Search Results

Search found 12953 results on 519 pages for 'abstract methods'.

Page 5/519 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • How to persist a very abstract data type between sessions: PHP

    - by Greelmo
    I have an abstract data type that behaves much like stack. It represents a history of "graph objects" made by a particular user. Each "graph object" holds one or more "lines", a date range, keys, and a title. Each "line" holds a sql generator configured for a particular subset of data in my db. I would like for these "histories" to be available to users between their sessions. It will be in the form of a tab that reads something like "most recent graphs". What do you believe to be the best way to persist this type of data between sessions. This application could get rather large, so efficiency is a concern. Thanks in advance.

    Read the article

  • EmguCV: Can't find ColorType abstract class

    - by roverred
    EmguCV ColorType wiki I'm trying to create a ColorType abstract class variable but it says the type or namespace does not exist. However I have access to the classes that extend it. I also tried adding all Emgu.CV libraries and have all the references and .dll files in the bin folder. using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Drawing; using Emgu.CV; using Emgu.CV.Util; using Emgu.CV.GPU; using Emgu.CV.ML; using Emgu.CV.OCR; using Emgu.CV.OpenCL; using Emgu.CV.Stitching; using Emgu.CV.VideoStab; using Emgu.CV.Structure; using Emgu.CV.UI; using Emgu.CV.CvEnum; namespace mySpace { class foo { private ColorType the color; //invalid can't find ColorType private ColorType myColor = new Gray(); //invalid } } Any ideas? Thanks for any help.

    Read the article

  • Cannot create instance of abstract class

    - by SmartestVEGA
    I am trying to compile the following code and i am getting the error: Cannot create instance of abstract class . Please help m_objExcel = new Excel.Application(); m_objBooks = (Excel.Workbooks)m_objExcel.Workbooks; m_objBook = (Excel._Workbook)(m_objBooks.Add(m_objOpt)); m_objSheets = (Excel.Sheets)m_objBook.Worksheets; m_objSheet = (Excel._Worksheet)(m_objSheets.get_Item(1)); // Create an array for the headers and add it to cells A1:C1. object[] objHeaders = {"Order ID", "Amount", "Tax"}; m_objRange = m_objSheet.get_Range("A1", "C1"); m_objRange.Value = objHeaders; m_objFont = m_objRange.Font; m_objFont.Bold=true; // Create an array with 3 columns and 100 rows and add it to // the worksheet starting at cell A2. object[,] objData = new Object[100,3]; Random rdm = new Random((int)DateTime.Now.Ticks); double nOrderAmt, nTax; for(int r=0;r<100;r++) { objData[r,0] = "ORD" + r.ToString("0000"); nOrderAmt = rdm.Next(1000); objData[r,1] = nOrderAmt.ToString("c"); nTax = nOrderAmt*0.07; objData[r,2] = nTax.ToString("c"); } m_objRange = m_objSheet.get_Range("A2", m_objOpt); m_objRange = m_objRange.get_Resize(100,3); m_objRange.Value = objData; // Save the Workbook and quit Excel. m_objBook.SaveAs(m_strSampleFolder + "Book2.xls", m_objOpt, m_objOpt, m_objOpt, m_objOpt, m_objOpt, Excel.XlSaveAsAccessMode.xlNoChange, m_objOpt, m_objOpt, m_objOpt, m_objOpt); m_objBook.Close(false, m_objOpt, m_objOpt); m_objExcel.Quit();

