Search Results

Search found 59230 results on 2370 pages for 'character set'.

Page 498/2370 | < Previous Page | 494 495 496 497 498 499 500 501 502 503 504 505  | Next Page >

  • Introduction to the ASP.NET Web API

    - by Stephen.Walther
    I am a huge fan of Ajax. If you want to create a great experience for the users of your website – regardless of whether you are building an ASP.NET MVC or an ASP.NET Web Forms site — then you need to use Ajax. Otherwise, you are just being cruel to your customers. We use Ajax extensively in several of the ASP.NET applications that my company, Superexpert.com, builds. We expose data from the server as JSON and use jQuery to retrieve and update that data from the browser. One challenge, when building an ASP.NET website, is deciding on which technology to use to expose JSON data from the server. For example, how do you expose a list of products from the server as JSON so you can retrieve the list of products with jQuery? You have a number of options (too many options) including ASMX Web services, WCF Web Services, ASHX Generic Handlers, WCF Data Services, and MVC controller actions. Fortunately, the world has just been simplified. With the release of ASP.NET 4 Beta, Microsoft has introduced a new technology for exposing JSON from the server named the ASP.NET Web API. You can use the ASP.NET Web API with both ASP.NET MVC and ASP.NET Web Forms applications. The goal of this blog post is to provide you with a brief overview of the features of the new ASP.NET Web API. You learn how to use the ASP.NET Web API to retrieve, insert, update, and delete database records with jQuery. We also discuss how you can perform form validation when using the Web API and use OData when using the Web API. Creating an ASP.NET Web API Controller The ASP.NET Web API exposes JSON data through a new type of controller called an API controller. You can add an API controller to an existing ASP.NET MVC 4 project through the standard Add Controller dialog box. Right-click your Controllers folder and select Add, Controller. In the dialog box, name your controller MovieController and select the Empty API controller template: A brand new API controller looks like this: using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using System.Web.Http; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { } } An API controller, unlike a standard MVC controller, derives from the base ApiController class instead of the base Controller class. Using jQuery to Retrieve, Insert, Update, and Delete Data Let’s create an Ajaxified Movie Database application. We’ll retrieve, insert, update, and delete movies using jQuery with the MovieController which we just created. Our Movie model class looks like this: namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } public string Title { get; set; } public string Director { get; set; } } } Our application will consist of a single HTML page named Movies.html. We’ll place all of our jQuery code in the Movies.html page. Getting a Single Record with the ASP.NET Web API To support retrieving a single movie from the server, we need to add a Get method to our API controller: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public Movie GetMovie(int id) { // Return movie by id if (id == 1) { return new Movie { Id = 1, Title = "Star Wars", Director = "Lucas" }; } // Otherwise, movie was not found throw new HttpResponseException(HttpStatusCode.NotFound); } } } In the code above, the GetMovie() method accepts the Id of a movie. If the Id has the value 1 then the method returns the movie Star Wars. Otherwise, the method throws an exception and returns 404 Not Found HTTP status code. After building your project, you can invoke the MovieController.GetMovie() method by entering the following URL in your web browser address bar: http://localhost:[port]/api/movie/1 (You’ll need to enter the correct randomly generated port). In the URL api/movie/1, the first “api” segment indicates that this is a Web API route. The “movie” segment indicates that the MovieController should be invoked. You do not specify the name of the action. Instead, the HTTP method used to make the request – GET, POST, PUT, DELETE — is used to identify the action to invoke. The ASP.NET Web API uses different routing conventions than normal ASP.NET MVC controllers. When you make an HTTP GET request then any API controller method with a name that starts with “GET” is invoked. So, we could have called our API controller action GetPopcorn() instead of GetMovie() and it would still be invoked by the URL api/movie/1. The default route for the Web API is defined in the Global.asax file and it looks like this: routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); We can invoke our GetMovie() controller action with the jQuery code in the following HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Get Movie</title> </head> <body> <div> Title: <span id="title"></span> </div> <div> Director: <span id="director"></span> </div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> getMovie(1, function (movie) { $("#title").html(movie.Title); $("#director").html(movie.Director); }); function getMovie(id, callback) { $.ajax({ url: "/api/Movie", data: { id: id }, type: "GET", contentType: "application/json;charset=utf-8", statusCode: { 200: function (movie) { callback(movie); }, 404: function () { alert("Not Found!"); } } }); } </script> </body> </html> In the code above, the jQuery $.ajax() method is used to invoke the GetMovie() method. Notice that the Ajax call handles two HTTP response codes. When the GetMove() method successfully returns a movie, the method returns a 200 status code. In that case, the details of the movie are displayed in the HTML page. Otherwise, if the movie is not found, the GetMovie() method returns a 404 status code. In that case, the page simply displays an alert box indicating that the movie was not found (hopefully, you would implement something more graceful in an actual application). You can use your browser’s Developer Tools to see what is going on in the background when you open the HTML page (hit F12 in the most recent version of most browsers). For example, you can use the Network tab in Google Chrome to see the Ajax request which invokes the GetMovie() method: Getting a Set of Records with the ASP.NET Web API Let’s modify our Movie API controller so that it returns a collection of movies. The following Movie controller has a new ListMovies() method which returns a (hard-coded) collection of movies: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public IEnumerable<Movie> ListMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=1, Title="King Kong", Director="Jackson"}, new Movie {Id=1, Title="Memento", Director="Nolan"} }; } } } Because we named our action ListMovies(), the default Web API route will never match it. Therefore, we need to add the following custom route to our Global.asax file (at the top of the RegisterRoutes() method): routes.MapHttpRoute( name: "ActionApi", routeTemplate: "api/{controller}/{action}/{id}", defaults: new { id = RouteParameter.Optional } ); This route enables us to invoke the ListMovies() method with the URL /api/movie/listmovies. Now that we have exposed our collection of movies from the server, we can retrieve and display the list of movies using jQuery in our HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>List Movies</title> </head> <body> <div id="movies"></div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> listMovies(function (movies) { var strMovies=""; $.each(movies, function (index, movie) { strMovies += "<div>" + movie.Title + "</div>"; }); $("#movies").html(strMovies); }); function listMovies(callback) { $.ajax({ url: "/api/Movie/ListMovies", data: {}, type: "GET", contentType: "application/json;charset=utf-8", }).then(function(movies){ callback(movies); }); } </script> </body> </html>     Inserting a Record with the ASP.NET Web API Now let’s modify our Movie API controller so it supports creating new records: public HttpResponseMessage<Movie> PostMovie(Movie movieToCreate) { // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } The PostMovie() method in the code above accepts a movieToCreate parameter. We don’t actually store the new movie anywhere. In real life, you will want to call a service method to store the new movie in a database. When you create a new resource, such as a new movie, you should return the location of the new resource. In the code above, the URL where the new movie can be retrieved is assigned to the Location header returned in the PostMovie() response. Because the name of our method starts with “Post”, we don’t need to create a custom route. The PostMovie() method can be invoked with the URL /Movie/PostMovie – just as long as the method is invoked within the context of a HTTP POST request. The following HTML page invokes the PostMovie() method. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "Jackson" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }); function createMovie(movieToCreate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); } </script> </body> </html> This page creates a new movie (the Hobbit) by calling the createMovie() method. The page simply displays the Id of the new movie: The HTTP Post operation is performed with the following call to the jQuery $.ajax() method: $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); Notice that the type of Ajax request is a POST request. This is required to match the PostMovie() method. Notice, furthermore, that the new movie is converted into JSON using JSON.stringify(). The JSON.stringify() method takes a JavaScript object and converts it into a JSON string. Finally, notice that success is represented with a 201 status code. The HttpStatusCode.Created value returned from the PostMovie() method returns a 201 status code. Updating a Record with the ASP.NET Web API Here’s how we can modify the Movie API controller to support updating an existing record. In this case, we need to create a PUT method to handle an HTTP PUT request: public void PutMovie(Movie movieToUpdate) { if (movieToUpdate.Id == 1) { // Update the movie in the database return; } // If you can't find the movie to update throw new HttpResponseException(HttpStatusCode.NotFound); } Unlike our PostMovie() method, the PutMovie() method does not return a result. The action either updates the database or, if the movie cannot be found, returns an HTTP Status code of 404. The following HTML page illustrates how you can invoke the PutMovie() method: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Put Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToUpdate = { id: 1, title: "The Hobbit", director: "Jackson" }; updateMovie(movieToUpdate, function () { alert("Movie updated!"); }); function updateMovie(movieToUpdate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToUpdate), type: "PUT", contentType: "application/json;charset=utf-8", statusCode: { 200: function () { callback(); }, 404: function () { alert("Movie not found!"); } } }); } </script> </body> </html> Deleting a Record with the ASP.NET Web API Here’s the code for deleting a movie: public HttpResponseMessage DeleteMovie(int id) { // Delete the movie from the database // Return status code return new HttpResponseMessage(HttpStatusCode.NoContent); } This method simply deletes the movie (well, not really, but pretend that it does) and returns a No Content status code (204). The following page illustrates how you can invoke the DeleteMovie() action: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Delete Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> deleteMovie(1, function () { alert("Movie deleted!"); }); function deleteMovie(id, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify({id:id}), type: "DELETE", contentType: "application/json;charset=utf-8", statusCode: { 204: function () { callback(); } } }); } </script> </body> </html> Performing Validation How do you perform form validation when using the ASP.NET Web API? Because validation in ASP.NET MVC is driven by the Default Model Binder, and because the Web API uses the Default Model Binder, you get validation for free. Let’s modify our Movie class so it includes some of the standard validation attributes: using System.ComponentModel.DataAnnotations; namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } [Required(ErrorMessage="Title is required!")] [StringLength(5, ErrorMessage="Title cannot be more than 5 characters!")] public string Title { get; set; } [Required(ErrorMessage="Director is required!")] public string Director { get; set; } } } In the code above, the Required validation attribute is used to make both the Title and Director properties required. The StringLength attribute is used to require the length of the movie title to be no more than 5 characters. Now let’s modify our PostMovie() action to validate a movie before adding the movie to the database: public HttpResponseMessage PostMovie(Movie movieToCreate) { // Validate movie if (!ModelState.IsValid) { var errors = new JsonArray(); foreach (var prop in ModelState.Values) { if (prop.Errors.Any()) { errors.Add(prop.Errors.First().ErrorMessage); } } return new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } If ModelState.IsValid has the value false then the errors in model state are copied to a new JSON array. Each property – such as the Title and Director property — can have multiple errors. In the code above, only the first error message is copied over. The JSON array is returned with a Bad Request status code (400 status code). The following HTML page illustrates how you can invoke our modified PostMovie() action and display any error messages: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }, function (errors) { var strErrors = ""; $.each(errors, function(index, err) { strErrors += "*" + err + "\n"; }); alert(strErrors); } ); function createMovie(movieToCreate, success, fail) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToCreate), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { success(newMovie); }, 400: function (xhr) { var errors = JSON.parse(xhr.responseText); fail(errors); } } }); } </script> </body> </html> The createMovie() function performs an Ajax request and handles either a 201 or a 400 status code from the response. If a 201 status code is returned then there were no validation errors and the new movie was created. If, on the other hand, a 400 status code is returned then there was a validation error. The validation errors are retrieved from the XmlHttpRequest responseText property. The error messages are displayed in an alert: (Please don’t use JavaScript alert dialogs to display validation errors, I just did it this way out of pure laziness) This validation code in our PostMovie() method is pretty generic. There is nothing specific about this code to the PostMovie() method. In the following video, Jon Galloway demonstrates how to create a global Validation filter which can be used with any API controller action: http://www.asp.net/web-api/overview/web-api-routing-and-actions/video-custom-validation His validation filter looks like this: using System.Json; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http.Controllers; using System.Web.Http.Filters; namespace MyWebAPIApp.Filters { public class ValidationActionFilter:ActionFilterAttribute { public override void OnActionExecuting(HttpActionContext actionContext) { var modelState = actionContext.ModelState; if (!modelState.IsValid) { dynamic errors = new JsonObject(); foreach (var key in modelState.Keys) { var state = modelState[key]; if (state.Errors.Any()) { errors[key] = state.Errors.First().ErrorMessage; } } actionContext.Response = new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } } } } And you can register the validation filter in the Application_Start() method in the Global.asax file like this: GlobalConfiguration.Configuration.Filters.Add(new ValidationActionFilter()); After you register the Validation filter, validation error messages are returned from any API controller action method automatically when validation fails. You don’t need to add any special logic to any of your API controller actions to take advantage of the filter. Querying using OData The OData protocol is an open protocol created by Microsoft which enables you to perform queries over the web. The official website for OData is located here: http://odata.org For example, here are some of the query options which you can use with OData: · $orderby – Enables you to retrieve results in a certain order. · $top – Enables you to retrieve a certain number of results. · $skip – Enables you to skip over a certain number of results (use with $top for paging). · $filter – Enables you to filter the results returned. The ASP.NET Web API supports a subset of the OData protocol. You can use all of the query options listed above when interacting with an API controller. The only requirement is that the API controller action returns its data as IQueryable. For example, the following Movie controller has an action named GetMovies() which returns an IQueryable of movies: public IQueryable<Movie> GetMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=2, Title="King Kong", Director="Jackson"}, new Movie {Id=3, Title="Willow", Director="Lucas"}, new Movie {Id=4, Title="Shrek", Director="Smith"}, new Movie {Id=5, Title="Memento", Director="Nolan"} }.AsQueryable(); } If you enter the following URL in your browser: /api/movie?$top=2&$orderby=Title Then you will limit the movies returned to the top 2 in order of the movie Title. You will get the following results: By using the $top option in combination with the $skip option, you can enable client-side paging. For example, you can use $top and $skip to page through thousands of products, 10 products at a time. The $filter query option is very powerful. You can use this option to filter the results from a query. Here are some examples: Return every movie directed by Lucas: /api/movie?$filter=Director eq ‘Lucas’ Return every movie which has a title which starts with ‘S’: /api/movie?$filter=startswith(Title,’S') Return every movie which has an Id greater than 2: /api/movie?$filter=Id gt 2 The complete documentation for the $filter option is located here: http://www.odata.org/developers/protocols/uri-conventions#FilterSystemQueryOption Summary The goal of this blog entry was to provide you with an overview of the new ASP.NET Web API introduced with the Beta release of ASP.NET 4. In this post, I discussed how you can retrieve, insert, update, and delete data by using jQuery with the Web API. I also discussed how you can use the standard validation attributes with the Web API. You learned how to return validation error messages to the client and display the error messages using jQuery. Finally, we briefly discussed how the ASP.NET Web API supports the OData protocol. For example, you learned how to filter records returned from an API controller action by using the $filter query option. I’m excited about the new Web API. This is a feature which I expect to use with almost every ASP.NET application which I build in the future.

