Search Results

Search found 25660 results on 1027 pages for 'dotnetnuke development'.

Page 498/1027 | < Previous Page | 494 495 496 497 498 499 500 501 502 503 504 505  | Next Page >

  • Getting a texture from a renderbuffer in OpenGL?

    - by Rushyo
    I've got a renderbuffer (DepthStencil) in an FBO and I need to get a texture from it. I can't have both a DepthComponent texture and a DepthStencil renderbuffer in the FBO, it seems, so I need some way to convert the renderbuffer to a DepthComponent texture after I'm done with it for use later down the pipeline. I've tried plenty of techniques to grab the depth component from the renderbuffer for weeks but I always come out with junk. All I want at the end is the same texture I'd get from an FBO if I wasn't using a renderbuffer. Can anyone post some comprehensive instructions or code that covers this seemingly simple operation? EDIT: Linky to an extract version of the code http://dl.dropbox.com/u/9279501/fbo.cs Screeny of the Depth of Field effect + FBO - without depth(!) http://i.stack.imgur.com/Hj9Oe.jpg Screeny without Depth of Field effect + FBO - depth working fine http://i.stack.imgur.com/boOm1.jpg

    Read the article

  • I Don't Understand Anything About Randomly Generated Worlds [closed]

    - by Alex Larsen
    What tools do I need to make a Minecraft-like generated world? I heard about Perlin noise and Simplex, but I don't understand anything about them. So far all I found on the internet was a Simplex version for C#, and all it has is functions, and this is what I get: Console.WriteLine(Noise.Generate(SomeNumber, SomeNumber, SumNumber)); Outputs random floats. I'm really lost. I don't understand the whole random generated worlds concept. Can someone help me? And if I use the noise thing I don't understand how to use it.

    Read the article

  • Circle vs Edge collision detection / resolution

    - by topheman
    I made a javascript class Ball.js that handles physics interactions betweens balls as well as painting. In the v1.0, the ball vs ball collision detection and resolution is well handled. In the next version (v2), I'm trying to add edgeCollision handling. I'm having some problems, maybe you will be able to help me. All the v2 branch source code is on github repository : https://github.com/topheman/Ball.js/tree/v2 The v2 demos (where you can see the bug I will be talking about) : http://labs.topheman.com/Ball-v2/#help As you will see on the demo, I have two major problems that I'm having a really hard time to solve on Ball.js : method resolveEdgeCollision : bounce angle is inconsistent method checkEdgeCollision : if the ball's velocity (the length that it runs each frame) is higher than its diameter, eventually, it will pass through an edge, without triggering any collision Any Ideas ?...

    Read the article

  • CCSpriteHole in cocos2d 2.0?

    - by rakkarage
    i was using this cocos2d class CCSpriteHole in cocos2d 1.0 fine... http://jpsarda.tumblr.com/post/15779708304/new-cocos2d-iphone-extensions-a-progress-bar-and-a i am trying to convert it to cocos2d 2.0... i got it to compile by changing glVertexPointer to glVertexAttribPointer like in the 2.0 version of CCSpriteScale9 here http://jpsarda.tumblr.com/post/9162433577/scale9grid-for-cocos2d and changing contentSizeInPixels_ to contentSize_... -(id) init { if( (self=[super init]) ) { opacityModifyRGB_ = YES; opacity_ = 255; color_ = colorUnmodified_ = ccWHITE; capSize=capSizeInPixels=CGSizeZero; //Not used blendFunc_.src = CC_BLEND_SRC; blendFunc_.dst = CC_BLEND_DST; // update texture (calls updateBlendFunc) [self setTexture:nil]; // default transform anchor anchorPoint_ = ccp(0.5f, 0.5f); vertexDataCount=24; vertexData = (ccV2F_C4F_T2F*) malloc(vertexDataCount * sizeof(ccV2F_C4F_T2F)); [self setTextureRectInPixels:CGRectZero untrimmedSize:CGSizeZero]; } return self; } -(id) initWithTexture:(CCTexture2D*)texture rect:(CGRect)rect { NSAssert(texture!=nil, @"Invalid texture for sprite"); // IMPORTANT: [self init] and not [super init]; if( (self = [self init]) ) { [self setTexture:texture]; [self setTextureRect:rect]; } return self; } -(id) initWithTexture:(CCTexture2D*)texture { NSAssert(texture!=nil, @"Invalid texture for sprite"); CGRect rect = CGRectZero; rect.size = texture.contentSize; return [self initWithTexture:texture rect:rect]; } -(id) initWithFile:(NSString*)filename { NSAssert(filename!=nil, @"Invalid filename for sprite"); CCTexture2D *texture = [[CCTextureCache sharedTextureCache] addImage: filename]; if( texture ) return [self initWithTexture:texture]; return nil; } +(id)spriteWithFile:(NSString*)f { return [[self alloc] initWithFile:f]; } - (void) dealloc { if (vertexData) free(vertexData); } -(void) updateColor { ccColor4F color4; color4.r=(float)color_.r/255.0f; color4.g=(float)color_.g/255.0f; color4.b=(float)color_.b/255.0f; color4.a=(float)opacity_/255.0f; for (int i=0; i<vertexDataCount; i++) { vertexData[i].colors=color4; } } -(void)updateTextureCoords:(CGRect)rect { CCTexture2D *tex = texture_; if(!tex) return; float atlasWidth = (float)tex.pixelsWide; float atlasHeight = (float)tex.pixelsHigh; float left,right,top,bottom; left = rect.origin.x/atlasWidth; right = left + rect.size.width/atlasWidth; top = rect.origin.y/atlasHeight; bottom = top + rect.size.height/atlasHeight; // // |/|/|/| // CGSize capTexCoordsSize=CGSizeMake(capSizeInPixels.width/atlasWidth, capSizeInPixels.height/atlasHeight); // From left to right //Top band // Left vertexData[0].texCoords=(ccTex2F){left,top}; vertexData[1].texCoords=(ccTex2F){left,top+capTexCoordsSize.height}; vertexData[2].texCoords=(ccTex2F){left+capTexCoordsSize.width,top}; vertexData[3].texCoords=(ccTex2F){left+capTexCoordsSize.width,top+capTexCoordsSize.height}; // Center vertexData[4].texCoords=(ccTex2F){right-capTexCoordsSize.width,top}; vertexData[5].texCoords=(ccTex2F){right-capTexCoordsSize.width,top+capTexCoordsSize.height}; // Right vertexData[6].texCoords=(ccTex2F){right,top}; vertexData[7].texCoords=(ccTex2F){right,top+capTexCoordsSize.height}; //Center band // Left vertexData[8].texCoords=(ccTex2F){left,bottom-capTexCoordsSize.height}; vertexData[9].texCoords=(ccTex2F){left,top+capTexCoordsSize.height}; vertexData[10].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom-capTexCoordsSize.height}; vertexData[11].texCoords=(ccTex2F){left+capTexCoordsSize.width,top+capTexCoordsSize.height}; // Center vertexData[12].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom-capTexCoordsSize.height}; vertexData[13].texCoords=(ccTex2F){right-capTexCoordsSize.width,top+capTexCoordsSize.height}; // Right vertexData[14].texCoords=(ccTex2F){right,bottom-capTexCoordsSize.height}; vertexData[15].texCoords=(ccTex2F){right,top+capTexCoordsSize.height}; //Bottom band //Left vertexData[16].texCoords=(ccTex2F){left,bottom}; vertexData[17].texCoords=(ccTex2F){left,bottom-capTexCoordsSize.height}; vertexData[18].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom}; vertexData[19].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom-capTexCoordsSize.height}; // Center vertexData[20].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom}; vertexData[21].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom-capTexCoordsSize.height}; // Right vertexData[22].texCoords=(ccTex2F){right,bottom}; vertexData[23].texCoords=(ccTex2F){right,bottom-capTexCoordsSize.height}; } -(void) updateVertices { float left=0; //-spriteSizeInPixels.width*0.5f; float right=left+contentSize_.width; float bottom=0; //-spriteSizeInPixels.height*0.5f; float top=bottom+contentSize_.height; float holeLeft=holeRect.origin.x*CC_CONTENT_SCALE_FACTOR(); float holeRight=holeLeft+holeRect.size.width*CC_CONTENT_SCALE_FACTOR(); float holeBottom=holeRect.origin.y*CC_CONTENT_SCALE_FACTOR(); float holeTop=holeBottom+holeRect.size.height*CC_CONTENT_SCALE_FACTOR(); // // |/|/|/| // // From left to right //Top band // Left vertexData[0].vertices=(ccVertex2F){left,top}; vertexData[1].vertices=(ccVertex2F){left,holeTop}; vertexData[2].vertices=(ccVertex2F){holeLeft,top}; vertexData[3].vertices=(ccVertex2F){holeLeft,holeTop}; // Center vertexData[4].vertices=(ccVertex2F){holeRight,top}; vertexData[5].vertices=(ccVertex2F){holeRight,holeTop}; // Right vertexData[6].vertices=(ccVertex2F){right,top}; vertexData[7].vertices=(ccVertex2F){right,holeTop}; //Center band // Left vertexData[8].vertices=(ccVertex2F){left,holeBottom}; vertexData[9].vertices=(ccVertex2F){left,holeTop}; vertexData[10].vertices=(ccVertex2F){holeLeft,holeBottom}; vertexData[11].vertices=(ccVertex2F){holeLeft,holeTop}; // Center vertexData[12].vertices=(ccVertex2F){holeRight,holeBottom}; vertexData[13].vertices=(ccVertex2F){holeRight,holeTop}; // Right vertexData[14].vertices=(ccVertex2F){right,holeBottom}; vertexData[15].vertices=(ccVertex2F){right,holeTop}; //Bottom band //Left vertexData[16].vertices=(ccVertex2F){left,bottom}; vertexData[17].vertices=(ccVertex2F){left,holeBottom}; vertexData[18].vertices=(ccVertex2F){holeLeft,bottom}; vertexData[19].vertices=(ccVertex2F){holeLeft,holeBottom}; // Center vertexData[20].vertices=(ccVertex2F){holeRight,bottom}; vertexData[21].vertices=(ccVertex2F){holeRight,holeBottom}; // Right vertexData[22].vertices=(ccVertex2F){right,bottom}; vertexData[23].vertices=(ccVertex2F){right,holeBottom}; } -(void) setHole:(CGRect)r inRect:(CGRect)totalSurface { holeRect=r; self.contentSize=totalSurface.size; holeRect.origin=ccpSub(holeRect.origin,totalSurface.origin); CGPoint holeCenter=ccp(holeRect.origin.x+holeRect.size.width*0.5f,holeRect.origin.y+holeRect.size.height*0.5f); self.anchorPoint=ccp(holeCenter.x/contentSize_.width,holeCenter.y/contentSize_.height); //[self updateTextureCoords:rectInPixels_]; [self updateVertices]; [self updateColor]; } -(void) draw { BOOL newBlend = NO; if( blendFunc_.src != CC_BLEND_SRC || blendFunc_.dst != CC_BLEND_DST ) { newBlend = YES; glBlendFunc( blendFunc_.src, blendFunc_.dst ); } glBindTexture(GL_TEXTURE_2D, [texture_ name]); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); if( newBlend ) glBlendFunc(CC_BLEND_SRC, CC_BLEND_DST); } -(void)setTextureRectInPixels:(CGRect)rect untrimmedSize:(CGSize)untrimmedSize { rectInPixels_ = rect; rect_ = CC_RECT_PIXELS_TO_POINTS( rect ); //[self setContentSizeInPixels:untrimmedSize]; [self updateTextureCoords:rectInPixels_]; } -(void)setTextureRect:(CGRect)rect { CGRect rectInPixels = CC_RECT_POINTS_TO_PIXELS( rect ); [self setTextureRectInPixels:rectInPixels untrimmedSize:rectInPixels.size]; } // // RGBA protocol // #pragma mark CCSpriteHole - RGBA protocol -(GLubyte) opacity { return opacity_; } -(void) setOpacity:(GLubyte) anOpacity { opacity_ = anOpacity; // special opacity for premultiplied textures if( opacityModifyRGB_ ) [self setColor: (opacityModifyRGB_ ? colorUnmodified_ : color_ )]; [self updateColor]; } - (ccColor3B) color { if(opacityModifyRGB_){ return colorUnmodified_; } return color_; } -(void) setColor:(ccColor3B)color3 { color_ = colorUnmodified_ = color3; if( opacityModifyRGB_ ){ color_.r = color3.r * opacity_/255; color_.g = color3.g * opacity_/255; color_.b = color3.b * opacity_/255; } [self updateColor]; } -(void) setOpacityModifyRGB:(BOOL)modify { ccColor3B oldColor = self.color; opacityModifyRGB_ = modify; self.color = oldColor; } -(BOOL) doesOpacityModifyRGB { return opacityModifyRGB_; } #pragma mark CCSpriteHole - CocosNodeTexture protocol -(void) updateBlendFunc { if( !texture_ || ! [texture_ hasPremultipliedAlpha] ) { blendFunc_.src = GL_SRC_ALPHA; blendFunc_.dst = GL_ONE_MINUS_SRC_ALPHA; [self setOpacityModifyRGB:NO]; } else { blendFunc_.src = CC_BLEND_SRC; blendFunc_.dst = CC_BLEND_DST; [self setOpacityModifyRGB:YES]; } } -(void) setTexture:(CCTexture2D*)texture { // accept texture==nil as argument NSAssert( !texture || [texture isKindOfClass:[CCTexture2D class]], @"setTexture expects a CCTexture2D. Invalid argument"); texture_ = texture; [self updateBlendFunc]; } -(CCTexture2D*) texture { return texture_; } @end but now positioning and scaling seem to not work? and it starts in the wrong position... but changing the opacity still works. so i was wondering if anyone can see why my 2.0 version is not working? or if maybe there is a better way to do a sprite hole with cocos2d/opengl 2.0? shaders? thanks

    Read the article

  • Pathfinding with MicroPather : costs calculations with sectors and portals

    - by Adan
    Hello, I'm considering using micropather to help me with pathfinding. I'm not using a discrete map : I'm working in 2d with sectors and portales. However, I'm just wondering what is the best way to compute costs with this library in this context. Just to be more clear about geometrical shapes I'm using : sectors are basically convex polygons, and portals are segments that lies on sector's edge. Micropather exposes a pure virtual Graph class that you must inherate and overrides 3 functions. I understand how pathfinding works, so there's no problem in overriding those functions. Right now, my implementation give me results, i.e I'm able to find a path in my map, but I'm not sure I'm using an optimal solution. For the AdjacentCost method : I just take the distance between sector's centers as the cost. I think a better solution should be to use the portal between the two sectors, compute its center, and then the cost should be : distance( sector A center, portal center ) + distance ( sector B center, portal center ). I'm pretty sure the approximation I'm using with just sector's center is enough for most cases, but maybe with thin and long sectors that are perpendicular, this approximation could mislead the A* algorithm. For the LeastCostEstimate method : I just take the midpoint of the two sectors. So, as you understand, I'm always working with sectors' centers, and it's working fine. And I'm pretty sure there's a better way to work. Any suggestions or feedbacks? Thanks in advance!

    Read the article

  • Am I missing something about these considerations about Leaderboard's database's schema?

    - by misiMe
    I just finished to develop a mobile game, now I want to implement an online leaerboard using mysql. I'm wondering about the database's schema, I thought about some possibilities: (I didn't got in detail with syntax because my question is just about the logic of it) Name: string; Score: integer I thought to ask the name just the first time. If, in the future, you will modify that, it will call just an update to the name associated with your id. Leaderboard(ID, Name, Score) ID: integer autoincrement, PrimaryKey With this kind of idea maybe the db will grow fast because if you choose everytime a different name for the score, it will add a new entry. Leaderboard(PhoneId, Name, Score) Here PhoneId will be the unique identifier of the phone, PrimaryKey. A con of this choice is that if you want to play with your friends' phone, you can't put a different name for the score. Leaderboard(Name, Score) Here Name is PrimaryKey. With that, if you enter a name that already exists, you will be prompted to choose another one. Do you agree with this considerations? What will you do? Am I missing something?

    Read the article

  • Library For Opengl 1.4?

    - by Robinson Joaquin
    My netbook only supports openGL version 1.4, my GPU is intel gma 3150, so for you what is the best library/tools to use or somewhat great move to make/advice, there are no wrong answers, (I am trying to create a game) PS: I already check the net for resources but, opengl (redbook) 4th edition is scarce (and redbook for v1.1 is already deprecated and is very OLD than what I'm looking for), besides I don't have money to buy a new laptop or a opengl book from online shop because international delivery is very expensive, I'm from outside US.

    Read the article

  • HTML5 game programming style

    - by fnx
    I am currently trying learn javascript in form of HTML5 games. Stuff that I've done so far isn't too fancy since I'm still a beginner. My biggest concern so far has been that I don't really know what is the best way to code since I don't know the pros and cons of different methods, nor I've found any good explanations about them. So far I've been using the worst (and propably easiest) method of all (I think) since I'm just starting out, for example like this: var canvas = document.getElementById("canvas"); var ctx = canvas.getContext("2d"); var width = 640; var height = 480; var player = new Player("pic.png", 100, 100, ...); also some other global vars... function Player(imgSrc, x, y, ...) { this.sprite = new Image(); this.sprite.src = imgSrc; this.x = x; this.y = y; ... } Player.prototype.update = function() { // blah blah... } Player.prototype.draw = function() { // yada yada... } function GameLoop() { player.update(); player.draw(); setTimeout(GameLoop, 1000/60); } However, I've seen a few examples on the internet that look interesting, but I don't know how to properly code in these styles, nor do I know if there are names for them. These might not be the best examples but hopefully you'll get the point: 1: Game = { variables: { width: 640, height: 480, stuff: value }, init: function(args) { // some stuff here }, update: function(args) { // some stuff here }, draw: function(args) { // some stuff here }, }; // from http://codeincomplete.com/posts/2011/5/14/javascript_pong/ 2: function Game() { this.Initialize = function () { } this.LoadContent = function () { this.GameLoop = setInterval(this.RunGameLoop, this.DrawInterval); } this.RunGameLoop = function (game) { this.Update(); this.Draw(); } this.Update = function () { // update } this.Draw = function () { // draw game frame } } // from http://www.felinesoft.com/blog/index.php/2010/09/accelerated-game-programming-with-html5-and-canvas/ 3: var engine = {}; engine.canvas = document.getElementById('canvas'); engine.ctx = engine.canvas.getContext('2d'); engine.map = {}; engine.map.draw = function() { // draw map } engine.player = {}; engine.player.draw = function() { // draw player } // from http://that-guy.net/articles/ So I guess my questions are: Which is most CPU efficient, is there any difference between these styles at runtime? Which one allows for easy expandability? Which one is the most safe, or at least harder to hack? Are there any good websites where stuff like this is explained? or... Does it all come to just personal preferance? :)

    Read the article

  • PhysX Capsule Character Controller floating above ground

    - by Jannie
    I am using PhysX Version 3.0.2 in the simulation package I'm working on, and I've encountered some bizarre behavior with the capsule character controller. When I set the controller's height and radius to the appropriate values (r = 0.25, h = 1.86)it behaves correctly (moving along the ground, colliding with other objects, and so on) except that the capsule itself is floating above the ground. The actor will then bump his head when trying to get through a door, since the capsule is the correct height but also floating above the ground. This image should illustrate what I'm going on about: One can clearly see that the rest of the scene has their collision bodies wrapped correctly, it's just the capsule that's going wrong! The stop-gap I've implemented is creating a smaller capsule and giving it an offset, but I need to implement ray-picking for the controller next so the capsule has to surround the character model properly. Here's my character creation code (with height = 1.86f and radius = 0.25f): NxController* D3DPhysXManager::CreateCharacterController( std::string l_stdsControllerName, float l_fHeight, float l_fRadius, D3DXVECTOR3 l_v3Position ) { NxCapsuleControllerDesc l_CapsuleControllerDescription; l_CapsuleControllerDescription.height = l_fHeight; l_CapsuleControllerDescription.radius = l_fRadius; l_CapsuleControllerDescription.position.set( l_v3Position.x, l_v3Position.y, l_v3Position.z ); l_CapsuleControllerDescription.callback = &this->m_ControllerHitReport; NxController* l_pController = this->m_pControllerManager->createController( this->m_pScene, l_CapsuleControllerDescription ); this->m_pControllerMap.insert( l_ControllerValuePair( l_stdsControllerName, l_pController ) ); return l_pController; } Any help at all would be appreciated, I just can't figure this one out! P.S. I've found a couple of (rather old) threads describing the same issue, but it seems they couldn't find a solution either. Here are the links: http://forum-archive.developer.nvidia.com/index.php?showtopic=6409 http://forum-archive.developer.nvidia.com/index.php?showtopic=3272 http://www.ogre3d.org/addonforums/viewtopic.php?f=8&t=23003

    Read the article

  • Blender 2.64, what are the actual hot-keys for certain actions

    - by Shivan Dragon
    I know this sounds mega lame but I've looked for hotkeys for certain actions, first in the appliation's User Settings (where I didn't find them) then in the official documentation (where I did find some of them but they're not the right ones): http://wiki.blender.org/index.php/Doc:2.4/Manual/3D_interaction/Transform_Control/Manipulators (Ctrl - Alt - S is recommended for Scale, but instead it opens the Save As... window - I think these changed in the latest versions, but they forgot to update the docs) So then, what are the hot keys for: selecting translate manipulator selecting rotate manipulator selecting scale manipulator In Edit mode: select vertex (editing) select edges (editing) select faces (editing) thanks.

    Read the article

  • Non-unique display names?

    - by Davy8
    I know of at least big title game (Starcraft II) that doesn't require unique display names, so it would seem like it can work in at least some circumstance. Under what situations does allowing non-unique display names work well? When does it not work well? Does it come down to whether or not impersonation of someone else is a problem? The reasons I believe it works for Starcraft II is that there isn't any kind of in-game trading of virtual goods and other than "for kicks" there isn't much incentive to impersonate someone else in the game. There's also ladder rankings so even trying to impersonate a pro is easily detectable unless you're on a similar skill level. What are some other cases where it makes sense to specifically allow or disallow duplicate display names? (I have no idea what to tag this as. I went with game-design because I needed at least 1 tag and I don't have rep to create new ones yet.)

    Read the article

  • Ouya / Android : button mapping biwise

    - by scorvi
    I am programming a game with the Gameplay3d Engine. But the Android site has no gamepad support and that is what I need to port my game to Ouya. So I implemented a simple gamepad support and it supports 2 gamepads. So my problem is that I put the button stats in a float array for every gamepad. But the Gameplay3d engine saves their stats in a unsigned int _buttons variable. It is set with bitwise operations and I have no clue how to translate my array to this.

    Read the article

  • How to control an actor movement in UDK

    - by Mikalichov
    This might be very basic, but I couldn't find something relevant to what I need (see below). I am working on a very basic thing: a 3D environment with some buildings, and actors walking inside it. It looks like following: I mainly want to manage to have one actor standing around, idling, and another walking around the area. Right now, this is done through matinee + skeletal mesh groups, and forcing a looped animation on the actors: But I realize this is super caveman-level. So I've build an AnimTree, linking the idling and directional animations to the corresponding nodes. But then, I'm stuck. I added the AnimTree in the actors properties, but nothing happens. I've tried MoveToActor, but no success - is there a thing to set to allow an actor to move? Also, I place the actors on the map manually (they are supposed to be unique), should I spawn them instead? Every tutorial I find explains how to use an AnimTree for the player character, which is not what I want. I need a way to move the actors. I tried to look for AI tutorials, but only found UT3 bots-modifications, which is not what I need either. Since I have so much trouble finding how to do this through Kismet, I'm starting to suspect this has to be done through scripting/coding, but I would like to be sure there is no way to do it through Kismet before going that route. Every bit of answer about how to tell an actor something along the lines of "go in that direction as much as you can, then when you hit a wall turn 45° and continue" would be awesome. I'll be happy to move/edit the question if there is any problem with it

    Read the article

  • Rotation matrix for a 3D vector

    - by Shashwat
    I have a direction vector on which I have to apply some rotation to align it to positive z-axis. To use Matrix.CreateRotationX(angle) of XNA, I need the angle for which I'd have to compute cos or tan inverse. I think this is a complex task to do. Also, eventually those are also converted to sin(angle) and cos(angle) in the matrix. Is there any inbuilt way to create rotation matrix from a 3D vector? However, I can write the function but still asking if there is one already there.

    Read the article

  • Implement Fast Inverse Square Root in Javascript?

    - by BBz
    The Fast Inverse Square Root from Quake III seems to use a floating-point trick. As I understand, floating-point representation can have some different implementations. So is it possible to implement the Fast Inverse Square Root in Javascript? Would it return the same result? float Q_rsqrt(float number) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; i = 0x5f3759df - ( i >> 1 ); y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); return y; }

    Read the article

  • Rendering Texture Quad to Screen or FBO (OpenGL ES)

    - by Usman.3D
    I need to render the texture on the iOS device's screen or a render-to-texture frame buffer object. But it does not show any texture. It's all black. (I am loading texture with image myself for testing purpose) //Load texture data UIImage *image=[UIImage imageNamed:@"textureImage.png"]; GLuint width = FRAME_WIDTH; GLuint height = FRAME_HEIGHT; //Create context void *imageData = malloc(height * width * 4); CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB(); CGContextRef context = CGBitmapContextCreate(imageData, width, height, 8, 4 * width, colorSpace, kCGImageAlphaPremultipliedLast | kCGBitmapByteOrder32Big); CGColorSpaceRelease(colorSpace); //Prepare image CGContextClearRect(context, CGRectMake(0, 0, width, height)); CGContextDrawImage(context, CGRectMake(0, 0, width, height), image.CGImage); glGenTextures(1, &texture); glBindTexture(GL_TEXTURE_2D, texture); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageData); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); Simple Texture Quad drawing code mentioned here //Bind Texture, Bind render-to-texture FBO and then draw the quad const float quadPositions[] = { 1.0, 1.0, 0.0, -1.0, 1.0, 0.0, -1.0, -1.0, 0.0, -1.0, -1.0, 0.0, 1.0, -1.0, 0.0, 1.0, 1.0, 0.0 }; const float quadTexcoords[] = { 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0 }; // stop using VBO glBindBuffer(GL_ARRAY_BUFFER, 0); // setup buffer offsets glVertexAttribPointer(ATTRIB_VERTEX, 3, GL_FLOAT, GL_FALSE, 3*sizeof(float), quadPositions); glVertexAttribPointer(ATTRIB_TEXCOORD0, 2, GL_FLOAT, GL_FALSE, 2*sizeof(float), quadTexcoords); // ensure the proper arrays are enabled glEnableVertexAttribArray(ATTRIB_VERTEX); glEnableVertexAttribArray(ATTRIB_TEXCOORD0); //Bind Texture and render-to-texture FBO. glBindTexture(GL_TEXTURE_2D, GLid); //Actually wanted to render it to render-to-texture FBO, but now testing directly on default FBO. //glBindFramebuffer(GL_FRAMEBUFFER, textureFBO[pixelBuffernum]); // draw glDrawArrays(GL_TRIANGLES, 0, 2*3); What am I doing wrong in this code? P.S. I'm not familiar with shaders yet, so it is difficult for me to make use of them right now.

    Read the article

  • How can i create sprite sheet from 3d model (3D studio max)

    - by OopsUser
    I built simple 3D model of a car, with simple animation in which it's wheels are turning. Now i want to create a sprite sheet, the only way i know how to do it, is to render manually 20 frames from the from, then combine them to a strip manually, then rotate it by 10 degrees, render 20 frames of animation again and combine them to a strip... Is there a way to do it automatically ? With out rotating the scene manually and render it and combining .. it's a lot of work, takes more time then the modelling itself... Thanks

    Read the article

  • Turn-Based RPG Battle Instance Layout For Larger Groups

    - by SoulBeaver
    What a title, eh? I'm currently designing a videogame; a turn-based RPG like Final Fantasy (because everybody knows Final Fantasy). It's a 2D sprite game. These are my ideas for combat: -The player has a group of 15 members (main character included) -During battle, five of the group are designated as active, and appear in the battle. -These five may be switched out at leisure, or when one of the five die. -At any time, the Waiting members can cast buffs, be healed by the active members, or perform special attacks. -Battles should contain 10+ monsters at least. I'm aiming for 20, but I'm not sure if that's possible yet. -Battles should feel larger than normal due to the interaction of Waiting members, active members and the increased amount of monsters per battle. -The player has two rows in which to put the Active members: front and back. -Depending on the implementation, I might allow comboing of player attacks and skills. These are just design ideas, so beware! I have not been able to test this out yet- I have no idea yet if any of these ideas bunched together will make for a compelling game. What sounds good on paper doesn't necessarily have to be good in practice! What I'm asking now is how to create the layout for this. My starting point are the battles in Final Fantasy VI, with up to 5-6 monsters on the left and the characters on the right- monsters on both sides if it's a pincer attack. However, this view would not work feasible with my goal of 20 monsters and 5 characters. All the monsters on the left would appear cluttered unless I scale them far far back. If I create a pincer-like map, then there would be no real pincer-attack possible. If I space the monsters out I force the player to scroll the screen- a game mechanic I've come across and not enjoyed imho. My question is: does anybody have any layouts or guides for designing battle maps in turn-based RPGs, especially with a larger number of enemies taken into consideration? How should it look? I am not asking for specific combat mechanics, just the layout for the moment.

    Read the article

  • Server-side Architecture for Online Game

    - by Draiken
    basically I have a game client that has communicate with a server for almost every action it takes, the game is in Java (using LWJGL) and right now I will start making the server. The base of the game is normally one client communicating with the server alone, but I will require later on for several clients to work together for some functionalities. I've already read how authentication server should be sepparated and I intend on doing it. The problem is I am completely inexperienced in this kind of server-side programming, all I've ever programmed were JSF web applications. I imagine I'll do socket connections for pretty much every game communication since HTML is very slow, but I still don't really know where to start on my server. I would appreciate reading material or guidelines on where to start, what architecture should the game server have and maybe some suggestions on frameworks that could help me getting the client-server communication. I've looked into JNAG but I have no experience with this kind of thing, so I can't really tell if it is a solid and good messaging layer. Any help is appreciated... Thanks ! EDIT: Just a little more information about the game. It is intended to be a very complex game with several functionalities, making some functionalities a "program" inside the program. It is not an usual game, like FPS or RPG but I intend on having a lot of users using these many different "programs" inside the game. If I wasn't clear enough, I'd really appreciate people that have already developed games with java client/server architecture, how they communicated, any frameworks, apis, messaging systems, etc. It is not a question of lack of knowledge of language, more a question for advice, so I don't end up creating something that works, but in the later stages will have to be rewriten for any kind of limiting reason. PS: sorry if my english is not perfect...

    Read the article

  • Rain drops on screen

    - by user1075940
    I am trying to make simple rain drop effect on screen.Something like this http://fc00.deviantart.net/fs20/f/2007/302/5/6/Rain_drops_by_rockraikar.png My idea is to: Create small drop shaped normal textures,randomly put few on screen,apply texture perturbation and mix with current frame pixels. Here are my questions: -Does this idea even have sense?How professionals do this effect?Everything from text to code will be appreciated -How to pass pixels to shader of already rendered frame?

    Read the article

  • Optimizing hierarchical transform

    - by Geotarget
    I'm transforming objects in 3D space by transforming each vector with the object's 4x4 transform matrix. In order to achieve hierarchical transform, I transform the child by its own matrix, and then the child by the parent matrix. This becomes costly because objects deeper in the display tree have to be transformed by all the parent objects. This is what's happening, in summary: Root -- transform its verts by Root matrix Parent -- transform its verts by Parent, Root matrix Child -- transform its verts by Child, Parent, Root matrix Is there a faster way to transform vertices to achieve hierarchical transform? What If I first concatenated each transform matrix with the parent matrices, and then transform verts by that final resulting matrix, would that work and wouldn't that be faster? Root -- transform its verts by Root matrix Parent -- concat Parent, Root matrices, transform its verts by Concated matrix Child -- concat Child, Parent, Root matrices, transform its verts by Concated matrix

    Read the article

  • 2D Collision in Canvas - Balls Overlapping When Velocity is High

    - by kushsolitary
    I am doing a simple experiment in canvas using Javascript in which some balls will be thrown on the screen with some initial velocity and then they will bounce on colliding with each other or with the walls. I managed to do the collision with walls perfectly but now the problem is with the collision with other balls. I am using the following code for it: //Check collision between two bodies function collides(b1, b2) { //Find the distance between their mid-points var dx = b1.x - b2.x, dy = b1.y - b2.y, dist = Math.round(Math.sqrt(dx*dx + dy*dy)); //Check if it is a collision if(dist <= (b1.r + b2.r)) { //Calculate the angles var angle = Math.atan2(dy, dx), sin = Math.sin(angle), cos = Math.cos(angle); //Calculate the old velocity components var v1x = b1.vx * cos, v2x = b2.vx * cos, v1y = b1.vy * sin, v2y = b2.vy * sin; //Calculate the new velocity components var vel1x = ((b1.m - b2.m) / (b1.m + b2.m)) * v1x + (2 * b2.m / (b1.m + b2.m)) * v2x, vel2x = (2 * b1.m / (b1.m + b2.m)) * v1x + ((b2.m - b1.m) / (b2.m + b1.m)) * v2x, vel1y = v1y, vel2y = v2y; //Set the new velocities b1.vx = vel1x; b2.vx = vel2x; b1.vy = vel1y; b2.vy = vel2y; } } You can see the experiment here. The problem is, some balls overlap each other and stick together while some of them rebound perfectly. I don't know what is causing this issue. Here's my balls object if that matters: function Ball() { //Random Positions this.x = 50 + Math.random() * W; this.y = 50 + Math.random() * H; //Random radii this.r = 15 + Math.random() * 30; this.m = this.r; //Random velocity components this.vx = 1 + Math.random() * 4; this.vy = 1 + Math.random() * 4; //Random shade of grey color this.c = Math.round(Math.random() * 200); this.draw = function() { ctx.beginPath(); ctx.fillStyle = "rgb(" + this.c + ", " + this.c + ", " + this.c + ")"; ctx.arc(this.x, this.y, this.r, 0, Math.PI*2, false); ctx.fill(); ctx.closePath(); } }

    Read the article

  • What library for octrees or kd-trees?

    - by Will
    Are there any robust performant libraries for indexing objects? It would need frustum culling and visiting objects hit by a ray as well as neighbourhood searches. I can find lots of articles showing the math for the component parts, often as algebra rather than simple C, but nothing that puts it all together (apart from perhaps Ogre, which has rather more involved and isn't so stand-alone). Surely hobby game makers don't all have to make their own octrees? (Python or C/C++ w/bindings preferred)

    Read the article

  • Has an open console any chance to give more strength to the indie game world ?

    - by jokoon
    I have heard about the GPX, but i don't really think the embedded market is mature enough in terms of performance, but what about the home console market ? I'm not talking about last-generation graphics, because that would be economically impossible, but what about an hardware as fast as a playstation 2/Xbox 1/Gamecube ? For games, the trick would be to ask some editors to recompile their best sellers for the new machine: those games being from the PSX age or even older console generations, I think this would have a very low cost job and they could still make some good profit, but I need to know if this is doable technically, considering the architecture which can be quite exotic. Do you think it would be a viable project to talk about to investors ?

    Read the article

  • Improving the efficiency of frustum culling

    - by DeadMG
    I've got some code which performs frustum culling. However, this defines the "frustum" way too broadly- when I have ~10 objects on screen, the code returns 42 objects to be rendered. I've tried taking "slices" through the frustum to attempt to increase the accuracy of the technique, but it doesn't seem to have made much impact. I also significantly reduced the far plane, so that the objects are barely at the edge. Here's my code (where size is the size in screen space- the resolution of the client area of the window I'm rendering into). Any suggestions? auto&& size = GetDimensions(); D3DVIEWPORT9 vp = { 0, 0, size.x, size.y, 0, 1 }; D3DCALL(device->SetViewport(&vp)); static const int slices = 10; std::vector<Object*> result; for(int i = 0; i < slices; i++) { D3DXVECTOR3 WorldSpaceFrustrumPoints[8] = { D3DXVECTOR3(0, size.y, static_cast<float>(i) / slices), D3DXVECTOR3(size.x, 0, static_cast<float>(i) / slices), D3DXVECTOR3(size.x, size.y, static_cast<float>(i) / slices), D3DXVECTOR3(0, 0, static_cast<float>(i) / slices), D3DXVECTOR3(0, 0, static_cast<float>(i + 1) / slices), D3DXVECTOR3(size.x, 0, static_cast<float>(i + 1) / slices), D3DXVECTOR3(size.x, size.y, static_cast<float>(i + 1) / slices), D3DXVECTOR3(0, size.y, static_cast<float>(i + 1) / slices) }; D3DXMATRIXA16 Identity; D3DXMatrixIdentity(&Identity); D3DXVec3UnprojectArray( WorldSpaceFrustrumPoints, sizeof(D3DXVECTOR3), WorldSpaceFrustrumPoints, sizeof(D3DXVECTOR3), &vp, &Projection, &View, &Identity, 8 ); Math::AABB Frustrum; auto world_begin = std::begin(WorldSpaceFrustrumPoints); auto world_end = std::end(WorldSpaceFrustrumPoints); auto world_initial = WorldSpaceFrustrumPoints[0]; Frustrum.BottomLeftClosest.x = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.x < rhs.x ? lhs : rhs; }).x; Frustrum.BottomLeftClosest.y = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.y < rhs.y ? lhs : rhs; }).y; Frustrum.BottomLeftClosest.z = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.z < rhs.z ? lhs : rhs; }).z; Frustrum.TopRightFurthest.x = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.x > rhs.x ? lhs : rhs; }).x; Frustrum.TopRightFurthest.y = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.y > rhs.y ? lhs : rhs; }).y; Frustrum.TopRightFurthest.z = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.z > rhs.z ? lhs : rhs; }).z; auto slices_result = ObjectTree.collision(Frustrum); result.insert(result.end(), slices_result.begin(), slices_result.end()); } return result;

    Read the article

< Previous Page | 494 495 496 497 498 499 500 501 502 503 504 505  | Next Page >