    Read the article

  • evaluating cost/benefits of using extension methods in C# => 3.0

    - by BillW
    Hi, In what circumstances (usage scenarios) would you choose to write an extension rather than sub-classing an object ? < full disclosure : I am not an MS employee; I do not know Mitsu Furota personally; I do know the author of the open-source Componax library mentioned here, but I have no business dealings with him whatsoever; I am not creating, or planning to create any commercial product using extensions : in sum : this post is from pure intellectal curiousity related to my trying to (continually) become aware of "best practices" I find the idea of extension methods "cool," and obviously you can do "far-out" things with them as in the many examples you can in Mitsu Furota's (MS) blog postslink text. A personal friend wrote the open-source Componax librarylink text, and there's some remarkable facilities in there; but he is in complete command of his small company with total control over code guidelines, and every line of code "passes through his hands." While this is speculation on my part : I think/guess other issues might come into play in a medium-to-large software team situation re use of Extensions. Looking at MS's guidelines at link text, you find : In general, you will probably be calling extension methods far more often than implementing your own. ... In general, we recommend that you implement extension methods sparingly and only when you have to. Whenever possible, client code that must extend an existing type should do so by creating a new type derived from the existing type. For more information, see Inheritance (C# Programming Guide). ... When the compiler encounters a method invocation, it first looks for a match in the type's instance methods. If no match is found, it will search for any extension methods that are defined for the type, and bind to the first extension method that it finds. And at Ms's link text : Extension methods present no specific security vulnerabilities. They can never be used to impersonate existing methods on a type, because all name collisions are resolved in favor of the instance or static method defined by the type itself. Extension methods cannot access any private data in the extended class. Factors that seem obvious to me would include : I assume you would not write an extension unless you expected it be used very generally and very frequently. On the other hand : couldn't you say the same thing about sub-classing ? Knowing we can compile them into a seperate dll, and add the compiled dll, and reference it, and then use the extensions : is "cool," but does that "balance out" the cost inherent in the compiler first having to check to see if instance methods are defined as described above. Or the cost, in case of a "name clash," of using the Static invocation methods to make sure your extension is invoked rather than the instance definition ? How frequent use of Extensions would affect run-time performance or memory use : I have no idea. So, I'd appreciate your thoughts, or knowing about how/when you do, or don't do, use Extensions, compared to sub-classing. thanks, Bill

    Read the article

  • variables in abstract classes C++

    - by wyatt
    I have an abstract class CommandPath, and a number of derived classes as below: class CommandPath { public: virtual CommandResponse handleCommand(std::string) = 0; virtual CommandResponse execute() = 0; virtual ~CommandPath() {} }; class GetTimeCommandPath : public CommandPath { int stage; public: GetTimeCommandPath() : stage(0) {} CommandResponse handleCommand(std::string); CommandResponse execute(); }; All of the derived classes have the member variable 'stage'. I want to build a function into all of them which manipulates 'stage' in the same way, so rather than defining it many times I thought I'd build it into the parent class. I moved 'stage' from the private sections of all of the derived classes into the protected section of CommandPath, and added the function as follows: class CommandPath { protected: int stage; public: virtual CommandResponse handleCommand(std::string) = 0; virtual CommandResponse execute() = 0; std::string confirmCommand(std::string, int, int, std::string, std::string); virtual ~CommandPath() {} }; class GetTimeCommandPath : public CommandPath { public: GetTimeCommandPath() : stage(0) {} CommandResponse handleCommand(std::string); CommandResponse execute(); }; Now my compiler tells me for the constructor lines that none of the derived classes have a member 'stage'. I was under the impression that protected members are visible to derived classes? The constructor is the same in all classes, so I suppose I could move it to the parent class, but I'm more concerned about finding out why the derived classes aren't able to access the variable. Also, since previously I've only used the parent class for pure virtual functions, I wanted to confirm that this is the way to go about adding a function to be inherited by all derived classes.

    Read the article

  • How to bundle extension methods requiring configuration in a library

    - by Greg
    Hi, I would like to develop a library that I can re-use to add various methods involved in navigating/searching through a graph (nodes/relationships, or if you like vertexs/edges). The generic requirements would be: There are existing classes in the main project that already implement the equivalent of the graph class (which contains the lists of nodes / relationships), node class and relationship class (which links nodes together) - the main project likely already has persistence mechanisms for the info (e.g. these classes might be built using Entity Framework for persistance) Methods would need to be added to each of these 3 classes: (a) graph class - methods like "search all nodes", (b) node class - methods such as "find all children to depth i", c) relationship class - methods like "return relationship type", "get parent node", "get child node". I assume there would be a need to inform the library with the extending methods the class names for the graph/node/relationships table (as different project might use different names). To some extent it would need to be like how a generics collection works (where you pass the classes to the collection so it knows what they are). Need to be a way to inform the library of which node property to use for equality checks perhaps (e.g. if it were a graph of webpages the equality field to use might be the URI path) I'm assuming that using abstract base classes wouldn't really work as this would tie usage down to have to use the same persistence approach, and same class names etc. Whereas really I want to be able to, for a project that has "graph-like" characteristics, the ability to add graph searching/walking methods to it.

    Read the article

  • Liskov substitution principle with abstract parent class

    - by Songo
    Does Liskov substitution principle apply to inheritance hierarchies where the parent is an abstract class the same way if the parent is a concrete class? The Wikipedia page list several conditions that have to be met before a hierarchy is deemed to be correct. However, I have read in a blog post that one way to make things easier to conform to LSP is to use abstract parent instead of a concrete class. How does the choice of the parent type (abstract vs concrete) impacts the LSP? Is it better to have an abstract base class whenever possible?

    Read the article

  • Why does PHP 5.2 disallow abstract static class methods?

    - by Artem Russakovskii
    After enabling strict warnings in PHP 5.2, I saw a load of strict standards warnings from a project that was originally written without strict warnings: Strict Standards: Static function Program::getSelectSQL() should not be abstract in Program.class.inc The function in question belongs to an abstract parent class Program and is declared abstract static because it should be implemented in its child classes, such as TVProgram. I did find references to this change here: Dropped abstract static class functions. Due to an oversight, PHP 5.0.x and 5.1.x allowed abstract static functions in classes. As of PHP 5.2.x, only interfaces can have them. My question is: can someone explain in a clear way why there shouldn't be an abstract static function in PHP?

    Read the article

  • protected abstract override Foo(); &ndash; er... what?

    - by Muljadi Budiman
    A couple of weeks back, a co-worker was pondering a situation he was facing.  He was looking at the following class hierarchy: abstract class OriginalBase { protected virtual void Test() { } } abstract class SecondaryBase : OriginalBase { } class FirstConcrete : SecondaryBase { } class SecondConcrete : SecondaryBase { } Basically, the first 2 classes are abstract classes, but the OriginalBase class has Test implemented as a virtual method.  What he needed was to force concrete class implementations to provide a proper body for the Test method, but he can’t do mark the method as abstract since it is already implemented in the OriginalBase class. One way to solve this is to hide the original implementation and then force further derived classes to properly implemented another method that will replace it.  The code will look like the following: abstract class OriginalBase { protected virtual void Test() { } } abstract class SecondaryBase : OriginalBase { protected sealed override void Test() { Test2(); } protected abstract void Test2(); } class FirstConcrete : SecondaryBase { // Have to override Test2 here } class SecondConcrete : SecondaryBase { // Have to override Test2 here } With the above code, SecondaryBase class will seal the Test method so it can no longer be overridden.  Then it also made an abstract method Test2 available, which will force the concrete classes to override and provide the proper implementation.  Calling Test will properly call the proper Test2 implementation in each respective concrete classes. I was wondering if there’s a way to tell the compiler to treat the Test method in SecondaryBase as abstract, and apparently you can, by combining the abstract and override keywords.  The code looks like the following: abstract class OriginalBase { protected virtual void Test() { } } abstract class SecondaryBase : OriginalBase { protected abstract override void Test(); } class FirstConcrete : SecondaryBase { // Have to override Test here } class SecondConcrete : SecondaryBase { // Have to override Test here } The method signature makes it look a bit funky, because most people will treat the override keyword to mean you then need to provide the implementation as well, but the effect is exactly as we desired.  The concepts are still valid: you’re overriding the Test method from its original implementation in the OriginalBase class, but you don’t want to implement it, rather you want to classes that derive from SecondaryBase to provide the proper implementation, so you also make it as an abstract method. I don’t think I’ve ever seen this before in the wild, so it was pretty neat to find that the compiler does support this case.

    Read the article

  • Stepping into Ruby Meta-Programming: Generating proxy methods for multiple internal methods

    - by mstksg
    Hi all; I've multiply heard Ruby touted for its super spectacular meta-programming capabilities, and I was wondering if anyone could help me get started with this problem. I have a class that works as an "archive" of sorts, with internal methods that process and output data based on an input. However, the items in the archive in the class itself are represented and processed with integers, for performance purposes. The actual items outside of the archive are known by their string representation, which is simply number_representation.to_s(36). Because of this, I have hooked up each internal method with a "proxy method" that converts the input into the integer form that the archive recognizes, runs the internal method, and converts the output (either a single other item, or a collection of them) back into strings. The naming convention is this: internal methods are represented by _method_name; their corresponding proxy method is represented by method_name, with no leading underscore. For example: class Archive ## PROXY METHODS ## ## input: string representation of id's ## output: string representation of id's def do_something_with id result = _do_something_with id.to_i(36) return nil if result == nil return result.to_s(36) end def do_something_with_pair id_1,id_2 result = _do_something_with_pair id_1.to_i(36), id_2.to_i(36) return nil if result == nil return result.to_s(36) end def do_something_with_these ids result = _do_something_with_these ids.map { |n| n.to_i(36) } return nil if result == nil return result.to_s(36) end def get_many_from id result = _get_many_from id return nil if result == nil # no sparse arrays returned return result.map { |n| n.to_s(36) } end ## INTERNAL METHODS ## ## input: integer representation of id's ## output: integer representation of id's def _do_something_with id # does something with one integer-represented id, # returning an id represented as an integer end def do_something_with_pair id_1,id_2 # does something with two integer-represented id's, # returning an id represented as an integer end def _do_something_with_these ids # does something with multiple integer ids, # returning an id represented as an integer end def _get_many_from id # does something with one integer-represented id, # returns a collection of id's represented as integers end end There are a couple of reasons why I can't just convert them if id.class == String at the beginning of the internal methods: These internal methods are somewhat computationally-intensive recursive functions, and I don't want the overhead of checking multiple times at every step There is no way, without adding an extra parameter, to tell whether or not to re-convert at the end I want to think of this as an exercise in understanding ruby meta-programming Does anyone have any ideas? edit The solution I'd like would preferably be able to take an array of method names @@PROXY_METHODS = [:do_something_with, :do_something_with_pair, :do_something_with_these, :get_many_from] iterate through them, and in each iteration, put out the proxy method. I'm not sure what would be done with the arguments, but is there a way to test for arguments of a method? If not, then simple duck typing/analogous concept would do as well.

    Read the article

  • Get and Set property accessors are ‘actually’ methods

    - by nmarun
    Well, they are ‘special’ methods, but they indeed are methods. See the class below: 1: public class Person 2: { 3: private string _name; 4:  5: public string Name 6: { 7: get 8: { 9: return _name; 10: } 11: set 12: { 13: if (value == "aaa") 14: { 15: throw new ArgumentException("Invalid Name"); 16: } 17: _name = value; 18: } 19: } 20:  21: public void Save() 22: { 23: Console.WriteLine("Saving..."); 24: } 25: } Ok, so a class with a field, a property with the get and set accessors and a method. Now my calling code says: 1: static void Main() 2: { 3: try 4: { 5: Person person1 = new Person 6: { 7: Name = "aaa", 8: }; 9:  10: } 11: catch (Exception ex) 12: { 13: Console.WriteLine(ex.Message); 14: Console.WriteLine(ex.StackTrace); 15: Console.WriteLine("--------------------"); 16: } 17: } When the code is run, you’ll get the following exception message displayed: Now, you see the first line of the stack trace where it says that the exception was thrown in the method set_Name(String value). Wait a minute, we have not declared any method with that name in our Person class. Oh no, we actually have. When you create a property, this is what happens behind the screen. The CLR creates two methods for each get and set property accessor. Let’s look at the signature once again: set_Name(String value) This also tells you where the ‘value’ keyword comes from in our set property accessor. You’re actually wiring up a method parameter to a field. 1: set 2: { 3: if (value == "aaa") 4: { 5: throw new ArgumentException("Invalid Name"); 6: } 7: _name = value; 8: } Digging deeper on this, I ran the ILDasm tool and this is what I see: We see the ‘free’ constructor (named .ctor) that the compiler gives us, the _name field, the Name property and the Save method. We also see the get_Name and set_Name methods. In order to compare the Save and the set_Name methods, I double-clicked on the two methods and this is what I see: The ‘.method’ keyword tells that both Save and set_Name are both methods (no guessing there!). Seeing the set_Name method as a public method did kinda surprise me. So I said, why can’t I do a person1.set_Name(“abc”) since it is declared as public. This cannot be done because the get_Name and set_Name methods have an extra attribute called ‘specialname’. This attribute is used to identify an IL (Intermediate Language) token that can be treated with special care by the .net language. So the thumb-rule is that any method with the ‘specialname’ attribute cannot be generally called / invoked by the user (a simple test using intellisense proves this). Their functionality is exposed through other ways. In our case, this is done through the property itself. The same concept gets extended to constructors as well making them special methods too. These so-called ‘special’ methods can be identified through reflection. 1: static void ReflectOnPerson() 2: { 3: Type personType = typeof(Person); 4:  5: MethodInfo[] methods = personType.GetMethods(); 6:  7: for (int i = 0; i < methods.Length; i++) 8: { 9: Console.Write("Method: {0}", methods[i].Name); 10: // Determine whether or not each method is a special name. 11: if (methods[i].IsSpecialName) 12: { 13: Console.Write(" has 'SpecialName' attribute"); 14: } 15: Console.WriteLine(); 16: } 17: } Line 11 shows the ‘IsSpecialName’ boolean property. So a method with a ‘specialname’ attribute gets mapped to the IsSpecialName property. The output is displayed as: Wuhuuu! There they are.. our special guests / methods. Verdict: Getting to know the internals… helps!

    Read the article

  • Extension Methods and Application Code

    - by Mystagogue
    I have seen plenty of online guidelines for authoring extension methods, usually along these lines: 1) Avoid authoring extension methods when practical - prefer other approaches first (e.g. regular static methods). 2) Don't author extension methods to extend code you own or currently develop. Instead, author them to extend 3rd party or BCL code. But I have the impression that a couple more guidelines are either implied or advisable. What does the community think of these two additional guidelines: A) Prefer to author extension methods to contain generic functionality rather than application-specific logic. (This seems to follow from guideline #2 above) B) An extension method should be sizeable enough to justify itself (preferably at least 5 lines of code in length). Item (B) is intended to discourage a develoer from writing dozens of extension methods (totalling X lines of code) to refactor or replace what originally was already about X lines of inline code. Perhaps item (B) is badly qualified, or even misinformed about how a one line extension method is actually powerful and justified. I'm curious to know. But if item (B) is somehow dismissed by the community, I must admist I'm still particularly interested in feedback on guideline (A).

    Read the article

  • Extension methods for encapsulation and reusability

    - by tzaman
    In C++ programming, it's generally considered good practice to "prefer non-member non-friend functions" instead of instance methods. This has been recommended by Scott Meyers in this classic Dr. Dobbs article, and repeated by Herb Sutter and Andrei Alexandrescu in C++ Coding Standards (item 44); the general argument being that if a function can do its job solely by relying on the public interface exposed by the class, it actually increases encapsulation to have it be external. While this confuses the "packaging" of the class to some extent, the benefits are generally considered worth it. Now, ever since I've started programming in C#, I've had a feeling that here is the ultimate expression of the concept that they're trying to achieve with "non-member, non-friend functions that are part of a class interface". C# adds two crucial components to the mix - the first being interfaces, and the second extension methods: Interfaces allow a class to formally specify their public contract, the methods and properties that they're exposing to the world. Any other class can choose to implement the same interface and fulfill that same contract. Extension methods can be defined on an interface, providing any functionality that can be implemented via the interface to all implementers automatically. And best of all, because of the "instance syntax" sugar and IDE support, they can be called the same way as any other instance method, eliminating the cognitive overhead! So you get the encapsulation benefits of "non-member, non-friend" functions with the convenience of members. Seems like the best of both worlds to me; the .NET library itself providing a shining example in LINQ. However, everywhere I look I see people warning against extension method overuse; even the MSDN page itself states: In general, we recommend that you implement extension methods sparingly and only when you have to. So what's the verdict? Are extension methods the acme of encapsulation and code reuse, or am I just deluding myself?

    Read the article

  • How to prevent duplicate data access methods that retrieve similar data?

    - by Ronald Wildenberg
    In almost every project I work on with a team, the same problem seems to creep in. Someone writes UI code that needs data and writes a data access method: AssetDto GetAssetById(int assetId) A week later someone else is working on another part of the application and also needs an AssetDto but now including 'approvers' and writes the following: AssetDto GetAssetWithApproversById(int assetId) A month later someone needs an asset but now including the 'questions' (or the 'owners' or the 'running requests', etc): AssetDto GetAssetWithQuestionsById(int assetId) AssetDto GetAssetWithOwnersById(int assetId) AssetDto GetAssetWithRunningRequestsById(int assetId) And it gets even worse when methods like GetAssetWithOwnerAndQuestionsById start to appear. You see the pattern that emerges: an object is attached to a large object graph and you need different parts of this graph in different locations. Of course, I'd like to prevent having a large number of methods that do almost the same. Is it simply a matter of team discipline or is there some pattern I can use to prevent this? In some cases it might make sense to have separate methods, i.e. getting an asset with running requests may be expensive so I do not want to include these all the time. How to handle such cases?

    Read the article

  • Ruby Abstract Class Design

    - by MattDiPasquale
    I'm creating a video game. It has Characters & Items. Since I want Characters & Items to each have a name, should I make another class called NamedObjects with just a name field and have Characters & Items extend that? Or is that going overboard?

    Read the article

  • Abstract Factory Using Generics: Is Explicitly Converting a Specified Type to Generic a Bad Practice

    - by Merritt
    The question's title says it all. I like how it fits into the rest of my code, but does it smell? public interface IFoo<T> { T Bar { get; set; } } public class StringFoo : IFoo<string> { public string Bar { get; set; } } public static class FooFactory { public static IFoo<T> CreateFoo<T>() { if (typeof(T) == typeof(string)) { return new StringFoo() as IFoo<T>; } throw new NotImplementedException(); } } UPDATE: this is sort of a duplicate of Is the StaticFactory in codecampserver a well known pattern?

    Read the article

  • Abstract base class puzzle

    - by 0x80
    In my class design I ran into the following problem: class MyData { int foo; }; class AbstraktA { public: virtual void A() = 0; }; class AbstraktB : public AbstraktA { public: virtual void B() = 0; }; template<class T> class ImplA : public AbstraktA { public: void A(){ cout << "ImplA A()"; } }; class ImplB : public ImplA<MyData>, public AbstraktB { public: void B(){ cout << "ImplB B()"; } }; void TestAbstrakt() { AbstraktB *b = (AbstraktB *) new ImplB; b->A(); b->B(); }; The problem with the code above is that the compiler will complain that AbstraktA::A() is not defined. Interface A is shared by multiple objects. But the implementation of A is dependent on the template argument. Interface B is the seen by the outside world, and needs to be abstrakt. The reason I would like this is that it would allow me to define object C like this: Define the interface C inheriting from abstrakt A. Define the implementation of C using a different datatype for template A. I hope I'm clear. Is there any way to do this, or do I need to rethink my design?

    Read the article

  • My abstract class implements an interface but doesn't implement some of its methods. How do I make i

    - by Stefan Monov
    interface ICanvasTool { void Motion(Point newLocation); void Tick(); } abstract class CanvasTool_BaseDraw : ICanvasTool { protected abstract void PaintAt(Point location); public override void Motion(Point newLocation) { // implementation } } class CanvasTool_Spray : CanvasTool_BaseDraw { protected abstract void PaintAt(Point location) { // implementation } public override void Tick() { // implementation } } This doesn't compile. I could add an abstract method "Tick_Implementation" to CanvasTool_BaseDraw, then implement ICanvasTool.Tick in CanvasTool_BaseDraw with a one-liner that just calls Tick_Implementation. Is this the recommended workaround?

    Read the article

  • Interfaces on an abstract class

    - by insta
    My coworker and I have different opinions on the relationship between base classes and interfaces. I'm of the belief that a class should not implement an interface unless that class can be used when an implementation of the interface is required. In other words, I like to see code like this: interface IFooWorker { void Work(); } abstract class BaseWorker { ... base class behaviors ... public abstract void Work() { } protected string CleanData(string data) { ... } } class DbWorker : BaseWorker, IFooWorker { public void Work() { Repository.AddCleanData(base.CleanData(UI.GetDirtyData())); } } The DbWorker is what gets the IFooWorker interface, because it is an instantiatable implementation of the interface. It completely fulfills the contract. My coworker prefers the nearly identical: interface IFooWorker { void Work(); } abstract class BaseWorker : IFooWorker { ... base class behaviors ... public abstract void Work() { } protected string CleanData(string data) { ... } } class DbWorker : BaseWorker { public void Work() { Repository.AddCleanData(base.CleanData(UI.GetDirtyData())); } } Where the base class gets the interface, and by virtue of this all inheritors of the base class are of that interface as well. This bugs me but I can't come up with concrete reasons why, outside of "the base class cannot stand on its own as an implementation of the interface". What are the pros & cons of his method vs. mine, and why should one be used over another?

    Read the article

  • Use python decorators on class methods and subclass methods

    - by AlexH
    Goal: Make it possible to decorate class methods. When a class method gets decorated, it gets stored in a dictionary so that other class methods can reference it by a string name. Motivation: I want to implement the equivalent of ASP.Net's WebMethods. I am building this on top of google app engine, but that does not affect the point of difficulty that I am having. How it Would look if it worked: class UsefulClass(WebmethodBaseClass): def someMethod(self, blah): print(blah) @webmethod def webby(self, blah): print(blah) # the implementation of this class could be completely different, it does not matter # the only important thing is having access to the web methods defined in sub classes class WebmethodBaseClass(): def post(self, methodName): webmethods[methodName]("kapow") ... a = UsefulClass() a.post("someMethod") # should error a.post("webby") # prints "kapow" There could be other ways to go about this. I am very open to suggestions

    Read the article

  • Information on Rojiani's Numerical methods C textbook

    - by yCalleecharan
    Hi, having taken a look at a few textbooks that discuss numerical methods and C programming, I was gladly surprised when browsing through "programming in C with numerical methods for engineers" by Rojiani. I understand of course it's important that one need to have a solid background in numerical methods prior to try implementing them on a computer. I would like to know if someone here has been using this book and if possible point out strengths and weaknesses of this textbook. Thanks a lot...

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >