Search Results

Search found 127 results on 6 pages for 'ambiguity'.

Page 5/6 | < Previous Page | 1 2 3 4 5 6  | Next Page >

  • MS hotfix delayed delivery.

    - by MOE37x3
    I just requested a hotfix from support.microsoft.com and put in my email address, but I haven't received the email yet. The splash page I got after I requested the hotfix said: Hotfix Confirmation We will send these hotfixes to the following e-mail address: (my correct email address) Usually, our hotfix e-mail is delivered to you within five minutes. However, sometimes unforeseen issues in e-mail delivery systems may cause delays. We will send the e-mail from the “[email protected]” e-mail account. If you use an e-mail filter or a SPAM blocker, we recommend that you add “[email protected]” or the “microsoft.com” domain to your safe senders list. (The safe senders list is also known as a whitelist or an approved senders list.) This will help prevent our e-mail from going into your junk e-mail folder or being automatically deleted. I'm sure that the email is not getting caught in a spam catcher. How long does it normally take to get one of these hotfixes? Am I waiting for some human to approve it, or something? Should I just give up and try to get the file I need some other way? (Update: Replaced "[email protected]" with "(my correct email address)" to resolve Martín Marconcini's ambiguity.)

    Read the article

  • Strategies for when to use properties and when to use internal variables on internal classes?

    - by Edward Tanguay
    In almost all of my classes, I have a mixture of properties and internal class variables. I have always chosen one or the other by the rule "property if you need it externally, class variable if not". But there are many other issues which make me rethink this often, e.g.: at some point I want to use an internal variable from outside the class, so I have to refactor it into a property which makes me wonder why I don't just make all my internal variables properties in case I have to access them externally anyway, since most classes are internal classes anyway it aren't exposed on an API so it doesn't really matter if the internal variables are accessible from outside the class or not but then since C# doesn't allow you to instantiate e.g. List<string> property in the definition, then these properties have to be initialized in every possible constructor, so these variables I would rather have internal variables just to keep things cleaner in that they are all initialized in one place C# code reads more cleanly if constructor/method parameters are camel case and you assign them to pascal case properties instead of the ambiguity of seeing "templateIdCode" and having to look around to see if it is a local variable, method parameter or internal class variable, e.g. it is easier when you see "TemplateIdCode = templateIdCode" that this is a parameter being assigned to a class property. This would be an argument for always using only properties on internal classes. e.g.: public class TextFile { private string templateIdCode; private string absoluteTemplatePathAndFileName; private string absoluteOutputDirectory; private List<string> listItems = new List<string>(); public string Content { get; set; } public List<string> ReportItems { get; set; } public TextFile(string templateIdCode) { this.templateIdCode = templateIdCode; ReportItems = new List<string>(); Initialize(); } ... When creating internal (non-API) classes, what are your strategies in deciding if you should create an internal class variable or a property?

    Read the article

  • Boost's "cstdint" Usage

    - by patt0h
    Boost's C99 stdint implementation is awfully handy. One thing bugs me, though. They dump all of their typedefs into the boost namespace. This leaves me with three choices when using this facility: Use "using namespace boost" Use "using boost::[u]<type><width>_t" Explicitly refer to the target type with the boost:: prefix; e.g., boost::uint32_t foo = 0; Option ? 1 kind of defeats the point of namespaces. Even if used within local scope (e.g., within a function), things like function arguments still have to be prefixed like option ? 3. Option ? 2 is better, but there are a bunch of these types, so it can get noisy. Option ? 3 adds an extreme level of noise; the boost:: prefix is often = to the length of the type in question. My question is: What would be the most elegant way to bring all of these types into the global namespace? Should I just write a wrapper around boost/cstdint.hpp that utilizes option ? 2 and be done with it? Also, wrapping the header like so didn't work on VC++ 10 (problems with standard library headers): namespace Foo { #include <boost/cstdint.hpp> using namespace boost; } using namespace Foo; Even if it did work, I guess it would cause ambiguity problems with the ::boost namespace.

    Read the article

  • How might one cope with the ambiguous value produced by GetDllDirectory?

    - by Integer Poet
    GetDllDirectory produces an ambiguous value. When the string this call produces is empty, it means one of the following: nobody has called SetDllDirectory somebody passed NULL to SetDllDirectory somebody passed an empty string to SetDllDirectory The first two cases are equivalent for my purposes, but the third case is a problem. If I want to write save/restore code (call GetDllDirectory to save the "old" value, SetDllDirectory to set a "new" value temporarily, and later SetDllDirectory again to restore the "old" value), I run the risk of reversing some other programmer's intent. If the other programmer intended for the current working directory to be in the DLL search order (in other words, one of the first two bullets is true), and I pass an empty string to SetDllDirectory, I will be taking the current working directory out of the DLL search order, reversing the other programmer's intent. Can anyone suggest an approach to eliminate or work around this ambiguity? P.S. I know having the current working directory in the DLL search order could be interpreted as a security hole. Nevertheless, it is the default behavior, and my code is not in a position to undo that; my code needs to be compatible with the expectations of all potential callers, many of which are large and old and beyond my control.

    Read the article

  • Problem validating an XSD file: The content type of a derived type and that of its base must both be mixed or both be element-only

    - by Paulo Tavares
    Hi, I have following XML schema: <?xml version="1.0" encoding="UTF-8"?> <schema xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0" targetNamespace="urn:ietf:params:xml:ns:netconf:base:1.0" ... <complexType name="dataInlineType"> <xs:complexContent> <xs:extension base="xs:anyType"/> </xs:complexContent> </complexType> <complexType name="get-config_output_type__" > <complexContent> <extension base="netconf:dataInlineType"> <sequence> <element name="data"> <complexType> <sequence> <element name="__.get-config.output.data.A__" minOccurs="0" maxOccurs="unbounded" /> </sequence> </complexType> </element> <element name="__.get-config.A__" minOccurs="0" maxOccurs="unbounded"/> </sequence> </extension> </complexContent> And I getting the folling error: cos-ct-extends.1.4.3.2.2.1.a: The content type of a derived type and that of its base must both be mixed or both be element-only. Type 'get-config_output_type__' is element only, but its base type is not. If I put both elements mixed="true" I get another error: cos-nonambig: WC[##any] and "urn:ietf:params:xml:ns:netconf:base:1.0":data (or elements from their substitution group) violate "Unique Particle Attribution". During validation against this schema, ambiguity would be created for those two particles. I using the Eclipse to validate my schema, so what can I do?

    Read the article

  • Have Microsoft changed how ASP.NET MVC deals with duplicate action method names?

    - by Jason Evans
    I might be missing something here, but in ASP.NET MVC 4, I can't get the following to work. Given the following controller: public class HomeController : Controller { public ActionResult Index() { return View(); } [HttpPost] public ActionResult Index(string order1, string order2) { return null; } } and it's view: @{ ViewBag.Title = "Home"; } @using (Html.BeginForm()) { @Html.TextBox("order1")<br /> @Html.TextBox("order2") <input type="submit" value="Save"/> } When start the app, all I get is this: The current request for action 'Index' on controller type 'HomeController' is ambiguous between the following action methods: System.Web.Mvc.ActionResult Index() on type ViewData.Controllers.HomeController System.Web.Mvc.ActionResult Index(System.String, System.String) on type ViewData.Controllers.HomeController Now, in ASP.NET MVC 3 the above works fine, I just tried it, so what's changed in ASP.NET MVC 4 to break this? OK there could be a chance that I'm doing something silly here, and not noticing it. EDIT: I notice that in the MVC 4 app, the Global.asax.cs file did not contain this: public static void RegisterRoutes(RouteCollection routes) { routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute( "Default", // Route name "{controller}/{action}/{id}", // URL with parameters new { controller = "Home", action = "Index", id = UrlParameter.Optional } // Parameter defaults ); } which the MVC 3 app does, by default. So I added the above to the MVC 4 app but it fails with the same error. Note that the MVC 3 app does work fine with the above route. I'm passing the "order" data via the Request.Form. EDIT: In the file RouteConfig.cs I can see RegisterRoutes is executed, with the following default route: routes.MapRoute( name: "Default", url: "{controller}/{action}/{id}", defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional }); I still get the original error, regards ambiguity between which Index() method to call.

    Read the article

  • matching certain numbers at the end of a string

    - by user697473
    I have a vector of strings: s <- c('abc1', 'abc2', 'abc3', 'abc11', 'abc12', 'abcde1', 'abcde2', 'abcde3', 'abcde11', 'abcde12', 'nonsense') I would like a regular expression to match only the strings that begin with abc and end with 3, 11, or 12. In other words, the regex has to exclude abc1 but not abc11, abc2 but not abc12, and so on. I thought that this would be easy to do with lookahead assertions, but I haven't found a way. Is there one? EDIT: Thanks to posters below for pointing out a serious ambiguity in the original post. In reality, I have many strings. They all end in digits: some in 0, some in 9, some in the digits in between. I am looking for a regex that will match all strings except those that end with a letter followed by a 1 or a 2. (The regex should also match only those strings that start with abc, but that's an easy problem.) I tried to use negative lookahead assertions to create such a regex. But I didn't have any success.

    Read the article

  • Featureful commercial text editors?

    - by wrp
    I'm willing to buy tools if they add genuine value over a FOSS equivalent. One thing I wouldn't mind having is an editor with the power of Emacs, but made more user-friendly. There seem to be several commercial editors out there, but I can't find much discussion of them online. Maybe it's because the kind of people who use commercial software don't have time to do much blogging. ;-) If you have used any, what was your evaluation? I'd especially like to hear how you would compare them to Emacs. I'm thinking of editors like VEDIT, Boxer, Crisp, UltraEdit, SlickEdit, etc. To get things started, I tried EditPad Pro because I needed something on a Win98SE box. I was attracted by its powerful support for regexps, but I didn't use it for long. One annoyance was that find-in-files was only available in a separate product you had to buy. The main problem, though, was stability. It sometimes hung and I lost a few files because it corrupted them while editing. After a couple weeks, I found that I was avoiding using it, so I just uninstalled. Edit: Ah...I need to remove some ambiguity. With reference to Emacs, "power" often means its potential for customization. This malleability comes from having an architecture in which most of the functionality is written in a scripting language that runs on a compiled core. Emacs (with elisp) is by far the most widely known such system among home users, but there have been other heavily used editors such as Freemacs (MINT), JED (S-Lang), XEDIT (Rexx), ADAM (TPU), and SlickEdit (Slick-C). In this case, by "power" I'm not referring to extensibility but to realized features. There are three main areas which I think a commercial text editor might be an improvement over Emacs: Stability The only apps I regularly use on Linux that give me flaky behavior are Emacs, Gedit, and Geany. On Windows, I like the look and features of Notepad++, but I find it extremely unstable, especially if I try to use the plugins. Whatever I happen to be doing, I'm using some text editor practically all day long. If I could switch to an editor that never gave me problems, it would definitely lower my stress level. Tools When I started using Emacs, I searched the manual cover to cover to gleam ideas for clever, useful things I could do with it. I'd like to see lots of useful features for editing code, based on detailed knowledge of what the system can do and the accumulated feedback of users. Polish The rule of threes goes that if you develop something for yourself, it's three times harder to make it usable in-house, and three times harder again to make it a viable product for sale. It's understandable, but free software development doesn't seem to benefit from much usability testing. BTW, texteditors.org is a fantastic resource for researching text editors.

    Read the article

  • Referencing both an old version and new version of the same DLL (VB.Net)

    - by ckittel
    Consider the following situation: WidgetCompany produced a .NET DLL in 2006 called Widget.dll, version 1.0. I consumed this Widget.dll file throughout my VB.Net application. Over time, WidgetCompany has been updating Widget.dll, I never bothered to keep up, continuing to ship version 1.0 of Widget.dll with my software. It's now 2010, my project is now a VB.Net 3.5 application and WidgetCompany has come out with Widget.dll version 3.0. It looks and functions almost identical to Widget.dll version 1.0, using all the same namespaces and type names from before. However, Widget.dll version 3.0 has many run-time breaking changes since 1.0 and I cannot simply cut over to the new version; however, I don't want to continue developing against the 1.0 version and therefore keep digging myself deeper in the hole. What I want to do is do all new development in my project with Widget.dll version 3.0, whilst keeping Widget.dll version 1.0 around until I find time to convert all of my 1.0 consumption to the newer 3.0 code. Now, for starters, I obviously cannot simply reference both Widget.dll (Ver 1.0) and Widget.dll (Ver 3.0) in Visual Studio. Doing so gives me the following message: "A reference to 'Widget.dll' could not be added. A reference to the component 'Widget' already exists in the project." To work around that, I can simply rename version 3.0 Widget.dll to Widget.3.dll. But this is where I'm stuck. Any attempts to reference types found in "the dll" leads to ambiguity and the compiler obviously doesn't have any clue as to what I really want in this or that case. Is there something I can do that gives a DLL a new "root" Namespace or something? For example, if I could say "Widget.dll has a new root namespace of Legacy" then I could update existing code to reference the types found in Legacy.<RootNamespace> namespace while all new code could simply reference types from the <RootNamespace> namespace. Pipe dream or reality? Are there other solutions to situations this (besides "don't get in this situation in the first place")?

    Read the article

  • Can anyone explain me the source code of python "import this"?

    - by byterussian
    If you open a Python interpreter, and type "import this", as you know, it prints: The Zen of Python, by Tim Peters Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts. Special cases aren't special enough to break the rules. Although practicality beats purity. Errors should never pass silently. Unless explicitly silenced. In the face of ambiguity, refuse the temptation to guess. There should be one-- and preferably only one --obvious way to do it. Although that way may not be obvious at first unless you're Dutch. Now is better than never. Although never is often better than *right* now. If the implementation is hard to explain, it's a bad idea. If the implementation is easy to explain, it may be a good idea. Namespaces are one honking great idea -- let's do more of those! In the python source(Lib/this.py) this text is generated by a curios piece of code: s = """Gur Mra bs Clguba, ol Gvz Crgref Ornhgvshy vf orggre guna htyl. Rkcyvpvg vf orggre guna vzcyvpvg. Fvzcyr vf orggre guna pbzcyrk. Pbzcyrk vf orggre guna pbzcyvpngrq. Syng vf orggre guna arfgrq. Fcnefr vf orggre guna qrafr. Ernqnovyvgl pbhagf. Fcrpvny pnfrf nera'g fcrpvny rabhtu gb oernx gur ehyrf. Nygubhtu cenpgvpnyvgl orngf chevgl. Reebef fubhyq arire cnff fvyragyl. Hayrff rkcyvpvgyl fvyraprq. Va gur snpr bs nzovthvgl, ershfr gur grzcgngvba gb thrff. Gurer fubhyq or bar-- naq cersrenoyl bayl bar --boivbhf jnl gb qb vg. Nygubhtu gung jnl znl abg or boivbhf ng svefg hayrff lbh'er Qhgpu. Abj vf orggre guna arire. Nygubhtu arire vf bsgra orggre guna *evtug* abj. Vs gur vzcyrzragngvba vf uneq gb rkcynva, vg'f n onq vqrn. Vs gur vzcyrzragngvba vf rnfl gb rkcynva, vg znl or n tbbq vqrn. Anzrfcnprf ner bar ubaxvat terng vqrn -- yrg'f qb zber bs gubfr!""" d = {} for c in (65, 97): for i in range(26): d[chr(i+c)] = chr((i+13) % 26 + c) print "".join([d.get(c, c) for c in s])

    Read the article

  • Dynamic Multiple Choice (Like a Wizard) - How would you design it? (e.g. Schema, AI model, etc.)

    - by henry74
    This question can probably be broken up into multiple questions, but here goes... In essence, I'd like to allow users to type in what they would like to do and provide a wizard-like interface to ask for information which is missing to complete a requested query. For example, let's say a user types: "What is the weather like in Springfield?" We recognize the user is interested in weather, but it could be Springfield, Il or Springfield in another state. A follow-up question would be: What Springfield did you want weather for? 1 - Springfield, Il 2 - Springfield, Wi You can probably think of a million examples where a request is missing key data or its ambiguous. Make the assumption the gist of what the user wants can be understood, but there are missing pieces of data required to complete the request. Perhaps you can take it as far back as asking what the user wants to do and "leading" them to a query. This is not AI in the sense of taking any input and truly understanding it. I'm not referring to having some way to hold a conversation with a user. It's about inferring what a user wants, checking to see if there is an applicable service to be provided, identifying the inputs needed and overlaying that on top of what's missing from the request, then asking the user for the remaining information. That's it! :-) How would you want to store the information about services? How would you go about determining what was missing from the input data? My thoughts: Use regex expressions to identify clear pieces of information. These will be matched to the parameters of a service. Figure out which parameters do not have matching data and look up the associated question for those parameters. Ask those questions and capture answers. Re-run the service passing in the newly captured data. These would be more free-form questions. For multiple choice, identify the ambiguity and search for potential matches ranked in order of likelihood (add in user history/preferences to help decide). Provide the top 3 as choices. Thoughts appreciated. Cheers, Henry

    Read the article

  • [C++] Multiple inheritance from template class

    - by Tom P.
    Hello, I'm having issues with multiple inheritance from different instantiations of the same template class. Specifically, I'm trying to do this: template <class T> class Base { public: Base() : obj(NULL) { } virtual ~Base() { if( obj != NULL ) delete obj; } template <class T> T* createBase() { obj = new T(); return obj; } protected: T* obj; }; class Something { // ... }; class SomethingElse { // ... }; class Derived : public Base<Something>, public Base<SomethingElse> { }; int main() { Derived* d = new Derived(); Something* smth1 = d->createBase<Something>(); SomethingElse* smth2 = d->createBase<SomethingElse>(); delete d; return 0; } When I try to compile the above code, I get the following errors: 1>[...](41) : error C2440: '=' : cannot convert from 'SomethingElse *' to 'Something *' 1> Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast 1> [...](71) : see reference to function template instantiation 'T *Base<Something>::createBase<SomethingElse>(void)' being compiled 1> with 1> [ 1> T=SomethingElse 1> ] 1>[...](43) : error C2440: 'return' : cannot convert from 'Something *' to 'SomethingElse *' 1> Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast The issue seems to be ambiguity due to member obj being inherited from both Base< Something and Base< SomethingElse , and I can work around it by disambiguating my calls to createBase: Something* smth1 = d->Base<Something>::createBase<Something>(); SomethingElse* smth2 = d->Base<SomethingElse>::createBase<SomethingElse>(); However, this solution is dreadfully impractical, syntactically speaking, and I'd prefer something more elegant. Moreover, I'm puzzled by the first error message. It seems to imply that there is an instantiation createBase< SomethingElse in Base< Something , but how is that even possible? Any information or advice regarding this issue would be much appreciated.

    Read the article

  • Visual Studio 2010 and Test Driven Development

    - by devoured elysium
    I'm making my first steps in Test Driven Development with Visual Studio. I have some questions regarding how to implement generic classes with VS 2010. First, let's say I want to implement my own version of an ArrayList. I start by creating the following test (I'm using in this case MSTest): [TestMethod] public void Add_10_Items_Remove_10_Items_Check_Size_Is_Zero() { var myArrayList = new MyArrayList<int>(); for (int i = 0; i < 10; ++i) { myArrayList.Add(i); } for (int i = 0; i < 10; ++i) { myArrayList.RemoveAt(0); } int expected = 0; int actual = myArrayList.Size; Assert.AreEqual(expected, actual); } I'm using VS 2010 ability to hit ctrl + . and have it implement classes/methods on the go. I have been getting some trouble when implementing generic classes. For example, when I define an .Add(10) method, VS doesn't know if I intend a generic method(as the class is generic) or an Add(int number) method. Is there any way to differentiate this? The same can happen with return types. Let's assume I'm implementing a MyStack stack and I want to test if after I push and element and pop it, the stack is still empty. We all know pop should return something, but usually, the code of this test shouldn't care for it. Visual Studio would then think that pop is a void method, which in fact is not what one would want. How to deal with this? For each method, should I start by making tests that are "very specific" such as is obvious the method should return something so I don't get this kind of ambiguity? Even if not using the result, should I have something like int popValue = myStack.Pop() ? How should I do tests to generic classes? Only test with one generic kind of type? I have been using ints, as they are easy to use, but should I also test with different kinds of objects? How do you usually approach this? I see there is a popular tool called TestDriven for .NET. With VS 2010 release, is it still useful, or a lot of its features are now part of VS 2010, rendering it kinda useless? Thanks

    Read the article

  • Big O Complexity of a method

    - by timeNomad
    I have this method: public static int what(String str, char start, char end) { int count=0; for(int i=0;i<str.length(); i++) { if(str.charAt(i) == start) { for(int j=i+1;j<str.length(); j++) { if(str.charAt(j) == end) count++; } } } return count; } What I need to find is: 1) What is it doing? Answer: counting the total number of end occurrences after EACH (or is it? Not specified in the assignment, point 3 depends on this) start. 2) What is its complexity? Answer: the first loops iterates over the string completely, so it's at least O(n), the second loop executes only if start char is found and even then partially (index at which start was found + 1). Although, big O is all about worst case no? So in the worst case, start is the 1st char & the inner iteration iterates over the string n-1 times, the -1 is a constant so it's n. But, the inner loop won't be executed every outer iteration pass, statistically, but since big O is about worst case, is it correct to say the complexity of it is O(n^2)? Ignoring any constants and the fact that in 99.99% of times the inner loop won't execute every outer loop pass. 3) Rewrite it so that complexity is lower. What I'm not sure of is whether start occurs at most once or more, if once at most, then method can be rewritten using one loop (having a flag indicating whether start has been encountered and from there on incrementing count at each end occurrence), yielding a complexity of O(n). In case though, that start can appear multiple times, which most likely it is, because assignment is of a Java course and I don't think they would make such ambiguity. Solving, in this case, is not possible using one loop... WAIT! Yes it is..! Just have a variable, say, inc to be incremented each time start is encountered & used to increment count each time end is encountered after the 1st start was found: inc = 0, count = 0 if (current char == start) inc++ if (inc > 0 && current char == end) count += inc This would also yield a complexity of O(n)? Because there is only 1 loop. Yes I realize I wrote a lot hehe, but what I also realized is that I understand a lot better by forming my thoughts into words...