    Read the article

  • Introduction to the ASP.NET Web API

    - by Stephen.Walther
    I am a huge fan of Ajax. If you want to create a great experience for the users of your website – regardless of whether you are building an ASP.NET MVC or an ASP.NET Web Forms site — then you need to use Ajax. Otherwise, you are just being cruel to your customers. We use Ajax extensively in several of the ASP.NET applications that my company, Superexpert.com, builds. We expose data from the server as JSON and use jQuery to retrieve and update that data from the browser. One challenge, when building an ASP.NET website, is deciding on which technology to use to expose JSON data from the server. For example, how do you expose a list of products from the server as JSON so you can retrieve the list of products with jQuery? You have a number of options (too many options) including ASMX Web services, WCF Web Services, ASHX Generic Handlers, WCF Data Services, and MVC controller actions. Fortunately, the world has just been simplified. With the release of ASP.NET 4 Beta, Microsoft has introduced a new technology for exposing JSON from the server named the ASP.NET Web API. You can use the ASP.NET Web API with both ASP.NET MVC and ASP.NET Web Forms applications. The goal of this blog post is to provide you with a brief overview of the features of the new ASP.NET Web API. You learn how to use the ASP.NET Web API to retrieve, insert, update, and delete database records with jQuery. We also discuss how you can perform form validation when using the Web API and use OData when using the Web API. Creating an ASP.NET Web API Controller The ASP.NET Web API exposes JSON data through a new type of controller called an API controller. You can add an API controller to an existing ASP.NET MVC 4 project through the standard Add Controller dialog box. Right-click your Controllers folder and select Add, Controller. In the dialog box, name your controller MovieController and select the Empty API controller template: A brand new API controller looks like this: using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using System.Web.Http; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { } } An API controller, unlike a standard MVC controller, derives from the base ApiController class instead of the base Controller class. Using jQuery to Retrieve, Insert, Update, and Delete Data Let’s create an Ajaxified Movie Database application. We’ll retrieve, insert, update, and delete movies using jQuery with the MovieController which we just created. Our Movie model class looks like this: namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } public string Title { get; set; } public string Director { get; set; } } } Our application will consist of a single HTML page named Movies.html. We’ll place all of our jQuery code in the Movies.html page. Getting a Single Record with the ASP.NET Web API To support retrieving a single movie from the server, we need to add a Get method to our API controller: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public Movie GetMovie(int id) { // Return movie by id if (id == 1) { return new Movie { Id = 1, Title = "Star Wars", Director = "Lucas" }; } // Otherwise, movie was not found throw new HttpResponseException(HttpStatusCode.NotFound); } } } In the code above, the GetMovie() method accepts the Id of a movie. If the Id has the value 1 then the method returns the movie Star Wars. Otherwise, the method throws an exception and returns 404 Not Found HTTP status code. After building your project, you can invoke the MovieController.GetMovie() method by entering the following URL in your web browser address bar: http://localhost:[port]/api/movie/1 (You’ll need to enter the correct randomly generated port). In the URL api/movie/1, the first “api” segment indicates that this is a Web API route. The “movie” segment indicates that the MovieController should be invoked. You do not specify the name of the action. Instead, the HTTP method used to make the request – GET, POST, PUT, DELETE — is used to identify the action to invoke. The ASP.NET Web API uses different routing conventions than normal ASP.NET MVC controllers. When you make an HTTP GET request then any API controller method with a name that starts with “GET” is invoked. So, we could have called our API controller action GetPopcorn() instead of GetMovie() and it would still be invoked by the URL api/movie/1. The default route for the Web API is defined in the Global.asax file and it looks like this: routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); We can invoke our GetMovie() controller action with the jQuery code in the following HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Get Movie</title> </head> <body> <div> Title: <span id="title"></span> </div> <div> Director: <span id="director"></span> </div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> getMovie(1, function (movie) { $("#title").html(movie.Title); $("#director").html(movie.Director); }); function getMovie(id, callback) { $.ajax({ url: "/api/Movie", data: { id: id }, type: "GET", contentType: "application/json;charset=utf-8", statusCode: { 200: function (movie) { callback(movie); }, 404: function () { alert("Not Found!"); } } }); } </script> </body> </html> In the code above, the jQuery $.ajax() method is used to invoke the GetMovie() method. Notice that the Ajax call handles two HTTP response codes. When the GetMove() method successfully returns a movie, the method returns a 200 status code. In that case, the details of the movie are displayed in the HTML page. Otherwise, if the movie is not found, the GetMovie() method returns a 404 status code. In that case, the page simply displays an alert box indicating that the movie was not found (hopefully, you would implement something more graceful in an actual application). You can use your browser’s Developer Tools to see what is going on in the background when you open the HTML page (hit F12 in the most recent version of most browsers). For example, you can use the Network tab in Google Chrome to see the Ajax request which invokes the GetMovie() method: Getting a Set of Records with the ASP.NET Web API Let’s modify our Movie API controller so that it returns a collection of movies. The following Movie controller has a new ListMovies() method which returns a (hard-coded) collection of movies: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public IEnumerable<Movie> ListMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=1, Title="King Kong", Director="Jackson"}, new Movie {Id=1, Title="Memento", Director="Nolan"} }; } } } Because we named our action ListMovies(), the default Web API route will never match it. Therefore, we need to add the following custom route to our Global.asax file (at the top of the RegisterRoutes() method): routes.MapHttpRoute( name: "ActionApi", routeTemplate: "api/{controller}/{action}/{id}", defaults: new { id = RouteParameter.Optional } ); This route enables us to invoke the ListMovies() method with the URL /api/movie/listmovies. Now that we have exposed our collection of movies from the server, we can retrieve and display the list of movies using jQuery in our HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>List Movies</title> </head> <body> <div id="movies"></div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> listMovies(function (movies) { var strMovies=""; $.each(movies, function (index, movie) { strMovies += "<div>" + movie.Title + "</div>"; }); $("#movies").html(strMovies); }); function listMovies(callback) { $.ajax({ url: "/api/Movie/ListMovies", data: {}, type: "GET", contentType: "application/json;charset=utf-8", }).then(function(movies){ callback(movies); }); } </script> </body> </html>     Inserting a Record with the ASP.NET Web API Now let’s modify our Movie API controller so it supports creating new records: public HttpResponseMessage<Movie> PostMovie(Movie movieToCreate) { // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } The PostMovie() method in the code above accepts a movieToCreate parameter. We don’t actually store the new movie anywhere. In real life, you will want to call a service method to store the new movie in a database. When you create a new resource, such as a new movie, you should return the location of the new resource. In the code above, the URL where the new movie can be retrieved is assigned to the Location header returned in the PostMovie() response. Because the name of our method starts with “Post”, we don’t need to create a custom route. The PostMovie() method can be invoked with the URL /Movie/PostMovie – just as long as the method is invoked within the context of a HTTP POST request. The following HTML page invokes the PostMovie() method. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "Jackson" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }); function createMovie(movieToCreate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); } </script> </body> </html> This page creates a new movie (the Hobbit) by calling the createMovie() method. The page simply displays the Id of the new movie: The HTTP Post operation is performed with the following call to the jQuery $.ajax() method: $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); Notice that the type of Ajax request is a POST request. This is required to match the PostMovie() method. Notice, furthermore, that the new movie is converted into JSON using JSON.stringify(). The JSON.stringify() method takes a JavaScript object and converts it into a JSON string. Finally, notice that success is represented with a 201 status code. The HttpStatusCode.Created value returned from the PostMovie() method returns a 201 status code. Updating a Record with the ASP.NET Web API Here’s how we can modify the Movie API controller to support updating an existing record. In this case, we need to create a PUT method to handle an HTTP PUT request: public void PutMovie(Movie movieToUpdate) { if (movieToUpdate.Id == 1) { // Update the movie in the database return; } // If you can't find the movie to update throw new HttpResponseException(HttpStatusCode.NotFound); } Unlike our PostMovie() method, the PutMovie() method does not return a result. The action either updates the database or, if the movie cannot be found, returns an HTTP Status code of 404. The following HTML page illustrates how you can invoke the PutMovie() method: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Put Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToUpdate = { id: 1, title: "The Hobbit", director: "Jackson" }; updateMovie(movieToUpdate, function () { alert("Movie updated!"); }); function updateMovie(movieToUpdate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToUpdate), type: "PUT", contentType: "application/json;charset=utf-8", statusCode: { 200: function () { callback(); }, 404: function () { alert("Movie not found!"); } } }); } </script> </body> </html> Deleting a Record with the ASP.NET Web API Here’s the code for deleting a movie: public HttpResponseMessage DeleteMovie(int id) { // Delete the movie from the database // Return status code return new HttpResponseMessage(HttpStatusCode.NoContent); } This method simply deletes the movie (well, not really, but pretend that it does) and returns a No Content status code (204). The following page illustrates how you can invoke the DeleteMovie() action: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Delete Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> deleteMovie(1, function () { alert("Movie deleted!"); }); function deleteMovie(id, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify({id:id}), type: "DELETE", contentType: "application/json;charset=utf-8", statusCode: { 204: function () { callback(); } } }); } </script> </body> </html> Performing Validation How do you perform form validation when using the ASP.NET Web API? Because validation in ASP.NET MVC is driven by the Default Model Binder, and because the Web API uses the Default Model Binder, you get validation for free. Let’s modify our Movie class so it includes some of the standard validation attributes: using System.ComponentModel.DataAnnotations; namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } [Required(ErrorMessage="Title is required!")] [StringLength(5, ErrorMessage="Title cannot be more than 5 characters!")] public string Title { get; set; } [Required(ErrorMessage="Director is required!")] public string Director { get; set; } } } In the code above, the Required validation attribute is used to make both the Title and Director properties required. The StringLength attribute is used to require the length of the movie title to be no more than 5 characters. Now let’s modify our PostMovie() action to validate a movie before adding the movie to the database: public HttpResponseMessage PostMovie(Movie movieToCreate) { // Validate movie if (!ModelState.IsValid) { var errors = new JsonArray(); foreach (var prop in ModelState.Values) { if (prop.Errors.Any()) { errors.Add(prop.Errors.First().ErrorMessage); } } return new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } If ModelState.IsValid has the value false then the errors in model state are copied to a new JSON array. Each property – such as the Title and Director property — can have multiple errors. In the code above, only the first error message is copied over. The JSON array is returned with a Bad Request status code (400 status code). The following HTML page illustrates how you can invoke our modified PostMovie() action and display any error messages: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }, function (errors) { var strErrors = ""; $.each(errors, function(index, err) { strErrors += "*" + err + "n"; }); alert(strErrors); } ); function createMovie(movieToCreate, success, fail) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToCreate), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { success(newMovie); }, 400: function (xhr) { var errors = JSON.parse(xhr.responseText); fail(errors); } } }); } </script> </body> </html> The createMovie() function performs an Ajax request and handles either a 201 or a 400 status code from the response. If a 201 status code is returned then there were no validation errors and the new movie was created. If, on the other hand, a 400 status code is returned then there was a validation error. The validation errors are retrieved from the XmlHttpRequest responseText property. The error messages are displayed in an alert: (Please don’t use JavaScript alert dialogs to display validation errors, I just did it this way out of pure laziness) This validation code in our PostMovie() method is pretty generic. There is nothing specific about this code to the PostMovie() method. In the following video, Jon Galloway demonstrates how to create a global Validation filter which can be used with any API controller action: http://www.asp.net/web-api/overview/web-api-routing-and-actions/video-custom-validation His validation filter looks like this: using System.Json; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http.Controllers; using System.Web.Http.Filters; namespace MyWebAPIApp.Filters { public class ValidationActionFilter:ActionFilterAttribute { public override void OnActionExecuting(HttpActionContext actionContext) { var modelState = actionContext.ModelState; if (!modelState.IsValid) { dynamic errors = new JsonObject(); foreach (var key in modelState.Keys) { var state = modelState[key]; if (state.Errors.Any()) { errors[key] = state.Errors.First().ErrorMessage; } } actionContext.Response = new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } } } } And you can register the validation filter in the Application_Start() method in the Global.asax file like this: GlobalConfiguration.Configuration.Filters.Add(new ValidationActionFilter()); After you register the Validation filter, validation error messages are returned from any API controller action method automatically when validation fails. You don’t need to add any special logic to any of your API controller actions to take advantage of the filter. Querying using OData The OData protocol is an open protocol created by Microsoft which enables you to perform queries over the web. The official website for OData is located here: http://odata.org For example, here are some of the query options which you can use with OData: · $orderby – Enables you to retrieve results in a certain order. · $top – Enables you to retrieve a certain number of results. · $skip – Enables you to skip over a certain number of results (use with $top for paging). · $filter – Enables you to filter the results returned. The ASP.NET Web API supports a subset of the OData protocol. You can use all of the query options listed above when interacting with an API controller. The only requirement is that the API controller action returns its data as IQueryable. For example, the following Movie controller has an action named GetMovies() which returns an IQueryable of movies: public IQueryable<Movie> GetMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=2, Title="King Kong", Director="Jackson"}, new Movie {Id=3, Title="Willow", Director="Lucas"}, new Movie {Id=4, Title="Shrek", Director="Smith"}, new Movie {Id=5, Title="Memento", Director="Nolan"} }.AsQueryable(); } If you enter the following URL in your browser: /api/movie?$top=2&$orderby=Title Then you will limit the movies returned to the top 2 in order of the movie Title. You will get the following results: By using the $top option in combination with the $skip option, you can enable client-side paging. For example, you can use $top and $skip to page through thousands of products, 10 products at a time. The $filter query option is very powerful. You can use this option to filter the results from a query. Here are some examples: Return every movie directed by Lucas: /api/movie?$filter=Director eq ‘Lucas’ Return every movie which has a title which starts with ‘S’: /api/movie?$filter=startswith(Title,’S') Return every movie which has an Id greater than 2: /api/movie?$filter=Id gt 2 The complete documentation for the $filter option is located here: http://www.odata.org/developers/protocols/uri-conventions#FilterSystemQueryOption Summary The goal of this blog entry was to provide you with an overview of the new ASP.NET Web API introduced with the Beta release of ASP.NET 4. In this post, I discussed how you can retrieve, insert, update, and delete data by using jQuery with the Web API. I also discussed how you can use the standard validation attributes with the Web API. You learned how to return validation error messages to the client and display the error messages using jQuery. Finally, we briefly discussed how the ASP.NET Web API supports the OData protocol. For example, you learned how to filter records returned from an API controller action by using the $filter query option. I’m excited about the new Web API. This is a feature which I expect to use with almost every ASP.NET application which I build in the future.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Building applications with WCF - Intro

    - by skjagini
    I am going to write series of articles using Windows Communication Framework (WCF) to develop client and server applications and this is the first part of that series. What is WCF As Juwal puts in his Programming WCF book, WCF provides an SDK for developing and deploying services on Windows, provides runtime environment to expose CLR types as services and consume services as CLR types. Building services with WCF is incredibly easy and it’s implementation provides a set of industry standards and off the shelf plumbing including service hosting, instance management, reliability, transaction management, security etc such that it greatly increases productivity Scenario: Lets consider a typical bank customer trying to create an account, deposit amount and transfer funds between accounts, i.e. checking and savings. To make it interesting, we are going to divide the functionality into multiple services and each of them working with database directly. We will run test cases with and without transactional support across services. In this post we will build contracts, services, data access layer, unit tests to verify end to end communication etc, nothing big stuff here and we dig into other features of the WCF in subsequent posts with incremental changes. In any distributed architecture we have two pieces i.e. services and clients. Services as the name implies provide functionality to execute various pieces of business logic on the server, and clients providing interaction to the end user. Services can be built with Web Services or with WCF. Service built on WCF have the advantage of binding independent, i.e. can run against TCP and HTTP protocol without any significant changes to the code. Solution Services Profile: For creating a new bank customer, getting details about existing customer ProfileContract ProfileService Checking Account: To get checking account balance, deposit or withdraw amount CheckingAccountContract CheckingAccountService Savings Account: To get savings account balance, deposit or withdraw amount SavingsAccountContract SavingsAccountService ServiceHost: To host services, i.e. running the services at particular address, binding and contract where client can connect to Client: Helps end user to use services like creating account and amount transfer between the accounts BankDAL: Data access layer to work with database     BankDAL It’s no brainer not to use an ORM as many matured products are available currently in market including Linq2Sql, Entity Framework (EF), LLblGenPro etc. For this exercise I am going to use Entity Framework 4.0, CTP 5 with code first approach. There are two approaches when working with data, data driven and code driven. In data driven we start by designing tables and their constrains in database and generate entities in code while in code driven (code first) approach entities are defined in code and the metadata generated from the entities is used by the EF to create tables and table constrains. In previous versions the entity classes had  to derive from EF specific base classes. In EF 4 it  is not required to derive from any EF classes, the entities are not only persistence ignorant but also enable full test driven development using mock frameworks.  Application consists of 3 entities, Customer entity which contains Customer details; CheckingAccount and SavingsAccount to hold the respective account balance. We could have introduced an Account base class for CheckingAccount and SavingsAccount which is certainly possible with EF mappings but to keep it simple we are just going to follow 1 –1 mapping between entity and table mappings. Lets start out by defining a class called Customer which will be mapped to Customer table, observe that the class is simply a plain old clr object (POCO) and has no reference to EF at all. using System;   namespace BankDAL.Model { public class Customer { public int Id { get; set; } public string FullName { get; set; } public string Address { get; set; } public DateTime DateOfBirth { get; set; } } }   In order to inform EF about the Customer entity we have to define a database context with properties of type DbSet<> for every POCO which needs to be mapped to a table in database. EF uses convention over configuration to generate the metadata resulting in much less configuration. using System.Data.Entity;   namespace BankDAL.Model { public class BankDbContext: DbContext { public DbSet<Customer> Customers { get; set; } } }   Entity constrains can be defined through attributes on Customer class or using fluent syntax (no need to muscle with xml files), CustomerConfiguration class. By defining constrains in a separate class we can maintain clean POCOs without corrupting entity classes with database specific information.   using System; using System.Data.Entity.ModelConfiguration;   namespace BankDAL.Model { public class CustomerConfiguration: EntityTypeConfiguration<Customer> { public CustomerConfiguration() { Initialize(); }   private void Initialize() { //Setting the Primary Key this.HasKey(e => e.Id);   //Setting required fields this.HasRequired(e => e.FullName); this.HasRequired(e => e.Address); //Todo: Can't create required constraint as DateOfBirth is not reference type, research it //this.HasRequired(e => e.DateOfBirth); } } }   Any queries executed against Customers property in BankDbContext are executed against Cusomers table. By convention EF looks for connection string with key of BankDbContext when working with the context.   We are going to define a helper class to work with Customer entity with methods for querying, adding new entity etc and these are known as repository classes, i.e., CustomerRepository   using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CustomerRepository { private readonly IDbSet<Customer> _customers;   public CustomerRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _customers = bankDbContext.Customers; }   public IQueryable<Customer> Query() { return _customers; }   public void Add(Customer customer) { _customers.Add(customer); } } }   From the above code it is observable that the Query methods returns customers as IQueryable i.e. customers are retrieved only when actually used i.e. iterated. Returning as IQueryable also allows to execute filtering and joining statements from business logic using lamba expressions without cluttering the data access layer with tens of methods.   Our CheckingAccountRepository and SavingsAccountRepository look very similar to each other using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CheckingAccountRepository { private readonly IDbSet<CheckingAccount> _checkingAccounts;   public CheckingAccountRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _checkingAccounts = bankDbContext.CheckingAccounts; }   public IQueryable<CheckingAccount> Query() { return _checkingAccounts; }   public void Add(CheckingAccount account) { _checkingAccounts.Add(account); }   public IQueryable<CheckingAccount> GetAccount(int customerId) { return (from act in _checkingAccounts where act.CustomerId == customerId select act); }   } } The repository classes look very similar to each other for Query and Add methods, with the help of C# generics and implementing repository pattern (Martin Fowler) we can reduce the repeated code. Jarod from ElegantCode has posted an article on how to use repository pattern with EF which we will implement in the subsequent articles along with WCF Unity life time managers by Drew Contracts It is very easy to follow contract first approach with WCF, define the interface and append ServiceContract, OperationContract attributes. IProfile contract exposes functionality for creating customer and getting customer details.   using System; using System.ServiceModel; using BankDAL.Model;   namespace ProfileContract { [ServiceContract] public interface IProfile { [OperationContract] Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth);   [OperationContract] Customer GetCustomer(int id);   } }   ICheckingAccount contract exposes functionality for working with checking account, i.e., getting balance, deposit and withdraw of amount. ISavingsAccount contract looks the same as checking account.   using System.ServiceModel;   namespace CheckingAccountContract { [ServiceContract] public interface ICheckingAccount { [OperationContract] decimal? GetCheckingAccountBalance(int customerId);   [OperationContract] void DepositAmount(int customerId,decimal amount);   [OperationContract] void WithdrawAmount(int customerId, decimal amount);   } }   Services   Having covered the data access layer and contracts so far and here comes the core of the business logic, i.e. services.   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } ProfileService implements the IProfile contract for creating customer and getting customer detail using CustomerRepository. using System; using System.Linq; using System.ServiceModel; using BankDAL; using BankDAL.Model; using BankDAL.Repositories; using ProfileContract;   namespace ProfileService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Profile: IProfile { public Customer CreateAccount( string customerName, string address, DateTime dateOfBirth) { Customer cust = new Customer { FullName = customerName, Address = address, DateOfBirth = dateOfBirth };   using (var bankDbContext = new BankDbContext()) { new CustomerRepository(bankDbContext).Add(cust); bankDbContext.SaveChanges(); } return cust; }   public Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth) { return CreateAccount(customerName, address, dateOfBirth); } public Customer GetCustomer(int id) { return new CustomerRepository(new BankDbContext()).Query() .Where(i => i.Id == id).FirstOrDefault(); }   } } From the above code you shall observe that we are calling bankDBContext’s SaveChanges method and there is no save method specific to customer entity because EF manages all the changes centralized at the context level and all the pending changes so far are submitted in a batch and it is represented as Unit of Work. Similarly Checking service implements ICheckingAccount contract using CheckingAccountRepository, notice that we are throwing overdraft exception if the balance falls by zero. WCF has it’s own way of raising exceptions using fault contracts which will be explained in the subsequent articles. SavingsAccountService is similar to CheckingAccountService. using System; using System.Linq; using System.ServiceModel; using BankDAL.Model; using BankDAL.Repositories; using CheckingAccountContract;   namespace CheckingAccountService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Checking:ICheckingAccount { public decimal? GetCheckingAccountBalance(int customerId) { using (var bankDbContext = new BankDbContext()) { CheckingAccount account = (new CheckingAccountRepository(bankDbContext) .GetAccount(customerId)).FirstOrDefault();   if (account != null) return account.Balance;   return null; } }   public void DepositAmount(int customerId, decimal amount) { using(var bankDbContext = new BankDbContext()) { var checkingAccountRepository = new CheckingAccountRepository(bankDbContext); CheckingAccount account = (checkingAccountRepository.GetAccount(customerId)) .FirstOrDefault();   if (account == null) { account = new CheckingAccount() { CustomerId = customerId }; checkingAccountRepository.Add(account); }   account.Balance = account.Balance + amount; if (account.Balance < 0) throw new ApplicationException("Overdraft not accepted");   bankDbContext.SaveChanges(); } } public void WithdrawAmount(int customerId, decimal amount) { DepositAmount(customerId, -1*amount); } } }   BankServiceHost The host acts as a glue binding contracts with it’s services, exposing the endpoints. The services can be exposed either through the code or configuration file, configuration file is preferred as it allows run time changes to service behavior even after deployment. We have 3 services and for each of the service you need to define name (the class that implements the service with fully qualified namespace) and endpoint known as ABC, i.e. address, binding and contract. We are using netTcpBinding and have defined the base address with for each of the contracts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <system.serviceModel> <services> <service name="ProfileService.Profile"> <endpoint binding="netTcpBinding" contract="ProfileContract.IProfile"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Profile"/> </baseAddresses> </host> </service> <service name="CheckingAccountService.Checking"> <endpoint binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Checking"/> </baseAddresses> </host> </service> <service name="SavingsAccountService.Savings"> <endpoint binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Savings"/> </baseAddresses> </host> </service> </services> </system.serviceModel> Have to open the services by creating service host which will handle the incoming requests from clients.   using System;   namespace ServiceHost { class Program { static void Main(string[] args) { CreateHosts(); Console.ReadLine(); }   private static void CreateHosts() { CreateHost(typeof(ProfileService.Profile),"Profile Service"); CreateHost(typeof(SavingsAccountService.Savings), "Savings Account Service"); CreateHost(typeof(CheckingAccountService.Checking), "Checking Account Service"); }   private static void CreateHost(Type type, string hostDescription) { System.ServiceModel.ServiceHost host = new System.ServiceModel.ServiceHost(type); host.Open();   if (host.ChannelDispatchers != null && host.ChannelDispatchers.Count != 0 && host.ChannelDispatchers[0].Listener != null) Console.WriteLine("Started: " + host.ChannelDispatchers[0].Listener.Uri); else Console.WriteLine("Failed to start:" + hostDescription); } } } BankClient    The client has no knowledge about service business logic other than the functionality it exposes through the contract, end points and a proxy to work against. The endpoint data and server proxy can be generated by right clicking on the project reference and choosing ‘Add Service Reference’ and entering the service end point address. Or if you have access to source, you can manually reference contract dlls and update clients configuration file to point to the service end point if the server and client happens to be being built using .Net framework. One of the pros with the manual approach is you don’t have to work against messy code generated files.   <system.serviceModel> <client> <endpoint name="tcpProfile" address="net.tcp://localhost:1000/Profile" binding="netTcpBinding" contract="ProfileContract.IProfile"/> <endpoint name="tcpCheckingAccount" address="net.tcp://localhost:1000/Checking" binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <endpoint name="tcpSavingsAccount" address="net.tcp://localhost:1000/Savings" binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/>   </client> </system.serviceModel> The client uses a façade to connect to the services   using System.ServiceModel; using CheckingAccountContract; using ProfileContract; using SavingsAccountContract;   namespace Client { public class ProxyFacade { public static IProfile ProfileProxy() { return (new ChannelFactory<IProfile>("tcpProfile")).CreateChannel(); }   public static ICheckingAccount CheckingAccountProxy() { return (new ChannelFactory<ICheckingAccount>("tcpCheckingAccount")) .CreateChannel(); }   public static ISavingsAccount SavingsAccountProxy() { return (new ChannelFactory<ISavingsAccount>("tcpSavingsAccount")) .CreateChannel(); }   } }   With that in place, lets get our unit tests going   using System; using System.Diagnostics; using BankDAL.Model; using NUnit.Framework; using ProfileContract;   namespace Client { [TestFixture] public class Tests { private void TransferFundsFromSavingsToCheckingAccount(int customerId, decimal amount) { ProxyFacade.CheckingAccountProxy().DepositAmount(customerId, amount); ProxyFacade.SavingsAccountProxy().WithdrawAmount(customerId, amount); }   private void TransferFundsFromCheckingToSavingsAccount(int customerId, decimal amount) { ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, amount); ProxyFacade.CheckingAccountProxy().WithdrawAmount(customerId, amount); }     [Test] public void CreateAndGetProfileTest() { IProfile profile = ProxyFacade.ProfileProxy(); const string customerName = "Tom"; int customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)).Id; Customer customer = profile.GetCustomer(customerId); Assert.AreEqual(customerName,customer.FullName); }   [Test] public void DepositWithDrawAndTransferAmountTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Smith" + DateTime.Now.ToString("HH:mm:ss"); var customer = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)); // Deposit to Savings ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 100); ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 25); Assert.AreEqual(125, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); // Withdraw ProxyFacade.SavingsAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(95, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id));   // Deposit to Checking ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 60); ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 40); Assert.AreEqual(100, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); // Withdraw ProxyFacade.CheckingAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(70, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Savings to Checking TransferFundsFromSavingsToCheckingAccount(customer.Id,10); Assert.AreEqual(85, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Checking to Savings TransferFundsFromCheckingToSavingsAccount(customer.Id, 50); Assert.AreEqual(135, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(30, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); }   [Test] public void FundTransfersWithOverDraftTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Angelina" + DateTime.Now.ToString("HH:mm:ss");   var customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1972, 1, 1)).Id;   ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, 100); TransferFundsFromSavingsToCheckingAccount(customerId,80); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId));   try { TransferFundsFromSavingsToCheckingAccount(customerId,30); } catch (Exception e) { Debug.WriteLine(e.Message); }   Assert.AreEqual(110, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId)); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); } } }   We are creating a new instance of the channel for every operation, we will look into instance management and how creating a new instance of channel affects it in subsequent articles. The first two test cases deals with creation of Customer, deposit and withdraw of month between accounts. The last case, FundTransferWithOverDraftTest() is interesting. Customer starts with depositing $100 in SavingsAccount followed by transfer of $80 in to checking account resulting in $20 in savings account.  Customer then initiates $30 transfer from Savings to Checking resulting in overdraft exception on Savings with $30 being deposited to Checking. As we are not running both the requests in transactions the customer ends up with more amount than what he started with $100. In subsequent posts we will look into transactions handling.  Make sure the ServiceHost project is set as start up project and start the solution. Run the test cases either from NUnit client or TestDriven.Net/Resharper which ever is your favorite tool. Make sure you have updated the data base connection string in the ServiceHost config file to point to your local database

    Read the article

  • Part 2&ndash;Load Testing In The Cloud

    - by Tarun Arora
    Welcome to Part 2, In Part 1 we discussed the advantages of creating a Test Rig in the cloud, the Azure edge and the Test Rig Topology we want to get to. In Part 2, Let’s start by understanding the components of Azure we’ll be making use of followed by manually putting them together to create the test rig, so… let’s get down dirty start setting up the Test Rig.  What Components of Azure will I be using for building the Test Rig in the Cloud? To run the Test Agents we’ll make use of Windows Azure Compute and to enable communication between Test Controller and Test Agents we’ll make use of Windows Azure Connect.  Azure Connect The Test Controller is on premise and the Test Agents are in the cloud (How will they talk?). To enable communication between the two, we’ll make use of Windows Azure Connect. With Windows Azure Connect, you can use a simple user interface to configure IPsec protected connections between computers or virtual machines (VMs) in your organization’s network, and roles running in Windows Azure. With this you can now join Windows Azure role instances to your domain, so that you can use your existing methods for domain authentication, name resolution, or other domain-wide maintenance actions. For more details refer to an overview of Windows Azure connect. A very useful video explaining everything you wanted to know about Windows Azure connect.  Azure Compute Windows Azure compute provides developers a platform to host and manage applications in Microsoft’s data centres across the globe. A Windows Azure application is built from one or more components called ‘roles.’ Roles come in three different types: Web role, Worker role, and Virtual Machine (VM) role, we’ll be using the Worker role to set up the Test Agents. A very nice blog post discussing the difference between the 3 role types. Developers are free to use the .NET framework or other software that runs on Windows with the Worker role or Web role. Developers can also create applications using languages such as PHP and Java. More on Windows Azure Compute. Each Windows Azure compute instance represents a virtual server... Virtual Machine Size CPU Cores Memory Cost Per Hour Extra Small Shared 768 MB $0.04 Small 1 1.75 GB $0.12 Medium 2 3.50 GB $0.24 Large 4 7.00 GB $0.48 Extra Large 8 14.00 GB $0.96   You might want to review the Windows Azure Pricing FAQ. Let’s Get Started building the Test Rig… Configuration Machine Role Comments VM – 1 Domain Controller for Playpit.com On Premise VM – 2 TFS, Test Controller On Premise VM – 3 Test Agent Cloud   In this blog post I would assume that you have the domain, Team Foundation Server and Test Controller Installed and set up already. If not, please refer to the TFS 2010 Installation Guide and this walkthrough on MSDN to set up your Test Controller. You can also download a preconfigured TFS 2010 VM from Brian Keller's blog, Brian also has some great hands on Labs on TFS 2010 that you may want to explore. I. Lets start building VM – 3: The Test Agent Download the Windows Azure SDK and Tools Open Visual Studio and create a new Windows Azure Project using the Cloud Template                   Choose the Worker Role for reasons explained in the earlier post         The WorkerRole.cs implements the Run() and OnStart() methods, no code changes required. You should be able to compile the project and run it in the compute emulator (The compute emulator should have been installed as part of the Windows Azure Toolkit) on your local machine.                   We will only be making changes to WindowsAzureProject, open ServiceDefinition.csdef. Ensure that the vmsize is small (remember the cost chart above). Import the “Connect” module. I am importing the Connect module because I need to join the Worker role VM to the Playpit domain. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect"/> </Imports> </WorkerRole> </ServiceDefinition> Go to the ServiceConfiguration.Cloud.cscfg and note that settings with key ‘Microsoft.WindowsAzure.Plugins.Connect.%%%%’ have been added to the configuration file. This is because you decided to import the connect module. See the config below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration>             Let’s go step by step and understand all the highlighted parameters and where you can find the values for them.       osFamily – By default this is set to 1 (Windows Server 2008 SP2). Change this to 2 if you want the Windows Server 2008 R2 operating system. The Advantage of using osFamily = “2” is that you get Powershell 2.0 rather than Powershell 1.0. In Powershell 2.0 you could simply use “powershell -ExecutionPolicy Unrestricted ./myscript.ps1” and it will work while in Powershell 1.0 you will have to change the registry key by including the following in your command file “reg add HKLM\Software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell /v ExecutionPolicy /d Unrestricted /f” before you can execute any power shell. The other reason you might want to move to os2 is if you wanted IIS 7.5.       Activation Token – To enable communication between the on premise machine and the Windows Azure Worker role VM both need to have the same token. Log on to Windows Azure Management Portal, click on Connect, click on Get Activation Token, this should give you the activation token, copy the activation token to the clipboard and paste it in the configuration file. Note – Later in the blog I’ll be showing you how to install connect on the on premise machine.                       EnableDomainJoin – Set the value to true, ofcourse we want to join the on windows azure worker role VM to the domain.       DomainFQDN, DomainControllerFQDN, DomainAccountName, DomainPassword, DomainOU, Administrators – This information is specific to your domain. I have extracted this information from the ‘service manager’ and ‘Active Directory Users and Computers’. Also, i created a new Domain-OU namely ‘CloudInstances’ so all my cloud instances joined to my domain show up here, this is optional. You can encrypt the DomainPassword – refer to the instructions here. Or hold fire, I’ll be covering that when i come to certificates and encryption in the coming section.       Now once you have filled all this information up, the configuration file should look something like below, <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration> Next we will be enabling the Remote Desktop module in to the ServiceDefinition.csdef, we could make changes manually or allow a beautiful wizard to help us make changes. I prefer the second option. So right click on the Windows Azure project and choose Publish       Now once you get the publish wizard, if you haven’t already you would be asked to import your Windows Azure subscription, this is simply the Msdn subscription activation key xml. Once you have done click Next to go to the Settings page and check ‘Enable Remote Desktop for all roles’.       As soon as you do that you get another pop up asking you the details for the user that you would be logging in with (make sure you enter a reasonable expiry date, you do not want the user account to expire today). Notice the more information tag at the bottom, click that to get access to the certificate section. See screen shot below.       From the drop down select the option to create a new certificate        In the pop up window enter the friendly name for your certificate. In my case I entered ‘WAC – Test Rig’ and click ok. This will create a new certificate for you. Click on the view button to see the certificate details. Do you see the Thumbprint, this is the value that will go in the config file (very important). Now click on the Copy to File button to copy the certificate, we will need to import the certificate to the windows Azure Management portal later. So, make sure you save it a safe location.                                Click Finish and enter details of the user you would like to create with permissions for remote desktop access, once you have entered the details on the ‘Remote desktop configuration’ screen click on Ok. From the Publish Windows Azure Wizard screen press Cancel. Cancel because we don’t want to publish the role just yet and Yes because we want to save all the changes in the config file.       Now if you go to the ServiceDefinition.csdef file you will see that the RemoteAccess and RemoteForwarder roles have been imported for you. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect" /> <Import moduleName="RemoteAccess" /> <Import moduleName="RemoteForwarder" /> </Imports> </WorkerRole> </ServiceDefinition> Now go to the ServiceConfiguration.Cloud.cscfg file and you see a whole bunch for setting “Microsoft.WindowsAzure.Plugins.RemoteAccess.%%%” values added for you. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" value="Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" value="MIIBnQYJKoZIhvcNAQcDoIIBjjCCAYoCAQAxggFOMIIBSgIBADAyMB4xHDAaBgNVBAMME1dpbmRvd 3MgQXp1cmUgVG9vbHMCEGa+B46voeO5T305N7TSG9QwDQYJKoZIhvcNAQEBBQAEggEABg4ol5Xol66Ip6QKLbAPWdmD4ae ADZ7aKj6fg4D+ATr0DXBllZHG5Umwf+84Sj2nsPeCyrg3ZDQuxrfhSbdnJwuChKV6ukXdGjX0hlowJu/4dfH4jTJC7sBWS AKaEFU7CxvqYEAL1Hf9VPL5fW6HZVmq1z+qmm4ecGKSTOJ20Fptb463wcXgR8CWGa+1w9xqJ7UmmfGeGeCHQ4QGW0IDSBU6ccg vzF2ug8/FY60K1vrWaCYOhKkxD3YBs8U9X/kOB0yQm2Git0d5tFlIPCBT2AC57bgsAYncXfHvPesI0qs7VZyghk8LVa9g5IqaM Cp6cQ7rmY/dLsKBMkDcdBHuCTAzBgkqhkiG9w0BBwEwFAYIKoZIhvcNAwcECDRVifSXbA43gBApNrp40L1VTVZ1iGag+3O1" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" value="2012-11-27T23:59:59.0000000+00:00" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteForwarder.Enabled" value="true" /> </ConfigurationSettings> <Certificates> <Certificate name="Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" thumbprint="AA23016CF0BDFC344400B5B82706B608B92E4217" thumbprintAlgorithm="sha1" /> </Certificates> </Role> </ServiceConfiguration>          Okay let’s look at them one at a time,       Enabled - Yes, we would like to enable Remote Access.       AccountUserName – This is the user name you entered while you were on the publish windows azure role screen, as detailed above.       AccountEncrytedPassword – Try and decode that, the certificate is used to encrypt the password you specified for the user account. Remember earlier i said, either use the instructions or wait and i’ll be showing you encryption, now the user account i am using for rdp has the same password as my domain password, so i can simply copy the value of the AccountEncryptedPassword to the DomainPassword as well.       AccountExpiration – This is the expiration as you specified in the wizard earlier, make sure your account does not expire today.       Remote Forwarder – Check out the documentation, below is how I understand it, -- One role in an application that implements a remote desktop connection must import the RemoteForwarder module. The two modules work together to enable the remote desktop connections to role instances. -- If you have multiple roles defined in the service model, it does not matter which role you add the RemoteForwarder module to, but you must add it to only one of the role definitions.       Certificate – Remember the certificate thumbprint from the wizard, the on premise machine and windows azure role machine that need to speak to each other must have the same thumbprint. More on that when we install Windows Azure connect Endpoints on the on premise machine. As i said earlier, in this blog post, I’ll be showing you the manual process so i won’t be scripting any star up tasks to install the test agent or register the test agent with the TFS Server. I’ll be showing you all this cool stuff in the next blog post, that’s because it’s important to understand the manual side of it, it becomes easier for you to troubleshoot in case something fails. Having said that, the changes we have made are sufficient to spin up the Windows Azure Worker Role aka Test Agent VM, have it connected with the play.pit.com domain and have remote access enabled on it. Before we deploy the Test Agent VM we need to set up Windows Azure Connect on the TFS Server. II. Windows Azure Connect: Setting up Connect on VM – 2 i.e. TFS & Test Controller Glad you made it so far, now to enable communication between the on premise TFS/Test Controller and Azure-ed Test Agent we need to enable communication. We have set up the Azure connect module in the Test Agent configuration, now the connect end points need to be enabled on the on premise machines, let’s have a look at how we can do this. Log on to VM – 2 running the TFS Server and Test Controller Log on to the Windows Azure Management Portal and click on Virtual Network Click on Virtual Network, if you already have a subscription you should see the below screen shot, if not, you would be asked to complete the subscription first        Click on Install Local Endpoints from the top left on the panel and you get a url appended with a token id in it, remember the token i showed you earlier, in theory the token you get here should match the token you added to the Test Agent config file.        Copy the url to the clip board and paste it in IE explorer (important, the installation at present only works out of IE and you need to have cookies enabled in order to complete the installation). As stated in the pop up, you can NOT download and run the software later, you need to run it as is, since it contains a token. Once the installation completes you should see the Windows Azure connect icon in the system tray.                         Right click the Azure Connect icon, choose Diagnostics and refer to this link for diagnostic detail terminology. NOTE – Unfortunately I could not see the Windows Azure connect icon in the system tray, a bit of binging with Google revealed that the azure connect icon is only shown when the ‘Windows Azure Connect Endpoint’ Service is started. So go to services.msc and make sure that the service is started, if not start it, unfortunately again, the service did not start for me on a manual start and i realised that one of the dependant services was disabled, you can look at the service dependencies and start them and then start windows azure connect. Bottom line, you need to start Windows Azure connect service before you can proceed. Please refer here on MSDN for more on Troubleshooting Windows Azure connect. (Follow the next step as well)   Now go back to the Windows Azure Management Portal and from Groups and Roles create a new group, lets call it ‘Test Rig’. Make sure you add the VM – 2 (the TFS Server VM where you just installed the endpoint).       Now if you go back to the Azure Connect icon in the system tray and click ‘Refresh Policy’ you will notice that the disconnected status of the icon should change to ready for connection. III. Importing Certificate in to Windows Azure Management Portal But before that you need to import the certificate you created in Step I in to the Windows Azure Management Portal. Log on to the Windows Azure Management Portal and click on ‘Hosted Services, Storage Accounts & CDN’ and then ‘Management Certificates’ followed by Add Certificates as shown in the screen shot below        Browse to the location where you saved the certificate earlier, remember… Refer to Step I in case you forgot.        Now you should be able to see the imported certificate here, make sure the thumbprint of the certificate matches the one you inserted in the config files        IV. Publish Windows Azure Worker Role aka Test Agent Having completed I, II and III, you are ready to publish the Test Agent VM – 3 to the cloud. Go to Visual Studio and right click the Windows Azure project and select Publish. Verify the infomration in the wizard, from the advanced settings tab, you can also enabled capture of intellitrace or profiling information.         Click Next and Click Publish! From the view menu bar select the Windows Azure Activity Log window.       Now you should be able to see the deployment progress in real time.             In the Windows Azure Management Portal, you should also be able to see the progress of creation of a new Worker Role.       Once the deployment is complete you should be able to RDP (go to run prompt type mstsc and in the pop up the machine name) in to the Test Agent Worker Role VM from the Playpit network using the domain admin user account. In case you are unable to log in to the Test Agent using the domain admin user account it means the process of joining the Test Agent to the domain has failed! But the good news is, because you imported the connect module, you can connect to the Test Agent machine using Windows Azure Management Portal and troubleshoot the reason for failure, you will be able to log in with the user name and password you specified in the config file for the keys ‘RemoteAccess.AccountUsername, RemoteAccess.EncryptedPassword (just that enter the password unencrypted)’, fix it or manually join the machine to the domain. Once you have managed to Join the Test Agent VM to the Domain move to the next step.      So, log in to the Test Agent Worker Role VM with the Playpit Domain Administrator and verify that you can log in, the machine is connected to the domain and the connect service is successfully running. If yes, give your self a pat on the back, you are 80% mission accomplished!         Go to the Windows Azure Management Portal and click on Virtual Network, click on Groups and Roles and click on Test Rig, click Edit Group, the edit the Test Rig group you created earlier. In the Connect to section, click on Add to select the worker role you have just deployed. Also, check the ‘Allow connections between endpoints in the group’ with this you will enable to communication between test controller and test agents and test agents/test agents. Click Save.      Now, you are ready to deploy the Test Agent software on the Worker Role Test Agent VM and configure it to work with the Test Controller. V. Configuring VM – 3: Installing Test Agent and Associating Test Agent to Controller Log in to the Worker Role Test Agent VM that you have just successfully deployed, make sure you log in with the domain administrator account. Download the All Agents software from MSDN, ‘en_visual_studio_agents_2010_x86_x64_dvd_509679.iso’, extract the iso and navigate to where you have extracted the iso. In my case, i have extracted the iso to “C:\Resources\Temp\VsAgentSetup”. Open the Test Agent folder and double click on setup.exe. Once you have installed the Test Agent you should reach the configuration window. If you face any issues installing TFS Test Agent on the VM, refer to the walkthrough on MSDN.       Once you have successfully installed the Test Agent software you will need to configure the test agent. Right click the test agent configuration tool and run as a different user. i.e. an Administrator. This is really to run the configuration wizard with elevated privileges (you might have UAC block something's otherwise).        In the run options, you can select ‘service’ you do not need to run the agent as interactive un less you are running coded UI tests. I have specified the domain administrator to connect to the TFS Test Controller. In real life, i would never do that, i would create a separate test user service account for this purpose. But for the blog post, we are using the most powerful user so that any policies or restrictions don’t block you.        Click the Apply Settings button and you should be all green! If not, the summary usually gives helpful error messages that you can resolve and proceed. As per my experience, you may run in to either a permission or a firewall blocking communication issue.        And now the moment of truth! Go to VM –2 open up Visual Studio and from the Test Menu select Manage Test Controller       Mission Accomplished! You should be able to see the Test Agent that you have just configured here,         VI. Creating and Running Load Tests on your brand new Azure-ed Test Rig I have various blog posts on Performance Testing with Visual Studio Ultimate, you can follow the links and videos below, Blog Posts: - Part 1 – Performance Testing using Visual Studio 2010 Ultimate - Part 2 – Performance Testing using Visual Studio 2010 Ultimate - Part 3 – Performance Testing using Visual Studio 2010 Ultimate Videos: - Test Tools Configuration & Settings in Visual Studio - Why & How to Record Web Performance Tests in Visual Studio Ultimate - Goal Driven Load Testing using Visual Studio Ultimate Now that you have created your load tests, there is one last change you need to make before you can run the tests on your Azure Test Rig, create a new Test settings file, and change the Test Execution method to ‘Remote Execution’ and select the test controller you have configured the Worker Role Test Agent against in our case VM – 2 So, go on, fire off a test run and see the results of the test being executed on the Azur-ed Test Rig. Review and What’s next? A quick recap of the benefits of running the Test Rig in the cloud and what i will be covering in the next blog post AND I would love to hear your feedback! Advantages Utilizing the power of Azure compute to run a heavy virtual user load. Benefiting from the Azure flexibility, destroy Test Agents when not in use, takes < 25 minutes to spin up a new Test Agent. Most important test Network Latency, (network latency and speed of connection are two different things – usually network latency is very hard to test), by placing the Test Agents in Microsoft Data centres around the globe, one can actually test the lag in transferring the bytes not because of a slow connection but because the page has been requested from the other side of the globe. Next Steps The process of spinning up the Test Agents in windows Azure is not 100% automated. I am working on the Worker process and power shell scripts to make the role deployment, unattended install of test agent software and registration of the test agent to the test controller automated. In the next blog post I will show you how to make the complete process unattended and automated. Remember to subscribe to http://feeds.feedburner.com/TarunArora. Hope you enjoyed this post, I would love to hear your feedback! If you have any recommendations on things that I should consider or any questions or feedback, feel free to leave a comment. See you in Part III.   Share this post : CodeProject

    Read the article

  • ERROR: Linux route add command failed: external program exited with error status: 4

    - by JohnMerlino
    A remote machine running fedora uses openvpn, and multiple developers were successfully able to connect to it via their client openvpn. However, I am running Ubuntu 12.04 and I am having trouble connecting to the server via vpn. I copied ca.crt, home.key, and home.crt from the server to my local machine to /etc/openvpn folder. My client.conf file looks like this: ############################################## # Sample client-side OpenVPN 2.0 config file # # for connecting to multi-client server. # # # # This configuration can be used by multiple # # clients, however each client should have # # its own cert and key files. # # # # On Windows, you might want to rename this # # file so it has a .ovpn extension # ############################################## # Specify that we are a client and that we # will be pulling certain config file directives # from the server. client # Use the same setting as you are using on # the server. # On most systems, the VPN will not function # unless you partially or fully disable # the firewall for the TUN/TAP interface. ;dev tap dev tun # Windows needs the TAP-Win32 adapter name # from the Network Connections panel # if you have more than one. On XP SP2, # you may need to disable the firewall # for the TAP adapter. ;dev-node MyTap # Are we connecting to a TCP or # UDP server? Use the same setting as # on the server. ;proto tcp proto udp # The hostname/IP and port of the server. # You can have multiple remote entries # to load balance between the servers. remote xx.xxx.xx.130 1194 ;remote my-server-2 1194 # Choose a random host from the remote # list for load-balancing. Otherwise # try hosts in the order specified. ;remote-random # Keep trying indefinitely to resolve the # host name of the OpenVPN server. Very useful # on machines which are not permanently connected # to the internet such as laptops. resolv-retry infinite # Most clients don't need to bind to # a specific local port number. nobind # Downgrade privileges after initialization (non-Windows only) ;user nobody ;group nogroup # Try to preserve some state across restarts. persist-key persist-tun # If you are connecting through an # HTTP proxy to reach the actual OpenVPN # server, put the proxy server/IP and # port number here. See the man page # if your proxy server requires # authentication. ;http-proxy-retry # retry on connection failures ;http-proxy [proxy server] [proxy port #] # Wireless networks often produce a lot # of duplicate packets. Set this flag # to silence duplicate packet warnings. ;mute-replay-warnings # SSL/TLS parms. # See the server config file for more # description. It's best to use # a separate .crt/.key file pair # for each client. A single ca # file can be used for all clients. ca ca.crt cert home.crt key home.key # Verify server certificate by checking # that the certicate has the nsCertType # field set to "server". This is an # important precaution to protect against # a potential attack discussed here: # http://openvpn.net/howto.html#mitm # # To use this feature, you will need to generate # your server certificates with the nsCertType # field set to "server". The build-key-server # script in the easy-rsa folder will do this. ns-cert-type server # If a tls-auth key is used on the server # then every client must also have the key. ;tls-auth ta.key 1 # Select a cryptographic cipher. # If the cipher option is used on the server # then you must also specify it here. ;cipher x # Enable compression on the VPN link. # Don't enable this unless it is also # enabled in the server config file. comp-lzo # Set log file verbosity. verb 3 # Silence repeating messages ;mute 20 But when I start server and look in /var/log/syslog, I notice the following error: May 27 22:13:51 myuser ovpn-client[5626]: /sbin/route add -net 10.27.12.1 netmask 255.255.255.252 gw 10.27.12.37 May 27 22:13:51 myuser ovpn-client[5626]: ERROR: Linux route add command failed: external program exited with error status: 4 May 27 22:13:51 myuser ovpn-client[5626]: /sbin/route add -net 172.27.12.0 netmask 255.255.255.0 gw 10.27.12.37 May 27 22:13:51 myuser ovpn-client[5626]: /sbin/route add -net 10.27.12.1 netmask 255.255.255.255 gw 10.27.12.37 And I am unable to connect to the server via openvpn: $ ssh [email protected] ssh: connect to host xxx.xx.xx.130 port 22: No route to host What may I be doing wrong?

    Read the article

  • Version Assemblies with TFS 2010 Continuous Integration

    - by Steve Michelotti
    When I first heard that TFS 2010 had moved to Workflow Foundation for Team Build, I was *extremely* skeptical. I’ve loved MSBuild and didn’t quite understand the reasons for this change. In fact, given that I’ve been exclusively using Cruise Control for Continuous Integration (CI) for the last 5+ years of my career, I was skeptical of TFS for CI in general. However, after going through the learning process for TFS 2010 recently, I’m starting to become a believer. I’m also starting to see some of the benefits with Workflow Foundation for the overall processing because it gives you constructs not available in MSBuild such as parallel tasks, better control flow constructs, and a slightly better customization story. The first customization I had to make to the build process was to version the assemblies of my solution. This is not new. In fact, I’d recommend reading Mike Fourie’s well known post on Versioning Code in TFS before you get started. This post describes several foundational aspects of versioning assemblies regardless of your version of TFS. The main points are: 1) don’t use source control operations for your version file, 2) use a schema like <Major>.<Minor>.<IncrementalNumber>.0, and 3) do not keep AssemblyVersion and AssemblyFileVersion in sync. To do this in TFS 2010, the best post I’ve found has been Jim Lamb’s post of building a custom TFS 2010 workflow activity. Overall, this post is excellent but the primary issue I have with it is that the assembly version numbers produced are based in a date and look like this: “2010.5.15.1”. This is definitely not what I want. I want to be able to communicate to the developers and stakeholders that we are producing the “1.1 release” or “1.2 release” – which would have an assembly version number of “1.1.317.0” for example. In this post, I’ll walk through the process of customizing the assembly version number based on this method – customizing the concepts in Lamb’s post to suit my needs. I’ll also be combining this with the concepts of Fourie’s post – particularly with regards to the standards around how to version the assemblies. The first thing I’ll do is add a file called SolutionAssemblyVersionInfo.cs to the root of my solution that looks like this: 1: using System; 2: using System.Reflection; 3: [assembly: AssemblyVersion("1.1.0.0")] 4: [assembly: AssemblyFileVersion("1.1.0.0")] I’ll then add that file as a Visual Studio link file to each project in my solution by right-clicking the project, “Add – Existing Item…” then when I click the SolutionAssemblyVersionInfo.cs file, making sure I “Add As Link”: Now the Solution Explorer will show our file. We can see that it’s a “link” file because of the black arrow in the icon within all our projects. Of course you’ll need to remove the AssemblyVersion and AssemblyFileVersion attributes from the AssemblyInfo.cs files to avoid the duplicate attributes since they now leave in the SolutionAssemblyVersionInfo.cs file. This is an extremely common technique so that all the projects in our solution can be versioned as a unit. At this point, we’re ready to write our custom activity. The primary consideration is that I want the developer and/or tech lead to be able to easily be in control of the Major.Minor and then I want the CI process to add the third number with a unique incremental number. We’ll leave the fourth position always “0” for now – it’s held in reserve in case the day ever comes where we need to do an emergency patch to Production based on a branched version.   Writing the Custom Workflow Activity Similar to Lamb’s post, I’m going to write two custom workflow activities. The “outer” activity (a xaml activity) will be pretty straight forward. It will check if the solution version file exists in the solution root and, if so, delegate the replacement of version to the AssemblyVersionInfo activity which is a CodeActivity highlighted in red below:   Notice that the arguments of this activity are the “solutionVersionFile” and “tfsBuildNumber” which will be passed in. The tfsBuildNumber passed in will look something like this: “CI_MyApplication.4” and we’ll need to grab the “4” (i.e., the incremental revision number) and put that in the third position. Then we’ll need to honor whatever was specified for Major.Minor in the SolutionAssemblyVersionInfo.cs file. For example, if the SolutionAssemblyVersionInfo.cs file had “1.1.0.0” for the AssemblyVersion (as shown in the first code block near the beginning of this post), then we want to resulting file to have “1.1.4.0”. Before we do anything, let’s put together a unit test for all this so we can know if we get it right: 1: [TestMethod] 2: public void Assembly_version_should_be_parsed_correctly_from_build_name() 3: { 4: // arrange 5: const string versionFile = "SolutionAssemblyVersionInfo.cs"; 6: WriteTestVersionFile(versionFile); 7: var activity = new VersionAssemblies(); 8: var arguments = new Dictionary<string, object> { 9: { "tfsBuildNumber", "CI_MyApplication.4"}, 10: { "solutionVersionFile", versionFile} 11: }; 12:   13: // act 14: var result = WorkflowInvoker.Invoke(activity, arguments); 15:   16: // assert 17: Assert.AreEqual("1.2.4.0", (string)result["newAssemblyFileVersion"]); 18: var lines = File.ReadAllLines(versionFile); 19: Assert.IsTrue(lines.Contains("[assembly: AssemblyVersion(\"1.2.0.0\")]")); 20: Assert.IsTrue(lines.Contains("[assembly: AssemblyFileVersion(\"1.2.4.0\")]")); 21: } 22: 23: private void WriteTestVersionFile(string versionFile) 24: { 25: var fileContents = "using System.Reflection;\n" + 26: "[assembly: AssemblyVersion(\"1.2.0.0\")]\n" + 27: "[assembly: AssemblyFileVersion(\"1.2.0.0\")]"; 28: File.WriteAllText(versionFile, fileContents); 29: }   At this point, the code for our AssemblyVersion activity is pretty straight forward: 1: [BuildActivity(HostEnvironmentOption.Agent)] 2: public class AssemblyVersionInfo : CodeActivity 3: { 4: [RequiredArgument] 5: public InArgument<string> FileName { get; set; } 6:   7: [RequiredArgument] 8: public InArgument<string> TfsBuildNumber { get; set; } 9:   10: public OutArgument<string> NewAssemblyFileVersion { get; set; } 11:   12: protected override void Execute(CodeActivityContext context) 13: { 14: var solutionVersionFile = this.FileName.Get(context); 15: 16: // Ensure that the file is writeable 17: var fileAttributes = File.GetAttributes(solutionVersionFile); 18: File.SetAttributes(solutionVersionFile, fileAttributes & ~FileAttributes.ReadOnly); 19:   20: // Prepare assembly versions 21: var majorMinor = GetAssemblyMajorMinorVersionBasedOnExisting(solutionVersionFile); 22: var newBuildNumber = GetNewBuildNumber(this.TfsBuildNumber.Get(context)); 23: var newAssemblyVersion = string.Format("{0}.{1}.0.0", majorMinor.Item1, majorMinor.Item2); 24: var newAssemblyFileVersion = string.Format("{0}.{1}.{2}.0", majorMinor.Item1, majorMinor.Item2, newBuildNumber); 25: this.NewAssemblyFileVersion.Set(context, newAssemblyFileVersion); 26:   27: // Perform the actual replacement 28: var contents = this.GetFileContents(newAssemblyVersion, newAssemblyFileVersion); 29: File.WriteAllText(solutionVersionFile, contents); 30:   31: // Restore the file's original attributes 32: File.SetAttributes(solutionVersionFile, fileAttributes); 33: } 34:   35: #region Private Methods 36:   37: private string GetFileContents(string newAssemblyVersion, string newAssemblyFileVersion) 38: { 39: var cs = new StringBuilder(); 40: cs.AppendLine("using System.Reflection;"); 41: cs.AppendFormat("[assembly: AssemblyVersion(\"{0}\")]", newAssemblyVersion); 42: cs.AppendLine(); 43: cs.AppendFormat("[assembly: AssemblyFileVersion(\"{0}\")]", newAssemblyFileVersion); 44: return cs.ToString(); 45: } 46:   47: private Tuple<string, string> GetAssemblyMajorMinorVersionBasedOnExisting(string filePath) 48: { 49: var lines = File.ReadAllLines(filePath); 50: var versionLine = lines.Where(x => x.Contains("AssemblyVersion")).FirstOrDefault(); 51:   52: if (versionLine == null) 53: { 54: throw new InvalidOperationException("File does not contain [assembly: AssemblyVersion] attribute"); 55: } 56:   57: return ExtractMajorMinor(versionLine); 58: } 59:   60: private static Tuple<string, string> ExtractMajorMinor(string versionLine) 61: { 62: var firstQuote = versionLine.IndexOf('"') + 1; 63: var secondQuote = versionLine.IndexOf('"', firstQuote); 64: var version = versionLine.Substring(firstQuote, secondQuote - firstQuote); 65: var versionParts = version.Split('.'); 66: return new Tuple<string, string>(versionParts[0], versionParts[1]); 67: } 68:   69: private string GetNewBuildNumber(string buildName) 70: { 71: return buildName.Substring(buildName.LastIndexOf(".") + 1); 72: } 73:   74: #endregion 75: }   At this point the final step is to incorporate this activity into the overall build template. Make a copy of the DefaultTempate.xaml – we’ll call it DefaultTemplateWithVersioning.xaml. Before the build and labeling happens, drag the VersionAssemblies activity in. Then set the LabelName variable to “BuildDetail.BuildDefinition.Name + "-" + newAssemblyFileVersion since the newAssemblyFileVersion was produced by our activity.   Configuring CI Once you add your solution to source control, you can configure CI with the build definition window as shown here. The main difference is that we’ll change the Process tab to reflect a different build number format and choose our custom build process file:   When the build completes, we’ll see the name of our project with the unique revision number:   If we look at the detailed build log for the latest build, we’ll see the label being created with our custom task:     We can now look at the history labels in TFS and see the project name with the labels (the Assignment activity I added to the workflow):   Finally, if we look at the physical assemblies that are produced, we can right-click on any assembly in Windows Explorer and see the assembly version in its properties:   Full Traceability We now have full traceability for our code. There will never be a question of what code was deployed to Production. You can always see the assembly version in the properties of the physical assembly. That can be traced back to a label in TFS where the unique revision number matches. The label in TFS gives you the complete snapshot of the code in your source control repository at the time the code was built. This type of process for full traceability has been used for many years for CI – in fact, I’ve done similar things with CCNet and SVN for quite some time. This is simply the TFS implementation of that pattern. The new features that TFS 2010 give you to make these types of customizations in your build process are quite easy once you get over the initial curve.

