Search Results

Search found 71115 results on 2845 pages for 'file patterns'.

Page 5/2845 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Using Multiple File Handles for Single File

    - by Ryan Rosario
    I have an O(n^2) operation that requires me to read line i from a file, and then compare line i to every line in the file. This repeats for all i. I wrote the following code to do this with 2 file handles, but it does not yield the result I am looking for. I imagine this is a simple error on my part. IN1 = open("myfile.dat","r") IN2 = open("myfile.dat","r") for line1 in IN1: for line2 in IN2: print line1.strip(), line2.strip() IN1.close() IN2.close() The result: Hello Hello Hello World Hello This Hello is Hello an Hello Example Hello of Hello Using Hello Two Hello File Hello Pointers Hello to Hello Read Hello One Hello File The output should contain 15^2 lines.

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Oracle Fusion Applications User Experience Design Patterns: Feeling the Love after Launch

    - by mvaughan
    By Misha Vaughan, Oracle Applications User ExperienceIn the first video by the Oracle Applications User Experience team on the Oracle Partner Network, Vice President Jeremy Ashley said that Oracle is looking to expand the ecosystem of support for Oracle’s applications customers as they begin to assess their investment and adoption of Oracle Fusion Applications. Oracle has made a massive investment to maintain the benefits of the Fusion Applications User Experience. This summer, the Applications User Experience team released the Oracle Fusion Applications user experience design patterns.Design patterns help create consistent experiences across devices.The launch has been very well received:Angelo Santagata, Senior Principal Technologist and Fusion Middleware evangelist for Oracle,  wrote this to the system integrator community: “The web site is the result of many years of Oracle R&D into user interface design for Fusion Applications and features a really cool web app which allows you to visualise the UI components in action.”  Grant Ronald, Director of Product Management, Application Development Framework (ADF) said: “It’s a science I don't understand, but now I don't have to ... Now you can learn from the UX experience of Fusion Applications.”Frank Nimphius, Senior Principal Product Manager, Oracle (ADF) wrote about the launch of the design patterns for the ADF Code Corner, and Jürgen Kress, Senior Manager EMEA Alliances & Channels for Fusion MiddleWare and Service Oriented Architecture, (SOA), shared the news with his Partner Community. Oracle Twitter followers also helped spread the message about the design patterns launch: ?@bex – Brian Huff, founder and Chief Software Architect for Bezzotech, and Oracle ACE Director:“Nifty! The Oracle Fusion UX team just released new ADF design patterns.”@maiko_rocha, Maiko Rocha, Oracle Consulting Solutions Architect and Oracle FMW engineer: “Haven't seen any other vendor offer such comprehensive UX Design Patterns catalog for free!”@zirous_chad, Chad Thompson, Senior Solutions Architect for Zirous, Inc. and ADF Developer:Wow - @ultan and company did a great job with the Fusion UX PatternsWhat is a user experience design pattern?A user experience design pattern is a re-usable, usability tested functional blueprint for a particular user experience.  Some examples are guided processes, shopping carts, and search and search results.  Ultan O’Broin discusses the top design patterns every developer should know.The patterns that were just released are based on thousands of hours of end-user field studies, state-of-the-art user interface assessments, and usability testing.  To be clear, these are functional design patterns, not technical design patterns that developers may be used to working with.  Because we know there is a gap, we are putting together some training that will help close that gap.Who should care?This is an offering targeted primarily at Application Development Framework (ADF) developers. If you are faced with the following questions regarding Fusion Applications, you will want to know and learn more:•    How do I build something that looks like Fusion Applications?•    How do I build a next-generation application?•    How do I extend a Fusion Application and maintain the user experience?•    I don’t want to re-invent the wheel on the user interface, so where do I start?•    I need to build something that will eventually co-exist with Fusion Applications. How do I do that?These questions are relevant to partners with an ADF competency, individual practitioners, or small consultancies with an ADF specialization, and customers who are trying to shift their IT staff over to supporting Fusion Applications.Where you can find out more?OnlineOur Fusion User Experience design patterns maven is Ultan O’Broin. The Oracle Partner Network is helping our team bring this first e-seminar to you in order to go into a more detail on what this means and how to take advantage of it:? Webinar: Build a Better User Experience with Oracle: Oracle Fusion Applications Functional Design PatternsSept 20, 2012 , 10:30am-11:30am PacificDial-In:  1. 877-664-9137 / Passcode 102546?International:  706-634-9619  http://www.intercall.com/national/oracleuniversity/gdnam.htmlAccess the Live Event Or Via Webconference Access http://ouweb.webex.com  ?and enter this session number: 598036234At a Usergroup eventThe Fusion User Experience Advocates (FXA) are also going to be getting some deep-dive training on this content and can share it with local user groups.At OpenWorld Ultan O’Broin               Chris MuirIf you will be at OpenWorld this year, our own Ultan O’Broin will be visiting the ADF demopod to say hello, thanks to Shay Shmeltzer, Senior Group Manager for ADF outbound communication and at the OTN lounge: Monday 10-10:45, Tuesday 2:15-2:45, Wednesday 2:15-3:30 ?  Oracle JDeveloper and Oracle ADF,  Moscone South, Right - S-207? “ADF Meet and Greett”, OTN Lounge, Wednesday 4:30 And I cannot talk about OpenWorld and ADF without mentioning Chris Muir’s ADF EMG event: the Year After the Year Of the ADF Developer – Sunday, Sept 30 of OpenWorld. Chris has played host to Ultan and the Applications user experience message for his online community and is now a seasoned UX expert.Expect to see additional announcements about expanded and training on similar topics in the future.

    Read the article

  • What design patterns are used in diagramming tools?

    - by TheMachineCharmer
    Diagram.net is good diagramming tool. I need to understand what design patterns are used by this tool so that I can understand how it works. What design patterns are used in this tool? What design patterns are generally used for diagramming tools? I would also like to know how can I use this to develop very simple diagramming tool (Only rectangular nodes and straight links). NOTE/Caution: I am doing this for FUN so please don't direct me to existing tools(I might down vote.. just kiddin ;).

    Read the article

  • What patterns exist for web application development?

    - by DaveDev
    I understand that MVC & MVP are design patterns that are commonly used for web development, as well as ASP.NET WebForms (more of an anti-pattern, really!). What other patterns are used in web application development? I'm not necessarily saying I want to learn/use new patterns just to be different - I do believe there's a lot of value in taking the conventional route - but I think it's good to know what else is out there to be able to properly understand what I'm currently working with. Thanks.

    Read the article

  • design patterns for hierarchical structures

    - by JLBarros
    Anyone knows some design patterns for hierarchical structures? For example, to manage inventory categories, accounting chart of accounts, divisions of human resources, etc.. Thank you very much in advance EDIT: Thanks for your interest. I am looking for a better way of dealing with hierarchical items to which they should apply operations depending on the level of hierarchy. I have been studying the patterns by Martin Fowler, for example Accounting, but I wonder if there are other more generic. The problem is that operations apply to the items must be possible to change even at run time and may depend on other external variables. I thought of a kind of strategy pattern but would like to combine it with the fact that it is a hierarchical scheme. I would appreciate any reference to hierarchical patterns and you'll take care of them in depth.

    Read the article

  • Are there design patterns or generalised approaches for particle simulations?

    - by romeovs
    I'm working on a project (for college) in C++. The goal is to write a program that can more or less simulate a beam of particles flying trough the LHC synchrotron. Not wanting to rush into things, me and my team are thinking about how to implement this and I was wondering if there are general design patterns that are used to solve this kind of problem. The general approach we came up with so far is the following: there is a World that holds all objects you can add objects to this world such as Particle, Dipole and Quadrupole time is cut up into discrete steps, and at each point in time, for each Particle the magnetic and electric forces that each object in the World generates are calculated and summed up (luckily electro-magnetism is linear). each Particle moves accordingly (using a simple estimation approach to solve the differential movement equations) save the Particle positions repeat This seems a good approach but, for instance, it is hard to take into account symmetries that might be present (such as the magnetic field of each Quadrupole) and is this thus suboptimal. To take into account such symmetries as that of the Quadrupole field, it would be much easier to (also) make space discrete and somehow store form of the Quadrupole field somewhere. (Since 2532 or so Quadrupoles are stored this should lead to a massive gain of performance, not having to recalculate each Quadrupole field) So, are there any design patterns? Is the World-approach feasible or is it old-fashioned, bad programming? What about symmetry, how is that generally taken into acount?

    Read the article

  • Real World Java EE Patterns by Adam Bien

    - by JuergenKress
    Rethinking Best Practices, A book about rethinking patterns, best practices, idioms and Java EE Real World Java EE Patterns - Rethinking Best Practices discusses patterns and best practices in a structured way, with code from real world projects. This book covers: an introduction into the core principles and APIs of Java EE 6, principles of transactions, isolation levels, CAP and BASE, remoting, pragmatic modularization and structure of Java EE applications, discussion of superfluous patterns and outdated best practices, patterns for domain driven and service oriented components, custom scopes, asynchronous processing and parallelization, real time HTTP events, schedulers, REST optimizations, plugins and monitoring tools, and fully functional JCA 1.6 implementation. Real World Java EE Night Hacks - Dissecting the Business Tier will not only help experienced developers and architects to write concise code, but especially help you to shrink the codebase to unbelievably small sizes :-). Order here. WebLogic Partner Community For regular information become a member in the WebLogic Partner Community please visit: http://www.oracle.com/partners/goto/wls-emea ( OPN account required). If you need support with your account please contact the Oracle Partner Business Center. BlogTwitterLinkedInMixForumWiki Technorati Tags: Adam Bien,Real World Java,Java,Java EE,WebLogic Community,Oracle,OPN,Jürgen Kress

    Read the article

  • Book Review: Professional ASP.NET Design Patterns by Scott Millett

    - by Sam Abraham
    In the next few lines, I will be providing a brief review of Wrox’s Professional ASP.NET Design Patterns by Scott Millett. Design patterns have been a hot topic for many years as developers looked to do more with less, re-use as much code as possible by creating common libraries, as well as make their code easier to understand, extend and collaborate on. Scott Millett’s book covered classic and emerging patterns in a practical presentation that demonstrated with thorough examples how to put each pattern to use in the context of multi-tiered ASP.NET applications. The author’s unique approach and content earned him much kudos in the foreword by Scott Hanselman as well as online reviews. The book has 14 chapters of which 5 are dedicated to a comprehensive case study. Patterns covered therein include S.O.L.I.D, Gang of Four (GoF) as well as Martin Fowler’s Patterns of Enterprise Applications. Many thanks to the Wiley/Wrox User Group Program for their support of our West Palm Beach Developers’ Group. Best regards, --Sam You can access my reviews of books I recently read: Professional WCF 4.0 Inside Windows Communication Foundation Inside Microsoft SQL Server 2008 series

    Read the article

  • Design Patterns : Question about "Types"

    - by contactmatt
    Would someone please explain to me what the below paragraph means? This is a snippet from "Design Patterns: Elements of Reusable OO software" Part of an object's interface may be characterized by one type, and other parts by other types. Two objects of the same type need only share parts of their interfaces. Interfaces can contain other interfaces as subsets. - Design Patterns - Elements of Reusable OO software, pg 13

    Read the article

  • Database Patterns

    - by Onorio Catenacci
    Does anyone know of papers/books/etc. that document patterns for databases? For example, one common rule of thumb is that every table should have a primary key and that the key should be devoid of information content. So I was wondering if anyone had written a book or published papers regarding design patterns for designing relational databases?

    Read the article

  • Oracle Fusion Applications Design Patterns Now Available For Developers

    - by ultan o'broin
    The Oracle Fusion Applications user experience design patterns are published! These new, reusable usability solutions and best-practices, which will join the Oracle dashboard patterns and guidelines that are already available online, are used by Oracle to artfully bring to life a new standard in the user experience, or UX, of enterprise applications. Now, the Oracle applications development community can benefit from the science behind the Oracle Fusion Applications user experience, too. The design patterns are based on Oracle ADF components and easily implemented in Oracle JDeveloper. These Oracle Fusion Applications UX Design Patterns, or blueprints, enable Oracle applications developers and system implementers everywhere to leverage professional usability insight when: tailoring an Oracle Fusion application, creating coexistence solutions that existing users will be delighted with, thus enabling graceful user transitions to Oracle Fusion Applications down the road, or designing exciting, new, highly usable applications in the cloud or on-premise. Based on the Oracle Application Development Framework (ADF) components, the Oracle Fusion Applications patterns and guidelines are proven with real users and in the Applications UX usability labs, so you can get right to work coding productivity-enhancing designs that provide an advantage for your entire business. What’s the best way to get started? We’ve made that easy, too. The Design Filter Tool (DeFT) selects the best pattern for your user type and task. Simply adapt your selection for your own task flow and content, and you’re on your way to a really great applications user experience. More Oracle applications design patterns and training are coming your way in the future. To provide feedback on the sets that are currently available, let me know in the comments!.

    Read the article

  • PHP File Upload second file does not upload, first file does without error

    - by Curtis
    So I have a script I have been using and it generally works well with multiple files... When I upload a very large file in a multiple file upload, only the first file is uploaded. I am not seeing an errors as to why. I figure this is related to a timeout setting but can not figure it out - Any ideas? I have foloowing set in my htaccess file php_value post_max_size 1024M php_value upload_max_filesize 1024M php_value memory_limit 600M php_value output_buffering on php_value max_execution_time 259200 php_value max_input_time 259200 php_value session.cookie_lifetime 0 php_value session.gc_maxlifetime 259200 php_value default_socket_timeout 259200

    Read the article

  • scp No such file or directory

    - by Joe
    I've a confusing question for which superuser doesn't seem to have a good answer, and neither google. I'm trying to scp a file from a remote server to my local machine. The command is this scp user@server:/path/to/source/file.gz /path/to/destination The error I get is: scp: /path/to/source/file.gz: No such file or directory user is my username on the server. The command syntax appears fine to me. ssh works fine and I can cd to the file and it doesn't seem to be an access control issue? Thanks; Edit: Thank you John. I spotted the issue. ls returned this: -r--r--r-- 1 nobody users 168967171 Mar 10 2009 /path/to/source/file.gz So, the file was on a read-only file system and user is able to read it but not scp. I just copied the file to a different directory and chown it and worked fine. It would be good if someone can explain why this is the case though.

    Read the article

  • Loose Coupling and UX Patterns for Applications Integrations

    - by ultan o'broin
    I love that software architecture phrase loose coupling. There’s even a whole book about it. And, if you’re involved in enterprise methodology you’ll know just know important loose coupling is to the smart development of applications integrations too. Whether you are integrating offerings from the Oracle partner ecosystem with Fusion apps or applications coexistence scenarios, loose coupling enables the development of scalable, reliable, flexible solutions, with no second-guessing of technology. Another great book Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions tells us about loose coupling benefits of reducing the assumptions that integration parties (components, applications, services, programs, users) make about each other when they exchange information. Eliminating assumptions applies to UI development too. The days of assuming it’s enough to hard code a UI with linking libraries called code on a desktop PC for an office worker are over. The book predates PaaS development and SaaS deployments, and was written when web services and APIs were emerging. Yet it calls out how using middleware as an assumptions-dissolving technology “glue" is central to applications integration. Realizing integration design through a set of middleware messaging patterns (messaging in the sense of asynchronously communicating data) that enable developers to meet the typical business requirements of enterprises requiring integrated functionality is very Fusion-like. User experience developers can benefit from the loose coupling approach too. User expectations and work styles change all the time, and development is now about integrating SaaS through PaaS. Cloud computing offers a virtual pivot where a single source of truth (customer or employee data, for example) can be experienced through different UIs (desktop, simplified, or mobile), each optimized for the context of the user’s world of work and task completion. Smart enterprise applications developers, partners, and customers use design patterns for user experience integration benefits too. The Oracle Applications UX design patterns (and supporting guidelines) enable loose coupling of the optimized UI requirements from code. Developers can get on with the job of creating integrations through web services, APIs and SOA without having to figure out design problems about how UIs should work. Adding the already user proven UX design patterns (and supporting guidelines to your toolkit means ADF and other developers can easily offer much more than just functionality and be super productive too. Great looking application integration touchpoints can be built with our design patterns and guidelines too for a seamless applications UX. One of Oracle’s partners, Innowave Technologies used loose coupling architecture and our UX design patterns to create an integration for a customer that was scalable, cost effective, fast to develop and kept users productive while paving a roadmap for customers to keep pace with the latest UX designs over time. Innowave CEO Basheer Khan, a Fusion User Experience Advocate explains how to do it on the Usable Apps blog.

    Read the article

  • Is context inheritance, as shown by Head First Design Patterns' Duck example, irrelevant to strategy pattern?

    - by Korey Hinton
    In Head First Design Patterns it teaches the strategy pattern by using a Duck example where different subclasses of Duck can be assigned a particular behavior at runtime. From my understanding the purpose of the strategy pattern is to change an object's behavior at runtime. Emphasis on "an" meaning one. Could I further simplify this example by just having a Duck class (no derived classes)? Then when implementing one duck object it can be assigned different behaviors based on certain circumstances that aren't dependent on its own object type. For example: FlyBehavior changes based on the weather or QuackBehavior changes based on the time of day or how hungry a duck is. Would my example above constitute the strategy pattern as well? Is context inheritance (Duck) irrelevant to the strategy pattern or is that the reason for the strategy pattern? Here is the UML diagram from the Head First book:

    Read the article

  • Are there any specific workflows or design patterns that are commonly used to create large functional programming applications?

    - by Andrew
    I have been exploring Clojure for a while now, although I haven't used it on any nontrivial projects. Basically, I have just been getting comfortable with the syntax and some of the idioms. Coming from an OOP background, with Clojure being the first functional language that I have looked very much into, I'm naturally not as comfortable with the functional way of doing things. That said, are there any specific workflows or design patterns that are common with creating large functional applications? I'd really like to start using functional programming "for real", but I'm afraid that with my current lack of expertise, it would result in an epic fail. The "Gang of Four" is such a standard for OO programmers, but is there anything similar that is more directed at the functional paradigm? Most of the resources that I have found have great programming nuggets, but they don't step back to give a broader, more architectural look.

    Read the article

  • MVC? patterns for game development? [closed]

    - by davivid
    Possible Duplicate: MVC-like compartmentalization in games? I am thinking of the best way to structure my project and was thought a MVC style pattern would be appropriate. Would be correct having the model handle the majority and basically being the game engine? Are there any standardised patterns recommended for simple game development? Model / Game Engine Data: Level Design, Chat feeds, etc Game Status: Player status, Enemy status, World Status etc etc. Engine: Physics, Collisions, AI View 3D: Gameplay, Camera, Rendering... 2D: UI etc Controller: Player Input UI Input

    Read the article

  • Blackberry read local properties file in project

    - by Dachmt
    Hi, I have a config.properties file at the root of my blackberry project (same place as Blackberry_App_Descriptor.xml file), and I try to access the file to read and write into it. See below my class: public class Configuration { private String file; private String fileName; public Configuration(String pathToFile) { this.fileName = pathToFile; try { // Try to load the file and read it System.out.println("---------- Start to read the file"); file = readFile(fileName); System.out.println("---------- Property file:"); System.out.println(file); } catch (Exception e) { System.out.println("---------- Error reading file"); System.out.println(e.getMessage()); } } /** * Read a file and return it in a String * @param fName * @return */ private String readFile(String fName) { String properties = null; try { System.out.println("---------- Opening the file"); //to actually retrieve the resource prefix the name of the file with a "/" InputStream is = this.getClass().getResourceAsStream(fName); //we now have an input stream. Create a reader and read out //each character in the stream. System.out.println("---------- Input stream"); InputStreamReader isr = new InputStreamReader(is); char c; System.out.println("---------- Append string now"); while ((c = (char)isr.read()) != -1) { properties += c; } } catch (Exception e) { } return properties; } } I call my class constructor like this: Configuration config = new Configuration("/config.properties"); So in my class, "file" should have all the content of the config.properties file, and the fileName should have this value "/config.properties". But the "name" is null because the file cannot be found... I know this is the path of the file which should be different, but I don't know what i can change... The class is in the package com.mycompany.blackberry.utils Thank you!

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >