vector3 end){ Grid = array[size.y][size.x][size.z]; Room floatingRoom; floatingRoom = Room.CreateRoom(S01, start, rand(4)); usedRooms.Add(floatingRoom); for each Door in floatingRoom.doors{ openDoors.Add(door); } // fill used grid spaces floatingRoom = Room.CreateRoom(S02, end, rand(4); usedRooms.Add(floatingRoom); for each Door in floatingRoom.doors{ openDoors.Add(door); } Vector3 nRoomLocation; Door workingDoor; string workingRoom; // fill used grid spaces // pick random door on the openDoors list workingDoor = /*randomDoor*/ // get a random rule nRoomLocation = workingDoor.position; // then I'm lost } } I know that I have to make sure for convergence (namely the end is reachable), and to do this until there are no more doors on the openDoors list. right now I am simply trying to get this to work in 2D (there are rules that introduce 3D), but I am working on a presumption that a rigorous algorithm can be trivially extended to 3D. EDIT: my thought pattern so far is to take an existing open door and then pick a random room (restrictions can be put in later) place that room's center at the doors location move the room in the direction of the doors orientation half the rooms dimension w/respect to that axis then test against the 3D array to see if all the grid points are open, or have been used, or if there is even space to put the room (caseEdge) if caseEdge (which can also occur in between rooms) then put the door on a toBeClosed list, and remove it from the open list (placing a wall or something there). then to do some kind of test that both the start, and the goal are connected, and reachable from each other (each room has nodes for AI, but I don't want to "have" to pull those out to accomplish this). but this logic has the problem for say the U, or L shaped rooms in my example, and then I also have a problem conceptually if the room needs to be rotated.

    Read the article

  • Learning MySQL Query optimization

    - by recluze
    I've been doing web/desktop/server development for a while and have worked with many databases (mysql mostly). I've come to the point in my career when I need to have someone look at my queries because they're 'kind of slow'. I believe it's now time to start learning query optimization. While I know the basics of index and joins etc., I'm not familiar with how to use, say, the EXPLAIN output to improve performance of my queries. I have not been able to find any online material that starts with the basics and takes me to application. Getting a book is not an option right now so I'm looking for tips about how to proceed with this. I hope this question is general enough not to get closed.

    Read the article

  • Pohlig–Hellman algorithm for computing discrete logarithms

    - by drelihan
    Hi Folks, I'm working on coding the Pohlig-Hellman Algorithm but I am having problem understand the steps in the algorithm based on the definition of the algorithm. Going by the Wiki of the algorithm: http://en.wikipedia.org/wiki/Pohlig%E2%80%93Hellman_algorithm I know the first part 1) is to calculate the prime factor of p-1 - which is fine. Howeever, I am not sure what I need to do in steps 2) and 3). Can someone help with explaining this in plain english (i) - or pseudocode. I want to code the solution myself obviously but I cannot make any more progress unless i understand the algorithm. Note: I have done a lot of searching for this and I read S. Pohlig and M. Hellman (1978). "An Improved Algorithm for Computing Logarithms over GF(p) and its Cryptographic Significance but its still not really making sense to me. Thanks in advance