    Read the article

  • API Message Localization

    - by Jesse Taber
    In my post, “Keep Localizable Strings Close To Your Users” I talked about the internationalization and localization difficulties that can arise when you sprinkle static localizable strings throughout the different logical layers of an application. The main point of that post is that you should have your localizable strings reside as close to the user-facing modules of your application as possible. For example, if you’re developing an ASP .NET web forms application all of the localizable strings should be kept in .resx files that are associated with the .aspx views of the application. In this post I want to talk about how this same concept can be applied when designing and developing APIs. An API Facilitates Machine-to-Machine Interaction You can typically think about a web, desktop, or mobile application as a collection “views” or “screens” through which users interact with the underlying logic and data. The application can be designed based on the assumption that there will be a human being on the other end of the screen working the controls. You are designing a machine-to-person interaction and the application should be built in a way that facilitates the user’s clear understanding of what is going on. Dates should be be formatted in a way that the user will be familiar with, messages should be presented in the user’s preferred language, etc. When building an API, however, there are no screens and you can’t make assumptions about who or what is on the other end of each call. An API is, by definition, a machine-to-machine interaction. A machine-to-machine interaction should be built in a way that facilitates a clear and unambiguous understanding of what is going on. Dates and numbers should be formatted in predictable and standard ways (e.g. ISO 8601 dates) and messages should be presented in machine-parseable formats. For example, consider an API for a time tracking system that exposes a resource for creating a new time entry. The JSON for creating a new time entry for a user might look like: 1: { 2: "userId": 4532, 3: "startDateUtc": "2012-10-22T14:01:54.98432Z", 4: "endDateUtc": "2012-10-22T11:34:45.29321Z" 5: }   Note how the parameters for start and end date are both expressed as ISO 8601 compliant dates in UTC. Using a date format like this in our API leaves little room for ambiguity. It’s also important to note that using ISO 8601 dates is a much, much saner thing than the \/Date(<milliseconds since epoch>)\/ nonsense that is sometimes used in JSON serialization. Probably the most important thing to note about the JSON snippet above is the fact that the end date comes before the start date! The API should recognize that and disallow the time entry from being created, returning an error to the caller. You might inclined to send a response that looks something like this: 1: { 2: "errors": [ {"message" : "The end date must come after the start date"}] 3: }   While this may seem like an appropriate thing to do there are a few problems with this approach: What if there is a user somewhere on the other end of the API call that doesn’t speak English?  What if the message provided here won’t fit properly within the UI of the application that made the API call? What if the verbiage of the message isn’t consistent with the rest of the application that made the API call? What if there is no user directly on the other end of the API call (e.g. this is a batch job uploading time entries once per night unattended)? The API knows nothing about the context from which the call was made. There are steps you could take to given the API some context (e.g.allow the caller to send along a language code indicating the language that the end user speaks), but that will only get you so far. As the designer of the API you could make some assumptions about how the API will be called, but if we start making assumptions we could very easily make the wrong assumptions. In this situation it’s best to make no assumptions and simply design the API in such a way that the caller has the responsibility to convey error messages in a manner that is appropriate for the context in which the error was raised. You would work around some of these problems by allowing callers to add metadata to each request describing the context from which the call is being made (e.g. accepting a ‘locale’ parameter denoting the desired language), but that will add needless clutter and complexity. It’s better to keep the API simple and push those context-specific concerns down to the caller whenever possible. For our very simple time entry example, this can be done by simply changing our error message response to look like this: 1: { 2: "errors": [ {"code": 100}] 3: }   By changing our error error from exposing a string to a numeric code that is easily parseable by another application, we’ve placed all of the responsibility for conveying the actual meaning of the error message on the caller. It’s best to have the caller be responsible for conveying this meaning because the caller understands the context much better than the API does. Now the caller can see error code 100, know that it means that the end date submitted falls before the start date and take appropriate action. Now all of the problems listed out above are non-issues because the caller can simply translate the error code of ‘100’ into the proper action and message for the current context. The numeric code representation of the error is a much better way to facilitate the machine-to-machine interaction that the API is meant to facilitate. An API Does Have Human Users While APIs should be built for machine-to-machine interaction, people still need to wire these interactions together. As a programmer building a client application that will consume the time entry API I would find it frustrating to have to go dig through the API documentation every time I encounter a new error code (assuming the documentation exists and is accurate). The numeric error code approach hurts the discoverability of the API and makes it painful to integrate with. We can help ease this pain by merging our two approaches: 1: { 2: "errors": [ {"code": 100, "message" : "The end date must come after the start date"}] 3: }   Now we have an easily parseable numeric error code for the machine-to-machine interaction that the API is meant to facilitate and a human-readable message for programmers working with the API. The human-readable message here is not intended to be viewed by end-users of the API and as such is not really a “localizable string” in my opinion. We could opt to expose a locale parameter for all API methods and store translations for all error messages, but that’s a lot of extra effort and overhead that doesn’t add a lot real value to the API. I might be a bit of an “ugly American”, but I think it’s probably fine to have the API return English messages when the target for those messages is a programmer. When resources are limited (which they always are), I’d argue that you’re better off hard-coding these messages in English and putting more effort into building more useful features, improving security, tweaking performance, etc.

    Read the article

  • C#: Optional Parameters - Pros and Pitfalls

    - by James Michael Hare
    When Microsoft rolled out Visual Studio 2010 with C# 4, I was very excited to learn how I could apply all the new features and enhancements to help make me and my team more productive developers. Default parameters have been around forever in C++, and were intentionally omitted in Java in favor of using overloading to satisfy that need as it was though that having too many default parameters could introduce code safety issues.  To some extent I can understand that move, as I’ve been bitten by default parameter pitfalls before, but at the same time I feel like Java threw out the baby with the bathwater in that move and I’m glad to see C# now has them. This post briefly discusses the pros and pitfalls of using default parameters.  I’m avoiding saying cons, because I really don’t believe using default parameters is a negative thing, I just think there are things you must watch for and guard against to avoid abuses that can cause code safety issues. Pro: Default Parameters Can Simplify Code Let’s start out with positives.  Consider how much cleaner it is to reduce all the overloads in methods or constructors that simply exist to give the semblance of optional parameters.  For example, we could have a Message class defined which allows for all possible initializations of a Message: 1: public class Message 2: { 3: // can either cascade these like this or duplicate the defaults (which can introduce risk) 4: public Message() 5: : this(string.Empty) 6: { 7: } 8:  9: public Message(string text) 10: : this(text, null) 11: { 12: } 13:  14: public Message(string text, IDictionary<string, string> properties) 15: : this(text, properties, -1) 16: { 17: } 18:  19: public Message(string text, IDictionary<string, string> properties, long timeToLive) 20: { 21: // ... 22: } 23: }   Now consider the same code with default parameters: 1: public class Message 2: { 3: // can either cascade these like this or duplicate the defaults (which can introduce risk) 4: public Message(string text = "", IDictionary<string, string> properties = null, long timeToLive = -1) 5: { 6: // ... 7: } 8: }   Much more clean and concise and no repetitive coding!  In addition, in the past if you wanted to be able to cleanly supply timeToLive and accept the default on text and properties above, you would need to either create another overload, or pass in the defaults explicitly.  With named parameters, though, we can do this easily: 1: var msg = new Message(timeToLive: 100);   Pro: Named Parameters can Improve Readability I must say one of my favorite things with the default parameters addition in C# is the named parameters.  It lets code be a lot easier to understand visually with no comments.  Think how many times you’ve run across a TimeSpan declaration with 4 arguments and wondered if they were passing in days/hours/minutes/seconds or hours/minutes/seconds/milliseconds.  A novice running through your code may wonder what it is.  Named arguments can help resolve the visual ambiguity: 1: // is this days/hours/minutes/seconds (no) or hours/minutes/seconds/milliseconds (yes) 2: var ts = new TimeSpan(1, 2, 3, 4); 3:  4: // this however is visually very explicit 5: var ts = new TimeSpan(days: 1, hours: 2, minutes: 3, seconds: 4);   Or think of the times you’ve run across something passing a Boolean literal and wondered what it was: 1: // what is false here? 2: var sub = CreateSubscriber(hostname, port, false); 3:  4: // aha! Much more visibly clear 5: var sub = CreateSubscriber(hostname, port, isBuffered: false);   Pitfall: Don't Insert new Default Parameters In Between Existing Defaults Now let’s consider a two potential pitfalls.  The first is really an abuse.  It’s not really a fault of the default parameters themselves, but a fault in the use of them.  Let’s consider that Message constructor again with defaults.  Let’s say you want to add a messagePriority to the message and you think this is more important than a timeToLive value, so you decide to put messagePriority before it in the default, this gives you: 1: public class Message 2: { 3: public Message(string text = "", IDictionary<string, string> properties = null, int priority = 5, long timeToLive = -1) 4: { 5: // ... 6: } 7: }   Oh boy have we set ourselves up for failure!  Why?  Think of all the code out there that could already be using the library that already specified the timeToLive, such as this possible call: 1: var msg = new Message(“An error occurred”, myProperties, 1000);   Before this specified a message with a TTL of 1000, now it specifies a message with a priority of 1000 and a time to live of -1 (infinite).  All of this with NO compiler errors or warnings. So the rule to take away is if you are adding new default parameters to a method that’s currently in use, make sure you add them to the end of the list or create a brand new method or overload. Pitfall: Beware of Default Parameters in Inheritance and Interface Implementation Now, the second potential pitfalls has to do with inheritance and interface implementation.  I’ll illustrate with a puzzle: 1: public interface ITag 2: { 3: void WriteTag(string tagName = "ITag"); 4: } 5:  6: public class BaseTag : ITag 7: { 8: public virtual void WriteTag(string tagName = "BaseTag") { Console.WriteLine(tagName); } 9: } 10:  11: public class SubTag : BaseTag 12: { 13: public override void WriteTag(string tagName = "SubTag") { Console.WriteLine(tagName); } 14: } 15:  16: public static class Program 17: { 18: public static void Main() 19: { 20: SubTag subTag = new SubTag(); 21: BaseTag subByBaseTag = subTag; 22: ITag subByInterfaceTag = subTag; 23:  24: // what happens here? 25: subTag.WriteTag(); 26: subByBaseTag.WriteTag(); 27: subByInterfaceTag.WriteTag(); 28: } 29: }   What happens?  Well, even though the object in each case is SubTag whose tag is “SubTag”, you will get: 1: SubTag 2: BaseTag 3: ITag   Why?  Because default parameter are resolved at compile time, not runtime!  This means that the default does not belong to the object being called, but by the reference type it’s being called through.  Since the SubTag instance is being called through an ITag reference, it will use the default specified in ITag. So the moral of the story here is to be very careful how you specify defaults in interfaces or inheritance hierarchies.  I would suggest avoiding repeating them, and instead concentrating on the layer of classes or interfaces you must likely expect your caller to be calling from. For example, if you have a messaging factory that returns an IMessage which can be either an MsmqMessage or JmsMessage, it only makes since to put the defaults at the IMessage level since chances are your user will be using the interface only. So let’s sum up.  In general, I really love default and named parameters in C# 4.0.  I think they’re a great tool to help make your code easier to read and maintain when used correctly. On the plus side, default parameters: Reduce redundant overloading for the sake of providing optional calling structures. Improve readability by being able to name an ambiguous argument. But remember to make sure you: Do not insert new default parameters in the middle of an existing set of default parameters, this may cause unpredictable behavior that may not necessarily throw a syntax error – add to end of list or create new method. Be extremely careful how you use default parameters in inheritance hierarchies and interfaces – choose the most appropriate level to add the defaults based on expected usage. Technorati Tags: C#,.NET,Software,Default Parameters

    Read the article

  • C#/.NET Little Wonders: The Timeout static class

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. When I started the “Little Wonders” series, I really wanted to pay homage to parts of the .NET Framework that are often small but can help in big ways.  The item I have to discuss today really is a very small item in the .NET BCL, but once again I feel it can help make the intention of code much clearer and thus is worthy of note. The Problem - Magic numbers aren’t very readable or maintainable In my first Little Wonders Post (Five Little Wonders That Make Code Better) I mention the TimeSpan factory methods which, I feel, really help the readability of constructed TimeSpan instances. Just to quickly recap that discussion, ask yourself what the TimeSpan specified in each case below is 1: // Five minutes? Five Seconds? 2: var fiveWhat1 = new TimeSpan(0, 0, 5); 3: var fiveWhat2 = new TimeSpan(0, 0, 5, 0); 4: var fiveWhat3 = new TimeSpan(0, 0, 5, 0, 0); You’d think they’d all be the same unit of time, right?  After all, most overloads tend to tack additional arguments on the end.  But this is not the case with TimeSpan, where the constructor forms are:     TimeSpan(int hours, int minutes, int seconds);     TimeSpan(int days, int hours, int minutes, int seconds);     TimeSpan(int days, int hours, int minutes, int seconds, int milliseconds); Notice how in the 4 and 5 parameter version we suddenly have the parameter days slipping in front of hours?  This can make reading constructors like those above much harder.  Fortunately, there are TimeSpan factory methods to help make your intention crystal clear: 1: // Ah! Much clearer! 2: var fiveSeconds = TimeSpan.FromSeconds(5); These are great because they remove all ambiguity from the reader!  So in short, magic numbers in constructors and methods can be ambiguous, and anything we can do to clean up the intention of the developer will make the code much easier to read and maintain. Timeout – Readable identifiers for infinite timeout values In a similar way to TimeSpan, let’s consider specifying timeouts for some of .NET’s (or our own) many methods that allow you to specify timeout periods. For example, in the TPL Task class, there is a family of Wait() methods that can take TimeSpan or int for timeouts.  Typically, if you want to specify an infinite timeout, you’d just call the version that doesn’t take a timeout parameter at all: 1: myTask.Wait(); // infinite wait But there are versions that take the int or TimeSpan for timeout as well: 1: // Wait for 100 ms 2: myTask.Wait(100); 3:  4: // Wait for 5 seconds 5: myTask.Wait(TimeSpan.FromSeconds(5); Now, if we want to specify an infinite timeout to wait on the Task, we could pass –1 (or a TimeSpan set to –1 ms), which what the .NET BCL methods with timeouts use to represent an infinite timeout: 1: // Also infinite timeouts, but harder to read/maintain 2: myTask.Wait(-1); 3: myTask.Wait(TimeSpan.FromMilliseconds(-1)); However, these are not as readable or maintainable.  If you were writing this code, you might make the mistake of thinking 0 or int.MaxValue was an infinite timeout, and you’d be incorrect.  Also, reading the code above it isn’t as clear that –1 is infinite unless you happen to know that is the specified behavior. To make the code like this easier to read and maintain, there is a static class called Timeout in the System.Threading namespace which contains definition for infinite timeouts specified as both int and TimeSpan forms: Timeout.Infinite An integer constant with a value of –1 Timeout.InfiniteTimeSpan A static readonly TimeSpan which represents –1 ms (only available in .NET 4.5+) This makes our calls to Task.Wait() (or any other calls with timeouts) much more clear: 1: // intention to wait indefinitely is quite clear now 2: myTask.Wait(Timeout.Infinite); 3: myTask.Wait(Timeout.InfiniteTimeSpan); But wait, you may say, why would we care at all?  Why not use the version of Wait() that takes no arguments?  Good question!  When you’re directly calling the method with an infinite timeout that’s what you’d most likely do, but what if you are just passing along a timeout specified by a caller from higher up?  Or perhaps storing a timeout value from a configuration file, and want to default it to infinite? For example, perhaps you are designing a communications module and want to be able to shutdown gracefully, but if you can’t gracefully finish in a specified amount of time you want to force the connection closed.  You could create a Shutdown() method in your class, and take a TimeSpan or an int for the amount of time to wait for a clean shutdown – perhaps waiting for client to acknowledge – before terminating the connection.  So, assume we had a pub/sub system with a class to broadcast messages: 1: // Some class to broadcast messages to connected clients 2: public class Broadcaster 3: { 4: // ... 5:  6: // Shutdown connection to clients, wait for ack back from clients 7: // until all acks received or timeout, whichever happens first 8: public void Shutdown(int timeout) 9: { 10: // Kick off a task here to send shutdown request to clients and wait 11: // for the task to finish below for the specified time... 12:  13: if (!shutdownTask.Wait(timeout)) 14: { 15: // If Wait() returns false, we timed out and task 16: // did not join in time. 17: } 18: } 19: } We could even add an overload to allow us to use TimeSpan instead of int, to give our callers the flexibility to specify timeouts either way: 1: // overload to allow them to specify Timeout in TimeSpan, would 2: // just call the int version passing in the TotalMilliseconds... 3: public void Shutdown(TimeSpan timeout) 4: { 5: Shutdown(timeout.TotalMilliseconds); 6: } Notice in case of this class, we don’t assume the caller wants infinite timeouts, we choose to rely on them to tell us how long to wait.  So now, if they choose an infinite timeout, they could use the –1, which is more cryptic, or use Timeout class to make the intention clear: 1: // shutdown the broadcaster, waiting until all clients ack back 2: // without timing out. 3: myBroadcaster.Shutdown(Timeout.Infinite); We could even add a default argument using the int parameter version so that specifying no arguments to Shutdown() assumes an infinite timeout: 1: // Modified original Shutdown() method to add a default of 2: // Timeout.Infinite, works because Timeout.Infinite is a compile 3: // time constant. 4: public void Shutdown(int timeout = Timeout.Infinite) 5: { 6: // same code as before 7: } Note that you can’t default the ShutDown(TimeSpan) overload with Timeout.InfiniteTimeSpan since it is not a compile-time constant.  The only acceptable default for a TimeSpan parameter would be default(TimeSpan) which is zero milliseconds, which specified no wait, not infinite wait. Summary While Timeout.Infinite and Timeout.InfiniteTimeSpan are not earth-shattering classes in terms of functionality, they do give you very handy and readable constant values that you can use in your programs to help increase readability and maintainability when specifying infinite timeouts for various timeouts in the BCL and your own applications. Technorati Tags: C#,CSharp,.NET,Little Wonders,Timeout,Task

    Read the article

  • 5 Best Practices - Laying the Foundation for WebCenter Projects

    - by Kellsey Ruppel
    Today’s guest post comes from Oracle WebCenter expert John Brunswick. John specializes in enterprise portal and content management solutions and actively contributes to the enterprise software business community and has authored a series of articles about optimal business involvement in portal, business process management and SOA development, examining ways of helping organizations move away from monolithic application development. We’re happy to have John join us today! Maximizing success with Oracle WebCenter portal requires a strategic understanding of Oracle WebCenter capabilities.  The following best practices enable the creation of portal solutions with minimal resource overhead, while offering the greatest flexibility for progressive elaboration. They are inherently project agnostic, enabling a strong foundation for future growth and an expedient return on your investment in the platform.  If you are able to embrace even only a few of these practices, you will materially improve your deployment capability with WebCenter. 1. Segment Duties Around 3Cs - Content, Collaboration and Contextual Data "Agility" is one of the most common business benefits touted by modern web platforms.  It sounds good - who doesn't want to be Agile, right?  How exactly IT organizations go about supplying agility to their business counterparts often lacks definition - hamstrung by ambiguity. Ultimately, businesses want to benefit from reduced development time to deliver a solution to a particular constituent, which is augmented by as much self-service as possible to develop and manage the solution directly. All done in the absence of direct IT involvement. With Oracle WebCenter's depth in the areas of content management, pallet of native collaborative services, enterprise mashup capability and delegated administration, it is very possible to execute on this business vision at a technical level. To realize the benefits of the platform depth we can think of Oracle WebCenter's segmentation of duties along the lines of the 3 Cs - Content, Collaboration and Contextual Data.  All three of which can have their foundations developed by IT, then provisioned to the business on a per role basis. Content – Oracle WebCenter benefits from an extremely mature content repository.  Work flow, audit, notification, office integration and conversion capabilities for documents (HTML & PDF) make this a haven for business users to take control of content within external and internal portals, custom applications and web sites.  When deploying WebCenter portal take time to think of areas in which IT can provide the "harness" for content to reside, then allow the business to manage any content items within the site, using the content foundation to ensure compliance with business rules and process.  This frees IT to work on more mission critical challenges and allows the business to respond in short order to emerging market needs. Collaboration – Native collaborative services and WebCenter spaces are a perfect match for business users who are looking to enable document sharing, discussions and social networking.  The ability to deploy the services is granular and on the basis of roles scoped to given areas of the system - much like the first C “content”.  This enables business analysts to design the roles required and IT to provision with peace of mind that users leveraging the collaborative services are only able to do so in explicitly designated areas of a site. Bottom line - business will not need to wait for IT, but cannot go outside of the scope that has been defined based on their roles. Contextual Data – Collaborative capabilities are most powerful when included within the context of business data.  The ability to supply business users with decision shaping data that they can include in various parts of a portal or portals, just as they would with content items, is one of the most powerful aspects of Oracle WebCenter.  Imagine a discussion about new store selection for a retail chain that re-purposes existing information from business intelligence services about various potential locations and or custom backend systems - presenting it directly in the context of the discussion.  If there are some data sources that are preexisting in your enterprise take a look at how they can be made into discrete offerings within the portal, then scoped to given business user roles for inclusion within collaborative activities. 2. Think Generically, Execute Specifically Constructs.  Anyone who has spent much time around me knows that I am obsessed with this word.  Why? Because Constructs offer immense power - more than APIs, Web Services or other technical capability. Constructs offer organizations the ability to leverage a platform's native characteristics to offer substantial business functionality - without writing code.  This concept becomes more powerful with the additional understanding of the concepts from the platform that an organization learns over time.  Let's take a look at an example of where an Oracle WebCenter construct can substantially reduce the time to get a subscription-based site out the door and into the hands of the end consumer. Imagine a site that allows members to subscribe to specific disciplines to access information and application data around that various discipline.  A space is a collection of secured pages within Oracle WebCenter.  Spaces are not only secured, but also default content stored within it to be scoped automatically to that space. Taking this a step further, Oracle WebCenter’s Activity Stream surfaces events, discussions and other activities that are scoped to the given user on the basis of their space affiliations.  In order to have a portal that would allow users to "subscribe" to information around various disciplines - spaces could be used out of the box to achieve this capability and without using any APIs or low level technical work to achieve this. 3. Make Governance Work for You Imagine driving down the street without the painted lines on the road.  The rules of the road are so ingrained in our minds, we often do not think about the process, but seemingly mundane lane markers are critical enablers. Lane markers allow us to travel at speeds that would be impossible if not for the agreed upon direction of flow. Additionally and more importantly, it allows people to act autonomously - going where they please at any given time. The return on the investment for mobility is high enough for people to buy into globally agreed up governance processes. In Oracle WebCenter we can use similar enablers to lane markers.  Our goal should be to enable the flow of information and provide end users with the ability to arrive at business solutions as needed, not on the basis of cumbersome processes that cannot meet the business needs in a timely fashion. How do we do this? Just as with "Segmentation of Duties" Oracle WebCenter technologies offer the opportunity to compartmentalize various business initiatives from each other within the system due to constructs and security that are available to use within the platform. For instance, when a WebCenter space is created, any content added within that space by default will be secured to that particular space and inherits meta data that is associated with a folder created for the space. Oracle WebCenter content uses meta data to support a broad range of rich ECM functionality and can automatically impart retention, workflow and other policies automatically on the basis of what has been defaulted for that space. Depending on your business needs, this paradigm will also extend to sub sections of a space, offering some interesting possibilities to enable automated management around content. An example may be press releases within a particular area of an extranet that require a five year retention period and need to the reviewed by marketing and legal before release.  The underlying content system will transparently take care of this process on the basis of the above rules, enabling peace of mind over unstructured data - which could otherwise become overwhelming. 4. Make Your First Project Your Second Imagine if Michael Phelps was competing in a swimming championship, but told right before his race that he had to use a brand new stroke.  There is no doubt that Michael is an outstanding swimmer, but chances are that he would like to have some time to get acquainted with the new stroke. New technologies should not be treated any differently.  Before jumping into the deep end it helps to take time to get to know the new approach - even though you may have been swimming thousands of times before. To quickly get a handle on Oracle WebCenter capabilities it can be helpful to deploy a sandbox for the team to use to share project documents, discussions and announcements in an effort to help the actual deployment get under way, while increasing everyone’s knowledge of the platform and its functionality that may be helpful down the road. Oracle Technology Network has made a pre-configured virtual machine available for download that can be a great starting point for this exercise. 5. Get to Know the Community If you are reading this blog post you have most certainly faced a software decision or challenge that was solved on the basis of a small piece of missing critical information - which took substantial research to discover.  Chances were also good that somewhere, someone had already come across this information and would have been excited to share it. There is no denying the power of passionate, connected users, sharing key tips around technology.  The Oracle WebCenter brand has a rich heritage that includes industry-leading technology and practitioners.  With the new Oracle WebCenter brand, opportunities to connect with these experts has become easier. Oracle WebCenter Blog Oracle Social Enterprise LinkedIn WebCenter Group Oracle WebCenter Twitter Oracle WebCenter Facebook Oracle User Groups Additionally, there are various Oracle WebCenter related blogs by an excellent grouping of services partners.

    Read the article

  • The Sensemaking Spectrum for Business Analytics: Translating from Data to Business Through Analysis

    - by Joe Lamantia
    One of the most compelling outcomes of our strategic research efforts over the past several years is a growing vocabulary that articulates our cumulative understanding of the deep structure of the domains of discovery and business analytics. Modes are one example of the deep structure we’ve found.  After looking at discovery activities across a very wide range of industries, question types, business needs, and problem solving approaches, we've identified distinct and recurring kinds of sensemaking activity, independent of context.  We label these activities Modes: Explore, compare, and comprehend are three of the nine recognizable modes.  Modes describe *how* people go about realizing insights.  (Read more about the programmatic research and formal academic grounding and discussion of the modes here: https://www.researchgate.net/publication/235971352_A_Taxonomy_of_Enterprise_Search_and_Discovery) By analogy to languages, modes are the 'verbs' of discovery activity.  When applied to the practical questions of product strategy and development, the modes of discovery allow one to identify what kinds of analytical activity a product, platform, or solution needs to support across a spread of usage scenarios, and then make concrete and well-informed decisions about every aspect of the solution, from high-level capabilities, to which specific types of information visualizations better enable these scenarios for the types of data users will analyze. The modes are a powerful generative tool for product making, but if you've spent time with young children, or had a really bad hangover (or both at the same time...), you understand the difficult of communicating using only verbs.  So I'm happy to share that we've found traction on another facet of the deep structure of discovery and business analytics.  Continuing the language analogy, we've identified some of the ‘nouns’ in the language of discovery: specifically, the consistently recurring aspects of a business that people are looking for insight into.  We call these discovery Subjects, since they identify *what* people focus on during discovery efforts, rather than *how* they go about discovery as with the Modes. Defining the collection of Subjects people repeatedly focus on allows us to understand and articulate sense making needs and activity in more specific, consistent, and complete fashion.  In combination with the Modes, we can use Subjects to concretely identify and define scenarios that describe people’s analytical needs and goals.  For example, a scenario such as ‘Explore [a Mode] the attrition rates [a Measure, one type of Subject] of our largest customers [Entities, another type of Subject] clearly captures the nature of the activity — exploration of trends vs. deep analysis of underlying factors — and the central focus — attrition rates for customers above a certain set of size criteria — from which follow many of the specifics needed to address this scenario in terms of data, analytical tools, and methods. We can also use Subjects to translate effectively between the different perspectives that shape discovery efforts, reducing ambiguity and increasing impact on both sides the perspective divide.  For example, from the language of business, which often motivates analytical work by asking questions in business terms, to the perspective of analysis.  The question posed to a Data Scientist or analyst may be something like “Why are sales of our new kinds of potato chips to our largest customers fluctuating unexpectedly this year?” or “Where can innovate, by expanding our product portfolio to meet unmet needs?”.  Analysts translate questions and beliefs like these into one or more empirical discovery efforts that more formally and granularly indicate the plan, methods, tools, and desired outcomes of analysis.  From the perspective of analysis this second question might become, “Which customer needs of type ‘A', identified and measured in terms of ‘B’, that are not directly or indirectly addressed by any of our current products, offer 'X' potential for ‘Y' positive return on the investment ‘Z' required to launch a new offering, in time frame ‘W’?  And how do these compare to each other?”.  Translation also happens from the perspective of analysis to the perspective of data; in terms of availability, quality, completeness, format, volume, etc. By implication, we are proposing that most working organizations — small and large, for profit and non-profit, domestic and international, and in the majority of industries — can be described for analytical purposes using this collection of Subjects.  This is a bold claim, but simplified articulation of complexity is one of the primary goals of sensemaking frameworks such as this one.  (And, yes, this is in fact a framework for making sense of sensemaking as a category of activity - but we’re not considering the recursive aspects of this exercise at the moment.) Compellingly, we can place the collection of subjects on a single continuum — we call it the Sensemaking Spectrum — that simply and coherently illustrates some of the most important relationships between the different types of Subjects, and also illuminates several of the fundamental dynamics shaping business analytics as a domain.  As a corollary, the Sensemaking Spectrum also suggests innovation opportunities for products and services related to business analytics. The first illustration below shows Subjects arrayed along the Sensemaking Spectrum; the second illustration presents examples of each kind of Subject.  Subjects appear in colors ranging from blue to reddish-orange, reflecting their place along the Spectrum, which indicates whether a Subject addresses more the viewpoint of systems and data (Data centric and blue), or people (User centric and orange).  This axis is shown explicitly above the Spectrum.  Annotations suggest how Subjects align with the three significant perspectives of Data, Analysis, and Business that shape business analytics activity.  This rendering makes explicit the translation and bridging function of Analysts as a role, and analysis as an activity. Subjects are best understood as fuzzy categories [http://georgelakoff.files.wordpress.com/2011/01/hedges-a-study-in-meaning-criteria-and-the-logic-of-fuzzy-concepts-journal-of-philosophical-logic-2-lakoff-19731.pdf], rather than tightly defined buckets.  For each Subject, we suggest some of the most common examples: Entities may be physical things such as named products, or locations (a building, or a city); they could be Concepts, such as satisfaction; or they could be Relationships between entities, such as the variety of possible connections that define linkage in social networks.  Likewise, Events may indicate a time and place in the dictionary sense; or they may be Transactions involving named entities; or take the form of Signals, such as ‘some Measure had some value at some time’ - what many enterprises understand as alerts.   The central story of the Spectrum is that though consumers of analytical insights (represented here by the Business perspective) need to work in terms of Subjects that are directly meaningful to their perspective — such as Themes, Plans, and Goals — the working realities of data (condition, structure, availability, completeness, cost) and the changing nature of most discovery efforts make direct engagement with source data in this fashion impossible.  Accordingly, business analytics as a domain is structured around the fundamental assumption that sense making depends on analytical transformation of data.  Analytical activity incrementally synthesizes more complex and larger scope Subjects from data in its starting condition, accumulating insight (and value) by moving through a progression of stages in which increasingly meaningful Subjects are iteratively synthesized from the data, and recombined with other Subjects.  The end goal of  ‘laddering’ successive transformations is to enable sense making from the business perspective, rather than the analytical perspective.Synthesis through laddering is typically accomplished by specialized Analysts using dedicated tools and methods. Beginning with some motivating question such as seeking opportunities to increase the efficiency (a Theme) of fulfillment processes to reach some level of profitability by the end of the year (Plan), Analysts will iteratively wrangle and transform source data Records, Values and Attributes into recognizable Entities, such as Products, that can be combined with Measures or other data into the Events (shipment of orders) that indicate the workings of the business.  More complex Subjects (to the right of the Spectrum) are composed of or make reference to less complex Subjects: a business Process such as Fulfillment will include Activities such as confirming, packing, and then shipping orders.  These Activities occur within or are conducted by organizational units such as teams of staff or partner firms (Networks), composed of Entities which are structured via Relationships, such as supplier and buyer.  The fulfillment process will involve other types of Entities, such as the products or services the business provides.  The success of the fulfillment process overall may be judged according to a sophisticated operating efficiency Model, which includes tiered Measures of business activity and health for the transactions and activities included.  All of this may be interpreted through an understanding of the operational domain of the businesses supply chain (a Domain).   We'll discuss the Spectrum in more depth in succeeding posts.

    Read the article

  • Time Warp

    - by Jesse
    It’s no secret that daylight savings time can wreak havoc on systems that rely heavily on dates. The system I work on is centered around recording dates and times, so naturally my co-workers and I have seen our fair share of date-related bugs. From time to time, however, we come across something that we haven’t seen before. A few weeks ago the following error message started showing up in our logs: “The supplied DateTime represents an invalid time. For example, when the clock is adjusted forward, any time in the period that is skipped is invalid.” This seemed very cryptic, especially since it was coming from areas of our application that are typically only concerned with capturing date-only (no explicit time component) from the user, like reports that take a “start date” and “end date” parameter. For these types of parameters we just leave off the time component when capturing the date values, so midnight is used as a “placeholder” time. How is midnight an “invalid time”? Globalization Is Hard Over the last couple of years our software has been rolled out to users in several countries outside of the United States, including Brazil. Brazil begins and ends daylight savings time at midnight on pre-determined days of the year. On October 16, 2011 at midnight many areas in Brazil began observing daylight savings time at which time their clocks were set forward one hour. This means that at the instant it became midnight on October 16, it actually became 1:00 AM, so any time between 12:00 AM and 12:59:59 AM never actually happened. Because we store all date values in the database in UTC, always adjust any “local” dates provided by a user to UTC before using them as filters in a query. The error we saw was thrown by .NET when trying to convert the Brazilian local time of 2011-10-16 12:00 AM to UTC since that local time never actually existed. We hadn’t experienced this same issue with any of our US customers because the daylight savings time changes in the US occur at 2:00 AM which doesn’t conflict with our “placeholder” time of midnight. Detecting Invalid Times In .NET you might use code similar to the following for converting a local time to UTC: var localDate = new DateTime(2011, 10, 16); //2011-10-16 @ midnight const string timeZoneId = "E. South America Standard Time"; //Windows system timezone Id for "Brasilia" timezone. var localTimeZone = TimeZoneInfo.FindSystemTimeZoneById(timeZoneId); var convertedDate = TimeZoneInfo.ConvertTimeToUtc(localDate, localTimeZone); The code above throws the “invalid time” exception referenced above. We could try to detect whether or not the local time is invalid with something like this: var localDate = new DateTime(2011, 10, 16); //2011-10-16 @ midnight const string timeZoneId = "E. South America Standard Time"; //Windows system timezone Id for "Brasilia" timezone. var localTimeZone = TimeZoneInfo.FindSystemTimeZoneById(timeZoneId); if (localTimeZone.IsInvalidTime(localDate)) localDate = localDate.AddHours(1); var convertedDate = TimeZoneInfo.ConvertTimeToUtc(localDate, localTimeZone); This code works in this particular scenario, but it hardly seems robust. It also does nothing to address the issue that can arise when dealing with the ambiguous times that fall around the end of daylight savings. When we roll the clocks back an hour they record the same hour on the same day twice in a row. To continue on with our Brazil example, on February 19, 2012 at 12:00 AM, it will immediately become February 18, 2012 at 11:00 PM all over again. In this scenario, how should we interpret February 18, 2011 11:30 PM? Enter Noda Time I heard about Noda Time, the .NET port of the Java library Joda Time, a little while back and filed it away in the back of my mind under the “sounds-like-it-might-be-useful-someday” category.  Let’s see how we might deal with the issue of invalid and ambiguous local times using Noda Time (note that as of this writing the samples below will only work using the latest code available from the Noda Time repo on Google Code. The NuGet package version 0.1.0 published 2011-08-19 will incorrectly report unambiguous times as being ambiguous) : var localDateTime = new LocalDateTime(2011, 10, 16, 0, 0); const string timeZoneId = "Brazil/East"; var timezone = DateTimeZone.ForId(timeZoneId); var localDateTimeMaping = timezone.MapLocalDateTime(localDateTime); ZonedDateTime unambiguousLocalDateTime; switch (localDateTimeMaping.Type) { case ZoneLocalMapping.ResultType.Unambiguous: unambiguousLocalDateTime = localDateTimeMaping.UnambiguousMapping; break; case ZoneLocalMapping.ResultType.Ambiguous: unambiguousLocalDateTime = localDateTimeMaping.EarlierMapping; break; case ZoneLocalMapping.ResultType.Skipped: unambiguousLocalDateTime = new ZonedDateTime( localDateTimeMaping.ZoneIntervalAfterTransition.Start, timezone); break; default: throw new InvalidOperationException(string.Format("Unexpected mapping result type: {0}", localDateTimeMaping.Type)); } var convertedDateTime = unambiguousLocalDateTime.ToInstant().ToDateTimeUtc(); Let’s break this sample down: I’m using the Noda Time ‘LocalDateTime’ object to represent the local date and time. I’ve provided the year, month, day, hour, and minute (zeros for the hour and minute here represent midnight). You can think of a ‘LocalDateTime’ as an “invalidated” date and time; there is no information available about the time zone that this date and time belong to, so Noda Time can’t make any guarantees about its ambiguity. The ‘timeZoneId’ in this sample is different than the ones above. In order to use the .NET TimeZoneInfo class we need to provide Windows time zone ids. Noda Time expects an Olson (tz / zoneinfo) time zone identifier and does not currently offer any means of mapping the Windows time zones to their Olson counterparts, though project owner Jon Skeet has said that some sort of mapping will be publicly accessible at some point in the future. I’m making use of the Noda Time ‘DateTimeZone.MapLocalDateTime’ method to disambiguate the original local date time value. This method returns an instance of the Noda Time object ‘ZoneLocalMapping’ containing information about the provided local date time maps to the provided time zone.  The disambiguated local date and time value will be stored in the ‘unambiguousLocalDateTime’ variable as an instance of the Noda Time ‘ZonedDateTime’ object. An instance of this object represents a completely unambiguous point in time and is comprised of a local date and time, a time zone, and an offset from UTC. Instances of ZonedDateTime can only be created from within the Noda Time assembly (the constructor is ‘internal’) to ensure to callers that each instance represents an unambiguous point in time. The value of the ‘unambiguousLocalDateTime’ might vary depending upon the ‘ResultType’ returned by the ‘MapLocalDateTime’ method. There are three possible outcomes: If the provided local date time is unambiguous in the provided time zone I can immediately set the ‘unambiguousLocalDateTime’ variable from the ‘Unambiguous Mapping’ property of the mapping returned by the ‘MapLocalDateTime’ method. If the provided local date time is ambiguous in the provided time zone (i.e. it falls in an hour that was repeated when moving clocks backward from Daylight Savings to Standard Time), I can use the ‘EarlierMapping’ property to get the earlier of the two possible local dates to define the unambiguous local date and time that I need. I could have also opted to use the ‘LaterMapping’ property in this case, or even returned an error and asked the user to specify the proper choice. The important thing to note here is that as the programmer I’ve been forced to deal with what appears to be an ambiguous date and time. If the provided local date time represents a skipped time (i.e. it falls in an hour that was skipped when moving clocks forward from Standard Time to Daylight Savings Time),  I have access to the time intervals that fell immediately before and immediately after the point in time that caused my date to be skipped. In this case I have opted to disambiguate my local date and time by moving it forward to the beginning of the interval immediately following the skipped period. Again, I could opt to use the end of the interval immediately preceding the skipped period, or raise an error depending on the needs of the application. The point of this code is to convert a local date and time to a UTC date and time for use in a SQL Server database, so the final ‘convertedDate’  variable (typed as a plain old .NET DateTime) has its value set from a Noda Time ‘Instant’. An 'Instant’ represents a number of ticks since 1970-01-01 at midnight (Unix epoch) and can easily be converted to a .NET DateTime in the UTC time zone using the ‘ToDateTimeUtc()’ method. This sample is admittedly contrived and could certainly use some refactoring, but I think it captures the general approach needed to take a local date and time and convert it to UTC with Noda Time. At first glance it might seem that Noda Time makes this “simple” code more complicated and verbose because it forces you to explicitly deal with the local date disambiguation, but I feel that the length and complexity of the Noda Time sample is proportionate to the complexity of the problem. Using TimeZoneInfo leaves you susceptible to overlooking ambiguous and skipped times that could result in run-time errors or (even worse) run-time data corruption in the form of a local date and time being adjusted to UTC incorrectly. I should point out that this research is my first look at Noda Time and I know that I’ve only scratched the surface of its full capabilities. I also think it’s safe to say that it’s still beta software for the time being so I’m not rushing out to use it production systems just yet, but I will definitely be tinkering with it more and keeping an eye on it as it progresses.

    Read the article

  • MVC Automatic Menu

    - by Nuri Halperin
    An ex-colleague of mine used to call his SQL script generator "Super-Scriptmatic 2000". It impressed our then boss little, but was fun to say and use. We called every batch job and script "something 2000" from that day on. I'm tempted to call this one Menu-Matic 2000, except it's waaaay past 2000. Oh well. The problem: I'm developing a bunch of stuff in MVC. There's no PM to generate mounds of requirements and there's no Ux Architect to create wireframe. During development, things change. Specifically, actions get renamed, moved from controller x to y etc. Well, as the site grows, it becomes a major pain to keep a static menu up to date, because the links change. The HtmlHelper doesn't live up to it's name and provides little help. How do I keep this growing list of pesky little forgotten actions reigned in? The general plan is: Decorate every action you want as a menu item with a custom attribute Reflect out all menu items into a structure at load time Render the menu using as CSS  friendly <ul><li> HTML. The MvcMenuItemAttribute decorates an action, designating it to be included as a menu item: [AttributeUsage(AttributeTargets.Method, AllowMultiple = true)] public class MvcMenuItemAttribute : Attribute {   public string MenuText { get; set; }   public int Order { get; set; }   public string ParentLink { get; set; }   internal string Controller { get; set; }   internal string Action { get; set; }     #region ctor   public MvcMenuItemAttribute(string menuText) : this(menuText, 0) { } public MvcMenuItemAttribute(string menuText, int order) { MenuText = menuText; Order = order; }       internal string Link { get { return string.Format("/{0}/{1}", Controller, this.Action); } }   internal MvcMenuItemAttribute ParentItem { get; set; } #endregion } The MenuText allows overriding the text displayed on the menu. The Order allows the items to be ordered. The ParentLink allows you to make this item a child of another menu item. An example action could then be decorated thusly: [MvcMenuItem("Tracks", Order = 20, ParentLink = "/Session/Index")] . All pretty straightforward methinks. The challenge with menu hierarchy becomes fairly apparent when you try to render a menu and highlight the "current" item or render a breadcrumb control. Both encounter an  ambiguity if you allow a data source to have more than one menu item with the same URL link. The issue is that there is no great way to tell which link a person click. Using referring URL will fail if a user bookmarked the page. Using some extra query string to disambiguate duplicate URLs essentially changes the links, and also ads a chance of collision with other query parameters. Besides, that smells. The stock ASP.Net sitemap provider simply disallows duplicate URLS. I decided not to, and simply pick the first one encountered as the "current". Although it doesn't solve the issue completely – one might say they wanted the second of the 2 links to be "current"- it allows one to include a link twice (home->deals and products->deals etc), and the logic of deciding "current" is easy enough to explain to the customer. Now that we got that out of the way, let's build the menu data structure: public static List<MvcMenuItemAttribute> ListMenuItems(Assembly assembly) { var result = new List<MvcMenuItemAttribute>(); foreach (var type in assembly.GetTypes()) { if (!type.IsSubclassOf(typeof(Controller))) { continue; } foreach (var method in type.GetMethods()) { var items = method.GetCustomAttributes(typeof(MvcMenuItemAttribute), false) as MvcMenuItemAttribute[]; if (items == null) { continue; } foreach (var item in items) { if (String.IsNullOrEmpty(item.Controller)) { item.Controller = type.Name.Substring(0, type.Name.Length - "Controller".Length); } if (String.IsNullOrEmpty(item.Action)) { item.Action = method.Name; } result.Add(item); } } } return result.OrderBy(i => i.Order).ToList(); } Using reflection, the ListMenuItems method takes an assembly (you will hand it your MVC web assembly) and generates a list of menu items. It digs up all the types, and for each one that is an MVC Controller, digs up the methods. Methods decorated with the MvcMenuItemAttribute get plucked and added to the output list. Again, pretty simple. To make the structure hierarchical, a LINQ expression matches up all the items to their parent: public static void RegisterMenuItems(List<MvcMenuItemAttribute> items) { _MenuItems = items; _MenuItems.ForEach(i => i.ParentItem = items.FirstOrDefault(p => String.Equals(p.Link, i.ParentLink, StringComparison.InvariantCultureIgnoreCase))); } The _MenuItems is simply an internal list to keep things around for later rendering. Finally, to package the menu building for easy consumption: public static void RegisterMenuItems(Type mvcApplicationType) { RegisterMenuItems(ListMenuItems(Assembly.GetAssembly(mvcApplicationType))); } To bring this puppy home, a call in Global.asax.cs Application_Start() registers the menu. Notice the ugliness of reflection is tucked away from the innocent developer. All they have to do is call the RegisterMenuItems() and pass in the type of the application. When you use the new project template, global.asax declares a class public class MvcApplication : HttpApplication and that is why the Register call passes in that type. protected void Application_Start() { AreaRegistration.RegisterAllAreas(); RegisterRoutes(RouteTable.Routes);   MvcMenu.RegisterMenuItems(typeof(MvcApplication)); }   What else is left to do? Oh, right, render! public static void ShowMenu(this TextWriter output) { var writer = new HtmlTextWriter(output);   renderHierarchy(writer, _MenuItems, null); }   public static void ShowBreadCrumb(this TextWriter output, Uri currentUri) { var writer = new HtmlTextWriter(output); string currentLink = "/" + currentUri.GetComponents(UriComponents.Path, UriFormat.Unescaped);   var menuItem = _MenuItems.FirstOrDefault(m => m.Link.Equals(currentLink, StringComparison.CurrentCultureIgnoreCase)); if (menuItem != null) { renderBreadCrumb(writer, _MenuItems, menuItem); } }   private static void renderBreadCrumb(HtmlTextWriter writer, List<MvcMenuItemAttribute> menuItems, MvcMenuItemAttribute current) { if (current == null) { return; } var parent = current.ParentItem; renderBreadCrumb(writer, menuItems, parent); writer.Write(current.MenuText); writer.Write(" / ");   }     static void renderHierarchy(HtmlTextWriter writer, List<MvcMenuItemAttribute> hierarchy, MvcMenuItemAttribute root) { if (!hierarchy.Any(i => i.ParentItem == root)) return;   writer.RenderBeginTag(HtmlTextWriterTag.Ul); foreach (var current in hierarchy.Where(element => element.ParentItem == root).OrderBy(i => i.Order)) { if (ItemFilter == null || ItemFilter(current)) {   writer.RenderBeginTag(HtmlTextWriterTag.Li); writer.AddAttribute(HtmlTextWriterAttribute.Href, current.Link); writer.AddAttribute(HtmlTextWriterAttribute.Alt, current.MenuText); writer.RenderBeginTag(HtmlTextWriterTag.A); writer.WriteEncodedText(current.MenuText); writer.RenderEndTag(); // link renderHierarchy(writer, hierarchy, current); writer.RenderEndTag(); // li } } writer.RenderEndTag(); // ul } The ShowMenu method renders the menu out to the provided TextWriter. In previous posts I've discussed my partiality to using well debugged, time test HtmlTextWriter to render HTML rather than writing out angled brackets by hand. In addition, writing out using the actual writer on the actual stream rather than generating string and byte intermediaries (yes, StringBuilder being no exception) disturbs me. To carry out the rendering of an hierarchical menu, the recursive renderHierarchy() is used. You may notice that an ItemFilter is called before rendering each item. I figured that at some point one might want to exclude certain items from the menu based on security role or context or something. That delegate is the hook for such future feature. To carry out rendering of a breadcrumb recursion is used again, this time simply to unwind the parent hierarchy from the leaf node, then rendering on the return from the recursion rather than as we go along deeper. I guess I was stuck in LISP that day.. recursion is fun though.   Now all that is left is some usage! Open your Site.Master or wherever you'd like to place a menu or breadcrumb, and plant one of these calls: <% MvcMenu.ShowBreadCrumb(this.Writer, Request.Url); %> to show a breadcrumb trail (notice lack of "=" after <% and the semicolon). <% MvcMenu.ShowMenu(Writer); %> to show the menu.   As mentioned before, the HTML output is nested <UL> <LI> tags, which should make it easy to style using abundant CSS to produce anything from static horizontal or vertical to dynamic drop-downs.   This has been quite a fun little implementation and I was pleased that the code size remained low. The main crux was figuring out how to pass parent information from the attribute to the hierarchy builder because attributes have restricted parameter types. Once I settled on that implementation, the rest falls into place quite easily.

    Read the article

  • Guest Post: Using IronRuby and .NET to produce the &lsquo;Hello World of WPF&rsquo;

    - by Eric Nelson
    [You might want to also read other GuestPosts on my blog – or contribute one?] On the 26th and 27th of March (2010) myself and Edd Morgan of Microsoft will be popping along to the Scottish Ruby Conference. I dabble with Ruby and I am a huge fan whilst Edd is a “proper Ruby developer”. Hence I asked Edd if he was interested in creating a guest post or two for my blog on IronRuby. This is the second of those posts. If you should stumble across this post and happen to be attending the Scottish Ruby Conference, then please do keep a look out for myself and Edd. We would both love to chat about all things Ruby and IronRuby. And… we should have (if Amazon is kind) a few books on IronRuby with us at the conference which will need to find a good home. This is me and Edd and … the book: Order on Amazon: http://bit.ly/ironrubyunleashed Using IronRuby and .NET to produce the ‘Hello World of WPF’ In my previous post I introduced, to a minor extent, IronRuby. I expanded a little on the basics of by getting a Rails app up-and-running on this .NET implementation of the Ruby language — but there wasn't much to it! So now I would like to go from simply running a pre-existing project under IronRuby to developing a whole new application demonstrating the seamless interoperability between IronRuby and .NET. In particular, we'll be using WPF (Windows Presentation Foundation) — the component of the .NET Framework stack used to create rich media and graphical interfaces. Foundations of WPF To reiterate, WPF is the engine in the .NET Framework responsible for rendering rich user interfaces and other media. It's not the only collection of libraries in the framework with the power to do this — Windows Forms does the trick, too — but it is the most powerful and flexible. Put simply, WPF really excels when you need to employ eye candy. It's all about creating impact. Whether you're presenting a document, video, a data entry form, some kind of data visualisation (which I am most hopeful for, especially in terms of IronRuby - more on that later) or chaining all of the above with some flashy animations, you're likely to find that WPF gives you the most power when developing any of these for a Windows target. Let's demonstrate this with an example. I give you what I like to consider the 'hello, world' of WPF applications: the analogue clock. Today, over my lunch break, I created a WPF-based analogue clock using IronRuby... Any normal person would have just looked at their watch. - Twitter The Sample Application: Click here to see this sample in full on GitHub. Using Windows Presentation Foundation from IronRuby to create a Clock class Invoking the Clock class   Gives you The above is by no means perfect (it was a lunch break), but I think it does the job of illustrating IronRuby's interoperability with WPF using a familiar data visualisation. I'm sure you'll want to dissect the code yourself, but allow me to step through the important bits. (By the way, feel free to run this through ir first to see what actually happens). Now we're using IronRuby - unlike my previous post where we took pure Ruby code and ran it through ir, the IronRuby interpreter, to demonstrate compatibility. The main thing of note is the very distinct parallels between .NET namespaces and Ruby modules, .NET classes and Ruby classes. I guess there's not much to say about it other than at this point, you may as well be working with a purely Ruby graphics-drawing library. You're instantiating .NET objects, but you're doing it with the standard Ruby .new method you know from Ruby as Object#new — although, the root object of all your IronRuby objects isn't actually Object, it's System.Object. You're calling methods on these objects (and classes, for example in the call to System.Windows.Controls.Canvas.SetZIndex()) using the underscored, lowercase convention established for the Ruby language. The integration is so seamless. The fact that you're using a dynamic language on top of .NET's CLR is completely abstracted from you, allowing you to just build your software. A Brief Note on Events Events are a big part of developing client applications in .NET as well as under every other environment I can think of. In case you aren't aware, event-driven programming is essentially the practice of telling your code to call a particular method, or other chunk of code (a delegate) when something happens at an unpredictable time. You can never predict when a user is going to click a button, move their mouse or perform any other kind of input, so the advent of the GUI is what necessitated event-driven programming. This is where one of my favourite aspects of the Ruby language, blocks, can really help us. In traditional C#, for instance, you may subscribe to an event (assign a block of code to execute when an event occurs) in one of two ways: by passing a reference to a named method, or by providing an anonymous code block. You'd be right for seeing the parallel here with Ruby's concept of blocks, Procs and lambdas. As demonstrated at the very end of this rather basic script, we are using .NET's System.Timers.Timer to (attempt to) update the clock every second (I know it's probably not the best way of doing this, but for example's sake). Note: Diverting a little from what I said above, the ticking of a clock is very predictable, yet we still use the event our Timer throws to do this updating as one of many ways to perform that task outside of the main thread. You'll see that all that's needed to assign a block of code to be triggered on an event is to provide that block to the method of the name of the event as it is known to the CLR. This drawback to this is that it only allows the delegation of one code block to each event. You may use the add method to subscribe multiple handlers to that event - pushing that to the end of a queue. Like so: def tick puts "tick tock" end timer.elapsed.add method(:tick) timer.elapsed.add proc { puts "tick tock" } tick_handler = lambda { puts "tick tock" } timer.elapsed.add(tick_handler)   The ability to just provide a block of code as an event handler helps IronRuby towards that very important term I keep throwing around; low ceremony. Anonymous methods are, of course, available in other more conventional .NET languages such as C# and VB but, as usual, feel ever so much more elegant and natural in IronRuby. Note: Whether it's a named method or an anonymous chunk o' code, the block you delegate to the handling of an event can take arguments - commonly, a sender object and some args. Another Brief Note on Verbosity Personally, I don't mind verbose chaining of references in my code as long as it doesn't interfere with performance - as evidenced in the example above. While I love clean code, there's a certain feeling of safety that comes with the terse explicitness of long-winded addressing and the describing of objects as opposed to ambiguity (not unlike this sentence). However, when working with IronRuby, even I grow tired of typing System::Whatever::Something. Some people enjoy simply assuming namespaces and forgetting about them, regardless of the language they're using. Don't worry, IronRuby has you covered. It is completely possible to, with a call to include, bring the contents of a .NET-converted module into context of your IronRuby code - just as you would if you wanted to bring in an 'organic' Ruby module. To refactor the style of the above example, I could place the following at the top of my Clock class: class Clock include System::Windows::Shape include System::Windows::Media include System::Windows::Threading # and so on...   And by doing so, reduce calls to System::Windows::Shapes::Ellipse.new to simply Ellipse.new or references to System::Windows::Threading::DispatcherPriority.Render to a friendlier DispatcherPriority.Render. Conclusion I hope by now you can understand better how IronRuby interoperates with .NET and how you can harness the power of the .NET framework with the dynamic nature and elegant idioms of the Ruby language. The manner and parlance of Ruby that makes it a joy to work with sets of data is, of course, present in IronRuby — couple that with WPF's capability to produce great graphics quickly and easily, and I hope you can visualise the possibilities of data visualisation using these two things. Using IronRuby and WPF together to create visual representations of data and infographics is very exciting to me. Although today, with this project, we're only presenting one simple piece of information - the time - the potential is much grander. My day-to-day job is centred around software development and UI design, specifically in the realm of healthcare, and if you were to pay a visit to our office you would behold, directly above my desk, a large plasma TV with a constantly rotating, animated slideshow of charts and infographics to help members of our team do their jobs. It's an app powered by WPF which never fails to spark some conversation with visitors whose gaze has been hooked. If only it was written in IronRuby, the pleasantly low ceremony and reduced pre-processing time for my brain would have helped greatly. Edd Morgan blog Related Links: Getting PhP and Ruby working on Windows Azure and SQL Azure

    Read the article

  • Limiting TCP sends with a "to-be-sent" queue and other design issues.

    - by Poni
    Hello all! This question is the result of two other questions I've asked in the last few days. I'm creating a new question because I think it's related to the "next step" in my understanding of how to control the flow of my send/receive, something I didn't get a full answer to yet. The other related questions are: http://stackoverflow.com/questions/3028376/an-iocp-documentation-interpretation-question-buffer-ownership-ambiguity http://stackoverflow.com/questions/3028998/non-blocking-tcp-buffer-issues In summary, I'm using Windows I/O Completion Ports. I have several threads that process notifications from the completion port. I believe the question is platform-independent and would have the same answer as if to do the same thing on a *nix, *BSD, Solaris system. So, I need to have my own flow control system. Fine. So I send send and send, a lot. How do I know when to start queueing the sends, as the receiver side is limited to X amount? Let's take an example (closest thing to my question): FTP protocol. I have two servers; One is on a 100Mb link and the other is on a 10Mb link. I order the 100Mb one to send to the other one (the 10Mb linked one) a 1GB file. It finishes with an average transfer rate of 1.25MB/s. How did the sender (the 100Mb linked one) knew when to hold the sending, so the slower one wouldn't be flooded? Another way to ask this: Can I get a "hold-your-sendings" notification from the remote side? Is it built-in in TCP or the so called "reliable network protocol" needs me to do so? Again, I have a loop with many sends to a remote server, and at some point, within that loop I'll have to determine if I should queue that send or I can pass it on to the transport layer (TCP). How do I do that? What would you do? Of course that when I get a completion notification from IOCP that the send was done I'll issue other pending sends, that's clear. Another design question related to this: Since I am to use a custom buffers with a send queue, and these buffers are being freed to be reused (thus not using the "delete" keyword) when a "send-done" notification has been arrived, I'll have to use a mutual exlusion on that buffer pool. Using a mutex slows things down, so I've been thinking; Why not have each thread have its own buffers pool, thus accessing it , at least when getting the required buffers for a send operation, will require no mutex, because it belongs to that thread only. The buffers pool is located at the thread local storage (TLS) level. No mutual pool implies no lock needed, implies faster operations BUT also implies more memory used by the app, because even if one thread already allocated 1000 buffers, the other one that is sending right now and need 1000 buffers to send something will need to allocated these to its own. This is a long question and I hope none got hurt (: Thank you all!

    Read the article

  • How best to modernize the 2002-era J2EE app?

    - by user331465
    I have this friend.... I have this friend who works on a java ee application (j2ee) application started in the early 2000's. Currently they add a feature here and there, but have a large codebase. Over the years the team has shrunk by 70%. [Yes, the "i have this friend is". It's me, attempting to humorously inject teenage high-school counselor shame into the mix] Java, Vintage 2002 The application uses EJB 2.1, struts 1.x, DAO's etc with straight jdbc calls (mixture of stored procedures and prepared statements). No ORM. For caching they use a mixture of OpenSymphony OSCache and a home-grown cache layer. Over the last few years, they have spent effort to modernize the UI using ajax techniques and libraries. This largely involves javascript libaries (jquery, yui, etc). Client Side On the client side, the lack of upgrade path from struts1 to struts2 discouraged them from migrating to struts2. Other web frameworks became popular (wicket, spring , jsf). Struts2 was not the "clear winner". Migrating all the existing UI from Struts1 to Struts2/wicket/etc did not seem to present much marginal benefit at a very high cost. They did not want to have a patchwork of technologies-du-jour (subsystem X in Struts2, subsystem Y in Wicket, etc.) so developer write new features using Struts 1. Server Side On the server side, they looked into moving to ejb 3, but never had a big impetus. The developers are all comfortable with ejb-jar.xml, EJBHome, EJBRemote, that "ejb 2.1 as is" represented the path of least resistance. One big complaint about the ejb environment: programmers still pretend "ejb server runs in separate jvm than servlet engine". No app server (jboss/weblogic) has ever enforced this separation. The team has never deployed the ejb server on a separate box then the app server. The ear file contains multiple copies of the same jar file; one for the 'web layer' (foo.war/WEB-INF/lib) and one for the server side (foo.ear/). The app server only loads one jar. The duplications makes for ambiguity. Caching As for caching, they use several cache implementations: OpenSymphony cache and a homegrown cache. Jgroups provides clustering support Now What? The question: The team currently has spare cycles to to invest in modernizing the application? Where would the smart investor spend them? The main criteria: 1) productivity gains. Specifically reducing the time to develope new subsystems features and reduced maintenance. 2) performance/scalability. They do not care about fashion or techno-du-jour street cred. What do you all recommend? On the persistence side Switch everything (or new development only) to JPA/JPA2? Straight hibernate? Wait for Java EE 6? On the client/web-framework side: Migrate (some or all) to struts2? wicket? jsf/jsf2? As for caching: terracotta? ehcache? coherence? stick with what they have? how best to take advantage of the huge heap sizes that the 64-bit jvms offer? Thanks in advance.

    Read the article

  • Parsing Concerns

    - by Jesse
    If you’ve ever written an application that accepts date and/or time inputs from an external source (a person, an uploaded file, posted XML, etc.) then you’ve no doubt had to deal with parsing some text representing a date into a data structure that a computer can understand. Similarly, you’ve probably also had to take values from those same data structure and turn them back into their original formats. Most (all?) suitably modern development platforms expose some kind of parsing and formatting functionality for turning text into dates and vice versa. In .NET, the DateTime data structure exposes ‘Parse’ and ‘ToString’ methods for this purpose. This post will focus mostly on parsing, though most of the examples and suggestions below can also be applied to the ToString method. The DateTime.Parse method is pretty permissive in the values that it will accept (though apparently not as permissive as some other languages) which makes it pretty easy to take some text provided by a user and turn it into a proper DateTime instance. Here are some examples (note that the resulting DateTime values are shown using the RFC1123 format): DateTime.Parse("3/12/2010"); //Fri, 12 Mar 2010 00:00:00 GMT DateTime.Parse("2:00 AM"); //Sat, 01 Jan 2011 02:00:00 GMT (took today's date as date portion) DateTime.Parse("5-15/2010"); //Sat, 15 May 2010 00:00:00 GMT DateTime.Parse("7/8"); //Fri, 08 Jul 2011 00:00:00 GMT DateTime.Parse("Thursday, July 1, 2010"); //Thu, 01 Jul 2010 00:00:00 GMT Dealing With Inaccuracy While the DateTime struct has the ability to store a date and time value accurate down to the millisecond, most date strings provided by a user are not going to specify values with that much precision. In each of the above examples, the Parse method was provided a partial value from which to construct a proper DateTime. This means it had to go ahead and assume what you meant and fill in the missing parts of the date and time for you. This is a good thing, especially when we’re talking about taking input from a user. We can’t expect that every person using our software to provide a year, day, month, hour, minute, second, and millisecond every time they need to express a date. That said, it’s important for developers to understand what assumptions the software might be making and plan accordingly. I think the assumptions that were made in each of the above examples were pretty reasonable, though if we dig into this method a little bit deeper we’ll find that there are a lot more assumptions being made under the covers than you might have previously known. One of the biggest assumptions that the DateTime.Parse method has to make relates to the format of the date represented by the provided string. Let’s consider this example input string: ‘10-02-15’. To some people. that might look like ‘15-Feb-2010’. To others, it might be ‘02-Oct-2015’. Like many things, it depends on where you’re from. This Is America! Most cultures around the world have adopted a “little-endian” or “big-endian” formats. (Source: Date And Time Notation By Country) In this context,  a “little-endian” date format would list the date parts with the least significant first while the “big-endian” date format would list them with the most significant first. For example, a “little-endian” date would be “day-month-year” and “big-endian” would be “year-month-day”. It’s worth nothing here that ISO 8601 defines a “big-endian” format as the international standard. While I personally prefer “big-endian” style date formats, I think both styles make sense in that they follow some logical standard with respect to ordering the date parts by their significance. Here in the United States, however, we buck that trend by using what is, in comparison, a completely nonsensical format of “month/day/year”. Almost no other country in the world uses this format. I’ve been fortunate in my life to have done some international travel, so I’ve been aware of this difference for many years, but never really thought much about it. Until recently, I had been developing software for exclusively US-based audiences and remained blissfully ignorant of the different date formats employed by other countries around the world. The web application I work on is being rolled out to users in different countries, so I was recently tasked with updating it to support different date formats. As it turns out, .NET has a great mechanism for dealing with different date formats right out of the box. Supporting date formats for different cultures is actually pretty easy once you understand this mechanism. Pulling the Curtain Back On the Parse Method Have you ever taken a look at the different flavors (read: overloads) that the DateTime.Parse method comes in? In it’s simplest form, it takes a single string parameter and returns the corresponding DateTime value (if it can divine what the date value should be). You can optionally provide two additional parameters to this method: an ‘System.IFormatProvider’ and a ‘System.Globalization.DateTimeStyles’. Both of these optional parameters have some bearing on the assumptions that get made while parsing a date, but for the purposes of this article I’m going to focus on the ‘System.IFormatProvider’ parameter. The IFormatProvider exposes a single method called ‘GetFormat’ that returns an object to be used for determining the proper format for displaying and parsing things like numbers and dates. This interface plays a big role in the globalization capabilities that are built into the .NET Framework. The cornerstone of these globalization capabilities can be found in the ‘System.Globalization.CultureInfo’ class. To put it simply, the CultureInfo class is used to encapsulate information related to things like language, writing system, and date formats for a certain culture. Support for many cultures are “baked in” to the .NET Framework and there is capacity for defining custom cultures if needed (thought I’ve never delved into that). While the details of the CultureInfo class are beyond the scope of this post, so for now let me just point out that the CultureInfo class implements the IFormatInfo interface. This means that a CultureInfo instance created for a given culture can be provided to the DateTime.Parse method in order to tell it what date formats it should expect. So what happens when you don’t provide this value? Let’s crack this method open in Reflector: When no IFormatInfo parameter is provided (i.e. we use the simple DateTime.Parse(string) overload), the ‘DateTimeFormatInfo.CurrentInfo’ is used instead. Drilling down a bit further we can see the implementation of the DateTimeFormatInfo.CurrentInfo property: From this property we can determine that, in the absence of an IFormatProvider being specified, the DateTime.Parse method will assume that the provided date should be treated as if it were in the format defined by the CultureInfo object that is attached to the current thread. The culture specified by the CultureInfo instance on the current thread can vary depending on several factors, but if you’re writing an application where a single instance might be used by people from different cultures (i.e. a web application with an international user base), it’s important to know what this value is. Having a solid strategy for setting the current thread’s culture for each incoming request in an internationally used ASP .NET application is obviously important, and might make a good topic for a future post. For now, let’s think about what the implications of not having the correct culture set on the current thread. Let’s say you’re running an ASP .NET application on a server in the United States. The server was setup by English speakers in the United States, so it’s configured for US English. It exposes a web page where users can enter order data, one piece of which is an anticipated order delivery date. Most users are in the US, and therefore enter dates in a ‘month/day/year’ format. The application is using the DateTime.Parse(string) method to turn the values provided by the user into actual DateTime instances that can be stored in the database. This all works fine, because your users and your server both think of dates in the same way. Now you need to support some users in South America, where a ‘day/month/year’ format is used. The best case scenario at this point is a user will enter March 13, 2011 as ‘25/03/2011’. This would cause the call to DateTime.Parse to blow up since that value doesn’t look like a valid date in the US English culture (Note: In all likelihood you might be using the DateTime.TryParse(string) method here instead, but that method behaves the same way with regard to date formats). “But wait a minute”, you might be saying to yourself, “I thought you said that this was the best case scenario?” This scenario would prevent users from entering orders in the system, which is bad, but it could be worse! What if the order needs to be delivered a day earlier than that, on March 12, 2011? Now the user enters ‘12/03/2011’. Now the call to DateTime.Parse sees what it thinks is a valid date, but there’s just one problem: it’s not the right date. Now this order won’t get delivered until December 3, 2011. In my opinion, that kind of data corruption is a much bigger problem than having the Parse call fail. What To Do? My order entry example is a bit contrived, but I think it serves to illustrate the potential issues with accepting date input from users. There are some approaches you can take to make this easier on you and your users: Eliminate ambiguity by using a graphical date input control. I’m personally a fan of a jQuery UI Datepicker widget. It’s pretty easy to setup, can be themed to match the look and feel of your site, and has support for multiple languages and cultures. Be sure you have a way to track the culture preference of each user in your system. For a web application this could be done using something like a cookie or session state variable. Ensure that the current user’s culture is being applied correctly to DateTime formatting and parsing code. This can be accomplished by ensuring that each request has the handling thread’s CultureInfo set properly, or by using the Format and Parse method overloads that accept an IFormatProvider instance where the provided value is a CultureInfo object constructed using the current user’s culture preference. When in doubt, favor formats that are internationally recognizable. Using the string ‘2010-03-05’ is likely to be recognized as March, 5 2011 by users from most (if not all) cultures. Favor standard date format strings over custom ones. So far we’ve only talked about turning a string into a DateTime, but most of the same “gotchas” apply when doing the opposite. Consider this code: someDateValue.ToString("MM/dd/yyyy"); This will output the same string regardless of what the current thread’s culture is set to (with the exception of some cultures that don’t use the Gregorian calendar system, but that’s another issue all together). For displaying dates to users, it would be better to do this: someDateValue.ToString("d"); This standard format string of “d” will use the “short date format” as defined by the culture attached to the current thread (or provided in the IFormatProvider instance in the proper method overload). This means that it will honor the proper month/day/year, year/month/day, or day/month/year format for the culture. Knowing Your Audience The examples and suggestions shown above can go a long way toward getting an application in shape for dealing with date inputs from users in multiple cultures. There are some instances, however, where taking approaches like these would not be appropriate. In some cases, the provider or consumer of date values that pass through your application are not people, but other applications (or other portions of your own application). For example, if your site has a page that accepts a date as a query string parameter, you’ll probably want to format that date using invariant date format. Otherwise, the same URL could end up evaluating to a different page depending on the user that is viewing it. In addition, if your application exports data for consumption by other systems, it’s best to have an agreed upon format that all systems can use and that will not vary depending upon whether or not the users of the systems on either side prefer a month/day/year or day/month/year format. I’ll look more at some approaches for dealing with these situations in a future post. If you take away one thing from this post, make it an understanding of the importance of knowing where the dates that pass through your system come from and are going to. You will likely want to vary your parsing and formatting approach depending on your audience.

    Read the article

< Previous Page | 1 2 3 4 5 6  | Next Page >