Search Results

Search found 17940 results on 718 pages for 'algorithm design'.

Page 5/718 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Suggestion on algorithm to distribute objects of different value

    - by Unknown
    Hello, I have the following problem: Given N objects of different values (N < 30, and the values are multiple of a "k" constant, i.e. k, 2k, 3k, 4k, 6k, 8k, 12k, 16k, 24k and 32k), I need an algorithm that will distribute all items to M players (M <= 6) in such a way that the total value of the objects each player gets is as even as possible (in other words, I want to distribute all objects to all players in the fairest way possible). I don't need (pseudo)code to solve this (also, this is not a homework :) ), but I'll appreciate any ideas or links to algorithms that could solve this. Thanks!

    Read the article

  • Creating a "crossover" function for a genetic algorithm to improve network paths

    - by Dave
    Hi, I'm trying to develop a genetic algorithm that will find the most efficient way to connect a given number of nodes at specified locations. All the nodes on the network must be able to connect to the server node and there must be no cycles within the network. It's basically a tree. I have a function that can measure the "fitness" of any given network layout. What's stopping me is that I can't think of a crossover function that would take 2 network structures (parents) and somehow mix them to create offspring that would meet the above conditions. Any ideas? Clarification: The nodes each have a fixed x,y coordiante position. Only the routes between them can be altered.

    Read the article

  • help with number calculation algorithm [hw]

    - by sa125
    Hi - I'm working on a hw problem that asks me this: given a finite set of numbers, and a target number, find if the set can be used to calculate the target number using basic math operations (add, sub, mult, div) and using each number in the set exactly once (so I need to exhaust the set). This has to be done with recursion. So, for example, if I have the set {1, 2, 3, 4} and target 10, then I could get to it by using ((3 * 4) - 2)/1 = 10. I'm trying to phrase the algorithm in pseudo-code, but so far haven't gotten too far. I'm thinking graphs are the way to go, but would definitely appreciate help on this. thanks.