    Read the article

  • SQL SERVER – Introduction to Extended Events – Finding Long Running Queries

    - by pinaldave
    The job of an SQL Consultant is very interesting as always. The month before, I was busy doing query optimization and performance tuning projects for our clients, and this month, I am busy delivering my performance in Microsoft SQL Server 2005/2008 Query Optimization and & Performance Tuning Course. I recently read white paper about Extended Event by SQL Server MVP Jonathan Kehayias. You can read the white paper here: Using SQL Server 2008 Extended Events. I also read another appealing chapter by Jonathan in the book, SQLAuthority Book Review – Professional SQL Server 2008 Internals and Troubleshooting. After reading these excellent notes by Jonathan, I decided to upgrade my course and include Extended Event as one of the modules. This week, I have delivered Extended Events session two times and attendees really liked the said course. They really think Extended Events is one of the most powerful tools available. Extended Events can do many things. I suggest that you read the white paper I mentioned to learn more about this tool. Instead of writing a long theory, I am going to write a very quick script for Extended Events. This event session captures all the longest running queries ever since the event session was started. One of the many advantages of the Extended Events is that it can be configured very easily and it is a robust method to collect necessary information in terms of troubleshooting. There are many targets where you can store the information, which include XML file target, which I really like. In the following Events, we are writing the details of the event at two locations: 1) Ringer Buffer; and 2) XML file. It is not necessary to write at both places, either of the two will do. -- Extended Event for finding *long running query* IF EXISTS(SELECT * FROM sys.server_event_sessions WHERE name='LongRunningQuery') DROP EVENT SESSION LongRunningQuery ON SERVER GO -- Create Event CREATE EVENT SESSION LongRunningQuery ON SERVER -- Add event to capture event ADD EVENT sqlserver.sql_statement_completed ( -- Add action - event property ACTION (sqlserver.sql_text, sqlserver.tsql_stack) -- Predicate - time 1000 milisecond WHERE sqlserver.sql_statement_completed.duration > 1000 ) -- Add target for capturing the data - XML File ADD TARGET package0.asynchronous_file_target( SET filename='c:\LongRunningQuery.xet', metadatafile='c:\LongRunningQuery.xem'), -- Add target for capturing the data - Ring Bugger ADD TARGET package0.ring_buffer (SET max_memory = 4096) WITH (max_dispatch_latency = 1 seconds) GO -- Enable Event ALTER EVENT SESSION LongRunningQuery ON SERVER STATE=START GO -- Run long query (longer than 1000 ms) SELECT * FROM AdventureWorks.Sales.SalesOrderDetail ORDER BY UnitPriceDiscount DESC GO -- Stop the event ALTER EVENT SESSION LongRunningQuery ON SERVER STATE=STOP GO -- Read the data from Ring Buffer SELECT CAST(dt.target_data AS XML) AS xmlLockData FROM sys.dm_xe_session_targets dt JOIN sys.dm_xe_sessions ds ON ds.Address = dt.event_session_address JOIN sys.server_event_sessions ss ON ds.Name = ss.Name WHERE dt.target_name = 'ring_buffer' AND ds.Name = 'LongRunningQuery' GO -- Read the data from XML File SELECT event_data_XML.value('(event/data[1])[1]','VARCHAR(100)') AS Database_ID, event_data_XML.value('(event/data[2])[1]','INT') AS OBJECT_ID, event_data_XML.value('(event/data[3])[1]','INT') AS object_type, event_data_XML.value('(event/data[4])[1]','INT') AS cpu, event_data_XML.value('(event/data[5])[1]','INT') AS duration, event_data_XML.value('(event/data[6])[1]','INT') AS reads, event_data_XML.value('(event/data[7])[1]','INT') AS writes, event_data_XML.value('(event/action[1])[1]','VARCHAR(512)') AS sql_text, event_data_XML.value('(event/action[2])[1]','VARCHAR(512)') AS tsql_stack, CAST(event_data_XML.value('(event/action[2])[1]','VARCHAR(512)') AS XML).value('(frame/@handle)[1]','VARCHAR(50)') AS handle FROM ( SELECT CAST(event_data AS XML) event_data_XML, * FROM sys.fn_xe_file_target_read_file ('c:\LongRunningQuery*.xet', 'c:\LongRunningQuery*.xem', NULL, NULL)) T GO -- Clean up. Drop the event DROP EVENT SESSION LongRunningQuery ON SERVER GO Just run the above query, afterwards you will find following result set. This result set contains the query that was running over 1000 ms. In our example, I used the XML file, and it does not reset when SQL services or computers restarts (if you are using DMV, it will reset when SQL services restarts). This event session can be very helpful for troubleshooting. Let me know if you want me to write more about Extended Events. I am totally fascinated with this feature, so I’m planning to acquire more knowledge about it so I can determine its other usages. Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Training, SQLServer, T SQL, Technology Tagged: SQL Extended Events

    Read the article

  • Is there an algorithm to securely split a message into x parts requiring at least y parts to reassem

    - by Aaron
    Is there an algorithm to securely split a message into x parts requiring at least y parts to reassemble? Obviously, y <= x. An example: Say that I have a secret message that I only want to be read in the event of my death. As a way to ensure this, I give a fraction of the message to ten friends. Now, I can't guaranty that all my friends will be able to put their messages together to recover the original. So, I construct each message fraction in such a way so as to only require any 5 friends to put their parts together to reconstruct the whole. However, owning less than 5 parts will not give anything away about the message, except possibly the length. My question is, is this possible? What algorithms might I look at to accomplish this? Clarification edit: The important part of this is the cryptographic strength. An attacker should not be able to recover the message, either in whole or in part with less than y parts.