    Read the article

  • September 2011 Release of the Ajax Control Toolkit

    - by Stephen Walther
    I’m happy to announce the release of the September 2011 Ajax Control Toolkit. This release has several important new features including: Date ranges – When using the Calendar extender, you can specify a start and end date and a user can pick only those dates which fall within the specified range. This was the fourth top-voted feature request for the Ajax Control Toolkit at CodePlex. Twitter Control – You can use the new Twitter control to display recent tweets associated with a particular Twitter user or tweets which match a search query. Gravatar Control – You can use the new Gravatar control to display a unique image for each user of your website. Users can upload custom images to the Gravatar.com website or the Gravatar control can display a unique, auto-generated, image for a user. You can download this release this very minute by visiting CodePlex: http://AjaxControlToolkit.CodePlex.com Alternatively, you can execute the following command from the Visual Studio NuGet console: Improvements to the Ajax Control Toolkit Calendar Control The Ajax Control Toolkit Calendar extender control is one of the most heavily used controls from the Ajax Control Toolkit. The developers on the Superexpert team spent the last sprint focusing on improving this control. There are three important changes that we made to the Calendar control: we added support for date ranges, we added support for highlighting today’s date, and we made fixes to several bugs related to time zones and daylight savings. Using Calendar Date Ranges One of the top-voted feature requests for the Ajax Control Toolkit was a request to add support for date ranges to the Calendar control (this was the fourth most voted feature request at CodePlex). With the latest release of the Ajax Control Toolkit, the Calendar extender now supports date ranges. For example, the following page illustrates how you can create a popup calendar which allows a user only to pick dates between March 2, 2009 and May 16, 2009. <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="CalendarDateRange.aspx.cs" Inherits="WebApplication1.CalendarDateRange" %> <%@ Register TagPrefix="asp" Namespace="AjaxControlToolkit" Assembly="AjaxControlToolkit" %> <html> <head runat="server"> <title>Calendar Date Range</title> </head> <body> <form id="form1" runat="server"> <asp:ToolkitScriptManager ID="tsm" runat="server" /> <asp:TextBox ID="txtHotelReservationDate" runat="server" /> <asp:CalendarExtender ID="Calendar1" TargetControlID="txtHotelReservationDate" StartDate="3/2/2009" EndDate="5/16/2009" SelectedDate="3/2/2009" runat="server" /> </form> </body> </html> This page contains three controls: an Ajax Control Toolkit ToolkitScriptManager control, a standard ASP.NET TextBox control, and an Ajax Control Toolkit CalendarExtender control. Notice that the Calendar control includes StartDate and EndDate properties which restrict the range of valid dates. The Calendar control shows days, months, and years outside of the valid range as struck out. You cannot select days, months, or years which fall outside of the range. The following video illustrates interacting with the new date range feature: If you want to experiment with a live version of the Ajax Control Toolkit Calendar extender control then you can visit the Calendar Sample Page at the Ajax Control Toolkit Sample Site. Highlighted Today’s Date Another highly requested feature for the Calendar control was support for highlighting today’s date. The Calendar control now highlights the user’s current date regardless of the user’s time zone. Fixes to Time Zone and Daylight Savings Time Bugs We fixed several significant Calendar extender bugs related to time zones and daylight savings time. For example, previously, when you set the Calendar control’s SelectedDate property to the value 1/1/2007 then the selected data would appear as 12/31/2006 or 1/1/2007 or 1/2/2007 depending on the server time zone. For example, if your server time zone was set to Samoa (UTC-11:00), then setting SelectedDate=”1/1/2007” would result in “12/31/2006” being selected in the Calendar. Users of the Calendar extender control found this behavior confusing. After careful consideration, we decided to change the Calendar extender so that it interprets all dates as UTC dates. In other words, if you set StartDate=”1/1/2007” then the Calendar extender parses the date as 1/1/2007 UTC instead of parsing the date according to the server time zone. By interpreting all dates as UTC dates, we avoid all of the reported issues with the SelectedDate property showing the wrong date. Furthermore, when you set the StartDate and EndDate properties, you know that the same StartDate and EndDate will be selected regardless of the time zone associated with the server or associated with the browser. The date 1/1/2007 will always be the date 1/1/2007. The New Twitter Control This release of the Ajax Control Toolkit introduces a new twitter control. You can use the Twitter control to display recent tweets associated with a particular twitter user. You also can use this control to show the results of a twitter search. The following page illustrates how you can use the Twitter control to display recent tweets made by Scott Hanselman: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="TwitterProfile.aspx.cs" Inherits="WebApplication1.TwitterProfile" %> <%@ Register TagPrefix="asp" Namespace="AjaxControlToolkit" Assembly="AjaxControlToolkit" %> <html > <head runat="server"> <title>Twitter Profile</title> </head> <body> <form id="form1" runat="server"> <asp:ToolkitScriptManager ID="tsm" runat="server" /> <asp:Twitter ID="Twitter1" ScreenName="shanselman" runat="server" /> </form> </body> </html> This page includes two Ajax Control Toolkit controls: the ToolkitScriptManager control and the Twitter control. The Twitter control is set to display tweets from Scott Hanselman (shanselman): You also can use the Twitter control to display the results of a search query. For example, the following page displays all recent tweets related to the Ajax Control Toolkit: Twitter limits the number of times that you can interact with their API in an hour. Twitter recommends that you cache results on the server (https://dev.twitter.com/docs/rate-limiting). By default, the Twitter control caches results on the server for a duration of 5 minutes. You can modify the cache duration by assigning a value (in seconds) to the Twitter control's CacheDuration property. The Twitter control wraps a standard ASP.NET ListView control. You can customize the appearance of the Twitter control by modifying its LayoutTemplate, StatusTemplate, AlternatingStatusTemplate, and EmptyDataTemplate. To learn more about the new Twitter control, visit the live Twitter Sample Page. The New Gravatar Control The September 2011 release of the Ajax Control Toolkit also includes a new Gravatar control. This control makes it easy to display a unique image for each user of your website. A Gravatar is associated with an email address. You can visit Gravatar.com and upload an image and associate the image with your email address. That way, every website which uses Gravatars (such as the www.ASP.NET website) will display your image next to your name. For example, I visited the Gravatar.com website and associated an image of a Koala Bear with the email address [email protected]. The following page illustrates how you can use the Gravatar control to display the Gravatar image associated with the [email protected] email address: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="GravatarDemo.aspx.cs" Inherits="WebApplication1.GravatarDemo" %> <%@ Register TagPrefix="asp" Namespace="AjaxControlToolkit" Assembly="AjaxControlToolkit" %> <html xmlns="http://www.w3.org/1999/xhtml"> <head id="Head1" runat="server"> <title>Gravatar Demo</title> </head> <body> <form id="form1" runat="server"> <asp:ToolkitScriptManager ID="tsm" runat="server" /> <asp:Gravatar ID="Gravatar1" Email="[email protected]" runat="server" /> </form> </body> </html> The page above simply displays the Gravatar image associated with the [email protected] email address: If a user has not uploaded an image to Gravatar.com then you can auto-generate a unique image for the user from the user email address. The Gravatar control supports four types of auto-generated images: Identicon -- A different geometric pattern is generated for each unrecognized email. MonsterId -- A different image of a monster is generated for each unrecognized email. Wavatar -- A different image of a face is generated for each unrecognized email. Retro -- A different 8-bit arcade-style face is generated for each unrecognized email. For example, there is no Gravatar image associated with the email address [email protected]. The following page displays an auto-generated MonsterId for this email address: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="GravatarMonster.aspx.cs" Inherits="WebApplication1.GravatarMonster" %> <%@ Register TagPrefix="asp" Namespace="AjaxControlToolkit" Assembly="AjaxControlToolkit" %> <html xmlns="http://www.w3.org/1999/xhtml"> <head id="Head1" runat="server"> <title>Gravatar Monster</title> </head> <body> <form id="form1" runat="server"> <asp:ToolkitScriptManager ID="tsm" runat="server" /> <asp:Gravatar ID="Gravatar1" Email="[email protected]" DefaultImageBehavior="MonsterId" runat="server" /> </form> </body> </html> The page above generates the following image automatically from the supplied email address: To learn more about the properties of the new Gravatar control, visit the live Gravatar Sample Page. ASP.NET Connections Talk on the Ajax Control Toolkit If you are interested in learning more about the changes that we are making to the Ajax Control Toolkit then please come to my talk on the Ajax Control Toolkit at the upcoming ASP.NET Connections conference. In the talk, I will present a summary of the changes that we have made to the Ajax Control Toolkit over the last several months and discuss our future plans. Do you have ideas for new Ajax Control Toolkit controls? Ideas for improving the toolkit? Come to my talk – I would love to hear from you. You can register for the ASP.NET Connections conference by visiting the following website: Register for ASP.NET Connections   Summary The previous release of the Ajax Control Toolkit – the July 2011 Release – has had over 100,000 downloads. That is a huge number of developers who are working with the Ajax Control Toolkit. We are really excited about the new features which we added to the Ajax Control Toolkit in the latest September sprint. We hope that you find the updated Calender control, the new Twitter control, and the new Gravatar control valuable when building your ASP.NET Web Forms applications.

    Read the article

  • Complete Guide to Networking Windows 7 with XP and Vista

    - by Mysticgeek
    Since there are three versions of Windows out in the field these days, chances are you need to share data between them. Today we show how to get each version to be share files and printers with one another. In a perfect world, getting your computers with different Microsoft operating systems to network would be as easy as clicking a button. With the Windows 7 Homegroup feature, it’s almost that easy. However, getting all three of them to communicate with each other can be a bit of a challenge. Today we’ve put together a guide that will help you share files and printers in whatever scenario of the three versions you might encounter on your home network. Sharing Between Windows 7 and XP The most common scenario you’re probably going to run into is sharing between Windows 7 and XP.  Essentially you’ll want to make sure both machines are part of the same workgroup, set up the correct sharing settings, and making sure network discovery is enabled on Windows 7. The biggest problem you may run into is finding the correct printer drivers for both versions of Windows. Share Files and Printers Between Windows 7 & XP  Map a Network Drive Another method of sharing data between XP and Windows 7 is mapping a network drive. If you don’t need to share a printer and only want to share a drive, then you can just map an XP drive to Windows 7. Although it might sound complicated, the process is not bad. The trickiest part is making sure you add the appropriate local user. This will allow you to share the contents of an XP drive to your Windows 7 computer. Map a Network Drive from XP to Windows 7 Sharing between Vista and Windows 7 Another scenario you might run into is having to share files and printers between a Vista and Windows 7 machine. The process is a bit easier than sharing between XP and Windows 7, but takes a bit of work. The Homegroup feature isn’t compatible with Vista, so we need to go through a few different steps. Depending on what your printer is, sharing it should be easier as Vista and Windows 7 do a much better job of automatically locating the drivers. How to Share Files and Printers Between Windows 7 and Vista Sharing between Vista and XP When Windows Vista came out, hardware requirements were intensive, drivers weren’t ready, and sharing between them was complicated due to the new Vista structure. The sharing process is pretty straight-forward if you’re not using password protection…as you just need to drop what you want to share into the Vista Public folder. On the other hand, sharing with password protection becomes a bit more difficult. Basically you need to add a user and set up sharing on the XP machine. But once again, we have a complete tutorial for that situation. Share Files and Folders Between Vista and XP Machines Sharing Between Windows 7 with Homegroup If you have one or more Windows 7 machine, sharing files and devices becomes extremely easy with the Homegroup feature. It’s as simple as creating a Homegroup on on machine then joining the other to it. It allows you to stream media, control what data is shared, and can also be password protected. If you don’t want to make your Windows 7 machines part of the same Homegroup, you can still share files through the Public Folder, and setup a printer to be shared as well.   Use the Homegroup Feature in Windows 7 to Share Printers and Files Create a Homegroup & Join a New Computer To It Change which Files are Shared in a Homegroup Windows Home Server If you want an ultimate setup that creates a centralized location to share files between all systems on your home network, regardless of the operating system, then set up a Windows Home Server. It allows you to centralize your important documents and digital media files on one box and provides easy access to data and the ability to stream media to other machines on your network. Not only that, but it provides easy backup of all your machines to the server, in case disaster strikes. How to Install and Setup Windows Home Server How to Manage Shared Folders on Windows Home Server Conclusion The biggest annoyance is dealing with printers that have a different set of drivers for each OS. There is no real easy way to solve this problem. Our best advice is to try to connect it to one machine, and if the drivers won’t work, hook it up to the other computer and see if that works. Each printer manufacturer is different, and Windows doesn’t always automatically install the correct drivers for the device. We hope this guide helps you share your data between whichever Microsoft OS scenario you might run into! Here are some other articles that will help you accomplish your home networking needs: Share a Printer on a Home Network from Vista or XP to Windows 7 How to Share a Folder the XP Way in Windows Vista Similar Articles Productive Geek Tips Delete Wrong AutoComplete Entries in Windows Vista MailSvchost Viewer Shows Exactly What Each svchost.exe Instance is DoingFixing "BOOTMGR is missing" Error While Trying to Boot Windows VistaShow Hidden Files and Folders in Windows 7 or VistaAdd Color Coding to Windows 7 Media Center Program Guide TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Icelandic Volcano Webcams Open Multiple Links At One Go NachoFoto Searches Images in Real-time Office 2010 Product Guides Google Maps Place marks – Pizza, Guns or Strip Clubs Monitor Applications With Kiwi

    Read the article

  • Quite confused about what constitutes Current state of a resource

    - by bckpwrld
    From REST in Practice: Hypermedia and Systems Architecture: The current state of a resource is a combination of: The values of information items belonging to that resource Links to related resources Links that represent a transition to a possible future state of the current resource The results of evaluating any business rules that relate the resource to other local resources a) why would "links to related resources" also represent the current state of a resource? b) I also don't quite understand why "Links that represent a transition to a possible future state of the current resource" also represent the the current state. Namely, those links represent the possibility, not the current state. Analogy would be an int variable set to value 10. It's possible that in the future this variable will get processed and set to value 100, but we don't claim its current state also includes possible future state of 100?! thank you

    Read the article

  • Access violation in DirectX OMSetRenderTargets

    - by IDWMaster
    I receive the following error (Unhandled exception at 0x527DAE81 (d3d11_1sdklayers.dll) in Lesson2.Triangles.exe: 0xC0000005: Access violation reading location 0x00000000) when running the Triangle sample application for DirectX 11 in D3D_FEATURE_LEVEL_9_1. This error occurs at the OMSetRenderTargets function, as shown below, and does not happen if I remove that function from the program (but then, the screen is blue, and does not render the triangle) //// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF //// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO //// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A //// PARTICULAR PURPOSE. //// //// Copyright (c) Microsoft Corporation. All rights reserved #include #include #include "DirectXSample.h" #include "BasicMath.h" #include "BasicReaderWriter.h" using namespace Microsoft::WRL; using namespace Windows::UI::Core; using namespace Windows::Foundation; using namespace Windows::ApplicationModel::Core; using namespace Windows::ApplicationModel::Infrastructure; // This class defines the application as a whole. ref class Direct3DTutorialViewProvider : public IViewProvider { private: CoreWindow^ m_window; ComPtr m_swapChain; ComPtr m_d3dDevice; ComPtr m_d3dDeviceContext; ComPtr m_renderTargetView; public: // This method is called on application launch. void Initialize( _In_ CoreWindow^ window, _In_ CoreApplicationView^ applicationView ) { m_window = window; } // This method is called after Initialize. void Load(_In_ Platform::String^ entryPoint) { } // This method is called after Load. void Run() { // First, create the Direct3D device. // This flag is required in order to enable compatibility with Direct2D. UINT creationFlags = D3D11_CREATE_DEVICE_BGRA_SUPPORT; #if defined(_DEBUG) // If the project is in a debug build, enable debugging via SDK Layers with this flag. creationFlags |= D3D11_CREATE_DEVICE_DEBUG; #endif // This array defines the ordering of feature levels that D3D should attempt to create. D3D_FEATURE_LEVEL featureLevels[] = { D3D_FEATURE_LEVEL_11_1, D3D_FEATURE_LEVEL_11_0, D3D_FEATURE_LEVEL_10_1, D3D_FEATURE_LEVEL_10_0, D3D_FEATURE_LEVEL_9_3, D3D_FEATURE_LEVEL_9_1 }; ComPtr d3dDevice; ComPtr d3dDeviceContext; DX::ThrowIfFailed( D3D11CreateDevice( nullptr, // specify nullptr to use the default adapter D3D_DRIVER_TYPE_HARDWARE, nullptr, // leave as nullptr if hardware is used creationFlags, // optionally set debug and Direct2D compatibility flags featureLevels, ARRAYSIZE(featureLevels), D3D11_SDK_VERSION, // always set this to D3D11_SDK_VERSION &d3dDevice, nullptr, &d3dDeviceContext ) ); // Retrieve the Direct3D 11.1 interfaces. DX::ThrowIfFailed( d3dDevice.As(&m_d3dDevice) ); DX::ThrowIfFailed( d3dDeviceContext.As(&m_d3dDeviceContext) ); // After the D3D device is created, create additional application resources. CreateWindowSizeDependentResources(); // Create a Basic Reader-Writer class to load data from disk. This class is examined // in the Resource Loading sample. BasicReaderWriter^ reader = ref new BasicReaderWriter(); // Load the raw vertex shader bytecode from disk and create a vertex shader with it. auto vertexShaderBytecode = reader-ReadData("SimpleVertexShader.cso"); ComPtr vertexShader; DX::ThrowIfFailed( m_d3dDevice-CreateVertexShader( vertexShaderBytecode-Data, vertexShaderBytecode-Length, nullptr, &vertexShader ) ); // Create an input layout that matches the layout defined in the vertex shader code. // For this lesson, this is simply a float2 vector defining the vertex position. const D3D11_INPUT_ELEMENT_DESC basicVertexLayoutDesc[] = { { "POSITION", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 }, }; ComPtr inputLayout; DX::ThrowIfFailed( m_d3dDevice-CreateInputLayout( basicVertexLayoutDesc, ARRAYSIZE(basicVertexLayoutDesc), vertexShaderBytecode-Data, vertexShaderBytecode-Length, &inputLayout ) ); // Load the raw pixel shader bytecode from disk and create a pixel shader with it. auto pixelShaderBytecode = reader-ReadData("SimplePixelShader.cso"); ComPtr pixelShader; DX::ThrowIfFailed( m_d3dDevice-CreatePixelShader( pixelShaderBytecode-Data, pixelShaderBytecode-Length, nullptr, &pixelShader ) ); // Create vertex and index buffers that define a simple triangle. float3 triangleVertices[] = { float3(-0.5f, -0.5f,13.5f), float3( 0.0f, 0.5f,0), float3( 0.5f, -0.5f,0), }; D3D11_BUFFER_DESC vertexBufferDesc = {0}; vertexBufferDesc.ByteWidth = sizeof(float3) * ARRAYSIZE(triangleVertices); vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT; vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; vertexBufferDesc.CPUAccessFlags = 0; vertexBufferDesc.MiscFlags = 0; vertexBufferDesc.StructureByteStride = 0; D3D11_SUBRESOURCE_DATA vertexBufferData; vertexBufferData.pSysMem = triangleVertices; vertexBufferData.SysMemPitch = 0; vertexBufferData.SysMemSlicePitch = 0; ComPtr vertexBuffer; DX::ThrowIfFailed( m_d3dDevice-CreateBuffer( &vertexBufferDesc, &vertexBufferData, &vertexBuffer ) ); // Once all D3D resources are created, configure the application window. // Allow the application to respond when the window size changes. m_window-SizeChanged += ref new TypedEventHandler( this, &Direct3DTutorialViewProvider::OnWindowSizeChanged ); // Specify the cursor type as the standard arrow cursor. m_window-PointerCursor = ref new CoreCursor(CoreCursorType::Arrow, 0); // Activate the application window, making it visible and enabling it to receive events. m_window-Activate(); // Enter the render loop. Note that tailored applications should never exit. while (true) { // Process events incoming to the window. m_window-Dispatcher-ProcessEvents(CoreProcessEventsOption::ProcessAllIfPresent); // Specify the render target we created as the output target. ID3D11RenderTargetView* targets[1] = {m_renderTargetView.Get()}; m_d3dDeviceContext-OMSetRenderTargets( 1, targets, NULL // use no depth stencil ); // Clear the render target to a solid color. const float clearColor[4] = { 0.071f, 0.04f, 0.561f, 1.0f }; //Code fails here m_d3dDeviceContext-ClearRenderTargetView( m_renderTargetView.Get(), clearColor ); m_d3dDeviceContext-IASetInputLayout(inputLayout.Get()); // Set the vertex and index buffers, and specify the way they define geometry. UINT stride = sizeof(float3); UINT offset = 0; m_d3dDeviceContext-IASetVertexBuffers( 0, 1, vertexBuffer.GetAddressOf(), &stride, &offset ); m_d3dDeviceContext-IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); // Set the vertex and pixel shader stage state. m_d3dDeviceContext-VSSetShader( vertexShader.Get(), nullptr, 0 ); m_d3dDeviceContext-PSSetShader( pixelShader.Get(), nullptr, 0 ); // Draw the cube. m_d3dDeviceContext-Draw(3,0); // Present the rendered image to the window. Because the maximum frame latency is set to 1, // the render loop will generally be throttled to the screen refresh rate, typically around // 60Hz, by sleeping the application on Present until the screen is refreshed. DX::ThrowIfFailed( m_swapChain-Present(1, 0) ); } } // This method is called before the application exits. void Uninitialize() { } private: // This method is called whenever the application window size changes. void OnWindowSizeChanged( _In_ CoreWindow^ sender, _In_ WindowSizeChangedEventArgs^ args ) { m_renderTargetView = nullptr; CreateWindowSizeDependentResources(); } // This method creates all application resources that depend on // the application window size. It is called at app initialization, // and whenever the application window size changes. void CreateWindowSizeDependentResources() { if (m_swapChain != nullptr) { // If the swap chain already exists, resize it. DX::ThrowIfFailed( m_swapChain-ResizeBuffers( 2, 0, 0, DXGI_FORMAT_R8G8B8A8_UNORM, 0 ) ); } else { // If the swap chain does not exist, create it. DXGI_SWAP_CHAIN_DESC1 swapChainDesc = {0}; swapChainDesc.Stereo = false; swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; swapChainDesc.Scaling = DXGI_SCALING_NONE; swapChainDesc.Flags = 0; // Use automatic sizing. swapChainDesc.Width = 0; swapChainDesc.Height = 0; // This is the most common swap chain format. swapChainDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM; // Don't use multi-sampling. swapChainDesc.SampleDesc.Count = 1; swapChainDesc.SampleDesc.Quality = 0; // Use two buffers to enable flip effect. swapChainDesc.BufferCount = 2; // We recommend using this swap effect for all applications. swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL; // Once the swap chain description is configured, it must be // created on the same adapter as the existing D3D Device. // First, retrieve the underlying DXGI Device from the D3D Device. ComPtr dxgiDevice; DX::ThrowIfFailed( m_d3dDevice.As(&dxgiDevice) ); // Ensure that DXGI does not queue more than one frame at a time. This both reduces // latency and ensures that the application will only render after each VSync, minimizing // power consumption. DX::ThrowIfFailed( dxgiDevice-SetMaximumFrameLatency(1) ); // Next, get the parent factory from the DXGI Device. ComPtr dxgiAdapter; DX::ThrowIfFailed( dxgiDevice-GetAdapter(&dxgiAdapter) ); ComPtr dxgiFactory; DX::ThrowIfFailed( dxgiAdapter-GetParent( __uuidof(IDXGIFactory2), &dxgiFactory ) ); // Finally, create the swap chain. DX::ThrowIfFailed( dxgiFactory-CreateSwapChainForImmersiveWindow( m_d3dDevice.Get(), DX::GetIUnknown(m_window), &swapChainDesc, nullptr, // allow on all displays &m_swapChain ) ); } // Once the swap chain is created, create a render target view. This will // allow Direct3D to render graphics to the window. ComPtr backBuffer; DX::ThrowIfFailed( m_swapChain-GetBuffer( 0, __uuidof(ID3D11Texture2D), &backBuffer ) ); DX::ThrowIfFailed( m_d3dDevice-CreateRenderTargetView( backBuffer.Get(), nullptr, &m_renderTargetView ) ); // After the render target view is created, specify that the viewport, // which describes what portion of the window to draw to, should cover // the entire window. D3D11_TEXTURE2D_DESC backBufferDesc = {0}; backBuffer-GetDesc(&backBufferDesc); D3D11_VIEWPORT viewport; viewport.TopLeftX = 0.0f; viewport.TopLeftY = 0.0f; viewport.Width = static_cast(backBufferDesc.Width); viewport.Height = static_cast(backBufferDesc.Height); viewport.MinDepth = D3D11_MIN_DEPTH; viewport.MaxDepth = D3D11_MAX_DEPTH; m_d3dDeviceContext-RSSetViewports(1, &viewport); } }; // This class defines how to create the custom View Provider defined above. ref class Direct3DTutorialViewProviderFactory : IViewProviderFactory { public: IViewProvider^ CreateViewProvider() { return ref new Direct3DTutorialViewProvider(); } }; [Platform::MTAThread] int main(array^) { auto viewProviderFactory = ref new Direct3DTutorialViewProviderFactory(); Windows::ApplicationModel::Core::CoreApplication::Run(viewProviderFactory); return 0; }

    Read the article

  • jQuery Templates and Data Linking (and Microsoft contributing to jQuery)

    - by ScottGu
    The jQuery library has a passionate community of developers, and it is now the most widely used JavaScript library on the web today. Two years ago I announced that Microsoft would begin offering product support for jQuery, and that we’d be including it in new versions of Visual Studio going forward. By default, when you create new ASP.NET Web Forms and ASP.NET MVC projects with VS 2010 you’ll find jQuery automatically added to your project. A few weeks ago during my second keynote at the MIX 2010 conference I announced that Microsoft would also begin contributing to the jQuery project.  During the talk, John Resig -- the creator of the jQuery library and leader of the jQuery developer team – talked a little about our participation and discussed an early prototype of a new client templating API for jQuery. In this blog post, I’m going to talk a little about how my team is starting to contribute to the jQuery project, and discuss some of the specific features that we are working on such as client-side templating and data linking (data-binding). Contributing to jQuery jQuery has a fantastic developer community, and a very open way to propose suggestions and make contributions.  Microsoft is following the same process to contribute to jQuery as any other member of the community. As an example, when working with the jQuery community to improve support for templating to jQuery my team followed the following steps: We created a proposal for templating and posted the proposal to the jQuery developer forum (http://forum.jquery.com/topic/jquery-templates-proposal and http://forum.jquery.com/topic/templating-syntax ). After receiving feedback on the forums, the jQuery team created a prototype for templating and posted the prototype at the Github code repository (http://github.com/jquery/jquery-tmpl ). We iterated on the prototype, creating a new fork on Github of the templating prototype, to suggest design improvements. Several other members of the community also provided design feedback by forking the templating code. There has been an amazing amount of participation by the jQuery community in response to the original templating proposal (over 100 posts in the jQuery forum), and the design of the templating proposal has evolved significantly based on community feedback. The jQuery team is the ultimate determiner on what happens with the templating proposal – they might include it in jQuery core, or make it an official plugin, or reject it entirely.  My team is excited to be able to participate in the open source process, and make suggestions and contributions the same way as any other member of the community. jQuery Template Support Client-side templates enable jQuery developers to easily generate and render HTML UI on the client.  Templates support a simple syntax that enables either developers or designers to declaratively specify the HTML they want to generate.  Developers can then programmatically invoke the templates on the client, and pass JavaScript objects to them to make the content rendered completely data driven.  These JavaScript objects can optionally be based on data retrieved from a server. Because the jQuery templating proposal is still evolving in response to community feedback, the final version might look very different than the version below. This blog post gives you a sense of how you can try out and use templating as it exists today (you can download the prototype by the jQuery core team at http://github.com/jquery/jquery-tmpl or the latest submission from my team at http://github.com/nje/jquery-tmpl).  jQuery Client Templates You create client-side jQuery templates by embedding content within a <script type="text/html"> tag.  For example, the HTML below contains a <div> template container, as well as a client-side jQuery “contactTemplate” template (within the <script type="text/html"> element) that can be used to dynamically display a list of contacts: The {{= name }} and {{= phone }} expressions are used within the contact template above to display the names and phone numbers of “contact” objects passed to the template. We can use the template to display either an array of JavaScript objects or a single object. The JavaScript code below demonstrates how you can render a JavaScript array of “contact” object using the above template. The render() method renders the data into a string and appends the string to the “contactContainer” DIV element: When the page is loaded, the list of contacts is rendered by the template.  All of this template rendering is happening on the client-side within the browser:   Templating Commands and Conditional Display Logic The current templating proposal supports a small set of template commands - including if, else, and each statements. The number of template commands was deliberately kept small to encourage people to place more complicated logic outside of their templates. Even this small set of template commands is very useful though. Imagine, for example, that each contact can have zero or more phone numbers. The contacts could be represented by the JavaScript array below: The template below demonstrates how you can use the if and each template commands to conditionally display and loop the phone numbers for each contact: If a contact has one or more phone numbers then each of the phone numbers is displayed by iterating through the phone numbers with the each template command: The jQuery team designed the template commands so that they are extensible. If you have a need for a new template command then you can easily add new template commands to the default set of commands. Support for Client Data-Linking The ASP.NET team recently submitted another proposal and prototype to the jQuery forums (http://forum.jquery.com/topic/proposal-for-adding-data-linking-to-jquery). This proposal describes a new feature named data linking. Data Linking enables you to link a property of one object to a property of another object - so that when one property changes the other property changes.  Data linking enables you to easily keep your UI and data objects synchronized within a page. If you are familiar with the concept of data-binding then you will be familiar with data linking (in the proposal, we call the feature data linking because jQuery already includes a bind() method that has nothing to do with data-binding). Imagine, for example, that you have a page with the following HTML <input> elements: The following JavaScript code links the two INPUT elements above to the properties of a JavaScript “contact” object that has a “name” and “phone” property: When you execute this code, the value of the first INPUT element (#name) is set to the value of the contact name property, and the value of the second INPUT element (#phone) is set to the value of the contact phone property. The properties of the contact object and the properties of the INPUT elements are also linked – so that changes to one are also reflected in the other. Because the contact object is linked to the INPUT element, when you request the page, the values of the contact properties are displayed: More interesting, the values of the linked INPUT elements will change automatically whenever you update the properties of the contact object they are linked to. For example, we could programmatically modify the properties of the “contact” object using the jQuery attr() method like below: Because our two INPUT elements are linked to the “contact” object, the INPUT element values will be updated automatically (without us having to write any code to modify the UI elements): Note that we updated the contact object above using the jQuery attr() method. In order for data linking to work, you must use jQuery methods to modify the property values. Two Way Linking The linkBoth() method enables two-way data linking. The contact object and INPUT elements are linked in both directions. When you modify the value of the INPUT element, the contact object is also updated automatically. For example, the following code adds a client-side JavaScript click handler to an HTML button element. When you click the button, the property values of the contact object are displayed using an alert() dialog: The following demonstrates what happens when you change the value of the Name INPUT element and click the Save button. Notice that the name property of the “contact” object that the INPUT element was linked to was updated automatically: The above example is obviously trivially simple.  Instead of displaying the new values of the contact object with a JavaScript alert, you can imagine instead calling a web-service to save the object to a database. The benefit of data linking is that it enables you to focus on your data and frees you from the mechanics of keeping your UI and data in sync. Converters The current data linking proposal also supports a feature called converters. A converter enables you to easily convert the value of a property during data linking. For example, imagine that you want to represent phone numbers in a standard way with the “contact” object phone property. In particular, you don’t want to include special characters such as ()- in the phone number - instead you only want digits and nothing else. In that case, you can wire-up a converter to convert the value of an INPUT element into this format using the code below: Notice above how a converter function is being passed to the linkFrom() method used to link the phone property of the “contact” object with the value of the phone INPUT element. This convertor function strips any non-numeric characters from the INPUT element before updating the phone property.  Now, if you enter the phone number (206) 555-9999 into the phone input field then the value 2065559999 is assigned to the phone property of the contact object: You can also use a converter in the opposite direction also. For example, you can apply a standard phone format string when displaying a phone number from a phone property. Combining Templating and Data Linking Our goal in submitting these two proposals for templating and data linking is to make it easier to work with data when building websites and applications with jQuery. Templating makes it easier to display a list of database records retrieved from a database through an Ajax call. Data linking makes it easier to keep the data and user interface in sync for update scenarios. Currently, we are working on an extension of the data linking proposal to support declarative data linking. We want to make it easy to take advantage of data linking when using a template to display data. For example, imagine that you are using the following template to display an array of product objects: Notice the {{link name}} and {{link price}} expressions. These expressions enable declarative data linking between the SPAN elements and properties of the product objects. The current jQuery templating prototype supports extending its syntax with custom template commands. In this case, we are extending the default templating syntax with a custom template command named “link”. The benefit of using data linking with the above template is that the SPAN elements will be automatically updated whenever the underlying “product” data is updated.  Declarative data linking also makes it easier to create edit and insert forms. For example, you could create a form for editing a product by using declarative data linking like this: Whenever you change the value of the INPUT elements in a template that uses declarative data linking, the underlying JavaScript data object is automatically updated. Instead of needing to write code to scrape the HTML form to get updated values, you can instead work with the underlying data directly – making your client-side code much cleaner and simpler. Downloading Working Code Examples of the Above Scenarios You can download this .zip file to get with working code examples of the above scenarios.  The .zip file includes 4 static HTML page: Listing1_Templating.htm – Illustrates basic templating. Listing2_TemplatingConditionals.htm – Illustrates templating with the use of the if and each template commands. Listing3_DataLinking.htm – Illustrates data linking. Listing4_Converters.htm – Illustrates using a converter with data linking. You can un-zip the file to the file-system and then run each page to see the concepts in action. Summary We are excited to be able to begin participating within the open-source jQuery project.  We’ve received lots of encouraging feedback in response to our first two proposals, and we will continue to actively contribute going forward.  These features will hopefully make it easier for all developers (including ASP.NET developers) to build great Ajax applications. Hope this helps, Scott P.S. [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu]

    Read the article

  • How to use BCDEdit to dual boot Windows installations?

    - by Ian Boyd
    What are the bcdedit commands necessary to setup dual boot between different installations of Windows?5 Background i recently installed Windows 8 onto a separate hard drive1. Now that Windows 8 in installed i want to dual-boot back to Windows 7. i have my two2 hard drives: So you can see that i have my two disks, with the partitions containing Windows: Windows 7: \\PhysicalDisk0 (partition 03) Windows 8: \\PhysicalDisk2 (partition 1) What i'm trying to figure out how is how to use bcdedit to instruct the thing that boots Windows that there is another Windows installation out there. Running bcdedit now, it shows current configuration: C:\WINDOWS\system32>bcdedit Windows Boot Manager -------------------- identifier {bootmgr} device partition=\Device\HarddiskVolume2 description Windows Boot Manager locale en-US inherit {globalsettings} integrityservices Enable default {current} resumeobject {ce153eb7-3786-11e2-87c0-e740e123299f} displayorder {current} toolsdisplayorder {memdiag} timeout 30 Windows Boot Loader ------------------- identifier {current} device partition=C: path \WINDOWS\system32\winload.exe description Windows 8 locale en-US inherit {bootloadersettings} recoverysequence {ce153eb9-3786-11e2-87c0-e740e123299f} integrityservices Enable recoveryenabled Yes allowedinmemorysettings 0x15000075 osdevice partition=C: systemroot \WINDOWS resumeobject {ce153eb7-3786-11e2-87c0-e740e123299f} nx OptIn bootmenupolicy Standard hypervisorlaunchtype Auto i cannot find any documentation on the difference between Windows Boot Manager and Windows Boot Loader. Documentation There is some documentation on Bcdedit: Technet: Command Line Reference - Bcdedit Technet: Windows Automated Installation Kit - BCDEdit Command Line Options Whitepaper - BCDEdit Commands for Boot Environment (Word Document) But they don't explain how edit the binary boot configuration data If i had to guess, i would think that a Windows Boot Manager instructs the BIOS what program it should run. That program would give the user a set of boot choices. That leaves Windows Boot Loader do be a particular boot choice, that represents a particular installation of Windows. If that is the case i would need to create a new Windows Boot Loader entry. This means i might want to use the /create parameter: /create Creates a new boot entry: bcdedit [/store filename] /create [id] /d description [/application apptype | /inherit [apptype] | /inherit DEVICE | /device] So i assume a syntax of: >bcdedit /create /d "The old Windows 7" /application osloader Where application can be one of the following types: Apptype Description BOOTSECTOR The boot sector application OSLOADER The Windows boot loader RESUME A resume application Unfortunately, the only documentation about osloader is "The Windows boot loader". i don't see how that can differentiate between Windows 8 on one hard drive, and Windows 7 on another. The other possible parameter when /create a boot loader is >bcdedit /create /D "Windows Vista" /device "The Quick Brown Fox" Unfortunately the documentation is missing for /device: /device Optional. If id is not set to a well-known identifier, the option that is used to specify the new boot entry as an additional device options entry. Since i did not set id to a well-known identifier, i must set /device to "the option that is used to specify the new boot entry as an additional device options entry". i know all those words; they're all English. But i have on idea what it is saying; those words in that order seem nonsensical. So i'm somewhat stymied. i don't want to be like Dan Stolts from Microsoft: I found no content that was particularly helpful when I hosed my machine by playing with BCDEdit. This post would have been ok if there was much more detail especially on the /set command OSDevice, etc. So once I got my machine fixed, I documented the solution and the information is here.... i mean, if a Microsoft guy can't even figure out how to use BCDEdit to edit his BCD, then what chance to i have? Bonus Reading BCDEdit Command-Line Options Bcdedit Server 2008 R2 or Windows 7 System Will NOT Boot After Making Changes To Boot Manager Using BCDEdit Visual BCD Editor4 Windows 7 and Windows 8 RTM Dual Boot Setup Footnotes 1 Since the Windows 8 installer would have damaged my Windows 7 install, i decided to unplug my "main" hard drive during the install. Which is a long-winded explanation of why the Windows 8 installer didn't detect the existing Windows 7 install. Normally the installer would have automatically created the required entries for dual-boot. Not that the reason i'm asking the question is important. 2 Really there's three drives, but the third is just bulk storage. The existence of a 3rd hard drive is irrelevant to the question. i only mention it in case someone wants to know why the screenshot has 3 hard drives when i only mention two. 3 i arbitrarily started numbering partitions at "zero"; not to imply that partitions are numbered starting at zero. i only mention partitions because i don't see how any boot-loader could do its job without knowing which partition, and which folder, an installation of Windows is located in. 4 i'm asking about BCDEdit. i tried Visual BCD Editor. It seems to be a visual BCD editor. That is to say that it's a GUI, but still uses the same terminology as BCDEdit, and requires the same knowledge that BCD doesn't document. 5 For simplicity sake we'll assume that all installation of Windows i want to dual-boot between are Windows Vista or later, making them all compatible with the BCDEdit and the binary boot loader. The alternative would require delving into the intricacies of the old ntloader. Nor am i asking about dual booting to Linux; or how to boot to a Virtual Hard Drive (vhd) image. Just modern versions of Windows on existing hard drives in the same machine. Note: You can ignore everything after the word Background. It's all pointless exposition to satisfy some people's need for "research effort" before they'll consider being helpful. Some people have even been known to summarily close questions unless there is research effort. Some people have been know to close questions if there is too much research effort. Some people close questions when i put the note saying that they can ignore everything after the Background out of spite. Some people are just grumpy.

    Read the article

  • Creating Descriptive Flex Field (DFF) Bean in OAF

    - by Manoj Madhusoodanan
    In this blog I will explain how to add a custom DFF in a custom OAF page.I am using XXCUST_DFF_DEMO table to store the DFF values.Also I am using custom DFF named XXCUST_PERSON_DFF.  Following steps needs to be performed to create this solution. 1) Register the custom table in Oracle Application2) Register the DFF3) Define the segments of DFF4) Create BC4J components for OAF and OA Page which holds the DFF I will explain the steps in detail below. Register the custom table in Oracle Application I am using custom DFF here so I have to register the custom table which I am going to capture the values.Please click here to see the table script. I am using the AD_DD package to register the custom table.Please click here to see the table registration script. Please verify the table has registered successfully. Navigation: Application Developer > Application > Database > Table Table has registered successfully. Register the DFF Next step is to register the DFF. Navigate to Application Developer > Flex Field > Descriptive > Register. Give details as below. Click on Reference Fields and set the Reference Field as ATTRIBUTE_CATEGORY. Click on the Columns button to verify that the columns ATTRIBUTE_CATEGORY,ATTRIBUTE1 .... ATTRIBUTE30 are enabled. DFF has registered successfully. Define the segments of DFF Here I am going to define the segments of the DFF.Navigate to Application Developer > Flex Field > Descriptive > Segments.Query for "XXCUST - Person DFF". Uncheck "Freeze Flexfield Definition". In my DFF the reference field I want to display a value set which has values "Permanent" and "Contractor". So define a value set  XXCUST_EMPLOYMENT_TYPE. Navigation: Application Developer > Flex Field > Descriptive > Validation > Sets After that assign the values to above created value sets. Navigation: Application Developer > Flex Field > Descriptive > Validation > Values Assign XXCUST_EMPLOYMENT_TYPE to Context Field Valueset. Setup the Context Field Values based on below table. Context Code Segments Global Data Elements Phone Number Email Fax Contractor Manager Extension Number CSP Name Permanent Extension Number Access Card Number Phone Number,Email and Fax displays always.When user choose Context Value as "Contractor" Manager Extension Number and CSP Name will show.In case of "Permanent" Extension Number and Access Card Number will show.  Assign value set also as follows. For Global Data Elements following are the segments. For "Contractor" following are the segments. For "Permanent" following are the segments. Check the "Freeze Flexfield Definition" check box and save.Standard concurrent program "Flexfield View Generator" will generate XXCUST_DFF_DEMO_DFV view which we mentioned in the DFF registration step.  Now the DFF has created successfully and ready to use. Create BC4J components for OAF and OA Page which holds the DFF Create the BC4J components ( EO,VO and AM) appropriately.Create the page based on the created VO.For DFF create an item of type "flex" with following property.  Note: You cannot create a flex item directly under a messageComponentLayout region, but you can create a messageLayout region under the messageComponentLayout region and add the flex item under the messageLayout region. In the Segment List property give the segment names which you want to display.The syntax of this is Global Data Elements|SEGMENT 1|...|SEGMENT N||[Context Code1]|SEGMENT 1|...|SEGMENT N||[Context Code2]|SEGMENT 1|...|SEGMENT N||... Eg: Global Data Elements|Phone Number|Email|Fax||Contractor|Manager Extension Number|CSP Name||Permanent|Extension Number|Access Card Number When you change the Context Value corresponding segments will display automatically by PPR in the page. You can attach partial action to the DFF bean programmatically so that you can identify the action related to DFF. pageContext.getParameter(EVENT_PARAM) will return "FLEX_CONTEXT_CHANGEDPersonDFF" when you change the DFF Context. Page is ready and you can test. When you choose "Contract" following output you can see. When you choose "Permanent" following output you can see.  Give proper values and press Apply.You can see values populated in the table.

    Read the article

  • When should I use Areas in TFS instead of Team Projects

    - by Martin Hinshelwood
    Well, it depends…. If you are a small company that creates a finite number of internal projects then you will find it easier to create a single project for each of your products and have TFS do the heavy lifting with reporting, SharePoint sites and Version Control. But what if you are not… Update 9th March 2010 Michael Fourie gave me some feedback which I have integrated. Ed Blankenship via @edblankenship offered encouragement and a nice quote. Ewald Hofman gave me a couple of Cons, and maybe a few more soon. Ewald’s company, Avanade, currently uses Areas, but it looks like the manual management is getting too much and the project is getting cluttered. What if you are likely to have hundreds of projects, possibly with a multitude of internal and external projects? You might have 1 project for a customer or 10. This is the situation that most consultancies find themselves in and thus they need a more sustainable and maintainable option. What I am advocating is that we should have 1 “Team Project” per customer, and use areas to create “sub projects” within that single “Team Project”. "What you describe is what we generally do internally and what we recommend. We make very heavy use of area path to categorize the work within a larger project." - Brian Harry, Microsoft Technical Fellow & Product Unit Manager for Team Foundation Server   "We tend to use areas to segregate multiple projects in the same team project and it works well." - Tiago Pascoal, Visual Studio ALM MVP   "In general, I believe this approach provides consistency [to multi-product engagements] and lowers the administration and maintenance costs. All good." - Michael Fourie, Visual Studio ALM MVP   “@MrHinsh BTW, I'm very much a fan of very large, if not huge, team projects in TFS. Just FYI :) Use Areas & Iterations.” Ed Blankenship, Visual Studio ALM MVP   This would mean that SSW would have a single Team Project called “SSW” that contains all of our internal projects and consequently all of the Areas and Iteration move down one hierarchy to accommodate this. Where we would have had “\SSW\Sprint 1” we now have “\SSW\SqlDeploy\Sprint1” with “SqlDeploy” being our internal project. At the moment SSW has over 70 internal projects and more than 170 total projects in TFS. This method has long term benefits that help to simplify the support model for companies that often have limited internal support time and many projects. But, there are implications as TFS does not provide this model “out-of-the-box”. These implications stretch across Areas, Iterations, Queries, Project Portal and Version Control. Michael made a good comment, he said: I agree with your approach, assuming that in a multi-product engagement with a client, they are happy to adopt the same process template across all products. If they are not, then it’ll either be easy to convince them or there is a valid reason for having a different template - Michael Fourie, Visual Studio ALM MVP   At SSW we have a standard template that we use and this is applied across the board, to all of our projects. We even apply any changes to the core process template to all of our existing projects as well. If you have multiple projects for the same clients on multiple templates and you want to keep it that way, then this approach will not work for you. However, if you want to standardise as we have at SSW then this approach may benefit you as well. Implications around Areas Areas should be used for topological classification/isolation of work items. You can think of this as architecture areas, organisational areas or even the main features of your application. In our scenario there is an additional top level item that represents the Project / Product that we want to chop our Team Project into. Figure: Creating a sub area to represent a product/project is easy. <teamproject> <teamproject>\<Functional Area/module whatever> Becomes: <teamproject> <teamproject>\<ProjectName>\ <teamproject>\<ProjectName>\<Functional Area/module whatever> Implications around Iterations Iterations should be used for chronological classification/isolation of work items. This could include isolated time boxes, milestones or release timelines and really depends on the logical flow of your project or projects. Due to the new level in Area we need to add the same level to Iteration. This is primarily because it is unlikely that the sprints in each of your projects/products will start and end at the same time. This is just a reality of managing multiple projects. Figure: Adding the same Area value to Iteration as the top level item adds flexibility to Iteration. <teamproject>\Sprint 1 Or <teamproject>\Release 1\Sprint 1 Becomes: <teamproject>\<ProjectName>\Sprint 1 Or <teamproject>\<ProjectName>\Release 1\Sprint 1 Implications around Queries Queries are used to filter your work items based on a specified level of granularity. There are a number of queries that are built into a project created using the MSF Agile 5.0 template, but we now have multiple projects and it would be a pain to have to edit all of the work items every time we changed project, and that would only allow one team to work on one project at a time.   Figure: The Queries that are created in a normal MSF Agile 5.0 project do not quite suit our new needs. In order for project contributors to be able to query based on their project we need a couple of things. The first thing I did was to create an “_Area Template” folder that has a copy of the project layout with all the queries setup to filter based on the “_Area Template” Area and the “_Sprint template” you can see in the Area and Iteration views. Figure: The template is currently easily drag and drop, but you then need to edit the queries to point at the right Area and Iteration. This needs a tool. I then created an “Areas” folder to hold all of the area specific queries. So, when you go to create a new TFS Sub-Project you just drag “_Area Template” while holding “Ctrl” and drop it onto “Areas”. There is a little setup here. That said I managed it in around 10 minutes which is not so bad, and I can imagine it being quite easy to build a tool to create these queries Figure: These new queries can be configured in around 10 minutes, which includes setting up the Area and Iteration as well. Version Control What about your source code? Well, that is the easiest of the lot. Just create a sub folder for each of your projects/products.   Figure: Creating sub folders in source control is easy as “Right click | Create new folder”. <teamproject>\DEV\Main\ Becomes: <teamproject>\<ProjectName>\DEV\Main\ Conclusion I think it is up to each company to make a call on how you want to configure your Team Projects and it depends completely on how many projects/products you are going to have for each customer including yourself. If we decide to utilise this route it will require some configuration to get our 170+ projects into this format, and I will probably be writing some tools to help. Pros You only have one project to upgrade when a process template changes – After going through an upgrade of over 170 project prior to the changes in the RC I can tell you that that many projects is no fun. Standardises your Process Template – You will always have the same Process implementation across projects/products without exception You get tighter control over the permissions – Yes, you can do this on a standard Team Project, but it gets a lot easier with practice. You can “move” work items from one “product” to another – Have we not always wanted to do that. You can rename your projects – Wahoo: everyone wants to do this, now you can. One set of Reporting Services reports to manage – You set an area and iteration to run reports anyway, so you may as well set both. Simplified Check-In Policies– There is only one set of check-in policies per client. This simplifies administration of policies. Simplified Alerts – As alerts are applied across multiple projects this simplifies your alert rules as per client. Cons All of these cons could be mitigated by a custom tool that helps automate creation of “Sub-projects” within Team Projects. This custom tool could create areas, Iteration, permissions, SharePoint and queries. It just does not exist yet :) You need to configure the Areas and Iterations You need to configure the permissions You may need to configure sub sites for SharePoint (depends on your requirement) – If you have two projects/products in the same Team Project then you will not see the burn down for each one out-of-the-box, but rather a cumulative for the Team Project. This is not really that much of a problem as you would have to configure your burndown graphs for your current iteration anyway. note: When you create a sub site to a TFS linked portal it will inherit the settings of its parent site :) This is fantastic as it means that you can easily create sub sites and then set the Area and Iteration path in each of the reports to be the correct one. Every team wants their own customization (via Ewald Hofman) - small teams of 2 persons against teams of 30 – or even outsourcing – need their own process, you cannot allow that because everybody gets the same work item types. note: Luckily at SSW this is not a problem as our template is standardised across all projects and customers. Large list of builds (via Ewald Hofman) – As the build list in Team Explorer is just a flat list it can get very cluttered. note: I would mitigate this by removing any build that has not been run in over 30 days. The build template and workflow will still be available in version control, but it will clean the list. Feedback Now that I have explained this method, what do you think? What other pros and cons can you see? What do you think of this approach? Will you be using it? What tools would you like to support you?   Technorati Tags: Visual Studio ALM,TFS Administration,TFS,Team Foundation Server,Project Planning,TFS Customisation

    Read the article

  • Parallelism in .NET – Part 4, Imperative Data Parallelism: Aggregation

    - by Reed
    In the article on simple data parallelism, I described how to perform an operation on an entire collection of elements in parallel.  Often, this is not adequate, as the parallel operation is going to be performing some form of aggregation. Simple examples of this might include taking the sum of the results of processing a function on each element in the collection, or finding the minimum of the collection given some criteria.  This can be done using the techniques described in simple data parallelism, however, special care needs to be taken into account to synchronize the shared data appropriately.  The Task Parallel Library has tools to assist in this synchronization. The main issue with aggregation when parallelizing a routine is that you need to handle synchronization of data.  Since multiple threads will need to write to a shared portion of data.  Suppose, for example, that we wanted to parallelize a simple loop that looked for the minimum value within a dataset: double min = double.MaxValue; foreach(var item in collection) { double value = item.PerformComputation(); min = System.Math.Min(min, value); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This seems like a good candidate for parallelization, but there is a problem here.  If we just wrap this into a call to Parallel.ForEach, we’ll introduce a critical race condition, and get the wrong answer.  Let’s look at what happens here: // Buggy code! Do not use! double min = double.MaxValue; Parallel.ForEach(collection, item => { double value = item.PerformComputation(); min = System.Math.Min(min, value); }); This code has a fatal flaw: min will be checked, then set, by multiple threads simultaneously.  Two threads may perform the check at the same time, and set the wrong value for min.  Say we get a value of 1 in thread 1, and a value of 2 in thread 2, and these two elements are the first two to run.  If both hit the min check line at the same time, both will determine that min should change, to 1 and 2 respectively.  If element 1 happens to set the variable first, then element 2 sets the min variable, we’ll detect a min value of 2 instead of 1.  This can lead to wrong answers. Unfortunately, fixing this, with the Parallel.ForEach call we’re using, would require adding locking.  We would need to rewrite this like: // Safe, but slow double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach(collection, item => { double value = item.PerformComputation(); lock(syncObject) min = System.Math.Min(min, value); }); This will potentially add a huge amount of overhead to our calculation.  Since we can potentially block while waiting on the lock for every single iteration, we will most likely slow this down to where it is actually quite a bit slower than our serial implementation.  The problem is the lock statement – any time you use lock(object), you’re almost assuring reduced performance in a parallel situation.  This leads to two observations I’ll make: When parallelizing a routine, try to avoid locks. That being said: Always add any and all required synchronization to avoid race conditions. These two observations tend to be opposing forces – we often need to synchronize our algorithms, but we also want to avoid the synchronization when possible.  Looking at our routine, there is no way to directly avoid this lock, since each element is potentially being run on a separate thread, and this lock is necessary in order for our routine to function correctly every time. However, this isn’t the only way to design this routine to implement this algorithm.  Realize that, although our collection may have thousands or even millions of elements, we have a limited number of Processing Elements (PE).  Processing Element is the standard term for a hardware element which can process and execute instructions.  This typically is a core in your processor, but many modern systems have multiple hardware execution threads per core.  The Task Parallel Library will not execute the work for each item in the collection as a separate work item. Instead, when Parallel.ForEach executes, it will partition the collection into larger “chunks” which get processed on different threads via the ThreadPool.  This helps reduce the threading overhead, and help the overall speed.  In general, the Parallel class will only use one thread per PE in the system. Given the fact that there are typically fewer threads than work items, we can rethink our algorithm design.  We can parallelize our algorithm more effectively by approaching it differently.  Because the basic aggregation we are doing here (Min) is communitive, we do not need to perform this in a given order.  We knew this to be true already – otherwise, we wouldn’t have been able to parallelize this routine in the first place.  With this in mind, we can treat each thread’s work independently, allowing each thread to serially process many elements with no locking, then, after all the threads are complete, “merge” together the results. This can be accomplished via a different set of overloads in the Parallel class: Parallel.ForEach<TSource,TLocal>.  The idea behind these overloads is to allow each thread to begin by initializing some local state (TLocal).  The thread will then process an entire set of items in the source collection, providing that state to the delegate which processes an individual item.  Finally, at the end, a separate delegate is run which allows you to handle merging that local state into your final results. To rewriting our routine using Parallel.ForEach<TSource,TLocal>, we need to provide three delegates instead of one.  The most basic version of this function is declared as: public static ParallelLoopResult ForEach<TSource, TLocal>( IEnumerable<TSource> source, Func<TLocal> localInit, Func<TSource, ParallelLoopState, TLocal, TLocal> body, Action<TLocal> localFinally ) The first delegate (the localInit argument) is defined as Func<TLocal>.  This delegate initializes our local state.  It should return some object we can use to track the results of a single thread’s operations. The second delegate (the body argument) is where our main processing occurs, although now, instead of being an Action<T>, we actually provide a Func<TSource, ParallelLoopState, TLocal, TLocal> delegate.  This delegate will receive three arguments: our original element from the collection (TSource), a ParallelLoopState which we can use for early termination, and the instance of our local state we created (TLocal).  It should do whatever processing you wish to occur per element, then return the value of the local state after processing is completed. The third delegate (the localFinally argument) is defined as Action<TLocal>.  This delegate is passed our local state after it’s been processed by all of the elements this thread will handle.  This is where you can merge your final results together.  This may require synchronization, but now, instead of synchronizing once per element (potentially millions of times), you’ll only have to synchronize once per thread, which is an ideal situation. Now that I’ve explained how this works, lets look at the code: // Safe, and fast! double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach( collection, // First, we provide a local state initialization delegate. () => double.MaxValue, // Next, we supply the body, which takes the original item, loop state, // and local state, and returns a new local state (item, loopState, localState) => { double value = item.PerformComputation(); return System.Math.Min(localState, value); }, // Finally, we provide an Action<TLocal>, to "merge" results together localState => { // This requires locking, but it's only once per used thread lock(syncObj) min = System.Math.Min(min, localState); } ); Although this is a bit more complicated than the previous version, it is now both thread-safe, and has minimal locking.  This same approach can be used by Parallel.For, although now, it’s Parallel.For<TLocal>.  When working with Parallel.For<TLocal>, you use the same triplet of delegates, with the same purpose and results. Also, many times, you can completely avoid locking by using a method of the Interlocked class to perform the final aggregation in an atomic operation.  The MSDN example demonstrating this same technique using Parallel.For uses the Interlocked class instead of a lock, since they are doing a sum operation on a long variable, which is possible via Interlocked.Add. By taking advantage of local state, we can use the Parallel class methods to parallelize algorithms such as aggregation, which, at first, may seem like poor candidates for parallelization.  Doing so requires careful consideration, and often requires a slight redesign of the algorithm, but the performance gains can be significant if handled in a way to avoid excessive synchronization.

    Read the article

  • SQL SERVER – T-SQL Script to Take Database Offline – Take Database Online

    - by pinaldave
    Blog reader Joyesh Mitra recently left a comment to one of my very old posts about SQL SERVER – 2005 Take Off Line or Detach Database, which I have written focusing on taking the database offline. However, I did not include how to bring the offline database to online in that post. The reason I did not write it was that I was thinking it was a very simple script that almost everyone knows. However, it seems to me that there is something I found advanced in this procedure that is not simple for other people. We all have different expertise and we all try to learn new things, so I do not see any reason as to not write about the script to take the database online. -- Create Test DB CREATE DATABASE [myDB] GO -- Take the Database Offline ALTER DATABASE [myDB] SET OFFLINE WITH ROLLBACK IMMEDIATE GO -- Take the Database Online ALTER DATABASE [myDB] SET ONLINE GO -- Clean up DROP DATABASE [myDB] GO Joyesh let me know if this answers your question. Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, Readers Question, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • ASP.NET MVC 3: Implicit and Explicit code nuggets with Razor

    - by ScottGu
    This is another in a series of posts I’m doing that cover some of the new ASP.NET MVC 3 features: New @model keyword in Razor (Oct 19th) Layouts with Razor (Oct 22nd) Server-Side Comments with Razor (Nov 12th) Razor’s @: and <text> syntax (Dec 15th) Implicit and Explicit code nuggets with Razor (today) In today’s post I’m going to discuss how Razor enables you to both implicitly and explicitly define code nuggets within your view templates, and walkthrough some code examples of each of them.  Fluid Coding with Razor ASP.NET MVC 3 ships with a new view-engine option called “Razor” (in addition to the existing .aspx view engine).  You can learn more about Razor, why we are introducing it, and the syntax it supports from my Introducing Razor blog post. Razor minimizes the number of characters and keystrokes required when writing a view template, and enables a fast, fluid coding workflow. Unlike most template syntaxes, you do not need to interrupt your coding to explicitly denote the start and end of server blocks within your HTML. The Razor parser is smart enough to infer this from your code. This enables a compact and expressive syntax which is clean, fast and fun to type. For example, the Razor snippet below can be used to iterate a collection of products and output a <ul> list of product names that link to their corresponding product pages: When run, the above code generates output like below: Notice above how we were able to embed two code nuggets within the content of the foreach loop.  One of them outputs the name of the Product, and the other embeds the ProductID within a hyperlink.  Notice that we didn’t have to explicitly wrap these code-nuggets - Razor was instead smart enough to implicitly identify where the code began and ended in both of these situations.  How Razor Enables Implicit Code Nuggets Razor does not define its own language.  Instead, the code you write within Razor code nuggets is standard C# or VB.  This allows you to re-use your existing language skills, and avoid having to learn a customized language grammar. The Razor parser has smarts built into it so that whenever possible you do not need to explicitly mark the end of C#/VB code nuggets you write.  This makes coding more fluid and productive, and enables a nice, clean, concise template syntax.  Below are a few scenarios that Razor supports where you can avoid having to explicitly mark the beginning/end of a code nugget, and instead have Razor implicitly identify the code nugget scope for you: Property Access Razor allows you to output a variable value, or a sub-property on a variable that is referenced via “dot” notation: You can also use “dot” notation to access sub-properties multiple levels deep: Array/Collection Indexing: Razor allows you to index into collections or arrays: Calling Methods: Razor also allows you to invoke methods: Notice how for all of the scenarios above how we did not have to explicitly end the code nugget.  Razor was able to implicitly identify the end of the code block for us. Razor’s Parsing Algorithm for Code Nuggets The below algorithm captures the core parsing logic we use to support “@” expressions within Razor, and to enable the implicit code nugget scenarios above: Parse an identifier - As soon as we see a character that isn't valid in a C# or VB identifier, we stop and move to step 2 Check for brackets - If we see "(" or "[", go to step 2.1., otherwise, go to step 3  Parse until the matching ")" or "]" (we track nested "()" and "[]" pairs and ignore "()[]" we see in strings or comments) Go back to step 2 Check for a "." - If we see one, go to step 3.1, otherwise, DO NOT ACCEPT THE "." as code, and go to step 4 If the character AFTER the "." is a valid identifier, accept the "." and go back to step 1, otherwise, go to step 4 Done! Differentiating between code and content Step 3.1 is a particularly interesting part of the above algorithm, and enables Razor to differentiate between scenarios where an identifier is being used as part of the code statement, and when it should instead be treated as static content: Notice how in the snippet above we have ? and ! characters at the end of our code nuggets.  These are both legal C# identifiers – but Razor is able to implicitly identify that they should be treated as static string content as opposed to being part of the code expression because there is whitespace after them.  This is pretty cool and saves us keystrokes. Explicit Code Nuggets in Razor Razor is smart enough to implicitly identify a lot of code nugget scenarios.  But there are still times when you want/need to be more explicit in how you scope the code nugget expression.  The @(expression) syntax allows you to do this: You can write any C#/VB code statement you want within the @() syntax.  Razor will treat the wrapping () characters as the explicit scope of the code nugget statement.  Below are a few scenarios where we could use the explicit code nugget feature: Perform Arithmetic Calculation/Modification: You can perform arithmetic calculations within an explicit code nugget: Appending Text to a Code Expression Result: You can use the explicit expression syntax to append static text at the end of a code nugget without having to worry about it being incorrectly parsed as code: Above we have embedded a code nugget within an <img> element’s src attribute.  It allows us to link to images with URLs like “/Images/Beverages.jpg”.  Without the explicit parenthesis, Razor would have looked for a “.jpg” property on the CategoryName (and raised an error).  By being explicit we can clearly denote where the code ends and the text begins. Using Generics and Lambdas Explicit expressions also allow us to use generic types and generic methods within code expressions – and enable us to avoid the <> characters in generics from being ambiguous with tag elements. One More Thing….Intellisense within Attributes We have used code nuggets within HTML attributes in several of the examples above.  One nice feature supported by the Razor code editor within Visual Studio is the ability to still get VB/C# intellisense when doing this. Below is an example of C# code intellisense when using an implicit code nugget within an <a> href=”” attribute: Below is an example of C# code intellisense when using an explicit code nugget embedded in the middle of a <img> src=”” attribute: Notice how we are getting full code intellisense for both scenarios – despite the fact that the code expression is embedded within an HTML attribute (something the existing .aspx code editor doesn’t support).  This makes writing code even easier, and ensures that you can take advantage of intellisense everywhere. Summary Razor enables a clean and concise templating syntax that enables a very fluid coding workflow.  Razor’s ability to implicitly scope code nuggets reduces the amount of typing you need to perform, and leaves you with really clean code. When necessary, you can also explicitly scope code expressions using a @(expression) syntax to provide greater clarity around your intent, as well as to disambiguate code statements from static markup. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Using linked servers, OPENROWSET and OPENQUERY

    - by BuckWoody
    SQL Server has a few mechanisms to reach out to another server (even another server type) and query data from within a Transact-SQL statement. Among them are a set of stored credentials and information (called a Linked Server), a statement that uses a linked server called called OPENQUERY, another called OPENROWSET, and one called OPENDATASOURCE. This post isn’t about those particular functions or statements – hit the links for more if you’re new to those topics. I’m actually more concerned about where I see these used than the particular method. In many cases, a Linked server isn’t another Relational Database Management System (RDMBS) like Oracle or DB2 (which is possible with a linked server), but another SQL Server. My concern is that linked servers are the new Data Transformation Services (DTS) from SQL Server 2000 – something that was designed for one purpose but which is being morphed into something much more. In the case of DTS, most of us turned that feature into a full-fledged job system. What was designed as a simple data import and export system has been pressed into service doing logic, routing and timing. And of course we all know how painful it was to move off of a complex DTS system onto SQL Server Integration Services. In the case of linked servers, what should be used as a method of running a simple query or two on another server where you have occasional connection or need a quick import of a small data set is morphing into a full federation strategy. In some cases I’ve seen a complex web of linked servers, and when credentials, names or anything else changes there are huge problems. Now don’t get me wrong – linked servers and other forms of distributing queries is a fantastic set of tools that we have to move data around. I’m just saying that when you start having lots of workarounds and when things get really complicated, you might want to step back a little and ask if there’s a better way. Are you able to tolerate some latency? Perhaps you’re able to use Service Broker. Would you like to be platform-independent on the data source? Perhaps a middle-tier might make more sense, abstracting the queries there and sending them to the proper server. Designed properly, I’ve seen these systems scale further and be more resilient than loading up on linked servers. Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Display System Information on Your Desktop with Desktop Info

    - by Asian Angel
    Do you like to monitor your system but do not want a complicated app to do it with? If you love simplicity and easy configuration then join us as we look at Desktop Info. Desktop Info in Action Desktop Info comes in a zip file format so you will need to unzip the app, place it into an appropriate “Program Files Folder”, and create a shortcut. Do NOT delete the “Read Me File”…this will be extremely useful to you when you make changes to the “Configuration File”. Once you have everything set up you are ready to start Desktop Info up. This is the default layout and set of listings displayed when you start Desktop Info up for the first time. The font colors will be a mix of colors as seen here and the font size will perhaps be a bit small but those are very easy to change if desired. You can access the “Context Menu” directly over the “information area”…so no need to look for it in the “System Tray”. Notice that you can easily access that important “Read Me File” from here… The full contents of the configuration file (.ini file) are displayed here so that you can see exactly what kind of information can be displayed using the default listings. The first section is “Options”…you will most likely want to increase the font size while you are here. Then “Items”… If you are unhappy with any of the font colors in the “information area” this is where you can make the changes. You can turn information display items on or off here. And finally “Files, Registry, & Event Logs”. Here is our displayed information after a few tweaks in the configuration file. Very nice. Conclusion If you have been looking for a system information app that is simple and easy to set up then you should definitely give Desktop Info a try. Links Download Desktop Info Similar Articles Productive Geek Tips Ask the Readers: What are Your Computer’s Hardware Specs?Allow Remote Control To Your Desktop On UbuntuHow To Get Detailed Information About Your PCGet CPU / System Load Average on Ubuntu LinuxEnable Remote Desktop (VNC) on Kubuntu TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Test Drive Windows 7 Online Download Wallpapers From National Geographic Site Spyware Blaster v4.3 Yes, it’s Patch Tuesday Generate Stunning Tag Clouds With Tagxedo Install, Remove and HIDE Fonts in Windows 7

    Read the article

  • SQL SERVER – DATE and TIME in SQL Server 2008

    - by pinaldave
    I was thinking about DATE and TIME datatypes in SQL Server 2008. I earlier wrote about the about best practices of the same. Recently I had written one of the script written for SQL Server 2008 had to run on SQL Server 2005 (don’t ask me why!), I had to convert the DATE and TIME datatypes to DATETIME. Let me run quick demo for the same. DECLARE @varDate AS DATE DECLARE @varTime AS TIME SET @varDate = '10/10/2010' SET @varTime = '12:12:12' SELECT CAST(@varDate AS DATETIME) C_Date SELECT CAST(@varTime AS DATETIME) C_Time As seen in example when DATE is converted to DATETIME it adds the of midnight. When TIME is converted to DATETIME it adds the date of 1900 and it is something one wants to consider if you are going to run script from SQL Server 2008 to earlier version with CONVERT. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: SQL, SQL Authority, SQL DateTime, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • How about a new platform for your next API&hellip; a CMS?

    - by Elton Stoneman
    Originally posted on: http://geekswithblogs.net/EltonStoneman/archive/2014/05/22/how-about-a-new-platform-for-your-next-apihellip-a.aspxSay what? I’m seeing a type of API emerge which serves static or long-lived resources, which are mostly read-only and have a controlled process to update the data that gets served. Think of something like an app configuration API, where you want a central location for changeable settings. You could use this server side to store database connection strings and keep all your instances in sync, or it could be used client side to push changes out to all users (and potentially driving A/B or MVT testing). That’s a good candidate for a RESTful API which makes proper use of HTTP expiration and validation caching to minimise traffic, but really you want a front end UI where you can edit the current config that the API returns and publish your changes. Sound like a Content Mangement System would be a good fit? I’ve been looking at that and it’s a great fit for this scenario. You get a lot of what you need out of the box, the amount of custom code you need to write is minimal, and you get a whole lot of extra stuff from using CMS which is very useful, but probably not something you’d build if you had to put together a quick UI over your API content (like a publish workflow, fine-grained security and an audit trail). You typically use a CMS for HTML resources, but it’s simple to expose JSON instead – or to do content negotiation to support both, so you can open a resource in a browser and see a nice visual representation, or request it with: Accept=application/json and get the same content rendered as JSON for the app to use. Enter Umbraco Umbraco is an open source .NET CMS that’s been around for a while. It has very good adoption, a lively community and a good release cycle. It’s easy to use, has all the functionality you need for a CMS-driven API, and it’s scalable (although you won’t necessarily put much scale on the CMS layer). In the rest of this post, I’ll build out a simple app config API using Umbraco. We’ll define the structure of the configuration resource by creating a new Document Type and setting custom properties; then we’ll build a very simple Razor template to return configuration documents as JSON; then create a resource and see how it looks. And we’ll look at how you could build this into a wider solution. If you want to try this for yourself, it’s ultra easy – there’s an Umbraco image in the Azure Website gallery, so all you need to to is create a new Website, select Umbraco from the image and complete the installation. It will create a SQL Azure website to store all the content, as well as a Website instance for editing and accessing content. They’re standard Azure resources, so you can scale them as you need. The default install creates a starter site for some HTML content, which you can use to learn your way around (or just delete). 1. Create Configuration Document Type In Umbraco you manage content by creating and modifying documents, and every document has a known type, defining what properties it holds. We’ll create a new Document Type to describe some basic config settings. In the Settings section from the left navigation (spanner icon), expand Document Types and Master, hit the ellipsis and select to create a new Document Type: This will base your new type off the Master type, which gives you some existing properties that we’ll use – like the Page Title which will be the resource URL. In the Generic Properties tab for the new Document Type, you set the properties you’ll be able to edit and return for the resource: Here I’ve added a text string where I’ll set a default cache lifespan, an image which I can use for a banner display, and a date which could show the user when the next release is due. This is the sort of thing that sits nicely in an app config API. It’s likely to change during the life of the product, but not very often, so it’s good to have a centralised place where you can make and publish changes easily and safely. It also enables A/B and MVT testing, as you can change the response each client gets based on your set logic, and their apps will behave differently without needing a release. 2. Define the response template Now we’ve defined the structure of the resource (as a document), in Umbraco we can define a C# Razor template to say how that resource gets rendered to the client. If you only want to provide JSON, it’s easy to render the content of the document by building each property in the response (Umbraco uses dynamic objects so you can specify document properties as object properties), or you can support content negotiation with very little effort. Here’s a template to render the document as HTML or JSON depending on the Accept header, using JSON.NET for the API rendering: @inherits Umbraco.Web.Mvc.UmbracoTemplatePage @using Newtonsoft.Json @{ Layout = null; } @if(UmbracoContext.HttpContext.Request.Headers["accept"] != null &amp;&amp; UmbracoContext.HttpContext.Request.Headers["accept"] == "application/json") { Response.ContentType = "application/json"; @Html.Raw(JsonConvert.SerializeObject(new { cacheLifespan = CurrentPage.cacheLifespan, bannerImageUrl = CurrentPage.bannerImage, nextReleaseDate = CurrentPage.nextReleaseDate })) } else { <h1>App configuration</h1> <p>Cache lifespan: <b>@CurrentPage.cacheLifespan</b></p> <p>Banner Image: </p> <img src="@CurrentPage.bannerImage"> <p>Next Release Date: <b>@CurrentPage.nextReleaseDate</b></p> } That’s a rough-and ready example of what you can do. You could make it completely generic and just render all the document’s properties as JSON, but having a specific template for each resource gives you control over what gets sent out. And the templates are evaluated at run-time, so if you need to change the output – or extend it, say to add caching response headers – you just edit the template and save, and the next client request gets rendered from the new template. No code to build and ship. 3. Create the content With your document type created, in  the Content pane you can create a new instance of that document, where Umbraco gives you a nice UI to input values for the properties we set up on the Document Type: Here I’ve set the cache lifespan to an xs:duration value, uploaded an image for the banner and specified a release date. Each property gets the appropriate input control – text box, file upload and date picker. At the top of the page is the name of the resource – myapp in this example. That specifies the URL for the resource, so if I had a DNS entry pointing to my Umbraco instance, I could access the config with a URL like http://static.x.y.z.com/config/myapp. The setup is all done now, so when we publish this resource it’ll be available to access.  4. Access the resource Now if you open  that URL in the browser, you’ll see the HTML version rendered: - complete with the  image and formatted date. Umbraco lets you save changes and preview them before publishing, so the HTML view could be a good way of showing editors their changes in a usable view, before they confirm them. If you browse the same URL from a REST client, specifying the Accept=application/json request header, you get this response:   That’s the exact same resource, with a managed UI to publish it, being accessed as HTML or JSON with a tiny amount of effort. 5. The wider landscape If you have fairy stable content to expose as an API, I think  this approach is really worth considering. Umbraco scales very nicely, but in a typical solution you probably wouldn’t need it to. When you have additional requirements, like logging API access requests - but doing it out-of-band so clients aren’t impacted, you can put a very thin API layer on top of Umbraco, and cache the CMS responses in your API layer:   Here the API does a passthrough to CMS, so the CMS still controls the content, but it caches the response. If the response is cached for 1 minute, then Umbraco only needs to handle 1 request per minute (multiplied by the number of API instances), so if you need to support 1000s of request per second, you’re scaling a thin, simple API layer rather than having to scale the more complex CMS infrastructure (including the database). This diagram also shows an approach to logging, by asynchronously publishing a message to a queue (Redis in this case), which can be picked up later and persisted by a different process. Does it work? Beautifully. Using Azure, I spiked the solution above (including the Redis logging framework which I’ll blog about later) in half a day. That included setting up different roles in Umbraco to demonstrate a managed workflow for publishing changes, and a couple of document types representing different resources. Is it maintainable? We have three moving parts, which are all managed resources in Azure –  an Azure Website for Umbraco which may need a couple of instances for HA (or may not, depending on how long the content can be cached), a message queue (Redis is in preview in Azure, but you can easily use Service Bus Queues if performance is less of a concern), and the Web Role for the API. Two of the components are off-the-shelf, from open source projects, and the only custom code is the API which is very simple. Does it scale? Pretty nicely. With a single Umbraco instance running as an Azure Website, and with 4x instances for my API layer (Standard sized Web Roles), I got just under 4,000 requests per second served reliably, with a Worker Role in the background saving the access logs. So we had a nice UI to publish app config changes, with a friendly Web preview and a publishing workflow, capable of supporting 14 million requests in an hour, with less than a day’s effort. Worth considering if you’re publishing long-lived resources through your API.

    Read the article

  • Microsoft’s 22tracks Music Service now Available in All Browsers

    - by Akemi Iwaya
    Are you tired of listening to the same old music and looking for something new to listen to? Then 22tracks from Microsoft is definitely worth a look! This online music service is available in your favorite browser, does not require an account to use, and lets you listen to music from multiple international sources! If you are curious about 22tracks, then the following excerpt and video sum up the service very nicely. From the blog post: The concept behind 22tracks is simple: 22 local top DJs from cities like Amsterdam, Brussels, London and Paris share their genre’s 22 hottest tracks of the moment. Each city boosts its own team of specialized DJs bringing you the newest tracks in their genre. When you get ready to select (or change to) another set of tracks, just click on the desired city at the top of the browser window, then click on the appropriate set from the drop-down list. 22tracks Homepage 22tracks and Internet Explorer team up to bring you a completely new online music experience [22tracks Blog] 22tracks about [YouTube] [via BetaNews and The Next Web]

    Read the article

  • Change the User Interface Language in Ubuntu

    - by Matthew Guay
    Would you like to use your Ubuntu computer in another language?  Here’s how you can easily change your interface language in Ubuntu. Ubuntu’s default install only includes a couple languages, but it makes it easy to find and add a new interface language to your computer.  To get started, open the System menu, select Administration, and then click Language Support. Ubuntu may ask if you want to update or add components to your current default language when you first open the dialog.  Click Install to go ahead and install the additional components, or you can click Remind Me Later to wait as these will be installed automatically when you add a new language. Now we’re ready to find and add an interface language to Ubuntu.  Click Install / Remove Languages to add the language you want. Find the language you want in the list, and click the check box to install it.  Ubuntu will show you all the components it will install for the language; this often includes spellchecking files for OpenOffice as well.  Once you’ve made your selection, click Apply Changes to install your new language.  Make sure you’re connected to the internet, as Ubuntu will have to download the additional components you’ve selected. Enter your system password when prompted, and then Ubuntu will download the needed languages files and install them.   Back in the main Language & Text dialog, we’re now ready to set our new language as default.  Find your new language in the list, and then click and drag it to the top of the list. Notice that Thai is the first language listed, and English is the second.  This will make Thai the default language for menus and windows in this account.  The tooltip reminds us that this setting does not effect system settings like currency or date formats. To change these, select the Text Tab and pick your new language from the drop-down menu.  You can preview the changes in the bottom Example box. The changes we just made will only affect this user account; the login screen and startup will not be affected.  If you wish to change the language in the startup and login screens also, click Apply System-Wide in both dialogs.  Other user accounts will still retain their original language settings; if you wish to change them, you must do it from those accounts. Once you have your new language settings all set, you’ll need to log out of your account and log back in to see your new interface language.  When you re-login, Ubuntu may ask you if you want to update your user folders’ names to your new language.  For example, here Ubuntu is asking if we want to change our folders to their Thai equivalents.  If you wish to do so, click Update or its equivalents in your language. Now your interface will be almost completely translated into your new language.  As you can see here, applications with generic names are translated to Thai but ones with specific names like Shutter keep their original name. Even the help dialogs are translated, which makes it easy for users around to world to get started with Ubuntu.  Once again, you may notice some things that are still in English, but almost everything is translated. Adding a new interface language doesn’t add the new language to your keyboard, so you’ll still need to set that up.  Check out our article on adding languages to your keyboard to get this setup. If you wish to revert to your original language or switch to another new language, simply repeat the above steps, this time dragging your original or new language to the top instead of the one you chose previously. Conclusion Ubuntu has a large number of supported interface languages to make it user-friendly to people around the globe.  And since you can set the language for each user account, it’s easy for multi-lingual individuals to share the same computer. Or, if you’re using Windows, check out our article on how you can Change the User Interface Language in Vista or Windows 7, too! Similar Articles Productive Geek Tips Restart the Ubuntu Gnome User Interface QuicklyChange the User Interface Language in Vista or Windows 7Create a Samba User on UbuntuInstall Samba Server on UbuntuSee Which Groups Your Linux User Belongs To TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips VMware Workstation 7 Acronis Online Backup DVDFab 6 Revo Uninstaller Pro FetchMp3 Can Download Videos & Convert Them to Mp3 Use Flixtime To Create Video Slideshows Creating a Password Reset Disk in Windows Bypass Waiting Time On Customer Service Calls With Lucyphone MELTUP – "The Beginning Of US Currency Crisis And Hyperinflation" Enable or Disable the Task Manager Using TaskMgrED

    Read the article

< Previous Page | 494 495 496 497 498 499 500 501 502 503 504 505  | Next Page >