    Read the article

  • Understanding and Implementing a Force based graph layout algorithm

    - by zcourts
    I'm trying to implement a force base graph layout algorithm, based on http://en.wikipedia.org/wiki/Force-based_algorithms_(graph_drawing) My first attempt didn't work so I looked at http://blog.ivank.net/force-based-graph-drawing-in-javascript.html and https://github.com/dhotson/springy I changed my implementation based on what I thought I understood from those two but I haven't managed to get it right and I'm hoping someone can help? JavaScript isn't my strong point so be gentle... If you're wondering why write my own. In reality I have no real reason to write my own I'm just trying to understand how the algorithm is implemented. Especially in my first link, that demo is brilliant. This is what I've come up with //support function.bind - https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/bind#Compatibility if (!Function.prototype.bind) { Function.prototype.bind = function (oThis) { if (typeof this !== "function") { // closest thing possible to the ECMAScript 5 internal IsCallable function throw new TypeError("Function.prototype.bind - what is trying to be bound is not callable"); } var aArgs = Array.prototype.slice.call(arguments, 1), fToBind = this, fNOP = function () {}, fBound = function () { return fToBind.apply(this instanceof fNOP ? this : oThis || window, aArgs.concat(Array.prototype.slice.call(arguments))); }; fNOP.prototype = this.prototype; fBound.prototype = new fNOP(); return fBound; }; } (function() { var lastTime = 0; var vendors = ['ms', 'moz', 'webkit', 'o']; for(var x = 0; x < vendors.length && !window.requestAnimationFrame; ++x) { window.requestAnimationFrame = window[vendors[x]+'RequestAnimationFrame']; window.cancelAnimationFrame = window[vendors[x]+'CancelAnimationFrame'] || window[vendors[x]+'CancelRequestAnimationFrame']; } if (!window.requestAnimationFrame) window.requestAnimationFrame = function(callback, element) { var currTime = new Date().getTime(); var timeToCall = Math.max(0, 16 - (currTime - lastTime)); var id = window.setTimeout(function() { callback(currTime + timeToCall); }, timeToCall); lastTime = currTime + timeToCall; return id; }; if (!window.cancelAnimationFrame) window.cancelAnimationFrame = function(id) { clearTimeout(id); }; }()); function Graph(o){ this.options=o; this.vertices={}; this.edges={};//form {vertexID:{edgeID:edge}} } /** *Adds an edge to the graph. If the verticies in this edge are not already in the *graph then they are added */ Graph.prototype.addEdge=function(e){ //if vertex1 and vertex2 doesn't exist in this.vertices add them if(typeof(this.vertices[e.vertex1])==='undefined') this.vertices[e.vertex1]=new Vertex(e.vertex1); if(typeof(this.vertices[e.vertex2])==='undefined') this.vertices[e.vertex2]=new Vertex(e.vertex2); //add the edge if(typeof(this.edges[e.vertex1])==='undefined') this.edges[e.vertex1]={}; this.edges[e.vertex1][e.id]=e; } /** * Add a vertex to the graph. If a vertex with the same ID already exists then * the existing vertex's .data property is replaced with the @param v.data */ Graph.prototype.addVertex=function(v){ if(typeof(this.vertices[v.id])==='undefined') this.vertices[v.id]=v; else this.vertices[v.id].data=v.data; } function Vertex(id,data){ this.id=id; this.data=data?data:{}; //initialize to data.[x|y|z] or generate random number for each this.x = this.data.x?this.data.x:-100 + Math.random()*200; this.y = this.data.y?this.data.y:-100 + Math.random()*200; this.z = this.data.y?this.data.y:-100 + Math.random()*200; //set initial velocity to 0 this.velocity = new Point(0, 0, 0); this.mass=this.data.mass?this.data.mass:Math.random(); this.force=new Point(0,0,0); } function Edge(vertex1ID,vertex2ID){ vertex1ID=vertex1ID?vertex1ID:Math.random() vertex2ID=vertex2ID?vertex2ID:Math.random() this.id=vertex1ID+"->"+vertex2ID; this.vertex1=vertex1ID; this.vertex2=vertex2ID; } function Point(x, y, z) { this.x = x; this.y = y; this.z = z; } Point.prototype.plus=function(p){ this.x +=p.x this.y +=p.y this.z +=p.z } function ForceLayout(o){ this.repulsion = o.repulsion?o.repulsion:200; this.attraction = o.attraction?o.attraction:0.06; this.damping = o.damping?o.damping:0.9; this.graph = o.graph?o.graph:new Graph(); this.total_kinetic_energy =0; this.animationID=-1; } ForceLayout.prototype.draw=function(){ //vertex velocities initialized to (0,0,0) when a vertex is created //vertex positions initialized to random position when created cc=0; do{ this.total_kinetic_energy =0; //for each vertex for(var i in this.graph.vertices){ var thisNode=this.graph.vertices[i]; // running sum of total force on this particular node var netForce=new Point(0,0,0) //for each other node for(var j in this.graph.vertices){ if(thisNode!=this.graph.vertices[j]){ //net-force := net-force + Coulomb_repulsion( this_node, other_node ) netForce.plus(this.CoulombRepulsion( thisNode,this.graph.vertices[j])) } } //for each spring connected to this node for(var k in this.graph.edges[thisNode.id]){ //(this node, node its connected to) //pass id of this node and the node its connected to so hookesattraction //can update the force on both vertices and return that force to be //added to the net force this.HookesAttraction(thisNode.id, this.graph.edges[thisNode.id][k].vertex2 ) } // without damping, it moves forever // this_node.velocity := (this_node.velocity + timestep * net-force) * damping thisNode.velocity.x=(thisNode.velocity.x+thisNode.force.x)*this.damping; thisNode.velocity.y=(thisNode.velocity.y+thisNode.force.y)*this.damping; thisNode.velocity.z=(thisNode.velocity.z+thisNode.force.z)*this.damping; //this_node.position := this_node.position + timestep * this_node.velocity thisNode.x=thisNode.velocity.x; thisNode.y=thisNode.velocity.y; thisNode.z=thisNode.velocity.z; //normalize x,y,z??? //total_kinetic_energy := total_kinetic_energy + this_node.mass * (this_node.velocity)^2 this.total_kinetic_energy +=thisNode.mass*((thisNode.velocity.x+thisNode.velocity.y+thisNode.velocity.z)* (thisNode.velocity.x+thisNode.velocity.y+thisNode.velocity.z)) } cc+=1; }while(this.total_kinetic_energy >0.5) console.log(cc,this.total_kinetic_energy,this.graph) this.cancelAnimation(); } ForceLayout.prototype.HookesAttraction=function(v1ID,v2ID){ var a=this.graph.vertices[v1ID] var b=this.graph.vertices[v2ID] var force=new Point(this.attraction*(b.x - a.x),this.attraction*(b.y - a.y),this.attraction*(b.z - a.z)) // hook's attraction a.force.x += force.x; a.force.y += force.y; a.force.z += force.z; b.force.x += this.attraction*(a.x - b.x); b.force.y += this.attraction*(a.y - b.y); b.force.z += this.attraction*(a.z - b.z); return force; } ForceLayout.prototype.CoulombRepulsion=function(vertex1,vertex2){ //http://en.wikipedia.org/wiki/Coulomb's_law // distance squared = ((x1-x2)*(x1-x2)) + ((y1-y2)*(y1-y2)) + ((z1-z2)*(z1-z2)) var distanceSquared = ( (vertex1.x-vertex2.x)*(vertex1.x-vertex2.x)+ (vertex1.y-vertex2.y)*(vertex1.y-vertex2.y)+ (vertex1.z-vertex2.z)*(vertex1.z-vertex2.z) ); if(distanceSquared==0) distanceSquared = 0.001; var coul = this.repulsion / distanceSquared; return new Point(coul * (vertex1.x-vertex2.x),coul * (vertex1.y-vertex2.y), coul * (vertex1.z-vertex2.z)); } ForceLayout.prototype.animate=function(){ if(this.animating) this.animationID=requestAnimationFrame(this.animate.bind(this)); this.draw(); } ForceLayout.prototype.cancelAnimation=function(){ cancelAnimationFrame(this.animationID); this.animating=false; } ForceLayout.prototype.redraw=function(){ this.animating=true; this.animate(); } $(document).ready(function(){ var g= new Graph(); for(var i=0;i<=100;i++){ var v1=new Vertex(Math.random(), {}) var v2=new Vertex(Math.random(), {}) var e1= new Edge(v1.id,v2.id); g.addEdge(e1); } console.log(g); var l=new ForceLayout({ graph:g }); l.redraw(); });

    Read the article

  • Algorithm for dynamic combinations

    - by sOltan
    My code has a list called INPUTS, that contains a dynamic number of lists, let's call them A, B, C, .. N. These lists contain a dynamic number of Events I would like to call a function with each combination of Events. To illustrate with an example: INPUTS: A(0,1,2), B(0,1), C(0,1,2,3) I need to call my function this many times for each combination (the input count is dynamic, in this example it is three parameter, but it can be more or less) function(A[0],B[0],C[0]) function(A[0],B[1],C[0]) function(A[0],B[0],C[1]) function(A[0],B[1],C[1]) function(A[0],B[0],C[2]) function(A[0],B[1],C[2]) function(A[0],B[0],C[3]) function(A[0],B[1],C[3]) function(A[1],B[0],C[0]) function(A[1],B[1],C[0]) function(A[1],B[0],C[1]) function(A[1],B[1],C[1]) function(A[1],B[0],C[2]) function(A[1],B[1],C[2]) function(A[1],B[0],C[3]) function(A[1],B[1],C[3]) function(A[2],B[0],C[0]) function(A[2],B[1],C[0]) function(A[2],B[0],C[1]) function(A[2],B[1],C[1]) function(A[2],B[0],C[2]) function(A[2],B[1],C[2]) function(A[2],B[0],C[3]) function(A[2],B[1],C[3]) This is what I have thought of so far: My approach so far is to build a list of combinations. The element combination is itself a list of "index" to the input arrays A, B and C. For our example: my list iCOMBINATIONS contains the following iCOMBO lists (0,0,0) (0,1,0) (0,0,1) (0,1,1) (0,0,2) (0,1,2) (0,0,3) (0,1,3) (1,0,0) (1,1,0) (1,0,1) (1,1,1) (1,0,2) (1,1,2) (1,0,3) (1,1,3) (2,0,0) (2,1,0) (2,0,1) (2,1,1) (2,0,2) (2,1,2) (2,0,3) (2,1,3) Then I would do this: foreach( iCOMBO in iCOMBINATIONS) { foreach ( P in INPUTS ) { COMBO.Clear() foreach ( i in iCOMBO ) { COMBO.Add( P[ iCOMBO[i] ] ) } function( COMBO ) --- (instead of passing the events separately) } } But I need to find a way to build the list iCOMBINATIONS for any given number of INPUTS and their events. Any ideas? Is there actually a better algorithm than this? any pseudo code to help me with will be great. C# (or VB) Thank You

    Read the article

  • how to tackle this combinatorial algorithm problem

    - by Andrew Bullock
    I have N people who must each take T exams. Each exam takes "some" time, e.g. 30 min (no such thing as finishing early). Exams must be performed in front of an examiner. I need to schedule each person to take each exam in front of an examiner within an overall time period, using the minimum number of examiners for the minimum amount of time (i.e. no examiners idle) There are the following restrictions: No person can be in 2 places at once each person must take each exam once noone should be examined by the same examiner twice I realise that an optimal solution is probably NP-Complete, and that I'm probably best off using a genetic algorithm to obtain a best estimate (similar to this? http://stackoverflow.com/questions/184195/seating-plan-software-recommendations-does-such-a-beast-even-exist). I'm comfortable with how genetic algorithms work, what i'm struggling with is how to model the problem programatically such that i CAN manipulate the parameters genetically.. If each exam took the same amount of time, then i'd divide the time period up into these lengths, and simply create a matrix of time slots vs examiners and drop the candidates in. However because the times of each test are not necessarily the same, i'm a bit lost on how to approach this. currently im doing this: make a list of all "tests" which need to take place, between every candidate and exam start with as many examiners as there are tests repeatedly loop over all examiners, for each one: find an unscheduled test which is eligible for the examiner (based on the restrictions) continue until all tests that can be scheduled, are if there are any unscheduled tests, increment the number of examiners and start again. i'm looking for better suggestions on how to approach this, as it feels rather crude currently.

    Read the article

  • Merge method in MergeSort Algorithm .

    - by Tony
    I've seen many mergeSort implementations .Here is the version in Data Structures and Algorithms in Java (2nd Edition) by Robert Lafore : private void recMergeSort(long[] workSpace, int lowerBound,int upperBound) { if(lowerBound == upperBound) // if range is 1, return; // no use sorting else { // find midpoint int mid = (lowerBound+upperBound) / 2; // sort low half recMergeSort(workSpace, lowerBound, mid); // sort high half recMergeSort(workSpace, mid+1, upperBound); // merge them merge(workSpace, lowerBound, mid+1, upperBound); } // end else } // end recMergeSort() private void merge(long[] workSpace, int lowPtr, int highPtr, int upperBound) { int j = 0; // workspace index int lowerBound = lowPtr; int mid = highPtr-1; int n = upperBound-lowerBound+1; // # of items while(lowPtr <= mid && highPtr <= upperBound) if( theArray[lowPtr] < theArray[highPtr] ) workSpace[j++] = theArray[lowPtr++]; else workSpace[j++] = theArray[highPtr++]; while(lowPtr <= mid) workSpace[j++] = theArray[lowPtr++]; while(highPtr <= upperBound) workSpace[j++] = theArray[highPtr++]; for(j=0; j<n; j++) theArray[lowerBound+j] = workSpace[j]; } // end merge() One interesting thing about merge method is that , almost all the implementations didn't pass the lowerBound parameter to merge method . lowerBound is calculated in the merge . This is strange , since lowerPtr = mid + 1 ; lowerBound = lowerPtr -1 ; that means lowerBound = mid ; Why the author didn't pass mid to merge like merge(workSpace, lowerBound,mid, mid+1, upperBound); ? I think there must be a reason , otherwise I can't understand why an algorithm older than half a center ,and have all coincident in the such little detail.

    Read the article

  • Sparse parameter selection using Genetic Algorithm

    - by bgbg
    Hello, I'm facing a parameter selection problem, which I would like to solve using Genetic Algorithm (GA). I'm supposed to select not more than 4 parameters out of 3000 possible ones. Using the binary chromosome representation seems like a natural choice. The evaluation function punishes too many "selected" attributes and if the number of attributes is acceptable, it then evaluates the selection. The problem is that in these sparse conditions the GA can hardly improve the population. Neither the average fitness cost, nor the fitness of the "worst" individual improves over the generations. All I see is slight (even tiny) improvement in the score of the best individual, which, I suppose, is a result of random sampling. Encoding the problem using indices of the parameters doesn't work either. This is most probably, due to the fact that the chromosomes are directional, while the selection problem isn't (i.e. chromosomes [1, 2, 3, 4]; [4, 3, 2, 1]; [3, 2, 4, 1] etc. are identical) What problem representation would you suggest? P.S If this matters, I use PyEvolve.

    Read the article

  • Algorithm to match list of regular expressions

    - by DSII
    I have two algorithmic questions for a project I am working on. I have thought about these, and have some suspicions, but I would love to hear the community's input as well. Suppose I have a string, and a list of N regular expressions (actually they are wildcard patterns representing a subset of full regex functionality). I want to know whether the string matches at least one of the regular expressions in the list. Is there a data structure that can allow me to match the string against the list of regular expressions in sublinear (presumably logarithmic) time? This is an extension of the previous problem. Suppose I have the same situation: a string and a list of N regular expressions, only now each of the regular expressions is paired with an offset within the string at which the match must begin (or, if you prefer, each of the regular expressions must match a substring of the given string beginning at the given offset). To give an example, suppose I had the string: This is a test string and the regex patterns and offsets: (a) his.* at offset 0 (b) his.* at offset 1 The algorithm should return true. Although regex (a) does not match the string beginning at offset 0, regex (b) does match the substring beginning at offset 1 ("his is a test string"). Is there a data structure that can allow me to solve this problem in sublinear time? One possibly useful piece of information is that often, many of the offsets in the list of regular expressions are the same (i.e. often we are matching the substring at offset X many times). This may be useful to leverage the solution to problem #1 above. Thank you very much in advance for any suggestions you may have!

    Read the article

  • How to gain accurate results with Painter's algorithm?

    - by pimvdb
    A while ago I asked how to determine when a face is overlapping another. The advice was to use a Z-buffer. However, I cannot use a Z-buffer in my current project and hence I would like to use the Painter's algorithm. I have no good clue as to when a surface is behind or in front of another, though. I've tried numerous methods but they all fail in edge cases, or they fail even in general cases. This is a list of sorting methods I've tried so far: Distance to midpoint of each face Average distance to each vertex of each face Average z value of each vertex Higest z value of vertices of each face and draw those first Lowest z value of vertices of each face and draw those last The problem is that a face might have a closer distance but is still further away. All these methods seem unreliable. Edit: For example, in the following image the surface with the blue point as midpoint is painted over the surface with the red point as midpoint, because the blue point is closer. However, this is because the surface of the red point is larger and the midpoint is further away. The surface with the red point should be painted over the blue one, because it is closer, whilst the midpoint distance says the opposite. What exactly is used in the Painter's algorithm to determine the order in which objects should be drawn?

    Read the article

  • Triangulation A* (TA*) pathfinding algorithm

    - by hyn
    I need help understanding the Triangle A* (TA*) algorithm that is described by Demyen in his paper Efficient Triangulation-Based Pathfinding, on pages 76-81. He describes how to adapt the regular A* algorithm for triangulation, to search for other possibly more optimal paths, even after the final node is reached/expanded. Regular A* stops when the final node is expanded, but this is not always the best path when used in a triangulated graph. This is exactly the problem I'm having. The problem is illustrated on page 78, Figure 5.4: I understand how to calculate the g and h values presented in the paper (page 80). And I think the search stop condition is: if (currentNode.fCost > shortestDistanceFound) { // stop break; } where currentNode is the search node popped from the open list (priority queue), which has the lowest f-score. shortestDistanceFound is the actual distance of the shortest path found so far. But how do I exclude the previously found paths from future searches? Because if I do the search again, it will obviously find the same path. Do I reset the closed list? I need to modify something, but I don't know what it is I need to change. The paper lacks pseudocode, so that would be helpful.

    Read the article

  • need explanation on amortization in algorithm

    - by Pradeep
    I am a learning algorithm analysis and came across a analysis tool for understanding the running time of an algorithm with widely varying performance which is called as amortization. The autor quotes " An array with upper bound of n elements, with a fixed bound N, on it size. Operation clear takes O(n) time, since we should dereference all the elements in the array in order to really empty it. " The above statement is clear and valid. Now consider the next content: "Now consider a series of n operations on an initially empty array. if we take the worst case viewpoint, the running time is O(n^2), since the worst case of a sigle clear operation in the series is O(n) and there may be as many as O(n) clear operations in the series." From the above statement how is the time complexity O(n^2)? I did not understand the logic behind it. if 'n' operations are performed how is it O(n ^2)? Please explain what the autor is trying to convey..

    Read the article

  • How does flocking algorithm work?