    Read the article

  • Proving that the distance values extracted in Dijkstra's algorithm is non-decreasing?

    - by Gail
    I'm reviewing my old algorithms notes and have come across this proof. It was from an assignment I had and I got it correct, but I feel that the proof certainly lacks. The question is to prove that the distance values taken from the priority queue in Dijkstra's algorithm is a non-decreasing sequence. My proof goes as follows: Proof by contradiction. Fist, assume that we pull a vertex from Q with d-value 'i'. Next time, we pull a vertex with d-value 'j'. When we pulled i, we have finalised our d-value and computed the shortest-path from the start vertex, s, to i. Since we have positive edge weights, it is impossible for our d-values to shrink as we add vertices to our path. If after pulling i from Q, we pull j with a smaller d-value, we may not have a shortest path to i, since we may be able to reach i through j. However, we have already computed the shortest path to i. We did not check a possible path. We no longer have a guaranteed path. Contradiction.

    Read the article

  • Algorithm to determine indices i..j of array A containing all the elements of another array B

    - by Skylark
    I came across this question on an interview questions thread. Here is the question: Given two integer arrays A [1..n] and B[1..m], find the smallest window in A that contains all elements of B. In other words, find a pair < i , j such that A[i..j] contains B[1..m]. If A doesn't contain all the elements of B, then i,j can be returned as -1. The integers in A need not be in the same order as they are in B. If there are more than one smallest window (different, but have the same size), then its enough to return one of them. Example: A[1,2,5,11,2,6,8,24,101,17,8] and B[5,2,11,8,17]. The algorithm should return i = 2 (index of 5 in A) and j = 9 (index of 17 in A). Now I can think of two variations. Let's suppose that B has duplicates. This variation doesn't consider the number of times each element occurs in B. It just checks for all the unique elements that occur in B and finds the smallest corresponding window in A that satisfies the above problem. For example, if A[1,2,4,5,7] and B[2,2,5], this variation doesn't bother about there being two 2's in B and just checks A for the unique integers in B namely 2 and 5 and hence returns i=1, j=3. This variation accounts for duplicates in B. If there are two 2's in B, then it expects to see at least two 2's in A as well. If not, it returns -1,-1. When you answer, please do let me know which variation you are answering. Pseudocode should do. Please mention space and time complexity if it is tricky to calculate it. Mention if your solution assumes array indices to start at 1 or 0 too. Thanks in advance.

    Read the article

  • Algorithm to determine if array contains n...n+m?

    - by Kyle Cronin
    I saw this question on Reddit, and there were no positive solutions presented, and I thought it would be a perfect question to ask here. This was in a thread about interview questions: Write a method that takes an int array of size m, and returns (True/False) if the array consists of the numbers n...n+m-1, all numbers in that range and only numbers in that range. The array is not guaranteed to be sorted. (For instance, {2,3,4} would return true. {1,3,1} would return false, {1,2,4} would return false. The problem I had with this one is that my interviewer kept asking me to optimize (faster O(n), less memory, etc), to the point where he claimed you could do it in one pass of the array using a constant amount of memory. Never figured that one out. Along with your solutions please indicate if they assume that the array contains unique items. Also indicate if your solution assumes the sequence starts at 1. (I've modified the question slightly to allow cases where it goes 2, 3, 4...) edit: I am now of the opinion that there does not exist a linear in time and constant in space algorithm that handles duplicates. Can anyone verify this? The duplicate problem boils down to testing to see if the array contains duplicates in O(n) time, O(1) space. If this can be done you can simply test first and if there are no duplicates run the algorithms posted. So can you test for dupes in O(n) time O(1) space?

    Read the article

  • Spring security or BCrypt algorithm which one is good for accounts like project?

    - by Ranjith Kumar Nethaji
    I am using spring security for hashing my password.And is it safe ,because am using spring security for first time. my code here <security:http auto-config="true"> <security:intercept-url pattern="/welcome*" access="ROLE_USER" /> <security:form-login login-page="/login" default-target-url="/welcome" authentication-failure-url="/loginfailed" /> <security:logout logout-success-url="/logout" /> </security:http> authentication-failure-url="/loginfailed" /> <security:logout logout-success-url="/logout" /> </security:http> <authentication-manager> <authentication-provider> <password-encoder hash="sha" /> <user-service> <user name="k" password="7c4a8d09ca3762af61e59520943dc26494f8941b" authorities="ROLE_USER" /> </user-service> </authentication-provider> </authentication-manager> .And I havnt used bcrypt algorithm.what is your feedback for both?any recommendation?

    Read the article

  • Why is Reinforcement Learning so rarely used in pathfinding?

    - by doug
    The venerable shortest-path graph theoretic algorithm A* and subsequent improvements (e.g., Hierarchical Annotated A*) is clearly the technique of choice for pathfinding in game development. Instead, it just seems to me that RL is a more natural paradigm to move a character around a game space. And yet I'm not aware of a single game developer who has implemented a Reinforcement Learning-based pathfinding engine. (I don't infer from this that the application of RL in pathfinding is 0, just that it's very small relative to A* and friends.) Whatever the reason, it's not because these developers are unaware of RL, as evidenced by the fact that RL is frequently used elsewhere in the game engine. This question is not a pretext for offering an opinion on RL in pathfinding; in fact, i am assuming that the tacit preference for A* et al. over RL is correct--but that preference is not obviously to me and i'm very curious about the reason for it, particularly from anyone who has tried to use RL for pathfinding.

    Read the article

  • Help with algorithmic complexity in custom merge sort implementation

    - by bitcycle
    I've got an implementation of the merge sort in C++ using a custom doubly linked list. I'm coming up with a big O complexity of n^2, based on the merge_sort() slice operation. But, from what I've read, this algorithm should be n*log(n), where the log has a base of two. Can someone help me determine if I'm just determining the complexity incorrectly, or if the implementation can/should be improved to achieve n*log(n) complexity? If you would like some background on my goals for this project, see my blog. I've added comments in the code outlining what I understand the complexity of each method to be. Clarification - I'm focusing on the C++ implementation with this question. I've got another implementation written in Python, but that was something that was added in addition to my original goal(s).

    Read the article

  • Matrix Pattern Recognition Algorithm

    - by Andres
    I am designing a logic analyzer and I would like to implement some Matrix Algorithm. I have several channels each one represented by a row in the matrix and every element in the column would be the state, for example: Channel 1 1 0 0 1 0 1 1 0 1 Channel 2 1 1 0 1 1 0 0 1 1 Channel 3 0 1 0 1 1 0 1 0 0 Channel 4 0 0 1 0 0 1 0 0 1 I would like to detect a pattern inside my matrix for example, detect if exist and where the sub-matrix or pattern: 1 0 1 1 I think it can be accomplished testing element by element but I think there should be a better way of doing it. Is there any Java API or any way to do it ? If there is a API ARM optimized for NEON instructions would be great also but not mandatory. Thank you very much in advance.

    Read the article

  • "Marching cubes" voxel terrain - triplanar texturing with depth?

    - by Dan the Man
    I am currently working on a voxel terrain that uses the marching cubes algorithm for polygonizing the scalar field of voxels. I am using a triplanar texturing shader for texturing. say I have a grass texture set to the Y axis and a dirt texture for both the X and Z axes. Now, when my player digs downwards, it still appears as grass. How would I make it to appear as dirt? I have been thinking about this for a while, and the only thing I can think of to make this effect, would be to mark vertices that have been dug with a certain vertex color. When it has that vertex color, the shader would apply that dirt texture to the vertices marked. Is there a better method?

    Read the article

  • Efficient visualization of a large voxelized volume

    - by Alejandro Piad
    Lets consider a large voxelized volume stored in an oct-tree or any other convenient structure. This volume represents, for instance, a landscape, where each block is either empty (air), or it has an specific material that will be later used to apply a texture. Voxels that are next to each other represent connected sections of the surface. What I need is an algorithm to generate a mesh from this voxels that represents the volume, with the following caracteristics: All the "holes" in the voxelized volume are correct. All the connections are correct, i.e. seamless. The surface appears smooth. In a broad sense, I want to somehow preserve the surface topology, meaning that connected sections remain connected in the resulting mesh and that the surface has a curvature that responds to the voxels topology. Imagine trying to render the Minecraft world but getting the mountain ladders to be smooth instead of blocky.

    Read the article

< Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >