I am working on a maze solving application that uses a Genetic Algorithm to evolve a set of genes (within Individuals) to evolve a Population of Individuals that power an Agent through a maze.
The majority of the code used appears to be working fine but when the code runs it's not selecting the best Individual's to be in the new Population correctly. When I run the application it outputs the following:
Total Fitness: 380.0 - Best Fitness: 11.0
Total Fitness: 406.0 - Best Fitness: 15.0
Total Fitness: 344.0 - Best Fitness: 12.0
Total Fitness: 373.0 - Best Fitness: 11.0
Total Fitness: 415.0 - Best Fitness: 12.0
Total Fitness: 359.0 - Best Fitness: 11.0
Total Fitness: 436.0 - Best Fitness: 13.0
Total Fitness: 390.0 - Best Fitness: 12.0
Total Fitness: 379.0 - Best Fitness: 15.0
Total Fitness: 370.0 - Best Fitness: 11.0
Total Fitness: 361.0 - Best Fitness: 11.0
Total Fitness: 413.0 - Best Fitness: 16.0
As you can clearly see the fitnesses are not improving and neither are the best fitnesses. The main code responsible for this problem is here, and I believe the problem to be within the main method, most likely where the selection methods are called:
package GeneticAlgorithm;
import GeneticAlgorithm.Individual.Action;
import Robot.Robot.Direction;
import Maze.Maze;
import Robot.Robot;
import java.util.ArrayList;
import java.util.Random;
public class RunGA {
protected static ArrayList tmp1, tmp2 = new ArrayList();
// Implementation of Elitism
protected static int ELITISM_K = 5;
// Population size
protected static int POPULATION_SIZE = 50 + ELITISM_K;
// Max number of Iterations
protected static int MAX_ITERATIONS = 200;
// Probability of Mutation
protected static double MUTATION_PROB = 0.05;
// Probability of Crossover
protected static double CROSSOVER_PROB = 0.7;
// Instantiate Random object
private static Random rand = new Random();
// Instantiate Population of Individuals
private Individual[] startPopulation;
// Total Fitness of Population
private double totalFitness;
Robot robot = new Robot();
Maze maze;
public void setElitism(int result) {
ELITISM_K = result;
}
public void setPopSize(int result) {
POPULATION_SIZE = result + ELITISM_K;
}
public void setMaxIt(int result) {
MAX_ITERATIONS = result;
}
public void setMutProb(double result) {
MUTATION_PROB = result;
}
public void setCrossoverProb(double result) {
CROSSOVER_PROB = result;
}
/**
* Constructor for Population
*/
public RunGA(Maze maze) {
// Create a population of population plus elitism
startPopulation = new Individual[POPULATION_SIZE];
// For every individual in population fill with x genes from 0 to 1
for (int i = 0; i < POPULATION_SIZE; i++) {
startPopulation[i] = new Individual();
startPopulation[i].randGenes();
}
// Evaluate the current population's fitness
this.evaluate(maze, startPopulation);
}
/**
* Set Population
* @param newPop
*/
public void setPopulation(Individual[] newPop) {
System.arraycopy(newPop, 0, this.startPopulation, 0, POPULATION_SIZE);
}
/**
* Get Population
* @return
*/
public Individual[] getPopulation() {
return this.startPopulation;
}
/**
* Evaluate fitness
* @return
*/
public double evaluate(Maze maze, Individual[] newPop) {
this.totalFitness = 0.0;
ArrayList<Double> fitnesses = new ArrayList<Double>();
for (int i = 0; i < POPULATION_SIZE; i++) {
maze = new Maze(8, 8);
maze.fillMaze();
fitnesses.add(startPopulation[i].evaluate(maze, newPop));
//this.totalFitness += startPopulation[i].evaluate(maze, newPop);
}
//totalFitness = (Math.round(totalFitness / POPULATION_SIZE));
StringBuilder sb = new StringBuilder();
for(Double tmp : fitnesses) {
sb.append(tmp + ", ");
totalFitness += tmp;
}
// Progress of each Individual
//System.out.println(sb.toString());
return this.totalFitness;
}
/**
* Roulette Wheel Selection
* @return
*/
public Individual rouletteWheelSelection() {
// Calculate sum of all chromosome fitnesses in population - sum S.
double randNum = rand.nextDouble() * this.totalFitness;
int i;
for (i = 0; i < POPULATION_SIZE && randNum > 0; ++i) {
randNum -= startPopulation[i].getFitnessValue();
}
return startPopulation[i-1];
}
/**
* Tournament Selection
* @return
*/
public Individual tournamentSelection() {
double randNum = rand.nextDouble() * this.totalFitness;
// Get random number of population (add 1 to stop nullpointerexception)
int k = rand.nextInt(POPULATION_SIZE) + 1;
int i;
for (i = 1; i < POPULATION_SIZE && i < k && randNum > 0; ++i) {
randNum -= startPopulation[i].getFitnessValue();
}
return startPopulation[i-1];
}
/**
* Finds the best individual
* @return
*/
public Individual findBestIndividual() {
int idxMax = 0;
double currentMax = 0.0;
double currentMin = 1.0;
double currentVal;
for (int idx = 0; idx < POPULATION_SIZE; ++idx) {
currentVal = startPopulation[idx].getFitnessValue();
if (currentMax < currentMin) {
currentMax = currentMin = currentVal;
idxMax = idx;
}
if (currentVal > currentMax) {
currentMax = currentVal;
idxMax = idx;
}
}
// Double check to see if this has the right one
//System.out.println(startPopulation[idxMax].getFitnessValue());
// Maximisation
return startPopulation[idxMax];
}
/**
* One Point Crossover
* @param firstPerson
* @param secondPerson
* @return
*/
public static Individual[] onePointCrossover(Individual firstPerson, Individual secondPerson) {
Individual[] newPerson = new Individual[2];
newPerson[0] = new Individual();
newPerson[1] = new Individual();
int size = Individual.SIZE;
int randPoint = rand.nextInt(size);
int i;
for (i = 0; i < randPoint; ++i) {
newPerson[0].setGene(i, firstPerson.getGene(i));
newPerson[1].setGene(i, secondPerson.getGene(i));
}
for (; i < Individual.SIZE; ++i) {
newPerson[0].setGene(i, secondPerson.getGene(i));
newPerson[1].setGene(i, firstPerson.getGene(i));
}
return newPerson;
}
/**
* Uniform Crossover
* @param firstPerson
* @param secondPerson
* @return
*/
public static Individual[] uniformCrossover(Individual firstPerson, Individual secondPerson) {
Individual[] newPerson = new Individual[2];
newPerson[0] = new Individual();
newPerson[1] = new Individual();
for(int i = 0; i < Individual.SIZE; ++i) {
double r = rand.nextDouble();
if (r > 0.5) {
newPerson[0].setGene(i, firstPerson.getGene(i));
newPerson[1].setGene(i, secondPerson.getGene(i));
} else {
newPerson[0].setGene(i, secondPerson.getGene(i));
newPerson[1].setGene(i, firstPerson.getGene(i));
}
}
return newPerson;
}
public double getTotalFitness() {
return totalFitness;
}
public static void main(String[] args) {
// Initialise Environment
Maze maze = new Maze(8, 8);
maze.fillMaze();
// Instantiate Population
//Population pop = new Population();
RunGA pop = new RunGA(maze);
// Instantiate Individuals for Population
Individual[] newPop = new Individual[POPULATION_SIZE];
// Instantiate two individuals to use for selection
Individual[] people = new Individual[2];
Action action = null;
Direction direction = null;
String result = "";
/*result += "Total Fitness: " +
pop.getTotalFitness() + " - Best Fitness: " +
pop.findBestIndividual().getFitnessValue();*/
// Print Current Population
System.out.println("Total Fitness: " +
pop.getTotalFitness() + " - Best Fitness: " +
pop.findBestIndividual().getFitnessValue());
// Instantiate counter for selection
int count;
for (int i = 0; i < MAX_ITERATIONS; i++) {
count = 0;
// Elitism
for (int j = 0; j < ELITISM_K; ++j) {
// This one has the best fitness
newPop[count] = pop.findBestIndividual();
count++;
}
// Build New Population (Population size = Steps (28))
while (count < POPULATION_SIZE) {
// Roulette Wheel Selection
people[0] = pop.rouletteWheelSelection();
people[1] = pop.rouletteWheelSelection();
// Tournament Selection
//people[0] = pop.tournamentSelection();
//people[1] = pop.tournamentSelection();
// Crossover
if (rand.nextDouble() < CROSSOVER_PROB) {
// One Point Crossover
//people = onePointCrossover(people[0], people[1]);
// Uniform Crossover
people = uniformCrossover(people[0], people[1]);
}
// Mutation
if (rand.nextDouble() < MUTATION_PROB) {
people[0].mutate();
}
if (rand.nextDouble() < MUTATION_PROB) {
people[1].mutate();
}
// Add to New Population
newPop[count] = people[0];
newPop[count+1] = people[1];
count += 2;
}
// Make new population the current population
pop.setPopulation(newPop);
// Re-evaluate the current population
//pop.evaluate();
pop.evaluate(maze, newPop);
// Print results to screen
System.out.println("Total Fitness: " + pop.totalFitness + " - Best Fitness: " + pop.findBestIndividual().getFitnessValue());
//result += "\nTotal Fitness: " + pop.totalFitness + " - Best Fitness: " + pop.findBestIndividual().getFitnessValue();
}
// Best Individual
Individual bestIndiv = pop.findBestIndividual();
//return result;
}
}
I have uploaded the full project to RapidShare if you require the extra files, although if needed I can add the code to them here.
This problem has been depressing me for days now and if you guys can help me I will forever be in your debt.