Search Results

Search found 26774 results on 1071 pages for 'distributed development'.

Page 499/1071 | < Previous Page | 495 496 497 498 499 500 501 502 503 504 505 506  | Next Page >

  • Collision detection with non-rectangular images

    - by Adam Smith
    I'm creating a game and I need to detect collisions between a character and some parts of the environment. Since my character's frames are taken from a sprite sheet with a transparent background, I'm wondering how I should go about detecting collisions between a wall and my character only if the colliding parts are non-transparent in both images. I thought about checking only if part of the rectangle the character is in touches the rectangle a tile is in and comparing the alpha channels, but then I have another choice to make... Either I test every single pixel against every single pixel in the other image and if one is true, I detect a collision. That would be terribly ineficient. The other option would be to keep a x,y position of the leftmost, rightmost, etc. non-transparent pixel of each image and compare those instead. The problem with this one might be that, for instance, the character's hand could be above a tile (so it would be in a transparent zone of the tile) but a pixel that is not the rightmost could touch part of the tile without being detected. Another problem would be that in different frames, the rightmost, leftmost, etc. pixels might not be at the same position. Should I not bother with that and just check the collisions on the rectangles? It would be simpler, but I'm afraid people.will feel that there are collisions sometimes that shouldn't happen.

    Read the article

  • What are the pros and cons of a non-fixed-interval update loop?

    - by akonsu
    I am studying various approaches to implementing a game loop and I have found this article. In the article the author implements a loop which, if the processing falls behind in time, skips frame renderings and just updates the game in a loop (the last variant called "Constant Game Speed independent of Variable FPS"). I do not understand why it is acceptable to call update_game() in a loop without making sure the update function is called at a particular interval. I do not see any value in doing this. I would think that in my game I want to be sure the game is updated periodically with a known period. So maybe it is worthwhile to have two threads, one would call update periodically, and the other one would redraw the game, also periodically? Would this be a good and practical approach? Of course I would need to synchronise the threads.

    Read the article

  • Problems using easing equations in C# XNA

    - by codinghands
    I'm having some trouble using the easing equations suggested by Robert Penner for ActionScript (http://www.robertpenner.com/easing/, and a Flash demo here) in my C# XNA game. Firstly, what is the definition of the following variables passed in as arguments to each equation? float t, float b, float c, float d I'm currently calculating the new X position of a sprite in the Update() loop, however even for the linear tween equation I'm getting some odd results. I'm using the following values: float t = gameTime.TotalGameTime.TotalMilliseconds; float d = 8000f; float b = x.Position.X; float c = (ScreenManager.Game.GraphicsDevice.Viewport.Width >> 1) - (x.Position.X + x.frameSize.X / 2); And this equation for linear easing: float val = c*t/d + b;

    Read the article

  • How to implement the light trails for a tron game?

    - by Link
    Well I was creating a TRON style game, but had an issue with creating the actual light trails for the game. What I'm doing currently is I have an array the same size as my window in pixel size, implemented like this: int* collision[800][600]; Then when the bike goes on a certain pixel, it is marked with a 1 for traveled on. However what is the most efficient way to create a working light trail display? I tried to do something like this: int i, j; for(i=0; i<800; i++) for(j=0; j<600; j++) if(*collision[i][j] == 1) Image::applySurface(i, j, trailSurface, gameScreen); But it isn't working properly? It just fills the whole screen with a sprite instead. Whats a better/faster/working way to do this?

    Read the article

  • How do I find the angle required to point to another object?

    - by Ginamin
    I am making an air combat game, where you can fly a ship in a 3D space. There is an opponent that flies around as well. When the opponent is not on screen, I want to display an arrow pointing in the direction the user should turn, as such: So, I took the camera location and the oppenent location and did this: double newDirection = atan2(activeCamera.location.y-ship_wrap.location.y, activeCamera.location.x-ship_wrap.location.x); After which, I get the position on the circumferance of a circle which surrounds my crosshairs, like such: trackingArrow.position = point((60*sin(angle)+240),60*cos(angle)+160); It all works fine, except it's the wrong angle! I assume my calculation for the new direction is incorrect. Can anyone help?

    Read the article

  • Looking for games in environments similar to a pinball table

    - by chaosTechnician
    I'm on a team of students working on a third-person adventure game that takes place inside a pinball machine (like, small scale, on the surface, avoiding pinballs, etc). One of my responsibilities on the project is to find games that are similar to this concept in appearance and/or gameplay for reference. So, does anyone know of games (other than pinball) that takes place in a pinball-like environment? Or, adventure games that take place in small, cramped environments with multiple paths around the world? Or games in which the player is often bombarded with balls (or other similar unintelligent obstacles)? Or games that take place on a small scale?

    Read the article

  • Given a start and end point, how can I constrain the end point so the resulting line segment is horizontal, vertical, or 45 degrees?

    - by GloryFish
    I have a grid of letters. The player clicks on a letter and drags out a selection. Using Bresenham's Algorithm I can create a line of highlighted letters representing the player's selection. However, what I really want is to have the line segment be constrained to 45 degree angles (as is common for crossword-style games). So, given a start point and an end point, how can I find the line that passes through the start point and is closest to the end point? Bonus: To make things super sweet I'd like to get a list of points in the grid that the line passes through, and for super MEGA bonus points, I'd like to get them in order of selection (i.e. from start point to end point).

    Read the article

  • Import 3ds into JMonkeyEngine 3

    - by Yanick Rochon
    I have asked this question on SO, but I think it will be more suitable here. Basically, we are trying to import an animated character body (with skeleton) from 3D Studio Max to JMonkeyEngine 3, but while we succeeded at importing some animations, we cannot seem to export the skeleton to .skeleton.xml using OgreXML format. Since OgreXML seems to be the favored way to import models into JME, we dropped .obj files and such. Any help appreciated.

    Read the article

  • Example of DOD design

    - by Jeffrey
    I can't seem to find a nice explanation of the Data Oriented Design for a generic zombie game (it's just an example, pretty common example). Could you make an example of the Data Oriented Design on creating a generic zombie class? Is the following good? Zombie list class: class ZombieList { GLuint vbo; // generic zombie vertex model std::vector<color>; // object default color std::vector<texture>; // objects textures std::vector<vector3D>; // objects positions public: unsigned int create(); // return object id void move(unsigned int objId, vector3D offset); void rotate(unsigned int objId, float angle); void setColor(unsigned int objId, color c); void setPosition(unsigned int objId, color c); void setTexture(unsigned int, unsigned int); ... void update(Player*); // move towards player, attack if near } Example: Player p; Zombielist zl; unsigned int first = zl.create(); zl.setPosition(first, vector3D(50, 50)); zl.setTexture(first, texture("zombie1.png")); ... while (running) { // main loop ... zl.update(&p); zl.draw(); // draw every zombie } Or would creating a generic World container that contains every action from bite(zombieId, playerId) to moveTo(playerId, vector) to createPlayer() to shoot(playerId, vector) to face(radians)/face(vector); and contains: std::vector<zombie> std::vector<player> ... std::vector<mapchunk> ... std::vector<vbobufferid> player_run_animation; ... be a good example? Whats the proper way to organize a game with DOD?

    Read the article

  • Drag camera/view in a 3D world

    - by Dono
    I'm trying to make a Draggable view in a 3D world. Currently, I've made it using mouse position on the screen, but, when I move the distance traveled by my mouse is not equal to the distance traveled in the 3D world. So, I've tried to do that : Compute a ray from mouse position to 3D world. Calculate intersection with the ground. Check intersection difference old position <- new position. Translate camera with the difference. I've got a problem with this method: The ray is computed with the current camera's position I move the camera I compute the new ray with new camera position. The difference between old ray and new ray is now invalid. So, graphically my camera don't stop to move to previous/new position everytime. How can I do a draggable camera with another solution ? Thanks!

    Read the article

  • HLSL What you get when you subtract world position from InvertViewProjection.Transform?

    - by cubrman
    In one of NVIDIA's Vertex shaders (the metal one) I found the following code: // transform object normals, tangents, & binormals to world-space: float4x4 WorldITXf : WorldInverseTranspose < string UIWidget="None"; >; // provide tranform from "view" or "eye" coords back to world-space: float4x4 ViewIXf : ViewInverse < string UIWidget="None"; >; ... float4 Po = float4(IN.Position.xyz,1); // homogeneous location coordinates float4 Pw = mul(Po,WorldXf); // convert to "world" space OUT.WorldView = normalize(ViewIXf[3].xyz - Pw.xyz); The term OUT.WorldView is subsequently used in a Pixel Shader to compute lighting: float3 Ln = normalize(IN.LightVec.xyz); float3 Nn = normalize(IN.WorldNormal); float3 Vn = normalize(IN.WorldView); float3 Hn = normalize(Vn + Ln); float4 litV = lit(dot(Ln,Nn),dot(Hn,Nn),SpecExpon); DiffuseContrib = litV.y * Kd * LightColor + AmbiColor; SpecularContrib = litV.z * LightColor; Can anyone tell me what exactly is WorldView here? And why do they add it to the normal?

    Read the article

  • Updates for IOS AppStore Multiplayer Game

    - by TobiHeidi
    I am developing a multiplayer game for the web, android and ios. For the web and android i can instantly push out new versions of my game because they support executing remotly loaded code. But with IOS i need to wait for an Apple approval taking about 10 days. I want to push updates more then weekly. What if my server code changes so the client MUST update? Run an old version of the server code just for IOS? How do other multiplayer devs handle this ?

    Read the article

  • What causes the iOS OpenGLES driver to allocate extra memory?

    - by Martin Linklater
    I'm trying to optimize the memory usage of our iOS game and I'm puzzled about when/why the iOS GLES driver allocates extra memory at runtime... When I run our game through Instruments with the OpenGL ES Driver instrument the gartUsedBytes value can fluctuate quite wildly. We preload all our textures and build the buffer objects up front, so it's not the game engine requesting extra memory from GL. Currently we are manually requesting around 50MB of GL memory, yet the gartUsedBytes value sits at around 90MB most of the time, peaking at 125MB from time to time. It seems to be linked to what you are rendering that frame - our PVS only submits VBO's for visible meshes. Can anyone shed some light on what the driver is doing in the background ? Like I said earlier, all our game engine allocations are done on level load, so in theory there shouldn't be any fluctuation on GL memory usage while the level is running. Thanks.

    Read the article

  • Turn Based Event Algorithm

    - by GamersIncoming
    I'm currently working on a small roguelike in XNA, which sees the player in a randomly generated series of dungeons fending off creeps, as you might expect. As with most roguelikes, the player makes a move, and then each of the creeps currently active on screen will make a move in turns, until all creeps have updated, and it return's to the player's go. On paper, the simple algorithm is straightforward: Player takes turn Turn Number increments For each active creep, update Position Once all active creeps have updated, allow player to take next turn However, when it comes to actually writing this in more detail, the concept becomes a bit more tricky for me. So my question comes as this: what is the best way to handle events taking turns to trigger, where the completion of each last event triggers the next, when dealing with a large number of creeps (probably stored as an array of an enemy object), and is there an easier way to create some kind of engine that just takes all objects that need updating and chains them together so their updates follow suit? I'm not asking for code, just algorithms and theory in the direction of objects triggering updates one after the other, in a turn based manner. Thanks in advance. Edited: Here's the code I currently have that is horrible :/ if (player.getTurnOver() && updateWait == 0) { if (creep[creepToUpdate].getActive()) { creep[creepToUpdate].moveObject(player, map1); updateWait = 10; } if (creepToUpdate < creep.Length -1) { creepToUpdate++; } else { creepToUpdate = 0; player.setTurnOver(false); } } if (updateWait > 0) { updateWait--; }

    Read the article

  • Basic 3D Collision detection in XNA 4.0

    - by NDraskovic
    I have a problem with detecting collision between 2 models using BoundingSpheres in XNA 4.0. The code I'm using i very simple: private bool IsCollision(Model model1, Matrix world1, Model model2, Matrix world2) { for (int meshIndex1 = 0; meshIndex1 < model1.Meshes.Count; meshIndex1++) { BoundingSphere sphere1 = model1.Meshes[meshIndex1].BoundingSphere; sphere1 = sphere1.Transform(world1); for (int meshIndex2 = 0; meshIndex2 < model2.Meshes.Count; meshIndex2++) { BoundingSphere sphere2 = model2.Meshes[meshIndex2].BoundingSphere; sphere2 = sphere2.Transform(world2); if (sphere1.Intersects(sphere2)) return true; } } return false; } The problem I'm getting is that when I call this method from the Update method, the program behaves as if this method always returns true value (which of course is not correct). The code for calling is very simple (although this is only the test code): if (IsCollision(model1, worldModel1, model2, worldModel2)) { Window.Title = "Intersects"; } What is causing this?

    Read the article

  • How to create games with scrolling?

    - by Chandan Shetty SP
    In games like city story or we farm how do they implement scrolling? To do scrolling using UIScrollView the EAGLView size has to be bigger. In those games EAGLView size look like more than 1024*1024. But there is limitation in viewport size in iphone devices(in 3G iphone max is 1024). I played those games in 3G iphone they are working fine. Any idea how they implemented their scrolling mechanism?

    Read the article

  • Is there a size limit when using UICollectionView as tiled map for iOS game?

    - by Alexander Winn
    I'm working on a turn-based strategy game for iOS, (picture Civilization 2 as an example), and I'm considering using a UICollectionView as my game map. Each cell would be a tile, and I could use the "didSelectCell" method to handle player interaction with each tile. Here's my question: I know that UICollectionViewCells are dequeued and reused by the OS, so does that mean that the map could support an effectively infinitely-large map, so long as only a few cells are onscreen at a time? However many cells were onscreen would be held in memory, and obviously the data source would take up some memory, but would my offscreen map be limited to a certain size or could it be enormous so long as the number of cells visible at any one time wasn't too much for the device to handle? Basically, is there any memory weight to offscreen cells, or do only visible cells have any impact?

    Read the article

  • Bridge made out of blocks at an angle

    - by Pozzuh
    I'm having a bit of trouble with the math behind my project. I want the player to be able to select 2 points (vectors). With these 2 points a floor should be created. When these points are parallel to the x-axis it's easy, just calculate the amount of blocks needed by a simple division, loop through that amount (in x and y) and keep increasing the coordinate by the size of that block. The trouble starts when the 2 vectors aren't parallel to an axis, for example at an angle of 45 degrees. How do I handle the math behind this? If I wasn't completely clear, I made this awesome drawing in paint to demonstrate what I want to achieve. The 2 red dots would be the player selected locations. (The blocks indeed aren't square.) http://i.imgur.com/pzhFMEs.png.

    Read the article

  • Ease Rotate RigidBody2D toward arbitrary angle

    - by Plastic Sturgeon
    I'm trying to make a rigidbody2D circle return to an orientation after a collision. But there is a weird behavior I do not expect - it always orients to the same direction. This is what I call in FixedUpdate(): rotationdifference = -halfPI + rigidbody2D.rotation; rigidbody2D.AddTorque (rotationdifference * ease); I would expect this would rotate 90 degrees (1/2 Pi Radians) off of the neutral axis. But it does not. In fact it performs exactly the same as: rotationdifference = rigidbody2D.rotation; rigidbody2D.AddTorque (rotationdifference * ease); What is going on? How would I be able to set an angle I want it to ease towards, and then have it ease towards it when its not colliding with some other force?

    Read the article

  • Profiling and containing memory per system

    - by chadb
    I have been interesting in profiling and keeping a managed memory pool for each subsystem, so I could get statistic on how much memory was being used in something such as sounds or graphics. However, what is the best design for doing this? I was thinking of using multiple allocators and just using one per subsystem, however, that would result in global variables for my allocators (or so it would seem to me). Another approach I have seen/been suggested is to just overload new and pass in an allocator for a parameter. I had a similar question over on stackoverflow here with a bounty, however, it seems as if perhaps I was too vague or just there is not enough people with knowledge in the subject.

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • How was 20Q made?

    - by Dan the Man
    Ever since I was a kid, I've wondered how they made the 20Q electronic game. In this game, which is it's on device, you think of an object, thing, or animal (e.g. a potato or a donkey), once you mentally choose your thing, the device goes through a series of questions such as: Is it larger than a loaf of bread? Is it found outdoors? Is it used for recreation? For each of the questions you can answer yes, no, maybe, or unknown. The way I've always thought of it to work was with immense, nested conditionals (if statements). But, I don't think that would be very likely as it would be terribly difficult to understand while coding it. I'm not looking for a discussion as SE doesn't allow it; I'm looking for concrete knowledge or solutions.

    Read the article

  • 15 Puzzle Shuffle Method Issues

    - by Codemiester
    I am making a 15 puzzle game in C# that allows the user to enter a custom row and column value up to a maximum of a 10 x 10 puzzle. Because of this I am having problems with the shuffle method. I want to make it so the puzzle is always solvable. By first creating a winning puzzle then shuffling the empty space. The problem is it is too inefficient to call every click event each time. I need a way to invoke the click event of a button adjacent to the empty space but not diagonal. I also use an invisible static button for the empty spot. The PuzzlePiece class inherits from Button. I am not too sure how to do this. I would appreciate any help. Thanks here is what I have: private void shuffleBoard() { //5 is just for test purposes for (int i = 0; i < 5; i++) { foreach (Control item in this.Controls) { if (item is PuzzlePiece) { ((PuzzlePiece)item).PerformClick(); } } } } void PuzzlePiece_Click(object sender, EventArgs e) { PuzzlePiece piece = (PuzzlePiece)sender; if (piece.Right == puzzleForm.emptyPiece.Left && piece.Top == puzzleForm.emptyPiece.Top) { movePiece(piece); } else if (piece.Left == puzzleForm.emptyPiece.Right && piece.Top == puzzleForm.emptyPiece.Top) { movePiece(piece); } else if (piece.Top == puzzleForm.emptyPiece.Bottom && piece.Left == puzzleForm.emptyPiece.Left) { movePiece(piece); } else if (piece.Bottom == puzzleForm.emptyPiece.Top && piece.Left == puzzleForm.emptyPiece.Left) { movePiece(piece); } }

    Read the article

  • Could someone explain in detail simplex /or perlin noise?

    - by Ryan Szemplinski
    I am really interested in perlin/simplex noise but I am having a difficult time understanding it. I am not very good at math but I am willing to learn because it interests me greatly. If someone is willing to dedicate there time into this I would be immensely appreciative of this. To be more concise, an explanation of functions and some calculation inside the functions would be nice to understand. Thanks in advance!

    Read the article

  • State changes in entities or components

    - by GriffinHeart
    I'm having some trouble figuring how to deal with state management in my entities. I don't have trouble with Game state management, like pause and menus, since these are not handled as an entity component system; just with state in entities/components. Drawing from Orcs Must Die as an example, I have my MainCharacter and Trap entities which only have their components like PositionComponent, RenderComponent, PhysicsComponent. On each update the Entity will call update on its components. I also have a generic EventManager with listeners for different event types. Now I need to be able to place the traps: first select the trap and trap position then place the trap. When placing a trap it should appear in front of the MainCharacter, rendered in a different way and following it around. When placed it should just respond to collisions and be rendered in the normal way. How is this usually handled in component based systems? (This example is specific but can help figure out the general way to deal with entities states.)

    Read the article

< Previous Page | 495 496 497 498 499 500 501 502 503 504 505 506  | Next Page >