    - by Chan
    I read and understand the basic of flocking algorithm. Basically, we need to have 3 behaviors: 1. Cohesion 2. Separation 3. Alignment From my understanding, it's like a state machine. Every time we do an update (then draw), we check all the constraints on both three behaviors. And each behavior returns a Vector3 which is the "correct" orientation that an object should transform to. So my initial idea was /// <summary> /// Objects stick together /// </summary> /// <returns></returns> private Vector3 Cohesion() { Vector3 result = new Vector3(0.0f, 0.0f, 0.0f); return result; } /// <summary> /// Object align /// </summary> /// <returns></returns> private Vector3 Align() { Vector3 result = new Vector3(0.0f, 0.0f, 0.0f); return result; } /// <summary> /// Object separates from each others /// </summary> /// <returns></returns> private Vector3 Separate() { Vector3 result = new Vector3(0.0f, 0.0f, 0.0f); return result; } Then I search online for pseudocode but many of them involve velocity and acceleration plus other stuffs. This part confused me. In my game, all objects move at constant speed, and they have one leader. So can anyone share me an idea how to start on implement this flocking algorithm? Also, did I understand it correctly? (I'm using XNA 4.0)

    Read the article

  • how should I design Objects around this business requirement?

    - by brainydexter
    This is the business requirement: " A Holiday Package (e.g. New York NY Holiday Package) can be offered in different ways based on the Origin city: From New Delhi to NY From Bombay to NY NY itself ( Land package ) (Bold implies default selection) a. and b. User can fly from either New Delhi or Bombay to NY. c. NY is a Land package, where a user can reach NY by himself and is a standalone holidayPackage. " Let's say I have a class that represents HolidayPackage, Destination (aka City). public class HolidayPackage{ Destination holidayCity; ArrayList<BaseHolidayPackageVariant> variants; BaseHolidayPackageVariant defaultVariant; } public abstract class BaseHolidayPackageVariant { private Integer variantId; private HolidayPackage holidayPackage; private String holidayPackageType; } public class LandHolidayPackageVariant extends BaseHolidayPackageVariant{ } public class FlightHolidayPackageVariant extends BaseHolidayPackageVariant{ private Destination originCity; } What data structure/objects should I design to support: options a default within those options Sidenote: A HolidayPackage can also be offered in different ways based on Hotel selections. I'd like to follow a design which I can leverage to support that use case in the future. This is the backend design I have in mind.

    Read the article

  • Design Code Outside of an IDE (C#)?

    - by ryanzec
    Does anyone design code outside of an IDE? I think that code design is great and all but the only place I find myself actually design code (besides in my head) is in the IDE itself. I generally think about it a little before hand but when I go to type it out, it is always in the IDE; no UML or anything like that. Now I think having UML of your code is really good because you are able to see a lot more of the code on one screen however the issue I have is that once I type it in UML, I then have to type the actual code and that is just a big duplicate for me. For those who work with C# and design code outside of Visual Studio (or at least outside Visual Studio's text editor), what tools do you use? Do those tools allow you to convert your design to actual skeleton code? It is also possible to convert code to the design (when you update the code and need an updated UML diagram or whatnot)?

    Read the article

  • Algorithm to generate multifaced cube?

    - by OnePie
    Are there any elegant soloution to generate a simple-six sided cube, where each cube is made out of more than one face? The method I have used ended up a horrible and complicated mess of logic that is imopssible to follow and most likely to maintain. The algorithm should not generate reduntant vertices, and should output the indice list for the mesh as well. The reason I need this is that the cubes vertices will be deformed depending on various factors, meaning that a simple six-faced cube will nto do.

    Read the article

  • Algorithm to map an area [on hold]

    - by user37843
    I want to create a crawler that starts in a room and from that room to move North,East,West and South until there aren't any new rooms to visit. I don't want to have duplicates and the output format per line to be something like this: current room, neighbour 1, neighbour 2 ... and in the end to apply BFS algorithm to find the shortest path between 2 rooms. Can anyone offer me some suggestion what to use? Thanks

    Read the article

  • On which crowdsourced design site have you the best experience? (ie, crowdspring, mycroburst, etc)

    - by Darryl Hein
    I wasn't sure which site to ask this on (as Graphic Design hasn't reached beta yet), so I thought I would try here. I'm looking to have a couple logos and website designs done. I've had some great local designers, but each one has moved or gone else where so I keep having to look for new designers. My thought and realization in the last couple days is to go to a crowdsourced design site like crowdspring.com or mycroburst.com. Both of these sites look good, but I'm wondering what else is out there? Are there better ones and how have your experiences been them?

    Read the article

  • Algorithm for querying linearly through a non-linear list of questions

    - by JoshLeaves
    For a multiplayers trivia game, I need to supply my users with a new quizz in a desired subject (Science, Maths, Litt. and such) at the start of every game. I've generated about 5K quizzes for each subject and filled my database with them. So my 'Quizzes' database looks like this: |ID |Subject |Question +-----+------------+---------------------------------- | 23 |Science | What's water? | 42 |Maths | What's 2+2? | 99 |Litt. | Who wrote "Pride and Prejudice"? | 123 |Litt. | Who wrote "On The Road"? | 146 |Maths | What's 2*2? | 599 |Science | You know what's cool? |1042 |Maths | What's the Fibonacci Sequence? |1056 |Maths | What's 42? And so on... (Much more detailed/complex but I'll keep the exemple simple) As you can see, due to technical constraints (MongoDB), my IDs are not linear but I can use them as an increasing suite. So far, my algorithm to ensure two users get a new quizz when they play together is the following: // Take the last played quizzes by P1 and P2 var q_one = player_one.getLastPlayedQuizz('Maths'); var q_two = player_two.getLastPlayedQuizz('Maths'); // If both of them never played in the subject, return first quizz in the list if ((q_one == NULL) && (q_two == NULL)) return QuizzDB.findOne({subject: 'Maths'}); // If one of them never played, play the next quizz for the other player // This quizz is found by asking for the first quizz in the desired subject where // the ID is greater than the last played quizz's ID (if the last played quizz ID // is 42, this will return 146 following the above example database) if (q_one == NULL) return QuizzDB.findOne({subject: 'Maths', ID > q_two}); if (q_two == NULL) return QuizzDB.findOne({subject: 'Maths', ID > q_one}); // And if both of them have a lastPlayedQuizz, we return the next quizz for the // player whose lastPlayedQuizz got the higher ID if (q_one > q_two) return QuizzDB.findOne({subject: 'Maths', ID > q_one}); else return QuizzDB.findOne({subject: 'Maths', ID > q_two}); Now here comes the real problem: Once I get to the end of my database (let's say, P1's last played quizz in 'Maths' is 1056, P2's is 146 and P3 is 1042), following my algorithm, P1's ID is the highest so I ask for the next question in 'Maths' where ID is superior to 1056. There is nothing, so I roll back to the beginning of my quizz list (with a random skipper to avoid having the first question always show up). P1 and P2's last played will then be 42 and they will start fresh from the beginning of the list. However, if P1 (42) plays against P3 (1042), the resulting ID will be 1056...which P1 already played two games ago. Basically, players who just "rolled back" to the beginning of the list will be brought back to the end of the list by players who still haven't rolled back. The rollback WILL happen in the end, but it'll take time and there'll be a "bottleneck" at the beginning and at the end. Thus my question: What would be the best algorith to avoid this bottleneck and ensure players don't get stuck endlessly on the same quizzes? Also bear in mind that I've got some technical constraints: I can't get a random question in a subject (ie: no "QuizzDB.findOne({subject: 'Maths'}).skip(random());"). It's cool to skip on one to twenty records, but the MongoDB documentation warns against skipping too many documents. I would like to avoid building an array of every quizz played by each player and find the next non-played in the database with a $nin. Thanks for your help

    Read the article

  • Algorithm for spreading labels in a visually appealing and intuitive way

    - by mac
    Short version Is there a design pattern for distributing vehicle labels in a non-overlapping fashion, placing them as close as possible to the vehicle they refer to? If not, is any of the method I suggest viable? How would you implement this yourself? Extended version In the game I'm writing I have a bird-eye vision of my airborne vehicles. I also have next to each of the vehicles a small label with key-data about the vehicle. This is an actual screenshot: Now, since the vehicles could be flying at different altitudes, their icons could overlap. However I would like to never have their labels overlapping (or a label from vehicle 'A' overlap the icon of vehicle 'B'). Currently, I can detect collisions between sprites and I simply push away the offending label in a direction opposite to the otherwise-overlapped sprite. This works in most situations, but when the airspace get crowded, the label can get pushed very far away from its vehicle, even if there was an alternate "smarter" alternative. For example I get: B - label A -----------label C - label where it would be better (= label closer to the vehicle) to get: B - label label - A C - label EDIT: It also has to be considered that beside the overlapping vehicles case, there might be other configurations in which vehicles'labels could overlap (the ASCII-art examples show for example three very close vehicles in which the label of A would overlap the icon of B and C). I have two ideas on how to improve the present situation, but before spending time implementing them, I thought to turn to the community for advice (after all it seems like a "common enough problem" that a design pattern for it could exist). For what it's worth, here's the two ideas I was thinking to: Slot-isation of label space In this scenario I would divide all the screen into "slots" for the labels. Then, each vehicle would always have its label placed in the closest empty one (empty = no other sprites at that location. Spiralling search From the location of the vehicle on the screen, I would try to place the label at increasing angles and then at increasing radiuses, until a non-overlapping location is found. Something down the line of: try 0°, 10px try 10°, 10px try 20°, 10px ... try 350°, 10px try 0°, 20px try 10°, 20px ...

    Read the article

  • Is there a Design Pattern for preventing dangling references?

    - by iFreilicht
    I was thinking about a design for custom handles. The thought is to prevent clients from copying around large objects. Now a regular handle class would probably suffice for that, but it doesn't solve the "dangling reference problem"; If a client has multiple handles of the same object and deletes the object via one of them, all the others would be invalid, but not know it, so the client could write or read parts of the memory he shouldn't have access to. Is there a design pattern to prevent this from happening? Two ideas: An observer-like pattern where the destructor of an object would notify all handles. "Handle handles" (does such a thing even exist?). All the handles don't really point to the object, but to another handle. When the object gets destroyed, this "master-handle" invalidates itself and therefore all that point to it.

    Read the article

  • Is It "Wrong"/Bad Design To Put A Thread/Background Worker In A Class?

    - by Jetti
    I have a class that will read from Excel (C# and .Net 4) and in that class I have a background worker that will load the data from Excel while the UI can remain responsive. My question is as follows: Is it bad design to have a background worker in a class? Should I create my class without it and use a background worker to operate on that class? I can't see any issues really of creating my class this way but then again I am a newbie so I figured I would make sure before I continue on. I hope that this question is relevant here as I don't think it should be on stackoverflow as my code works, this just a design issue.

    Read the article

  • PHP Aspect Oriented Design

    - by Devin Dixon
    This is a continuation of this Code Review question. What was taken away from that post, and other aspect oriented design is it is hard to debug. To counter that, I implemented the ability to turn tracing of the design patterns on. Turning trace on works like: //This can be added anywhere in the code Run::setAdapterTrace(true); Run::setFilterTrace(true); Run::setObserverTrace(true); //Execute the functon echo Run::goForARun(8); In the actual log with the trace turned on, it outputs like so: adapter 2012-02-12 21:46:19 {"type":"closure","object":"static","call_class":"\/public_html\/examples\/design\/ClosureDesigns.php","class":"Run","method":"goForARun","call_method":"goForARun","trace":"Run::goForARun","start_line":68,"end_line":70} filter 2012-02-12 22:05:15 {"type":"closure","event":"return","object":"static","class":"run_filter","method":"\/home\/prodigyview\/public_html\/examples\/design\/ClosureDesigns.php","trace":"Run::goForARun","start_line":51,"end_line":58} observer 2012-02-12 22:05:15 {"type":"closure","object":"static","class":"run_observer","method":"\/home\/prodigyview\/public_html\/public\/examples\/design\/ClosureDesigns.php","trace":"Run::goForARun","start_line":61,"end_line":63} When the information is broken down, the data translates to: Called by an adapter or filter or observer The function called was a closure The location of the closure Class:method the adapter was implemented on The Trace of where the method was called from Start Line and End Line The code has been proven to work in production environments and features various examples of to implement, so the proof of concept is there. It is not DI and accomplishes things that DI cannot. I wouldn't call the code boilerplate but I would call it bloated. In summary, the weaknesses are bloated code and a learning curve in exchange for aspect oriented functionality. Beyond the normal fear of something new and different, what are other weakness in this implementation of aspect oriented design, if any? PS: More examples of AOP here: https://github.com/ProdigyView/ProdigyView/tree/master/examples/design

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >